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Pursuit of exact solutions

• Exact solution are precious. They are hard to obtain.  

• Gravity in higher dimensions has attracted much attention 
in the last decade.  

• Gravity in higher dimensions is much richer…and much 
harder to find exact solution 

• AdS/CFT 

• String theory 

• TeV-scale gravity
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The black hole bestiary

• How much do we know about 
axisymmetric solutions in 
higher dimensions? 

• In 4d Kerr-Newman solution 
exhaust the space 

• In 5d much progress has been 
achieved over the last decade 

• For 6d or higher dimensions, 
solutions are scarcer…
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Solution generating techniques

• “It often happens that when one is trying to solve an equation that an 
algorithm exists for constructing new solutions from a given one.” [Wald 1984] 

• The first solution generating technique applied to gravity was due to 
Ehlers and later developed further by Geroch 

• A class of solution-generating techniques is provided by the hidden 
symmetries of dimensionally reduced theory to 3d 

• The so-called Backlund transformations were developed in late 70s 

• The inverse scattering technique appeared [Belinski and Zakharov] 1978 

• Various innovative improvements have been made recently, making these 
techniques promising and powerful for the future
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Solution generating techniques

• Various (super)-gravity theories in D-dimensions 
when reduced to 2d, reduce to 2d gravity coupled 
to non-linear sigma model 

• Such 2d models are known to be integrable 

• Integrability of these models had not been used as 
a solution generating techniques 

• Notable exceptions are 4d vacuum gravity and 4d 
Einstein Maxwell theory [1980s—1990s]
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Goal

• Explore integrability of various supergravities and 
implement inverse scattering methods. Make them 
practical.
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Motivation

• Dimensionally reduced gravity theories have large U-duality groups 

• 4d gravity in 3d: SL(2,R);  

• 11d supergravity in 3d: E8(8) 

• These symmetries have been used to study black holes: 

• uniqueness results 

• charged black holes 

• BPS and non-BPS from duality orbits 

• These symmetries are just a tip of an iceberg. In many situations infinite dimensional 
extensions are available. 

• Black holes/fuzzballs in 4d (5d) have 2 (3) commuting Killing vectors. Thus we have 
access to symmetries of theories reduced to 2d, which are infinite dimensional.
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Motivation

• We want to understand and make use of these symmetries. 

• Using these symmetries one can address many difficult problems 

• How to describe thermal excitations over multi-center 
supersymmetric bound states? 

• To construct a bigger family of non-supersymmetric fuzzballs? 

• No known techniques to construct such solutions and address 
such problems. 

• Our formalism is sufficient to address these problems; though 
the achievements have been only modest so far.
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Plan

• Review of the inverse scattering method 

• Review of the hidden symmetries 

• Geroch Group; our formalism 

• Vision and comments
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Inverse scattering 
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Review: Inverse Scattering Method 
Canonical coordinates

• Consider stationary axisymmetric solutions of Einstein’s equations 

• Assume D-2 commuting Killing vectors 

• Weyl canonical coordinates; metric components only depend on 

• Einstein’s equation can be divided in two groups 

• For 

• For  

• Integrability condition                               is automatically satisfied
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Review: Inverse Scattering Method 
Static solutions

• It is easy to construct static solutions [Weyl solutions] 

• The functions Us are simply Harmonic functions in 3d [auxiliary] flat 
space subject to a constraint 

• In order to solve these equations, boundary conditions should be 
specified on the z-axis. Most interesting solutions occur with zero-
thickness rod sources.

G = diag{�e2U0 , e2U1 , e2U2 , . . .}

r2Ui = 0,
D�3X

i=0

Ui = log ⇢
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Review: Inverse Scattering Method 
Static solutions

• For infinite rod  

• For semi-infinite rods running to the right 

• For semi-infinite rods running to the left 

• For finite rod 

•  Solitons and anti-solitons

e2Ui = ⇢2

e2Ui = µk

e2Ui = ⇢2/µk ⌘ µ̄k

e2Ui = µk�1/µk

µk =
p

⇢2 + (z � ak)2 � (z � ak), µ̄k = �
p

⇢2 + (z � ak)2 � (z � ak)



• Static vacuum solutions of Einstein equations with D-2 commuting 
Killing vectors are completely determined by rod-like sources. 
[Emparan Reall] 

• Rod structure classification can be extended for stationary black 
holes. The rods now acquire directions. 

• Metric is no longer diagonal 

• These “rod vectors” encode information about the rotations, etc

Review: Inverse Scattering Method 
Stationary solutions

A typical rod diagram

G(⇢ = 0, z)vk = 0 for z 2 [ak�1, ak]

[Harmark 2004]
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Belinski Zakharov Method

• BZ method starts by replacing non-linear equations by a 
system of linear (Lax) equations 

• The Lax system encodes the integrability structure and allows 
for a dressing method.

  New solution

remove solitons
(trivial BZ vectors)Seed G0

e2ν0

G’0
re-add solitons
(general BZ vectors) G

e2ν

Known solution

[Pomeransky 2005]
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Some exact solutions, using BZ method

• Many many exact solutions have been constructed 

• Techniques have been most useful in 5d gravity 

• Some applications to other settings also, relatively 
few

Hole Ring Saturn Di-ring Dumble Bi-ring
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Hidden symmetries 

17



Review: Hidden symmetries

• Start with a higher dimensional gravity theory 

• Perform Kaluza Klein reduction over commuting 
Killing vectors 

• The effect is most dramatic when reduced to three 
dimensions 

• As in 3d dimensions, all vectors can be dualised to 
scalars
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Review: Hidden symmetries

These scalars usually come in a coset space.
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• These hidden symmetries can be used to construct 
solutions of of theory 

• The group structure helps in organising solutions, 
allows to explore the physics and the structure of 
the solutions/theory 

• Prolific subject; many results; identities; solutions;  

• A lot of richness; way of doing the reduction; 
denominator groups

Review: Hidden symmetries



• 5d charged rotating black holes; 4d charged 
rotating black holes [Cvetic Youm, Sen, Rasheed, Larsen] 

• Most general black string in 5d [Compere, de Buyl, Jamsin, 
A.V.] 

• Subtracted geometries [A.V.] 

• Most general black hole in 4d [Compere, Chow] 

• Classification of BPS and non-BPS multi-centre 
solutions [Bossard et al, A.V. et al]

Review: Hidden symmetries: key results



Our formalism 

Combines integrability with hidden symmetries

series of 4 papers with Kleinschmidt, Katsimpouri, Chakrabarty

22



Geroch Group

• Geroch group is the symmetry of 4d gravity 
reduced to 2d. 

• 2d gravity has an infinite dimensional symmetry; it 
is integrable; symmetry group is called the Geroch 
Group. 

• It is affine SL(2, R). [non-compact Kac-Moody group]
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Generalized Geroch Group

• These considerations have natural generalization to 
other settings 

• 5d gravity has SL(3,R) affine symmetry 

• 4d Einstein Maxwell: SU(2,1) 

• 5d Minimal supergravity: G2(2) 

• STU model: SO(4,4) 
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Ehlers and Matzner-Misner

• A natural way to think about affine SL(2,R) is to 
think about two non-commuting SL(2,R)s 

• Ehlers: Upon reducing 4d gravity to 3d, we get 
SL(2,R)/SO(1,1) scalar symmetry 

• Matzner-Misner: Upon reducing 4d gravity to 2d, 
we get SL(2,R)/SO(2) scalar symmetry
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Dynkin Diagram

These two symmetries do not commute. They form 
affine SL(2,R). 

EE MM

Affine sl(2)

Geroch 1971, Julia 1980
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Geroch Group Matrices

• A matrix in the Geroch group, with suitable 
analyticity properties corresponds to a solution of 
Einstein equations 

• In order to construct the solution explicitly requires 
one to solve a Riemann Hilbert problem.  

• In a sequence of papers we have solved this 
problem for general affine group G. Kleinschmidt, 
Katsimpouri, AV.
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Geroch Group Matrices

• Simple poles; residues        are rank-1 matrices 

• such that the matrix             is in the affine group

M(w) = 1+
NX

i=1

Ai

w � wi

Ai

M(w)
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Riemann Hilbert factorisation

• A Riemann-Hilbert factorisation allows us to 
construct the metric/spacetime fields from a 
Geroch group matrix 

• Several examples in several theories have been 
worked out 

• Asymptotic flatness in 4d as well as 5d are well 
under control
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Vision
Future and comments
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Structure at the horizon scale

• On increasing Newton’s constant, horizon area 
grows, whereas microstructure shrinks. Microstates 
are planck size deep inside the black hole  

• In string theory D-branes with shape modes gives 
structure that grows exactly in the same way as the 
size of a black hole 

• Includes the famous Strominger-Vafa system, 
where string theory has had most success
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Bena-Warner Microstate geometry program

• Systematic exploration of mechanisms that give smooth 
horizon-free solutions with horizon scale structure 

• Over the last 10 years several developments (concisely 
reviewed in Gibbons-Warner 2014) 

1. importance of topology (bubbles and fluxes) 

2. Chern-Simons terms 

3. classical description of CFT microstates 

• Current question: To what extent can bubbling 
geometries encode microstate structure.
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Supersymmetric microstates geometries

• Supersymmetric settings are  
computationally simpler to  
handle 

• There are vast families of smooth,  
horizonless BPS, microstates  
geometries 

• The geometry caps at the bottom 
of the throat. There is non-trivial 
topology. Bubbles arise at the 
original horizon scale 

• Scaling solutions, with long AdS 
throats, these geometries come 
closest to the black hole picture

bubbled geometry

CFT description
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Non-supersymmetric Microstates

• The presently known non-extremal microstates are 
very far from being typical 

• The logical way to approach seems to be first to 
construct multi-center solutions and then look at the 
scaling limit 

• Technology to address these problems is 
sufficiently developed; some preliminary progress 
has also been made.
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Thanks for you attention
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