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In this talk I would like to review developments in canonical quantum
gravity since the last ICGC.

I will not cover related development in path-integral quantum gravity
(spin foams) nor cosmological applications (which will be covered by
Martin Bojowald). In a separate talk I commented on possible 
experimental tests of quantum gravity (!).

There are other results I won’t be able to cover for reasons of time
-Progress in the construction of a semi-classical picture 
(Thiemann et. Al., Ashtekar et al., Varadarajan)
-Comments on the use of real Ashtekar variables (Samuel).
-The Kodama state (Freidel and Smolin).

I will start by giving some background reviewing results between
1985 and the last ICGC.



Some historical notes:

In 1985 Ashtekar noted that one could use a set of triads and a
(complex) SO(3) connection to describe canonical quantum gravity.
The variables allowed to view gravity as a sub-sector of the phase
space of Yang-Mills theory, and made all constraint equations 
polynomial, and very attractive.

i
b

i
aabi

ai
a EEgAE

~~~~      ,
~ =

0
~~

0
~

0
~

=

=

=

ijk
k

ab
bjai

i
ab

ai

ai
a

FEE

FE

ED

ε

The new variables changed the 
perspective on how to quantize 
the theory. Now the natural thing
was to consider wavefunctions of
a connection, like in Yang-Mills
theories, Ψ[Α].

Rovelli and Smolin suggested in 1988 that one could use as a basis
for such functions traces of holonomies, like Gambini and Trias had
suggested in the early 80’s for Yang-Mills theories. The resulting
representation is called the loop representation. Ψ[γ], with γ a loop.



The loop representation not only automatically solved the Gauss law
constraint, but if one considered diffeomorphism invariant functions of
loops (knot invariants) one also solved the diffeomorphism constraint.

An important technical issue is that the basis of loops is overcomplete.
Rovelli and Smolin noted in 1995 that one could find an easy way of
labeling the independent linear combinations of elements of the basis
using spin networks, an idea of Roger Penrose from the 60’s.

Ashtekar and Isham, with further
developments by Ashtekar and 
Lewandowski, had introduced a
formal mathematical measure that
allowed the integration of 
diffeomorphism invariant functions of
a connection Ψ[Α]. In terms of spin
network states the measure acquires
a very simple form. Essentially, states
based on different networks are orthogonal.



Rovelli and Smolin noted in 1996 that on the Hilbert space of spin
networks endowed with the Asthekar-Lewandowski measure, the
area of a surface and the volume of a region, as quantum operators
had discrete spectrum.

This led to the suggestion by Krasnov, Rovelli and Smolin that the 
entropy of a black hole could be viewed as counting the discrete
number of degrees of freedom associated with the area of the horizon. 
Detailed calculations by Ashtekar, Baez, Corichi and Lewandowski
confirmed that the entropy is proportional to the area of the hole.
This is a fully dynamical calculation.



Implementing the Hamiltonian constraint as a quantum operator 
remained elusive until in 1997 Thiemann found a series of classical
identities that allowed to promote the (apparently non-polynomial)
single-densitized Hamiltonian constraint to a quantum operator. He did
so by discretizing the theory on a lattice and remarkably, the lattice
spacing drops out of the calculation if one operates on diffeomorphism
invariant states.
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Thiemann’s Hamiltonian has features that are not well understood yet.
In particular, it appears to have too many solutions (acting on a bra
state that does not include “exceptional vertices” but otherwise is
unrestricted, the action vanishes).

Moreover, the Hamiltonian, since its action is only defined on
diffeomorphism invariant states, has an Abelian constraint algebra.
Attempts to generalize the action to “slightly diffeomorphism invariant”
States failed to yield a non-Abelian algebra (Lewandowski and Marolf
1990).

This led us, with Rodolfo Gambini to try to look in more detail at 
what is going on in  Thiemann’s construction.



Continuum Classical 
Theory in terms of E,A

Discrete classical theory in
terms of holonomies and 
volumes on a triangulation

Quantum theory

What do we know about this
classical theory?

We know precious little, as we actually always do when we handle
discretizatons of theories… Our aim is to understand these kinds of
theories. I will devote the remainder of the talk to this point.

It should be noticed that Thiemann quantizes while at the same
time taking a limit to the space of solutions of the diffeomorphism
contraint.



Consistent discretizations: Key idea

If one discretizes the Einstein equations one gets a set of algebraic 
equations that is inconsistent (cannot be solved simultaneously).

Example: Take the 3+1 form of the equations. One has twelve 
evolution equations and four constraints, yet only twelve variables
to solve for (extrinsic curvature and three-metric).

R. Gambini, JP, Phys. Rev. Lett 90 021301 (2003)

Proposal: To make the equations consistent, consider the lapse and
shift as dynamical variables. Then one has 16 equations for 16 

unknowns.

The resulting theory is different from GR, yet it will generically include 
solutions that approximate continuum GR very well.



Quantization:

We have developed the tools to treat these kinds of theories 
canonically. Since time is discrete, it does not make sense to have 
a Hamiltonian. Time evolution is implemented through a finite
canonical transformation that takes the system from n to n+1.

Quantization is done by implementing the canonical transformation
as a unitary operator.

C. Di Bartolo, R. Gambini, JP, Class. Quan. Grav. 19, 5275 (2002)



Canonical treatment of discrete theories:

We start with a discrete action,

with Lagrange equations

We introuduce the function F which will be the generator of discrete
time evolution. The evolution is implemented through a type 1
canonical transformation with F its generating function,

This transformation
maps the pair (qn,pn)
to (qn+1,pn+1) preserving
the Poisson bracket
structure.



To quantize one of these systems we pick a polarization for the
wavefunctions, for instance, Ψ(q i), we then need to find a unitary
transformation that corresponds to the canonical transformation F,
in this case it is,

The Hamiltonian will not be conserved under evolution, as we
discussed. However, the above expression for U suggests we can write
U=exp(iε Heff/h), where Heff is easily constructed with the
Baker-Campbell-Hausdorff formula. One can immediately find a 
classical counterpart for this conserved quantity, it involves infinitely
many terms. 



Constrained systems:

We start from the Lagrangian, 

We again define a generating function for discrete time evolution,
F=-L. The canonical transformation yields,



From these we can make explicit the equations of motion of the
system,

The equations look superficially like the continuum ones, but they
are considerably more complicated, for instance since Pq

n+1=pn
constraints at different times do not have vanishing Poisson
brackets (!). The solution consists in eliminating the constraints,
this determines the Lagrange multipliers.



We have applied the framework to Yang-Mills theory, 
BF-theory and general relativity. In the case of BF theory, it 
provides the first direct lattice treatment ever constructed.

In the case of general relativity, although there are no obstructions
in principle, working out the details in concrete situations is what
will really be important. For instance: the equations that determine
the Lagrange multipliers are non-linear coupled algebraic equations.
Are their solutions real? What about various possible “branches”
(in the case of field theory situations, many branches per point).

The credibility of the whole approach will be built by studying 
situations of ever increasing complexity.



A topological field theory: BF

Fundamental variables:

Canonical momenta,
Primary constraints



Equations of motion:

Preservation of the constraints,

Last two equations determine nu’s, second equation will be F=0,
The first equation, substituting nu in it, and rewriting it in terms of,

one gets Gauss’ law



Quantum cosmology:

As a direct application, let us consider the quantization of a simple
cosmology, the Friedmann model with cosmological constant and a
(very massive) scalar field. In terms of Ashtekar variables,

Discretizing:

E and its conjugate (=0) disappear from the canonical transformation.
Conservation of ΠΝ=0 implies that the Hamiltonian 
constraint is conserved.

LF −=1

R. Gambini, JP, CQG 20, 3341 (2003) 



If one works out the discrete equations of motion and makes some
substitutions, they all boil down to a single recursion relation,

Classically, this recursion relation determines the evolution of
the universe given two values of An. The universe expands. 

What happens to the singularity? The singularity would occur when
E=0, that is A=mφ. But if one runs the recursion relation backwards,
one will only achieve such value for A if one fine tunes the initial
data. Generically therefore the singularity is avoided in the classical
theory. 

For large n, the recursion implies, 

Choosing
Which coincides with the classical
solution in the slicing α=t-1
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Implements reality conditions if Ψ(0,φ)=Φ(0,φ)=0

As expected, the singularity is completely removed at a quantum
level, since it occurs for only one fine-tuned value of initial 
classical conditions. At a quantum mechanical level such situation
has probability zero.



The life of the cosmos:

The discrete theory replaces the big bang with a tunneling into a new 
universe. In such tunneling the lattice spacing changes.

If one were to imagine a lattice gauge theory on such lattice, the
change in the lattice spacing could be viewed as a change in the
dressed values of fundamental physical constants. The change
is random. This is a practical implementation of Smolin’s Darwinian
cosmology “The life of the cosmos”. 

R. Gambini, JP, IJMPD12, 1775 (2003) 



Solution of the problem of time:

Since the discrete theory is constraint-free, it is free from many of
the hard conceptual problems of GR.

For instance, one can implement the Page-Wootters relational 
quantum mechanics, in which all variables are promoted to operators
and one of these quantum operators is considered a “clock” and
one can make predictions about conditional probabilities. 

The parameter “n” in the discretization is just an ontological 
bookkeeping tool, real “time” is introduced via a relational approach.



The main objections to the Page-Wootters quantization were 
related to the fact that GR is a constrained theory. What should
one use as observables to perform the construction? (cf. Discussion
by Kuchar in his Problem of Time review).

In the discrete theory, since there are no constraints, there is no
obstruction to implementing the Page-Wootters quantization.

R. Gambini, R. Porto, JP gr-qc/0302064, gr-qc/0305098



Possible experimental consequences:

The relational quantum mechanics of Page-Wootters is not equivalent
to ordinary Schroedinger quantum mechanics. It approximates it well
when there is a variable in the problem that can play well a role of a 
classical clock. It is very different in extreme situations when no 
classical clock is available.

Even in situations where it approximates well ordinary quantum 
mechanics, one should expect small departures. In particular if one
considers a system with two levels, it will eventually lose coherence 
by an amount:

tofPlanck
2

2   )( ttωω −1

Where omega is the system frequency and ttof is the
“time of flight”. This could have observable consequences for
for  neutron interferometry and  “macroscopic” quantum systems 
(ie. Bose-Einstein condensates).



Black hole information paradox:

The usual black hole information paradox refers to taking a pure state,
collapsing it into a black hole and letting it evaporate completely. Since
The final state is thermal it implies that a pure state evolved into a
a mixed state. This is not allowed in ordinary quantum mechanics.

But we just showed that in relational quantum mechanics, pure states
evolve naturally into mixed states. Therefore this would provide a way
to avoid the paradox, provided the decoherence mechanism is faster 
than black hole evaporation. This in principle appears not possible, 
Since the decoherence effect is minute. However, black hole 
evaporation is also slow. If one makes the black hole smaller, 
evaporation happens faster, but also the decoherence of relational 
quantum gravity since the energy fluctuations are larger!



It should be noted that our proposal has  some similarity with 
Hawking’s $-matrix proposal (decoherence via interaction
with the space-time foam), but it does not have  the problem of lack 
of conservation of energy. It leads to a Lindblad type of evolution,

A quick calculation shows that the decoherence wins over evaporation
for black holes of masses larger than 600 Planck mass. Since for
smaller black holes one cannot really speak about evaporation in the
traditional Hawking sense, the information paradox never arises!



The consistent discretizations could offer promise for numerical
relativity. Since the discretizations can be understood canonically,
this provides a tool for the construction of exact conserved quantities
for the discrete theory. The construction of conserved quantities is a 
usual numerical analysis tool to prove that a discretization scheme
is stable. 

See for instance
G. Calabrese, L. Lehner, D. Neilsen, JP, O. Reula, O. Sarbach, M. Tiglio, gr-qc/0302072

Other applications:

We have recently shown that for linearized general relativity our 
approach leads naturally to a “mimetic” discretization scheme.



Coming soon: the Gowdy cosmology

We are studying the Gowdy cosmologies without a complete gauge
fixing. One has a Hamiltonian and one component of the momentum
constraint. One solves for the lapse and one component of the shift.

β vs τ



Summary

• The new consistent discretization scheme
offers several attractive possibilities for 
implementing dynamics in classical and quantum 
gravity.

• It appears to work well in simple settings, with 
progress even in the field theoretical cases 
(Gowdy).

• The main challenge is to show it will work in 
more elaborate settings, and that it leads to (more 
or less) unique predictions.


