GRAVITATIONAL RADIATION EXPERIMENTS

Rana Adhikari Caltech

They Exist !

On the Earth:
TAMA 300 – Tokyo/TAMA, Japan
GEO 600 – Hannover/Ruthe, Germany
Virgo 3000 – Pisa/Cascina, Italy
LIGO 4000 – Washington+Louisiana, USA
BARS: ALLEGRO, AURIGA, NAUTILUS, EXPLORER

Space:

LISA 5x10⁶ - Orbiting the Sun (2015-2020)
Pulsar Timing - Analyzing Radio data (NOW)
BBO/DECIGO - Directly Observe Inflation

GWs and Bars

- First ground-based detectors the beginning of GW detection: Weber
- Much improvement in Bars
 - Cryogenics
 - Quantum Limited Readout

First World-wide GW Network: IGEC

International Gravitational Event Collaboration Established 1997 in Perth

EXPLORER AURIGA

EXPLO

Detecting GWs with Interferometry

Suspended mirrors act as "freely-falling" test masses (in horizontal plane) for frequencies f >> f_{pend}

h

 $=\Delta L/L$

Detecting GWs with Interferometry

Suspended mirrors act as "freely-falling" test masses (in horizontal plane) for frequencies f >> f_{pend}

test mass test mass

 $h = \Delta L / L$

Terrestrial detector For *h* ~ 10⁻²² – 10⁻²¹ L ~ 4 km (LIGO) ∆L ~ 10⁻¹⁸ m

Typical Optical Configuration

Michelson Interferometer + Fabry-Perot Arms + Power Recycling

recycling

mirror

Laser

end test mass

km scale Fabry-Perot arm cavity

input test mass

beam splitter

GW Signal Readout

LIGO Hanford

Univ of Maryland

Caltech

LIGO Livingston

Image © 2006 MDA EarthSat

²⁰⁰⁵Google⁻

LIGO HISTORY

LIGO HISTORY

Progress of LIGO Sensitivity

LS

LIGO Anatomy of the Noise

12

Interferometer with 600 m arms, located near Hannover

GEO600 Sensitivity

Typical Sensitivity: Science Runs

G GEO600: е റ 0 0 6 10⁻¹⁹ SR tuning = 1 kHz SR tiuning = 550 Hz 10⁻²⁰ Strain [1/sqrt(Hz)] 10⁻²¹ 10⁻²² 10² 10^{3} Frequency [Hz]

Harald Lück Rencontres de Moriond

Signal Recycling Mirror

Location of Signal Recycling Mirror Changes Frequency Response (Frequency of Maximum Sensitivity)

Virgo

One interferometer with 3 km arms, located near Pisa, Italy

Progress of Virgo

TAMA300

300 m interferometer, located at National Astronomical Observatory of Japan (Tokyo)

Project started 1995

First large interferometer
 to begin observations

Best sensitivity in world 2000-2002

from Kazuaki Kuroda for the TAMA/CLIO/LCGT Collaboration

TAMA300 Sensitivity

ഺഄഄഄ

New Seismic Attenuation

Recognized need for better seismic isolation

 Joint development with LIGO, based on earlier
 Virgo concept

Now being installed

AIGO: AUSTRALIAN INTERNATIONAL GRAVITATIONAL-WAVE OBSERVATORY

- 8km x 8km AIGO site 70km north of Perth granted 1998.
- Construction begun 1999
- Currently operating
 80m High Optical Power interferometer test facility in collaboration with LIGO

A Global Network

Detection confidence polarization of

2

11 00

Looking to the Future

LIGO Scientific Collaboration

Advanced LIGO

LIGO

What is so Advanced?

Parameter	LIGO	Advanced LIGO
Stored Laser Power	20 kW	800 kW
Mirror Mass	10 kg	40 kg
Interferometer Topology	Power-recycled Fabry-Perot arm cavity Michelson	Dual-recycled Fabry- Perot arm cavity Michelson
GW Readout Method	RF heterodyne	DC homodyne
Optimal Strain Sensitivity	3 x 10 ⁻²³ / rHz	Tunable, better than 5 x 10 ⁻²⁴ / rHz in broadband
Seismic Isolation Performance	f_{low} ~ 50 Hz	f_{low} ~ 10 Hz
Mirror Suspensions	Single Pendulum	Quadruple pendulum

Enhanced LIGO

Enhanced LIGO

Enhanced LIGO

LIGO

- Higher laser power
- DC readout
- Output modecleaner
- Aim for a factor of 2 improvement in sensitivity (factor of 8 in event rate)

Early tests of Advanced LIGO hardware and techniques

Virgo Plans

So Virgo+:

- Intermediate upgrade toward Advanced Virgo
- At least2 times sensitivity increase over nominal Virgo
- Suild and commission from 2008 to mid 2009
- Science run in 2010
- Advanced Virgo:
 - Major upgrade for all subsystems
 - I0 times sensitivity increase over nominal Virgo
 - Installation beginning in 2011

Expected sensitivity of Virgo+

- Virgo+ configuration not yet set
 - » Higher power laser
 - » Fused silica suspensions
 - » Increase arm finesse
- Final Decision to be made late 2007

Julien Marque Rencontres de Moriond

Expected sensitivity of Virgo+

- Virgo+ configuration not yet set
 - » Higher power laser
 - » Fused silica suspensions
 - » Increase arm finesse
- Final Decision to be made late 2007

	Virgo+ (NN) (Mpc)
NSNS	28-61

Julien Marque Rencontres de Moriond

Advanced Virgo

Similar scope to AdLIGO

Larger mirrors

Improved coatings

Higher laser power

10⁻²² 10⁻²³ -24 10 10

DC read-out

Plans of GEO

Stefan Hild

Stefan Hild

GEO HF

- Emphasize high frequencies--length less important
- Pioneer advanced techniques for other large interferometers
- Tuned signal recycling and squeezing?

Large-scale Cryogenic

- 3 km baseline
- Utilizes cryogenic mirrors (sapphire)
- Construction at an underground site (Kamioka mine)
- Two parallel interferometers installed in a common vacuum envelope
- Suspension point interferometer

Kazuaki Kuroda for the TAMA/CLIO/LCGT Collaboration 34

LCGT Design Sensitivity

Kazuaki Kuroda for the TAMA/CLIO/LCGT Collaboration

AIGO Planning

- Western Australian Centre of Excellence for Gravitational Astronomy 2005
- WA Government Steering Committee
- Project prospectus completed 2006
- AIGO concept plan submitted to Minister for Science Oct 2006-
- AIGO International Advisory Committee
 appointed
 Rencontres de Moriond

Importance of AIGO

- AIGO provides strong science benefits e.g. host galaxy localization
- 5km baseline sensitive to inspirals in the range ~ 250Mpc
- Australian Consortium welcomes new partners in this project
 David Coward and David Blair

Einstein Gravitational-Wave Telescope (ET)

ET Baseline Concept

Underground location

- >> Reduce seismic noise
- » Reduce gravity gradient noise
- » Low frequency suspensions

Cryogenic Overall beam tube length ~ 30km Possibly different geometry

Some Timelines

	<i>´</i> 06	<i>′</i> 07	<i>′</i> 08	<i>´</i> 09	´10	<i>'</i> 11	´12	´13	´14	´15	´16	<i>'</i> 17	´18	´19	<i>´</i> 20	<i>'</i> 21	<i>'</i> 22
Virgo				Virgo	+		A	dvan	ced V	irgo		••	•				
GEO					_	_	GE	DHF		••	• •	••]					
LIGO Hanford Livingston				LIG	D+		Ad	vanc	ed LI	GO	•••	••	2				
LISA												Laur	ch	Trans	sfer	data	->
E.T.			••	DS • •	•	• • •	PCP	••	• • •	Со	nstru	ction	Com	missi	oning	dat	a

BBO

Last year of every merging NS-NS, NS-BH, BH-BH of stellar mass at z < 8. ~1 arcmin positions. \bigcirc Luminosity distances for (1): ~10⁴-10⁵ sources, accurate to < 1%Measure dz/dt in galactic sources from stretching of chirp, gives H(z). Dark energy probe. All mergers of intermediate mass BH at any z. Cosmic/Superstrings over entire range Gµ/c₂>10-14

BBO & Stochastic Background

BBO v. LISA

	BBO	LISA
Arm length L (km)	$5 imes 10^4$	$5 imes 10^6$
Laser Power L (W)	300	1
Laser λ (nm)	355	1065
Mirror diam D (m)	2.5	0.3
Accel. noise (m s ^{-2} Hz ^{$-1/2$})	3×10^{-17} at 0.1 Hz	3×10^{-15} at 1mHz
Proof Mass M (kg)	$10 \text{ Al}_2\text{O}_3$	$1.6 \mathrm{Au/Pt}$
Interferometer op	dark fringe	fringe counting
Proof mass accel	$3 imes 10^{-10} { m m~s^{-2}}$	0
$c/(2\pi L)$ (Hz)	1	0.01
Position shot noise (m $Hz^{-1/2}$)	$1.5 imes10^{-17}$	$1.1 imes 10^{-11}$
Pointing stability req	10^{-12} rad Hz $^{-1/2}$	$10^{-8} \text{rad Hz}^{-1/2}$

Summary

Existing Ground Based Interferometers at/near design

Next Generation of IFOs promise daily/weekly detections

Spaced Based Interferometers are 10-20 years in the future

