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§1. Introduction

e Braneworld ~ domain wall

* (n — 1)-brane = singular (time-like) hypersurface embedded
in (n 4+ 1)-dim spacetime

* brane tension (o) = vacuum energy (o > 07 or o < 07)

vacuum energy # cosmological constant on the brane

* causality on the brane # causality in the bulk
H. Ishihara, PRL86 (2001)
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A new picture of the universe! bulk's lightcone
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e Randall-Sundrum (RS) Brane-World
PRL 83, 3370 (1999); 83, 4690 (1999)
e 5D-AdS bounded by 2 branes: R* x (S'/Z,)

ds®> = dy? + e_2|y|/£nw,da:“da:” (—re <y <)

6 3
= —— brane tension: o4 = +

A5 47TG5£

o b(y) = e 1¥l/¢ is called the warp factor
b(y)
negative tension positive tension negative tension
~ | —~
>y




* vacuum energy (brane tension) # cosmological constant.
Ay =3A5+ (87G50)%/12

* 1. is arbitrary =- Existence of Radion mode.

Brans-Dicke type gravity on the branes

unless Fstabilization mechanism. (Garriga & Tanaka, '99)
e In the limit r. — oo, the negative tension brane disappears.
single-brane model --- 5th dimension is non-compact

» Gravity confined within £ ~ |A5|~'/? from the brane

* No “radion” modes (no relative motion)

Einstein gravity is recovered on scales > /¢

G5M G5M G4M

PNewton = — 2 r§>>£ — 0r -

The single-brane model is cosmologically more attractive.




82. Brane Cosmology in AdSs-Schwarzschild Bulk
Kraus (’99); Ida (’00); « - -

e 5D AdS-Schwarzschild in Static Chart:
2

dR
ds®* = —A(R)dT? R*dO?
S ( ) + A(R) + K

2 ()’,2

R
AR) =K+ —

3 (K =+£1,0, o®=2GsM)

x Fora?=0and K =1, (T,R) — (t,r);
R(t,r) = £sinh (7 /£) cosh (Ht)
T(t,r) = Larctan (tanh (r/€) sinh (Ht))
ds® = dr® + £?sinh *(r /) (— H*dt* + cosh2(Ht)dﬂ%3))
Any r =const. timelike hypersurface is 4D de Sitter space.

- de Sitter brane at r = ry (with Z; symmetry): (7, = —09,.)

3 1
= th (ro/¢ H?¢? =
= anGap Ot (re/8) sinh?(rq/£)




* Deviates from de Sitter if T}, is non-trivial:

T

A n T

\/
brane trajectory :

"bulk"

[
— R = R(r)
? {T =T(7)
/ R

\ >

52

A(R)

ds?|prane = <—A(R)T2 + ) dr? + R*(7)dQ%

- Choose 7 to be Proper time on the Brane:
2

A(R)

—A(R)T? +



= A%2(R)T? = R? + A(R)

- Junction condition under Zs-symmetry:
(K|t = 2K, (+0) = —87G5[T),, — (1/3)Tg,u]

1 . .
Kuu — 5£onu sy Mg = (Ra —T,0,0, O)
quv- - - induced metric on the brane

. 3
T+, = diag(—p,p,p,p) — 0. 0",; 0. = yr—ew,
= — T = c) = —
= 3 (p+ o) 5 P + ;

G4 =G5/L - -- 4D Newton const.
2

I A(R)=K+ R -

R2

R 2+K_871-G4 +£2(471'G4 )2+a2
R "R 3 " 3 ) TR




e Friedmann equation on the brane: Binetruy et al. ('99)

R 2+K_871-G4 +£2<4w(;4 )2+a2
R Rz 3 " 3 P) T Ra

x presence of « p? and a?/R* terms.

. p°>-term dominates in the early universe: H o p.
2\ 1/4
For px R4 K=0°=0; Rx (t—|—7)

-reduces to standard Friedmann equation for £2G4p <L 1.
(PGip K1 & pKo)
- a?/ R*-term: “dark radiation” (or Weyl fluid)

a’ = 2GsM ~ 5D (bulk) BH mass

a2 Ett (5) b

;. B = C aen®n” (5D Weyl contribution)

R 3

Shiromizu, Maeda & MS (‘99), Maartens (’00), ...



3. Quantum Creation of Inflationary Brane-World

e Euclidean AdS: H®> (O(5,1)-symmetric)
ds® = dr* 4 £* sinh *(r /£) (dx* + sin *x dﬂ%g))

* Brane at r = r¢ (with Z;-symmetry) = deS brane instanton

r=0 r=0

topology ~ S°
x = ©/2: totally geodesic 4-surface
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e Creation of inflationary brane-world
Garriga & MS ('99); Koyama & Soda (’00)
Analytic continuation: x — tHt + /2

ds® = dr® 4 (H¥)*sinh *(r /£)(—dt* + H *cosh*Ht dQ%g)) (r < 1)

Spatially Compact 5D Universe

Universe is naturally born with

inflation.
Initial value (Cauchy) problem is
well-posed.

(RS flat brane is recovered in the limit ry — 00)
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g84. 4D Graviton and Kaluza-Klein Excitations

e 5D gravitational perturbation of de Sitter brane universe:
ds® = dr® + (H£)?sinh*(r /€)ds3g, + hapydz®dx’
= b’(z) (dz* + H%ds3g,) + hapdx®dax®
dr

. dy —
“ = Zsinh(r/€)

(conformal radial coordinate):

15
b(z) = inhzy = H{¢; —
(2) sinh(|z] & z0) (sinh z o0 < z < 00)

- (generalized) Randall-Sundrum gauge:

h55 = h5N = hli“ = Dluhl“/ = O;
D, : 4D covariant derivative

h,, -+ 5 degrees of freedom (= 1 scalar 4 2 vector + 2 tenser)



e Perturbation equations:

hpw — bl/z QO(Z)HH,/($)

* “Volcano” potential for ¢:

=

r_ ”+(b3/2)// _12
P 2z P = ¥

(4)
(-0 +2H*+m*)H,, =0

(b3/2)// 15 5
\ %4 — ——3 th
(2) b3/2 4smh2(|z| + 2p) i cothmod(2)
V(z)
V(z) 2
for < — t+oo
21
4 z

* 4D graviton (zero mode m = 0):

*» KK excitations (m > 0):

o x b¥? = hy. o< b

V —(9/4) = m> (3/2)H

12
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- Zero mode is confined just like the case of the RS flat brane.
When quantized, however, the normalization (amplitude)
is non-trivial: Langlois, Maartens & Wands (’00)

Pyuw (k)K" ~ (g) 2 F(HY)

Gy

F(x)

F(x) = (\/1—|—m2—a}21n ll_l_ 1—|—:1:2]>_

N WA U1 N

3
— large enhancement at H¢ > 1: F ~ EHE.

- Mass gap in KK spectrum: mygx > (3/2)H
— The same is true for any bulk scalar field with M < H.
— No ‘zero-mode’ (bound-state mode) for M > H.



§5. Bulk Inflaton Model
(Brane Inflation without Inflaton on the Brane)

* Randall-Sundrum’s “default” parameters:

3 6 |1/2
brane tension: o.= ;. b= |—
4Gl Asg
If |o| > o, then inflation occurs on the brane:
, 1 1 1 |As|] 3
e e e 6 7 4nGst,
If |o| = 0. but |Ascrf| < |As|, inflation also occurs on the brane:
g2 1A — Aseryl
6
4

Brane-world inflation can be driven solely
by bulk (gravitational) dynamics.

Kobayashi & Soda ('00), Himemoto & MS ('00)
Himemoto, Sago & MS ('01), Himemoto, MS & Tanaka (’02)

14



e 5D Einstein-scalar system with a brane
Gap + Asgap = Kf% Tap s %g = 87Gs

* (4 4+ 1)-decomposition (Gaussian Normal Coordinates)

1 0
— . g, -+ 4D metri
gdab (O q'w/> ; qu metiric
()

ds® =dr? + qudztdx” ;  r ... 5th dimension

x Energy-momentum tensor

1
Ny = @ 5@ 55 = Gt <§ng¢,c¢,d + V(¢))

+Sapd(r — 10) 4
Sab = —0qqp.

15

(Standard matter is assumed to be in the vacuum on the brane.)



*x Zo-symmetry and RS brane tension

gab(To +Y) = qap(ro —y), ¢ ,(10) =0,

6 6
K26~ 0 |As|

O = 0g =

e 4D “Einstein-scalar” equations on the brane

G = K2 T(bulk) E.,

1 o
T =~ (4q>,u¢,y - (Eqa%,aqb,ﬂ + 3V(¢)) qW) ,

Euu — (5)Crbrd qlbi qlcji .

- Unconventional form of T(blﬂk)

- B, 1s determined by the bulk scalar dynamics

16



6. Quadratic Potential Model

' R l9,00,6—U(e)
T 167Gs g Ca®%

Ls

~ a conformally transformed scalar-tensor gravity

If ¢ varies very slowly (near and on the brane),

|As.crrl = |As + 8TG5U (@) < |As],

- 3 3

H2

I
U4; G4 = G5/£* ’ Uy = EU(qb) .
1
(£, here is arbitrary; G, Uy = §G5U.)

e Quadratic potential:

L 2.2
U=U0+§M¢

17
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As +8TGsU(9)

A

Ag

When | M?|¢p? < Uy, one can solve the field equations iteratively.

x 0-th order:
U=U,, ¢=0,

ds® = dr® + £*sinh *(r /) (—H?dt* 4 cosh*Ht dﬂé))
(r < 7o)
— ° 9 H* = 5 Uy
|As + k2 Up| 6
This is just an AdS5-dS brane system with
a modified AdS curvature: ¢ > £,

2
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*x 1st order: O(¢)
For de Sitter brane at » = rg,

B(r,t) = uo(r)bo(t) + / dA u () $alt)

3/2
¢ :  “zero mode” (bound-state mode)
¢» : Kaluza-Klein modes My = M *H”* (A > 3/2)

Effective 4d mass of bound-state mode when |M?| < H?:
; M?/2 for H*¢> < 1
My = 2 2 p2
3M=/5 for H 6> > 1

x No bound state when M? > H>.
(But there is a quasi-normal mode with My = M /+/2 — iI")
['/M = O(M?¢?) for H*¢* < 1

x For |M?| < H?, slow-roll inflation is realized on the brane,
irrespective of the value of HZ.

* The bound-state mode dominates at late times if H?%¢? < 1.
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x 2nd order: O(¢?) (for H?/? < 1)

o\ 2 2 2
[ 8] =S (o) o 7
a a 2 £y

From Bianchi Ids. on the brane,
k2 [t . a . K2 .
By = ‘—5/ a*P(2¢+ ) dt = "2h? 4 X,
2a* a 4
. . 1 .
where ¢ +3Hq¢ + §M2d) — —I'¢p (I #0 only when M > H)
X +4HX =T¢ (X ~ dark radiation)
1. 1
= peti = P+ X =4 (§¢2+5U(¢)> + X
Consistent with 1st order (bound-state) solution when H?¢? < 1.

22

%)
= p¢=3+V(so)' =V,
M2

V(p) = —U(so/f)——Uw mea®’s Mg =——

*x 5d scalar behaves like a 4d scalar on the brane!
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§7. Cosmological Perturbations in the Bulk Inflaton Model
- Essentially a 5-dimensional, PDE problem.

- However, some simplifications on super-horizon scales.
Langlois, Maartens, MS & Wands ('01)

e Basic equations: Kanno & Soda, hep-th /0303203
G = K Tﬁf(%") + Xy s
1 :
To) = VoV — 5 (VY% Vap +2V(p)) --- effective 4d field

2

K 1
P ?4 (V eV, — Zguyvagovago> - - - dark radiation

where X#,, = 0, and Tl‘jf,f/f and X, are conserved separately
at O(H*¢?) : VT =0 (H*%Y), V‘X,, =0 (H'%).
(during inflation when ' =0 ‘- |M?| < H?)

standard 4d theory is applicable
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* Where is the effect of 5D bulk?
“XIJ/V”

- Isotropic part of X,, (X% or X*) can be determined from
V#X,, = 0 (on superhorizon scales).
(Only energy conservation law is essential on superhorizon)

- Anisotropic stress part of X,,, cannot be determined from
4d equations.

aniso — 1 k
Xii = Xij — 29 Xk

3
aniso __ aniso - o eff, aniso — -
(Xaniso = —E2 R b (¢) =0 at linear order)

Need to solve 5D equations for E,,
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e Evaluation of £/, in the bulk inflaton model
Minamitsuji, Himemoto & MS, PRD6S, 024016 (2003)
- Full background spacetime:

ds? = dr? + b2(r, t) (—dt2 + a¥(r, t)dfz%g)) b= ¢(nt).
where

b(r,t) = b(r) + 0(¢2) , a(rt)=a(t)+ 0(¢2) 3
b(r) = Hlsinh (r/£), a(t) = H 'cosh Ht

= perturbations to O(¢?) as well as to O(d¢).

- Lowest order background approximated by AdSs:
ds® = dr? + b*(r)(—dt* + a2(t)dQ%3))
Then we have

E/,u/ — O(¢2) ’ 5E/M/ — O(¢5¢) <¢> 5gl~“/ — O(¢5¢))



- To O(¢?), d¢ satisfies the linearized field equation on AdSs:
(_DAdS5 -+ M2> 5(]5 = 0.
- 0F,, also satisfies a similar equation on AdSs;:

L \6E,,|=S,,; L ---Lichnerowicz (Hags.-like) operator
S, - source term of O(¢pdo)

with the boundary condition at the brane,
0,(b°6E,,) = 60,,; 0. ~ O(energy momentum of ¢)
Strategy:
1. Solve 0¢ in the AdS bulk.
2.Solve L[6E,,] = S,[0¢] by the Green function method:
OE(x) ~ / d°z’ G(z,z")6S(z) —I—/ d*z’ 9, (b*6 E(z'))G(z, ')

bulk brane

3. Analyze the late time behavior of dF,, on the brane
on superhorizon scales.

24
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After a long and tedious calculation, we find

87TG4 1 o
0 VMPVVSO o ngwv SOVaQO

0X,, =—0F,, —
= O(H"*) !

* 0 X% = —6 X% part decays like radiation (oc a™%).

x No anisotropic stress (6§ X*; — %5; 0 X*,) remains at late times.

i

Up through O(H?¢?), Bulk Inflaton Model is
completely equivalent to standard 4d inflation

Difference appears only at O(H*¢*) or when H?¢? 2> 1.
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§8. Summary

Brane-world gives a new picture of the universe

Can we find cosmological evidence?

e Quantum brane cosmology

* Spatially compact 5D Universe created from nothing
- Well-posed initial value problem

* 4D Universe created in de Sitter (inflationary) phase
- Non-trivial quantum fluctuations if H/Z > 1
- Effects of KK modes need to be investigated.

* Inflation without inflaton on the brane (bulk inflaton model)
- Inflation as a result of 5D gravitational dynamics

* Mass gap (Am = (3/2)H) in the KK spectrum
- Isolation of the zero mode
& Decoupling of 5D effects at low energy scales
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e Evolution of a brane universe

*x Presence of p? term in Friedmann equation
. Modified evolution when /°Gyp = 1

* Dark radiation (Weyl fluid) term in Friedmann equation
- Effect of 5D bulk gravity

*x Bulk inflaton model is equivalent to standard 4d model
up through O(H?¢?)
. 5D effect is encoded in Weyl anisotropy, but absent at O (H?%£?).

No trace of braneworld if H?¢? < 1

* However, for time-varying H, 5d mode mixing will occur.
= generation of KK modes from zero (bound-state) mode.

Hiramatsu, Koyama & Taruya, hep-th /0308072,
Fasther, Langlois, Maartens & Wands, hep-th /0308078
(for tensor KK mode generation)

x GGeneration of scalar KK modes needs to be studied.
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