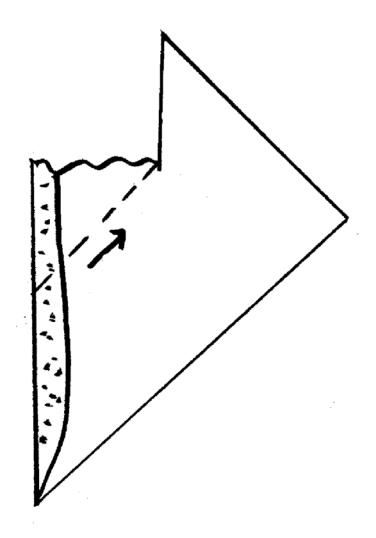

# QUANTUM GRAVITY AND THE INFORMATION LOSS PROBLEM

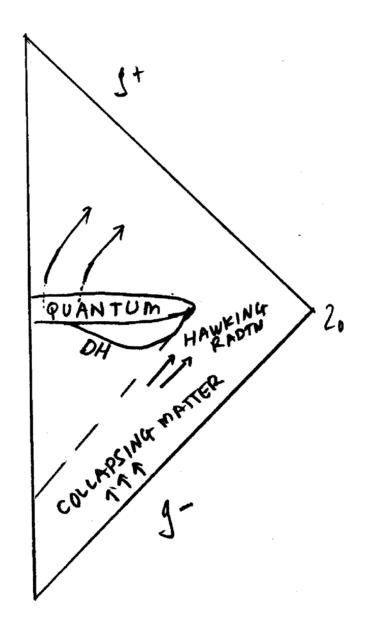
#### Madhavan Varadarajan


 $Raman\ Research\ Institute$  Bangalore





## Quantum Effects (QFT in CS):


- BH radiates at  $kT_H = \frac{m_P}{M} m_P c^2$
- ullet Radtn oMass Loss o higher temp o more radiatn
- $\begin{array}{l} \bullet \text{ Very slow process:} \\ T_{evap} \sim \frac{M}{\dot{M}}, \ \ \dot{M} \sim \sigma \ T_H^4 R_S^2 \\ T_{settling \ down} \sim \frac{R_S}{c} \\ \frac{T_{settling \ down}}{T_{evap}} \sim \frac{m_P^2}{M^2} << 1 \\ \Rightarrow \text{ Quasistatic process} \end{array}$



- ullet Endpt =  $m_P$  + Hawking Radiation
- Initial matter = pure quantum state
  - $\Rightarrow$  INFO LOSS.

#### **ALTERNATE VIEW (A-B):**

- ullet Endpt =  $m_P$  + radtn + singular boundary
- singularity resolved by quantum theory
  - $\Rightarrow$  Event Horizon not a useful concept (Hajiček)
- Instead, Dynamical Horizon:
  - smooth 3d hypersurface foliated by marginally trapped 2-surfaces
  - infalling matter  $\Rightarrow$  splike, area incr.
  - no matter  $\Rightarrow$  null, area const.
  - matter coming out  $\Rightarrow$  time-like, area decr.



• Info recovered thru correlations of Hawking Radiation with matter on "other side of singularity"

#### Brief Digression on Ptcles in QFT:

#### Ptcle concept is

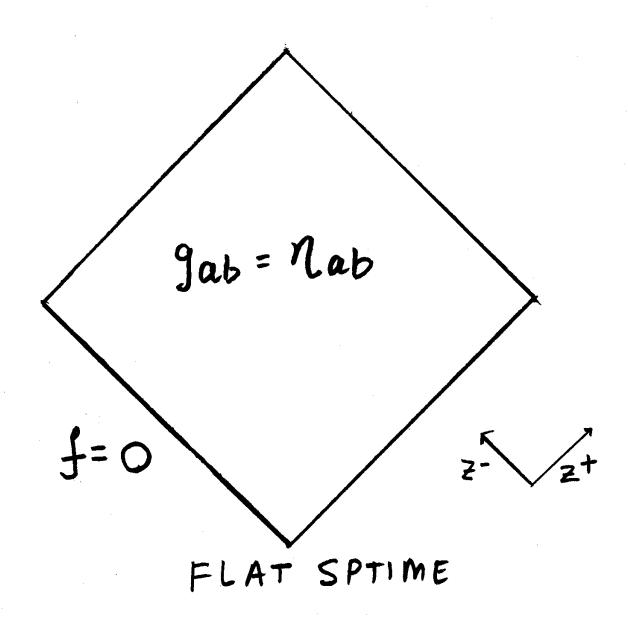
- Nonlocal:  $\hat{\phi}(\mathbf{x}, \mathbf{t}) = \mathbf{sum}$  of plane waves with  $\hat{\mathbf{a}}(\mathbf{k})$ ,  $\hat{\mathbf{a}}^{\dagger}(\mathbf{k})$  coefficients.  $\hat{\mathbf{a}}^{\dagger}(\mathbf{k})$  creates particle with momentum  $\hbar\mathbf{k}$  with wave function  $\sim e^{\mathbf{i}\mathbf{k}\mathbf{x}-\mathbf{i}\omega\mathbf{t}}$   $\rightarrow$  very spread out in spacetime.
- Observer Dependent:2 observers  $(\mathbf{x}, \mathbf{t}), (\mathbf{y}, \mathbf{T})$  expand same field oprtr  $\hat{\phi}$  in their plane wave bases:  $e^{i\mathbf{k}\mathbf{x}-i\omega\mathbf{t}}, e^{i\mathbf{k}\mathbf{y}-i\omega\mathbf{T}}$   $\Rightarrow$  creation-ann opertrs for the two are different  $\hat{\mathbf{a}}(\mathbf{k}) \neq \hat{\mathbf{b}}(\mathbf{k})$   $\Rightarrow |\mathbf{0}_{\mathbf{a}}\rangle = \Sigma |\mathbf{ptcles_b}\rangle$ .

#### **CGHS** Model:

$$\begin{split} \mathbf{S} &= \frac{1}{2\mathbf{G}} \int \mathbf{d^2x} \sqrt{g} e^{-2\phi} [\mathbf{R} + 4(\nabla\phi)^2 + 4\kappa^2] \\ &- \frac{1}{2} \int \mathbf{d^2x} \sqrt{g} g^{ab} \nabla_a f \nabla_b f \end{split}$$

- ullet [G] = M<sup>-1</sup>L<sup>-1</sup> [ $\kappa$ ] = L<sup>-1</sup>
- 2d:  $\mathbf{g^{ab}} = \Omega \eta^{ab}$ ,  $\eta \to -(\mathbf{dt})^2 + (\mathbf{dz})^2$ , null coordinates:  $\mathbf{z}^{\pm} = \mathbf{t} \pm \mathbf{z}$
- ullet Varble Redefn:  $\Phi = \mathrm{e}^{-2\phi}$   $\Theta = \Phi\Omega^{-1} \; (\Omega = \Phi\Theta^{-1})$
- Equations of Motion:

$$\partial_+\partial_-\mathbf{f} = \mathbf{0} \Rightarrow \mathbf{f} = \mathbf{f}_+(\mathbf{z}^+) + \mathbf{f}_-(\mathbf{z}_-)$$
  
Evolution eqns:


$$\partial_{+}\partial_{-}\Phi + \kappa^{2}\Theta - \Phi\partial_{+}\partial_{-}\ln\Theta = 0$$
$$\partial_{+}\partial_{-}\Phi + \kappa^{2}\Theta = 2GT_{+-}$$
$$+ Boundary Conditions$$

• Can solve for  $\Phi, \Theta$  in terms of stress energy of f. Thus, true degrees of freedom =  $f_+(z^+), f_-(z^-)$ .

#### **Basic Points:**

- Varbles: dilaton, metric, matter
- 2d implies cfmal flatness, metric specified by cfml factor
- Variable redefins in dilaton-metric sector:  $\Phi, \Theta$ . Cfmal factor =  $\Phi\Theta^{-1}$
- Matter cnfmally coupled so doesnt see cfmal factor. Hence matter satisfies free wave eqn on flat spacetime.
- Remaining equations enable  $\Phi$ ,  $\Theta$  to be solved in terms of matter stress energy, thus true d.o.f. are parametrised by matter data  $f_+(\mathbf{z}^+), f_-(\mathbf{z}_-)$ .

# **Solutions:**



## QFT on BH Sptime (QFT in CS):

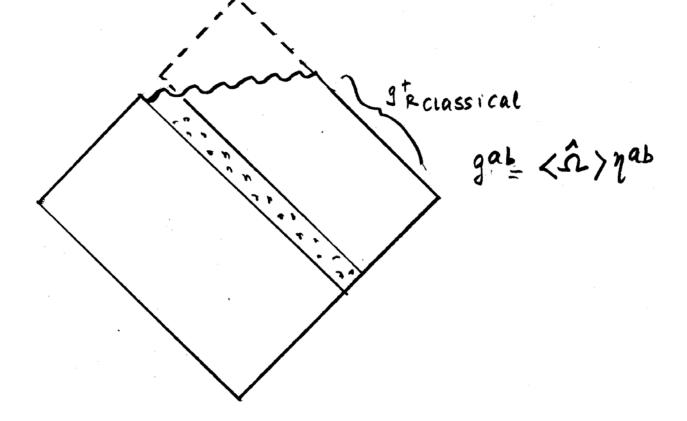
- Calculation a'la Hawking (Giddings, Nelson) yields Hawking radiation at  $\mathcal{I}_R^+$  with  $kT_H = \kappa \hbar$  indep of mass.
- $\bullet$  Evaluate  $\langle \hat{T}_{ab} \rangle$  on BH background.

 $\langle \hat{T}_{ab} \rangle = classical part + \hbar correction$ 

$$egin{aligned} \langle \mathbf{\hat{T}}_{+-} 
angle &= -(\hbar/48) \mathbf{Rg}_{+-} 
angle \ \langle \mathbf{\hat{T}}_{--} 
angle |_{\mathcal{I}_{\mathbf{R}}^+} &= \mathbf{Hawking\ flux.} \end{aligned}$$

#### FULL QUANTUM THEORY:

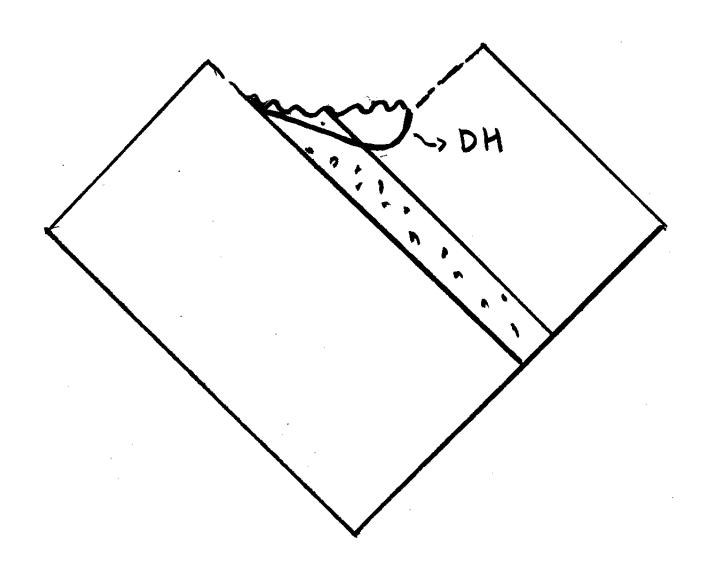
- $\partial_+\partial_-\hat{\mathbf{f}} = \mathbf{0}$ :  $\hat{\mathbf{f}} = \hat{\mathbf{f}}_+(\mathbf{z}^+) + \hat{\mathbf{f}}_-(\mathbf{z}_-)$  $\hat{\mathbf{f}} = \text{free scalar field on } \eta_{\mathbf{ab}}$ . Fock repn: $\mathcal{F}^+ \times \mathcal{F}^-$ . Arena for Quantum Theory is entire Minkowskian Plane
- Oprtr Eqns for  $\hat{\Phi}$ ,  $\hat{\Theta}$ :  $\partial_{+}\partial_{-}\hat{\Phi} + \kappa^{2}\hat{\Theta} \hat{\Phi}\partial_{+}\partial_{-}\ln\hat{\Theta} = 0$   $\partial_{+}\partial_{-}\hat{\Phi} + \kappa^{2}\hat{\Theta} = 2G\hat{T}_{+-}$ + Oprtr valued Boundary Conditions.
- Open Issue:qft on quantum sptime,  $\hat{T}_{ab} = \hat{T}_{ab}(\hat{\Phi}\hat{\Theta}^{-1})$
- Despite this, framework itself allows an analysis of Info Loss Problem.


NOTE:  $\mathcal{F}^+ \times \mathcal{F}^-$  is Hilbert space for gravity-dilaton-matter system, not only for matter.

# Info Loss Issue Phrased in Full Quantum Theory Terms:

- ullet Choose "quantum black hole" state  $|\mathbf{f}_{+}\rangle \times |\mathbf{0}_{-}\rangle$  analog of classical data  $\mathbf{f}=\mathbf{f}_{+}(\mathbf{z}^{+}), \mathbf{f}_{-}=\mathbf{0}$
- ullet Info loss issue takes the form:  $What\ happens\ to\ |0_{-}
  angle\ part\ of$  the state during  $BH\ evaporation$ ?

#### Trial Solution to Oprtr Eqns:

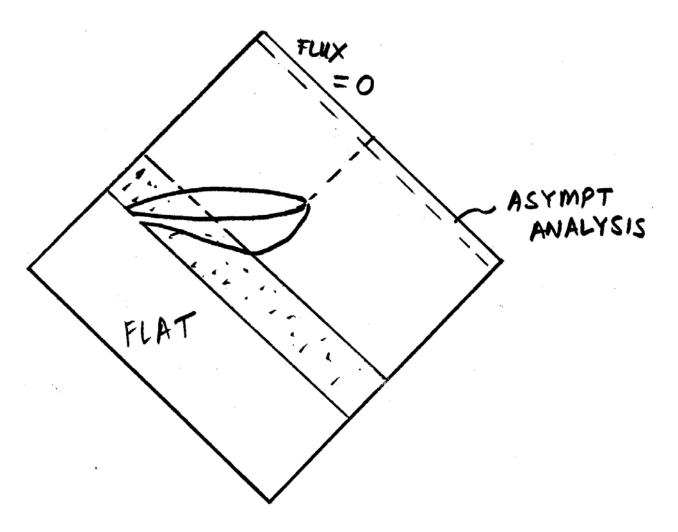

- Use  $\eta_{ab}$  to define  $\hat{\mathbf{T}}_{ab}$ . Then  $\hat{\mathbf{T}}_{+-} = \mathbf{0}$ , can solve oprtr equations explicitly
- ullet Exp value  $\langle \hat{\Omega} \rangle = \langle \hat{\Phi} \hat{\Theta}^{-1} \rangle = \Omega_{classical}!$
- On singularity  $\langle \hat{\Phi} \hat{\Theta}^{-1} \rangle = 0$  but  $\hat{\Phi}, \hat{\Theta}$  still well defined as operators. Large fluctuations of  $\hat{\Omega}$  near classical singularity,
- $\hat{\Phi}$ ,  $\hat{\Theta}$  well defined on whole Minkowskian plane, even "above" singularity: Quantum Extension of Classical Spacetime.



- Hawking Effect: Quantum State of gravity-dilaton-matter system  $|f_{+}\rangle \times |0_{-}\rangle$ .  $|0_{-}\rangle$  interpreted by asymptotic inertial observers in expectation-value- geometry at  $\mathcal{I}_{Rclassical}^{+}$  as Hawking radiation!
- But: No backreaction of this radtn
- Can try to improve on soln to oprtr equations by "bootstrapping" but not useful for info loss issues.

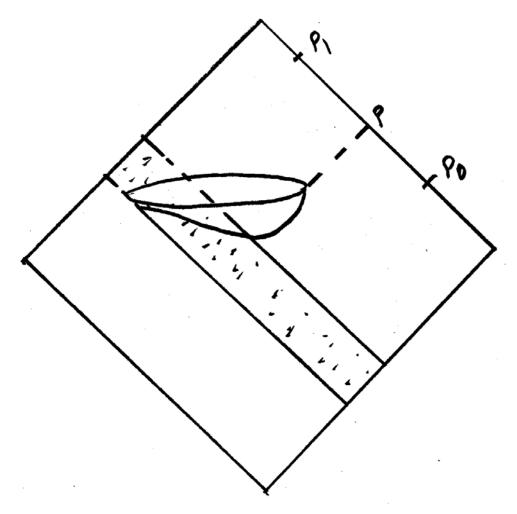
#### Mean Field Approximation:

- Take exp value of oprtr equations w.r.to  $|\mathbf{f}_{+}\rangle \times |\mathbf{0}_{-}\rangle$ .
- Neglect fluctuations of gravitydilaton but not of matter
- Get exact analog of "semiclassical gravity" 4d eqns,  $\text{``G}_{ab} = 8\pi G \langle \hat{\mathbf{T}}_{ab} \rangle \text{''}.$
- MF eqns for CGHS studied numerically by Piran-Strominger-Lowe, analytically by Susskind-Thorlacius.




Asymptotic Analysis near  $\mathcal{I}_R^+$ :

Knowledge of underlying quantum state of CGHS system + MFA eqns near  $\mathcal{I}_{R}^{+}$  dictate the response of asympt geometry to energy flux at  $\mathcal{I}_{R}^{+}$ . Analysis of eqns implies (almost) uniquely:


- ullet If Hawking flux smoothly vanishes along  $\mathcal{I}_{
  m R}^+$  then  $\mathcal{I}_{
  m R}^+|_{{
  m g}_{
  m ab}}$  coincides with  $\mathcal{I}_{
  m R}^+|_{\eta_{
  m ab}}$
- Let  $g_{ab}|_{\mathcal{I}_{R}^{+}} = dy_{(a}^{+}dy_{b)}^{-}$  with  $y^{-} = y^{-}(z^{-})$ . Then  $|0_{-}\rangle$  is a normalized, pure state in Hilbert space of y observers  $\Rightarrow$  No Info Loss!.

TIAD I TO TOTAL.



- Interior to past of MFA singularity: MFA numerics.
- ullet Near  $\mathcal{I}_{\mathbf{R}}^+$ : Asymptotic Analysis
- Conceptual underpinnings provided by oprtr equations suggest:
  - singularity resolution
  - extension of classical sptime

THE DESIGNATION OF THE PROPERTY.



- ullet  $|0_{-}\rangle$  is pure state in Hilbert space of y observers
- No energy flux beyond P, no remnant with large number of internal states. Nevertheless:  $\langle \hat{f}(P_1)\hat{f}(P_0)\rangle \neq 0$  Correlations!

#### • Entropy:

- Defn involves "tracing over ptcle modes to future of P"
- Ptcle modes spread out, have "tails" about P
- With such modes  $|0_angle \sim \scriptscriptstyle{\Sigma_{
  m m=0}^{\infty}} |{
  m 2m~ptcles}
  angle_{\mathcal{I}_{
  m R}^+}.$

Trace over ptcles appearing after P to get  $\hat{\rho}$ 

-  $\mathbf{S} = -\mathbf{Tr}\hat{\rho}\ln\hat{\rho}$ ,  $\mathbf{S}\to 0$  in remote past, increases to future, then decreases to 0 beyond P. Info in correlations between pairs of ptcles emitted at different times

NOTE: MFA requires large N, can be taken care of.

#### **SUMMARY:**

Non-pert quantization + MFA numerics + asympt analysis point to unitary pic of BH evaporation with key features:

- Singularity Resolution.
- Extension of Classical Sptime.
- No such thing as classically empty sptime.

CGHS wrk in collaboration with Abhay Ashtekar and Victor Taveras.