The Future of CMB Studies

Andrew Jaffe IUCAA, December 2007

Outline

- Some recent history
- Linear evolution of scalar modes
 - Intensity, E-Mode polarization, I<1000
- Gravitational Radiation from the Early Universe
 - B-mode polarization, I<1000</p>
- Clusters and the SZ effect (highly nonlinear scalar modes)
- Exotic physics
 - topology, anisotropy, parity violation

- Mildly nonlinear evolution
 - lensing, Ostriker-Vishniac effect
- Foregrounds
 - astrophysics in the microwave band
- Experiments: Planck, the next generation of suborbital telescopes, and beyond

February, 2000

July, 2000

May, 2001

January, 2003

WMAP!

Theoretical Predictions

Initial temperature (density) of the photons

Hotter

- Doppler shift due to movement of baryon-photon plasma
- Gravitational red/blue-shift as photons climb out of potential wells or fall off of underdensities

- Photon path from LSS to today
- All linked by initial conditions $\Rightarrow 10^{-5}$ fluctuations

Initial temperature (density) of the photons

 $\sim \sim \sim$

Hotter

- Doppler shift due to movement of baryon-photon plasma
- Gravitational red/blue-shift as photons climb out of potential wells or fall off of underdensities

- Photon path from LSS to today
- All linked by initial conditions $\Rightarrow 10^{-5}$ fluctuations

- Initial temperature (density) of the photons
- Cooler

Hotter

- Doppler shift due to movement of baryon-photon plasma
- Gravitational red/blue-shift as photons climb out of potential wells or fall off of underdensities

- Photon path from LSS to today
- All linked by initial conditions $\Rightarrow 10^{-5}$ fluctuations

• All linked by initial conditions \Rightarrow 10⁻⁵ fluctuations

Inflation

- Expand the universe by a factor >>10³⁰ at t~10⁻³⁰ sec.
 - $a \propto e^{Ht}$
- Makes the universe flat ($\Omega=1$)
- Puts it all into "causal contact" (so the CMB can be isotropic)
- Generates perturbations that become galaxies, clusters, etc.
- But: no way yet to choose among specific models within particle physics, string theory,

Inflation Predicts

- Thermalized, uniform CMB
- Flat:

• $\Omega_{\rm tot} = \Omega_{\rm m} + \Omega_{\Lambda} = 1$

- (Approximately) scale-invariant + adiabatic initial spectrum of density fluctuations
 - $P(k) \propto k^{n_s}, n_s \approx 1$
- Gravitational radiation
 - (Need CMB polarization to detect)

Perturbations from inflation

- Rapid expansion blows up quantum scales to astrophysical size:
 - weakly-coupled (~free) scalar field $\langle \phi(x)\phi(x') \rangle = F(x-x')$ (~Gaussian)
 - quantum fluctuations become "frozen in", generating
 - scalar (density/curvature) fluctuations, and
 - tensor (gravitational radiation) fluctuations
 - +/X polarization handedness curl-like pattern in CMB photon polarization

(see Langlois review)

need more here

Fluctuations: Generation & Evolution

rdial fluctuations: $\frac{\delta \rho_0(\mathbf{r})}{\rho} \Leftrightarrow \delta_0(\mathbf{k})$

- e.g. inflation $\langle \delta_0^*(\mathbf{k}) \delta_0(\mathbf{k}) \rangle = (2\pi)^3 P_0(k) \propto k^{n_s}$ if $\mathbf{k} = \mathbf{k}'$ • QM microphysics
 - weakly-coupled (~free) scalar field $\langle \phi(x)\phi(x') \rangle = F(x-x')$
 - pre-inflationary white noise generates nearly scale-invariant superhorizon spectrum
- Linear evolution: $\delta(\mathbf{k}, t) = T(\mathbf{k}, t) \, \delta(\mathbf{k})$
- $P(k, t) = T^2(k, t)P_0(k)$
 - [local in $k \Rightarrow$ convolution in space]

• CMB more complicated: mix k with $T_{\ell}(k)$

Transfer function

Describing the (CMB) Universe $\frac{T(\hat{x}) - T}{\bar{T}} \equiv \frac{\Delta T}{T}(\hat{x}) = \sum a_{\ell m} Y_{\ell m}(\hat{x})$ ℓm "Fourier transform" on a sphere

Allows us to define the power spectrum, C_l \langle a_{\ell m}^* a_{\ell m'} \rangle = \delta_{\ell \ell '} \delta_{mm'} C_{\ell}
Assumes isotropy (no absolute orientation)
If we also assume Gaussianity (e.g., inflation): P(a_{\ell m} | C_{\ell}) = \frac{1}{\sqrt{2\pi C_{\ell}}} exp \left(-\frac{1}{2} \frac{|a_{\ell m}|^2}{C_{\ell}} \right)

Measuring Curvature with the CMB

Measuring Curvature with the CMB

Measuring Curvature with the CMB

The CMB 2006: WMAP &c

Measuring the geometry of the Universe

The CMB & Dark Energy

CMB alone ~insensitive to equation of state

CMB Polarization: Generation

- Ionized plasma + quadrupole radiation field:
 - Thomson scattering ⇒polarized emission

- Unlike intensity, only generated when ionization fraction, 0<x<1 (i.e., during transition)
- Scalar perturbations: traces ~gradient of density (like velocity)

CMB Polarization: **E/B** Decomposition

- 2-d (headless) vector field on a sphere
- Spin-2/tensor spherical harmonics
- grad/scalar/E + curl/pseudoscalar/B patterns

• NB. From polarization pattern \Rightarrow E/B

decomposition requires integration: non-local(data analysis problems)

Polarization from Gravitational Radiation

- Causal physics scattering in baryonphoton plasma same as intensity, Emode polarization
 - Specific predictions given primordial P(k) + parameters

CMB Polarization: E/B Decomposition

B only

E only

CMB Polarization: Spectra

•
$$\langle EB \rangle = \langle TB \rangle = \langle scalar.pseudo \rangle = 0$$
 by parity

- Density (scalar) plane waves
 aligned quadrupole perturbations
 - \Rightarrow *E* polarization
 - (& (TE) correlation)

• Gravity (tensor) waves $\Rightarrow E + B$ polarization

Diagrams courtesy W. Hu

Inflation, Gravitational Radiation and Polarization: Overview

- Energy scale of Inflation → amplitude of tensor fluct'ns \rightarrow amplitude of B ($\propto V$) detectable if V>10¹⁵ GeV
- Inflationary potential (slow roll) \rightarrow scalar and tensor spectra $r > 10^{-5}$ detectable (but see e.g., Tucci et al 05)

 $\sigma(n_{\rm r}+r/4.8)_{01}$

 $\sigma(n_{r}+r/4.8)_{0.1}$

0.001

0.01

r

- Consistency relations: e.g., $n_{t} = -r/8$
 - details accessible if r>0.01 [e.g., Song & Knox 2003]

Gravitational Radiation from Inflation

- Gravitational radiation produced during inflation
 - same QM processes as density perturbations
- Characterized by ratio of amplitudes of tensor perturbation power (GWs) to scalar power (density), r=T/S
 - \Rightarrow Energy scale of inflation: $V^{1/4} / M_{Pl} \approx 3 \times 10^{-3} r^{1/4}$
 - In single-field, "slow-roll" models, r is further related to the scalar and tensor spectral indices:
 - $P_T(k) \propto k^{n_T}$ $P_S(k) \propto k^{1-n_s}$

Gravitational Radiation from Inflation

Cooray 04

Further in the future?

- Primordial Gravitational Radiation (e.g., from Inflation) generates B (Curl) modes; scalar (density) fluctuations only generate E (grad) modes
- Crucial foreground signal from gravitational lensing via intervening structure: generates B modes, masks GW signal

Anisotropy (from topology?)

- Low power at large scales?
- Problem becomes more acute beyond the power spectrum
- Multi-connected topology?
- Finite universe
 - Cutoff at large scales induces power deficit
 - In closed universe cutoff determined by curvature alone
- Intrinsic anisotropy (orientable manifolds)
 - Possible apparent non-Gaussianity
- Effects only present at large scales at smaller scales standard ACDM power spectrum recovered
- (Luminet et al "Soccer Ball" [Dodecahedron/Poincaré] universe?)

Anisotropy (from topology?)

- Low power at large scales?
- Problem becomes more acute beyond the power spectrum
- Multi-connected topology?
- Finite universe
 - Cutoff at large scales induces power deficit
 - In closed universe cutoff determined by curvature alone
- Intrinsic anisotropy (orientable manifolds)
 - Possible apparent non-Gaussianity
- Effects only present at large scales at smaller scales standard ACDM power spectrum recovered
- (Luminet et al "Soccer Ball" [Dodecahedron/Poincaré] universe?)

8 C.J. Copi, D. Huterer, D.J. Schwarz and G.D. Starkman
Topology in a flat "universe"

"tiling the plane"

Don't need to "embed" the square to have a connected topology.

Geometry and Topology

- GR links mass-energy with curvature (geometry)
- Topology determined in early Universe?
- "Topology scale" > H_0^{-1} (Hubble Scale)
 - Can't see the back of our head!
- Infinitely many multiply-connected topologies...

Closed (3-sphere) universes:

- finite number of [well-proportioned] tilings
- topology scale linked to curvature scale (one fewer "coincidence").

Topology + geometry

 Tile the 2-sphere with different fundamental domains

Can also tile an open (hyperbolic) universe

(Souradeep et al) <u>http://www.sciencenews.org/pages/sn_arc98/2_21_98/bob1.htm</u>

Topology in 3-d

- Flat space: infinitely many possibilities
- Curved space: fundamental domains are constrained by geometry (Thurston, Weeks)

Model Comparison

Model posteriors: marginalize over all parameters

evidence:
$$P(D | I_m) = \int P(\theta | I_m) P(D | \theta I_m) d\theta$$

 $\frac{P(m | DI)}{P(n | DI)} = \frac{P(m | I)}{P(n | I)} \frac{P(D | I_m)}{P(D | I_n)}$

depends on prior Information for whole model

Bayes factor (B_{mn}) : model likelihoods ("evidence") depend on experimental information and parameter priors

model *m* favoured by : $v\sigma = \sqrt{2 \ln B_{mn}}$

Multiply-connected Spherical Topologies

Space	Fundamental group	Order	Elements	F.P.
Quaternionic	Binary Dihedral	8	order 2 rotations about 2 perpendicular axes	
Octahedral	Binary Tetrahedral	24	symmetries of r. tetrahedron	
Truncated Cube	Binary Octahedral	48	symmetries of r. octahedron	
Poincaré	Binary Icosahedral	120	symmetries of r. icosahedron	

Effects of non-trivial topology

- Orientability of manifolds
- breakdown of global isotropy
 - apparent non-Gaussianity in the CMB
- Finite size of fundamental domains
 - Fewer wavenumbers

Niarchou & Jaffe 07

simply connected	multi-connected					
$Y_{\beta \ell m}$	$Y_{\beta}^{s} = \sum_{\ell=0}^{\beta-1} \sum_{m=-\ell}^{\ell} \xi_{\beta\ell m}^{s} Y_{\beta\ell m}$					
$a_{\ell m} = i^{\ell} \int d\beta \beta^2 \sqrt{P(\beta)} \Delta_{\ell}(\beta) \varepsilon_{\beta\ell m}$	$a_{\ell m} \propto \sum_{\beta} \sqrt{P(\beta)} \Delta_{\ell}(\beta) \sum_{\beta \in m} \xi^{s}_{\beta \ell m} \varepsilon_{ks}$					
$\left\langle a_{\ell m} a_{\ell' m'} \right\rangle = C_{\ell} \delta_{\ell \ell'} \delta_{m m'}$	$\left\langle a_{\ell m} a_{\ell' m'} \right\rangle = C_{\ell m}^{\ell' m'} \qquad C_{\ell} = \sum_{m} C_{\ell m}^{\ell m}$					

Model Comparison

 WMAP 3-yr data significant diffs from lyr, e.g., octupole 	Model	Odds: C _l alone	Odds: C _{ℓmℓ'm}	
 First-year low <i>power</i> favors "small" fundamental domain to lower quadrupole (smooth low-l 	Simply- connected	1	1	
"decay")	Quaternionic	0.07	0.04	
Details depend on "priors": esp. H_0 for C_ℓ odds	Octahedral	0.32	0.005	
 This is a topology-specific test (cf. "circles-in-the-sky" which purports to be more generic) 	Truncated Cube	0.14	0.0003	
 Difficult (impossible?) to test when (topology scale)>>(Hubble scale) 	Poincaré	0.04	≪1	

Anisotropy & non-Gaussianity: the future

- Limits on specific topologies via marginalization
 - Next: expand to polarization predictions
- Generic topologies harder to find
 - infinitely-large parameter space...
 - non-Bayes techniques e.g., "Circles-in-the-sky"

- Generalize to search for anisotropy
 - e.g. Hajian & Souradeep
 - Specific models: Bianchi (T. Jaffe et al)
- and non-Gaussianity
 - e.g., f_{NL} parameterizes higher-order contributions
 - expect $f_{NL} \sim 1$, ultimately sensitive to $f_{NL} \sim \text{few}$ (?)
 - (& see new work from Yadav & Wandelt for better detection methods?)

really exotic physics

- Parity violation in the early universe
 - helicity induces EB, TB correllations
 - (Kahniashvili; Alexander)
- holography: information quantization (Hogan)
 - discrete spacetime
 - AdS-CFT correspondence and information bounds
 - IO¹²⁰ bits in observable Universe back to Planck epoch
 - inflation could reduce this to 10¹⁰!!

Confusion from gravitational lensing

 Can clean with detailed knowledge of projected density along line of sight to LSS (Lewis; Knox & Song)

- Cluster distances: Hubble Diagram
 - SZ decrement [$\int n_e$] & X-Ray Temp [$\int n_e^2$] : size
 - → Distance Indicator
- Cluster Baryon fraction
 - (SZ gas mass) / (X-Ray or Lensing: total mass)
 - $\rightarrow \Omega_b / \Omega_m$

Clusters and SZ

- Cluster density: growth of structure
- Predictions:
 - Press-Schechter (++)
 - primordial P(k) & cosmological parameters ⇒ number density of

mass peaks (i.e., clusters, galaxies, ...)

Cluster abundances

- Clusters very massive
- tail of Mass distribution
- numbers exponentially sensitive to details (Press-Schechter formalism and extensions)

Polarization and reionization

- Universe [astrophysically] ionized again today
 - Damps primary oscillations: $\Delta T \rightarrow \Delta T e^{-\tau}$
 - Generates "second-order" perturbations at very small scales
 - Ostriker-Vishniac (I'') / Sunyaev-Zel'dovich (Clusters)
 - New surface of 'last' scattering:
 - Iow I structure dominates polarization

• WMAP: $\tau = 0.17 \pm 0.06 \rightarrow z_r = 20 \pm 5$

 all very prior-dependent: degenerate with n, running, ...

Reionization and the CMB

Large scales

- Generates new surface of "last" scattering
- Mild dependence on full ionization history, x_e(z)
 - z_{ri} shifts peak
 - e.g., Kaplinghat et al '04; Colombo '04 — Planck can distinguish x_e=1.0, 0.6

The Ostriker-Vishniac effect

- Dependence on the ionization history
 - (mostly optical depth, but some structure based on details — esp. in nonlinear regime)

The uses of reionization

Large scale: Reionization "amplifies" effects of primordial tensor spectrum (new, nearby, scattering surface) Large increase in total BB power:

 $r > 0.01 \ (\tau = 0.0) \ vs$ $r > 10^{-4} \ (\tau = 0.2) \ detectable$

Small & medium scales: Cross-correlation analyses (e.g., ISW/SZ)

Prospects for Planck

- The Instrument(s)
 - 30 850 GHz, resolution 30' 4'
- Science
 - ~150 defined papers/projects
 - Cosmology
 - Extragalactic Astrophysics
 - Galactic Astrophysics
 - Solar System
- Beyond Planck

- The Scientific Programme of Planck
 - <u>http://www.rssd.esa.int/</u> <u>index.php?project=Planck</u>
 - arXiv:astro-ph/06040

Planck Surveyor (2008++)

Planck's orbit & schedule

L2 orbit

- minimize and localize sun moon, earth emission
- ~7-month full-sky scan
 - (nominal mission 2 scans)
 - mid-late 2008 launch
 - 2-4 month to L2
 - PV phase
 - 2 * 7 month scan
 - proprietary period

The Planck Instruments

The Planck bands

HFI

INSTRUMENT CHARACTERISTIC

Detector Technology	HEMT arrays				Bolometer arrays						
Center Frequency [GHz]	30	44	70	100	143	217	353	545	857		
Bandwidth $(\Delta \nu / \nu)$	0.2	0.2	0.2	0.33	0.33	0.33	0.33	0.33	0.33		
Angular Resolution (arcmin)	33	24	14	10	7.1	5.0	5.0	5.0	5.0		
$\Delta T/T$ per pixel (Stokes I) ^{<i>a</i>}	2.0	2.7	4.7	2.5	2.2	4.8	14.7	147	6700		
$\Delta T/T$ per pixel (Stokes $Q \& U$) ^a	2.8	3.9	6.7	4.0	4.2	9.8	29.8				

LFI

^a Goal (in $\mu K/K$) for 14 months integration, 1σ , for square pixels whose sides are given in the row "Angular Resolution".

The Planck bands

HFI

INSTRUMENT CHARACTERISTIC

Detector Technology	HEMT arrays				Bolometer arrays						
Center Frequency [GHz]	30	44	(70)	(100	143	217	353	545	857	
Bandwidth $(\Delta \nu / \nu)$	0.2	0.2	0.2		0.33	0.33	0.33	0.33	0.33	0.33	
Angular Resolution (arcmin)	33	24	14		10	7.1	5.0	5.0	5.0	5.0	
$\Delta T/T$ per pixel (Stokes I) ^{<i>a</i>}	2.0	2.7	4.7		2.5	2.2	4.8	14.7	147	6700	
$\Delta T/T$ per pixel (Stokes $Q \& U)^a \dots$	2.8	3.9	6.7		4.0	4.2	9.8	29.8			

LFI

^a Goal (in $\mu K/K$) for 14 months integration, 1σ , for square pixels whose sides are given in the row "Angular Resolution".

The Planck Focal Plane

The Planck Focal Plane

"Because it's there"

Heavy lines: cumulative fluctuation power in high S/N regime

- Much more to be seen (esp E polarization, which isn't dominated by largescale fluctuations)
- Planck gets ~all of T, most of E
- But what about B Modes (inflationary gravitational radiation)?

"Because it's there"

Heavy lines: cumulative fluctuation power in high S/N regime

- Much more to be seen (esp E polarization, which isn't dominated by largescale fluctuations)
- Planck gets ~all of T, most of E
- But what about B Modes (inflationary gravitational radiation)?

Cosmological Parameters from Planck

FIG 2.18.—Forecasts of 1 and 2σ contour regions for various cosmological parameters when the spectral index is allowed to run. Blue contours show forecasts for WMAP after 4 years of observation and red contours show results for Planck after 1 year of observations. The curves show marginalized posterior distributions for each parameter.

B-mode foregrounds

Astrophysical foregrounds

Contamination amplitudes E~B

Astrophysics from 30-850 GHz

Astrophysics from 30-850 GHz

Source counts

Planck sensitivity is indicated by the vertical bars.

Planck point sources

857 GHz predictions, S>0.5 Jy (6sigma)

~8000 sources

Courtesy D Clements
Fig. 1. Sub-mm counts predicted by the Granato et al. (2004) model, updated by Lapi et al. *line:* high-z proto-spheroidal galaxies; *dot-dashed:* starburst + normal late-type galaxies; *dash* lensed proto-spheroidal galaxies; *dotted:* radio sources; *thick solid line on the right:* Serjeant & Ha extrapolation of IRAS counts. The 850 µm data points are from Coppin et al. (2006; circles) and (2006; squares).

- >8000 "dusty galaxies"
 z>I detectable by HFI
- Input to Herschel
 - Planck provides Early-Release Compact Source Catalog for Herschel Obs.

Galactic Astrophysics: Diffuse foregrounds

Anomalous emission?

I0-20 GHz bump

first noticed in CMB

- Kogut et al. 1996; de Oliveira-Costa et al. 1997; Leitch et al. 1997
- models
 - Spinning dust?
 - Unexpected distrib of grain sizes?
- Polarization signal?

Stellar and Solar System Astrophysics

- Moving objects (comets)
- Zodiacal emission
 - detectable in timestream: short periods and seasonal variation due to L2 orbit

Beyond Planck

- Next generation of ground/ balloon experiments targets Gravitational waves (B polarization)
 - PolarBear
 - SPIDER
 - Eventually need ~full sky: e.g., ESA BPol

- Crucial foreground signal from gravitational lensing via intervening structure: generates B modes, masks GW signal
- Astrophysical Foregrounds likely to be dominant $\ell \leq 200$

New Technologies

PolarBear: AT Lee (Berkeley) Antenna-coupled **bolometers** 900 pixels @ 150 GHz, **3000** bolometers Full use of useful 150 **GHz Field-of-view** New challenges: 1000s of bolometers (central limit theorem to the rescue????)

Design Principles

- Search for CMB B modes
- $\int_{0}^{\ell} < 20^{\text{ from satellite; concentrate}}$ $20 < \ell < 1500$
- Deal with only one foreground
- Use balloon to get firm handle on dust foreground
- Detect B lensing signal: ~x5 stronger than dust
- Provide strong rejection of polarimetric systematics
- Use available technologies where practical

SPIDER

SPIDER (Caltech, CITA, Imperial -- Antarctic Balloon)

optimized for large scales

Future CMB Polarization Anisotropy Instruments (Ground-Based Only)

Currently operating or already have data in hand

- CAPMAP (HEMT) N. Hemisphere (New Jersey, USA)
 - Princeton, Chicago, Miami, JPL
- DASI (HEMT Interferometer) S. Hemisphere (South Pole)
 - Chicago, Caltech, JPL
- CBI (HEMT Interferometer) S. Hemisphere (Atacama Desert, Chile)
 - Caltech, Chicago, JPL
- Upcoming tens of detectors QUEST (bolometer) S. Hemisphere (South Pole)
 - Stanford, Cardiff, Chicago, Caltech, JPL, IPAC
 - BICEP (bolometers) S. Hemisphere (South Pole)
 - Caltech, JPL, Cardiff, San Diego
 - AMIBA (HEMTs)
 - ASIAA, Physics Department of National Taiwan University, ATNF
- Upcoming hundreds to thousands of detectors
 - QUIET (HEMTs) S. Hemisphere (Atacama Desert, Chile)
 - Caltech, Chicago, Columbia, JPL, Miami, Princeton, Berkeley, Harvard, GSFC

Courtesy A. Miller

- PolarBear (bolometers) N. Hemisphere (White Mountain, CA)
 - Berkeley,?
- clover (bolometers) S. Hemisphere (Dome C, Antarctica)
 - Cardiff, Cavendish Astrophysics Group

Ultimate limits?

- Astrophysical foregrounds:
 - Multifrequency experiments for astrophysical foregrounds
- Lensing signal:
 - Large-scale structure cross-correlations
 - non-Gaussian extraction

Beyond Planck from Space: BPol

 The future of Cosmic Microwave Background exploration is likely foreground-limited.

Challenges for the future

- Polarized Forgrounds
- Getting around the lensing signal
 - cross-correlation?
- New systematic problems
 - intensity/polarization and Q/U leakage
- Data analysis
 - combine thousands of maps (with thousands of different beams) and some correlated noise?
 - central limit theorem is our friend?
 - (lots of technical stuff about optimality, Bayesian estimation, etc.)
 - non-Gaussianity

The future of CMB Studies

- Closes cosmological loopholes
 - qualitatively determine the background cosmogony
- Opens astrophysics from cm to sub-mm
- Next: high-sensitivity measurements of polarization (B-mode)
 - suborbital experiments (QUAD, CIOVER, SPIDER, PolarBear)
 - Cosmic Vision: BPol

 All of these require active collaboration with other wavelengths, techniques, theorists, data-analysts