Gravitational Wave Data Analysis

M.Alessandra Papa

Max Planck Inst. f. Gravitationsphysik and Univ. of Wisconsin- Milwaukee

ICGC Conference 2007, December Pune

Gravitational wave data analysis

* legacy from bar detectors

* interferometric detectors

Outline

Review some results from *most sensitive* data&searches from ground-based GW observations:

* outline of analysis method

- * what quantities are constrained by null observations
- * a priori expectations/
 - astrophysical significance of the constraints
- * prospects for improvements

LIGO has completed its 5th science run (S5)

5th Science Run of LIGO

LIGO's window

In the sensitive band of current ground-based detectors one could detect signals in four categories:

- from inspiraling compact objects
- bursts, typically arising from catastrophic events
- continuous quasi-periodic waves
- stochastic background of gravitational radiation

This scheme largely reflects different analysis techniques

Long duration Short duration

Matched filter

Compact binary inspirals

Template-less methods

Bursts

This scheme largely reflects different analysis techniques

Signals from inspiraling compact objects are considered to be the most promising source for ground based detectors

Let's start from these.

Expected signal

- In the LIGO band we can observe inspirals from binaries with total mass < 200Msol
- How well we can predict all these waveforms is another matter
- Post Newtonian waveforms accurately model evolution for systems with total mass smaller than 3Msol

Compact binaries search pipeline schematics

search pipeline schematics

search pipeline schematics

Search pipeline schematics injections and accidentals

$$\rho_{\text{eff}}^2 = \frac{\rho^2}{\sqrt{\left(\frac{\chi^2}{\text{DoF}}\right)\left(1 + \frac{\rho^2}{250}\right)}}$$

 $\rho_c^2 = \sum_i \rho_{eff,i}^2$

1-Injections: can be used to tune the search parameters such as coincidence windows to be sure not to miss any real GW event.

2-Background estimation: the time stamps of the data is time-shift the data from the different detectors so as to estimate the accidental rate of triggers. Each search used 100 time-shifts.

search pipeline schematics

Assessment of significance

The analysis produces a list of coincident triggers. These triggers need to be compared with a background estimate for the same quantities. Which is obtained with the time-shifts.

If an in-time coincidence trigger is above the estimated background, then it is a candidate event, and needs followups.

search pipeline schematics

Follow-up studies at the end of the automated pipeline

- Statistical significance of the candidate
- Status of the interferometers
- Check for environmental or instrumental causes
- Candidate appearance
- Check the consistency of the candidate estimated parameters
- Check for data integrity
- Check for detection robustness (ex: versus calibration uncertainties)
- Application of coherent network analysis pipelines
- Check ringdown and burst results

 Check for coincidence with searches external to our GW searches: other E/M or particle detectors...

Status of the interferometers

Ex: Status of the L1 detector at the time of the background trigger

⇒ Check figure of merits (state vector, inspiral range, ...)

Candidate appearance

⇒ Check time series, and time-frequency spectrograms of the candidate

Ex: Inspiral hardware injection: Chirp visible in H1 and L1

Ex: Background trigger (time slide)

Candidate appearance

⇒ Check SNR and CHISQ time series after match filtering the data

Ex: Inspiral hardware injection, L1 trigger

SNR time series

 χ^2 time series

Candidate appearance

⇒ Check SNR and CHISQ time series after match filtering the data

Ex: Background trigger in L1 **SNR time series** χ^2 time series High values of χ^2 much earlier Multiple triggers above SNR threshold **than the candidate** 80 snr 60 40 20 0.0 0.5 -0.5 -0.5 0.0 0.5 1.0 time (s) time (s)

2.0 s

 \Rightarrow Both time series show a very noisy period.

⇒ Thus this candidate cannot be defended

S4 Upper limit results

LSC, arXiv:0704.3368, submitted to PRD

S4 Upper limit results

LSC, arXiv:0704.3368, submitted to PRD

Astrophysical predictions:

- Merger rates are expressed as events per unit time per unit galaxy

- BNS merger rates inferred^[p91,nps91] from 4 known binary systems suggest ranges^[kk04,k04] of

$$10-170 \times 10^{-6} \text{ yrs}^{-1} \text{ L}_{10}^{-1}$$

with $\text{L}_{10} = 10^{10} \text{ L}_{\text{B,sun}}$ and $\text{L}_{\text{B,sun}} = 2.16 \times 10^{33} \text{ erg/s}$

- BBH/BHNS merger rates are much less certain and merger rates lie in the range^[s05,s06]

BBH: 0.1 - 15 X 10⁻⁶ yrs ⁻¹
$$L_{10}^{-1}$$

BHNS: 0.15 - 10 X 10⁻⁶ yrs -1 L_{10}^{-1}

p91: Phinney, ApJ 380, L17, (1991)
nps91: Narayan, Piran, Shemi, ApJ 379, 17, (1991)
kk04: Kalogera et al, ApJ Letters 614, L137 (2004)
k04: Kalogera et al, ApJ 601, L179 (2004)

s05: O'Shaugenessy et al, ApJ 633, 1076, (2005) **s06:** O'Shaugenessy et al, astro-ph/0610076

What does 10-170 X 10⁻⁶ yrs ⁻¹ L₁₀⁻¹ translate into, for expected detection rate for a search ?

• $\Re = 10-170 \times 10^{-6} \text{ yrs}^{-1} \text{ L}_{10}^{-1}$: number of events per "galaxy" per megayr

 $R = \Re X C X T$ detection rate

X C: number of "galaxies" the search can see L_{10} X T: observation time of search

- $C = C(D_{H})$ D_{H} : horizon distance of a search: maximum distance at which a signal may still be detected

Cumulative luminosity function

Catalog of galaxies has been developed and cumulative luminosity $C(D_{H})$ computed as a function of the distance (*Kopparapu et al, arXiv:0706.1283v1*)

Horizon distance of a search: maximum distance at which a signal may still be detected.

The horizon distance (for data that has been analyzed)

LSC, S3-S4 inspiral search, arXiv/0704:3368, Talk by A. sengupta

... for S4 these translate in expected rates of

≈ 1/(2000yrs)--1/100(yrs) for BNS, with DH ~ 16Mpc

≈ 1/(1000yr) -1/(10yrs)
for BBH,
with DH ~ 100Mpc

Not so great

... for our next detectors

LSC, S3-S4 inspiral search, arXiv/0704:3368

First year of S5, estimated rates

First year of S5, estimated rates

Component masses (M _{sun})	1.4,1.4	5,5	10,10
Cumulative blue luminosity of search, C [L ₁₀]	200	2400	11000
Tobs [yr]	0.77		
Astrophysical Rate per unit Tobs and C [yr L ₁₀] ⁻¹	10-170X10 ⁻⁶	0.15-10X10 ⁻⁶	
Expected detection rate for the search [yr] ⁻¹	1/[650-40]	1/[4000-50]	1/[800-10]

Other blind searches: for GW bursts

All inspirals of compact objects

- -all inspirals of compact objects
- Supernovae core-collapse
- -- Neutron star instabilities
- Cosmic string cusps and kinks
- •- The unexpected!

What we know about th

- Catastrophic astrophysical events will plausibly be accompanied by snort Gw signals
- Exact waveforms are not or poorly modeled
- Durations from few millisecond to x100 millisecond durations with enough power in the instruments sensitive band (100-few Khz)-
- aimed to the all-sky, all-times blind search for the unknown using minimal assumption on the source and waveform morphology

Analysis scheme

same as in arXiv:0704.0943 [gr-qc] CQG 24, 5343-5369 (2007)

- Less sensitive than optimal matched filtering techniques that assume good a priori knowledge of the waveform.
- Non coherent hierarchical combination of data from detectors and complementary techniques to reduce false alarm.
- Coherent follow-up

S5 Detection Efficiency (first 5 months of S5)

Putative waveform are injected and pipeline efficiency is measured

Instantaneous energy flux:

$$\frac{\mathrm{d}^2 E_{\mathrm{GW}}}{\mathrm{d}A\,\mathrm{d}t} = \frac{1}{16\pi} \frac{c^3}{G} \left\langle (\dot{h}_+)^2 + (\dot{h}_\times)^2 \right\rangle$$

Assume isotropic emission to get rough estimates

For a sine-Gaussian with Q>>1and frequency f_0 :

Cadonati for the LSC, APS 07, G070209-03

Detection Efficiency / Range

For a 153 Hz, Q = 8.9 sine-Gaussian, the S5 search can see with 50% probability:

at 10 kpc (typical Galactic distance) $\sim 2 \times 10^{-8} M_{\odot} c^2$

 $\sim 0.05 \ M_{\odot} \ c^2$ at 16 Mpc (Virgo cluster)

Emission predictions and S5 reaches

- Recent **core-collapse supernova** simulations (Ottl et al, PRD Lett. 96 (2006)): **11** M progenitor, S5 reach is \approx **400pc**. **25** M^{sun}_{sun} model was found to emit more, yielding a reach of \approx **15kpc**.

Merging BBHs (Baker et al, PRD 93,(2006))), radiate up to $0.03M_{tot} c^{-2}$ in Gws. If m1=m2=10, then f ~ 750Hz, which yields a reach of \approx 3Mpc. If m1=m2=50 M_{sun}then f ~ 150Hz and reach \approx 120Mpc.

BBH merger rates:

0.1-15 X 10⁻⁶ yrs $^{-1}$ L $^{-1}_{10}$ 1/[3000-7]yrs

Estimate of reach for various models following [1] and rescaling for S5-to-S4 sensitivity [1] arXiv:0704.0943v1 [gr-qc], LSC, burst searches in S4 data

Searches triggered by em observations

GRB070201

- Described as an "intense short hard GRB"
- a = 11.089 deg, d = 42.308 deg, error = 0.325 sq. deg, center is 1.1 deg from center of M31 (~800kpc) and includes its spiral arms
- $E_{iso} \sim 10^{45}$ ergs if at M31 distance
- Hanford detectors were taking data

Short GRBs and GRB070201

Most likely short GRBs are associated with the NS-NS or NS-BH merger. They are the em counterpart of strong gravitational wave signals.

Simultaneous detection of GRB and a GW event would

- firm evidence that hard GRBs do indeed stem from compact binary mergers
- provide insight into merger physics
- measure cosmological parameters (luminosity distance from GWs, red shift from em)

A non-detection of GRB070201 would

- Exclude progenitor in mass-distance regio
- Bound the GW energy emitted by a source M31

GW observations arXiv:0711.1163v2, submitted to ApJ Lett

Search for signal from compact binary

- » standard matched filter pipeline applied to 180s around GRB time
- $_{\rm sol}$ \sim $1M_{\rm sol}$ < m1 < $3M_{\rm sol}$ and $1M_{\rm sol}$ < m2 < 40 $M_{\rm sol}$

Search for unmodeled burst

- » cross-correlation of data streams, within 180s of GRB time
- » cross-correlation windows: 25ms and 100ms

Inspiral search results

upper limit:

$$p[0|h(t;m_2,D)] = \int p(\vec{\mu}) p[0|h(t;m_2,D,\vec{\mu})] d\vec{\mu}$$
$$\vec{\mu} = (m_1,\vec{s}_1,\vec{s}_2,\iota,\phi_0,t_0)$$

Inspiral search results

- uniform priors were used on m_1, t_0, ϕ_0
- priors on $\iota, \vec{s_1}, \vec{s_2}$:
 - $0 \le \frac{a}{M} \le 0.75$ for neutron stars
 - $0 \leq \frac{a}{M} \leq 0.98$ for black holes

- spin directions uniformly distributed on sphere

S: spin angular momentum.

- $-1 \leq \cos(\iota) \leq 1$ uniformly distributed

Inspiral search results: exclusion regions

Burst search results

- > cross-correlation (cc) of data streams, within 180s of GRB time
- CC windows: 25ms and 100ms
- Iargest cc: 0.36 (25ms) and 0.15 (100ms)

> false alarm probability of on-source largest crosscorrelation is estimated using these distributions:

p = 0.58 for 25-ms cc p = 0.96 for 100-ms cc

→consistent with null hypothesis

90% confidence upper limits on hrss

Q = 8.9, circularly polarized sine-gaussians

- measured gamma-ray fluence = 1.6 x 10⁻⁵ ergs/cm² (Konus-Wind)
- corresponding energy release in gamma-rays at M31,

$$E_{\gamma, \text{iso}} = \varphi \times 4 \pi D^2 \approx 10^{45} \text{ ergs}$$

→ orders of magnitude smaller than LIGO limit on energy release in GW for GRB 070201

 SGR models predict energy release in GW to be no more than ~10⁴⁶ ergs

Corresponding GW energy, assuming isotropic emission, with source at D = 770 kpc:

LIGO limits on GW energy release from GRB 070201 do not exclude SGR models in M31

sensitivity of the burst search to inspirals

- injected into on-source segment simulated NS-NS inspirals (1.4-1.4 Msun), and NS-BH inspirals (1.4-10 Msun)
- inclination angles of binary plane were isotropically distributed
- simulations did not include merger phase of coalescence
- measured fraction of events which had crosscorrelations larger than the on-source largest crosscorrelation
- at 90% confidence,

efficiency > 0.878, 1.4-1.4 Msun efficiency > 0.989, 1.4-10 Msun

These results give an independent way to reject hypothesis of a compact binary progenitor in M31

Continuous GW signals

Continuous GW signals

Pulsars (spinning neutron stars) are known to exist!

- Emit gravitational waves if they are non-axisymmetric:

1. Known pulsars (radio & x-ray) (e.g., Crab pulsar)

Position & frequency evolution known (including derivatives, timing noise, glitches, orbit).

2. Unknown neutron stars

Nothing known, search over sky position, frequency & its derivatives.

3. Accreting neutron stars & LMXBs (e.g., Sco-X1)

- Position known; some need search over freq. & orbit.
- 4. Targeted sky position: galactic center, globular clusters, isolated non-pulsing neutron stars (e.g., Cas A)
 - Search over frequency & derivatives.

Methods

- Weights depend on both noise and antenna patterns:
- Methods can include multi-detector data and coincidence steps.
- Hierarchical Methods: combine the above to maximize sensitivity.

1. Known pulsars (radio & x-ray) (e.g., Crab pulsar)

Position & frequency evolution known (including derivatives, timing noise, glitches, orbit)

2. Unknown neutron stars

Nothing known, search over sky position, frequency & its derivatives.

3. Accreting neutron stars & LMXBs (e.g., Sco-X1) Position known; some need search over freq. & orbit.

 Targeted sky position: galactic center, globular clusters, isolated non-pulsing neutron stars (e.g., Cas A)
 Search over frequency & derivatives.

Signal model

The GW signal can be modelled as

 $h(t) = \frac{1}{2}F_{+}(t;\psi)h_{0}(1+\cos^{2}\iota)\cos 2\Psi(t) + F_{\times}(t;\psi)h_{0}\cos\iota\sin 2\Psi(t)$

- The unknown parameters are
 - h₀ amplitude of the gravitational wave signal
 - ψ polarization angle of signal; embedded in $F_{x'+}$
 - *i* inclination angle of the pulsar
 - ϕ_0 initial phase of pulsar $\Phi(0)$
 - In the targeted searches we currently only look for signals at twice the rotation frequency of the pulsars
 - For blind searches the location in the sky and the source's frequency evolution are unknown.

Known pulsars

• A Bayesian approach: the joint posterior distribution of the probability of our unknown parameters, using priors on h_0 , $\cos \iota$, ψ and φ_0 is computed:

$$p(a|\{B_k\}) \propto p(a) \cdot p(\{B_k\}|a)$$
posterior
likelihood
prior

Known pulsars

• The *likelihood* that the data are consistent with a given set of model parameters, is proportional to $exp(-\chi^2/2)$, where

$$\chi^{2}(a) = \sum_{k} \left| \frac{B_{k} - y(t_{k};a)}{\sigma_{k}} \right|^{2}$$

• B_k are the heterodyned, downsampled and Doppler-corrected. The $y(t_k)$ is the signal. The sum is only over valid data, so dropouts and gaps are dealt with simply.

• Finally we marginalize over the unknown parameters to leave the posterior distribution for the probability of h_0 :

$$p(h_0|\{B_k\}) \propto \iiint e^{-\chi^2/2} d\varphi_0 d\psi d\cos \iota$$

The 95% confidence upper limit:

$$0.95 = \int_{0}^{h_{95}} p(h_0 | \{B_k\}) dh_0$$

Known pulsars, preliminary S5

Known pulsars, preliminary S5

Joint 95% upper limits from first ~13 months of S5 using H1, H2 and L1 (97 pulsars)

Known pulsars, preliminary S5 $h_0 = \frac{16 \pi^2 G}{c^4} \underbrace{\epsilon i j^2}_{i} \text{ known} \text{ fiducial value}$

Lowest ellipticity upper limit: PSR J2124-3358 (v_{gw} = 405.6Hz, r = 0.25 kpc) ϵ = 7.3x10⁻⁸

Known pulsars, preliminary S5

Known pulsars, preliminary S5

 $h_{0 \text{ spin-down}} = 1.4 \times 10^{-24}$ $h_{0 \text{ S5 first year}} = 5 \times 10^{-25}$

at fiducial $I = 10^{38} \text{kgm}^2$

 $-\mathcal{E}_{spin-down} = 7.3 \times 10^{-4}$

 $-\mathcal{E}_{S5 \ first \ year} = 2.6 \ x10^{-4}$ less than 13% power is carried away by GWs

But *I* could be higher than the fiducial value. No definitive observational evidence but a number of theoretical investigations^{*} suggest:

 $I = 1.3 \times 10^{38} (\text{kg m}^2)$

Upper limit on h_o can be recast as exclusion area on $I\epsilon$ plane:

The main problem

- the most promising searches are the ones for objects that we do not know about
- very large parameter space: entire sky, hundreds of Hz, wide fdot range
- one gains in sensitivity by increasing the observation time
- for coherent searches (the most sensitive) the gain in resolution is very fast with increasing observation time
- the computational cost soon (very few days) becomes unmanageable
- have to resort to hierarchical techniques, using non-coherent methods as well

Einstein@Home

http://einsteinathome.org/

Getting Started Latest Headlines

e

000

Welcome to Einstein@Home

Einstein@Home screensaver

Join Einstein@Home According to Albert Einstein, we live in a universe full of gravitational waves. He suggested that the movements of heavy objects, such as black holes and dense stars, create waves that change space and time. We have a chance to detect these waves, but we need your help to do it!

G - Google

Einstein@Home uses computer time donated by computer owners all over the world to process data from gravitational wave detectors. Participants in Einstein@Home download software to their computers, which process gravitational wave data when not being used for other computer applications, like word processors or games. Einstein@Home doesn't affect the performance of computers and greatly speeds up this exciting research.

Learn more about the project.

Done

Q

Einstein @Home

- » APS outreach
 - World Year of Physics 2005 gravity on the public's mind
 - People are excited if they can pitch in to real science
 - Look how popular SETI@Home is!
 - E@H site: http://einstein.phys.uwm.edu/
 - APS site: http://einsteinathome.org/

more than 150 000 active users
 delivers ~ 100 TFlops sustained 24X7

Some results on wide-parameter space searches

Some results on wide-parameter space searches

Blind searches: expressing results

$$h_0 = \frac{4\pi^2 G}{c^4} \frac{If^2}{d} \varepsilon$$

If all spindown is due to GW emission (for I=1e38kgm²):

$$\varepsilon^2 = 7.6 \times 10^5 \frac{\dot{f}}{f^5}$$

h_o can be expressed as
 a function of only f, fdot,
 and d.

Expressing the reach of search from UL values.

Contour plots of distance at which one of the **S4 searches** could detect a source with a given f and fdot.

These are NOT typical S5 numbers. Deepest searches are expected to reach ~1kpc for $\varepsilon = 10^{-5}$.

....so what to take away from all this?

- GW data analysis is still a relatively young endevour
- plenty of areas where more work is needed data analysis
 - mature pipelines
 - beyond detection to parameter estimation
 - truly integrated network analysis
 - at the interface with astronomy
 - to better target our searches
 - to better interpret our results
 - at the interface with relativity
 - to construct accurate waveforms
 - or to extract from numerical simulations relevant features at the interface large scale computing
 - to farm out computationally-intensive searches to produce significant online-triggers to handle the data set across different institutions
 - maintain and control a large and distributed software-base

GW astronomy now ...

...we're getting there. GW observations are *starting* to contribute astrophysical information.

If GW were observed now no cherished belief would be challenged.

If GW are not observed by advanced ground-based detectors and LISA, cherished beliefs will be questioned.

.... in the mean time.... stay tuned!

The End