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1. Summary of the talk



QFT’s are the standard tools for describing the
physics of elementary particles.

– a tool for computing physical quantities, e.g.
scattering amplitudes of elementary particles.

But most QFT’s suffer from UV and IR divergences

– infinities that appear in the expressions for various
physical quantities – unless we are careful.



UV divergences arise from quantum fluctuations of
small wavelength modes, and are ‘bad’

– must be eliminated in order to get a sensible theory.

There is a class of QFT’s where UV divergences can
be removed by a standard procedure known as
renormalization.

– renormalizable QFT.

We use only these kinds of QFT’s for describing
theories of elementary particles.



IR divergences arise from quantum fluctuations of
long wavelength modes and have physical origin

– indicates that we are asking the wrong question.

e.g. they arise when we do not take into account the
effect of change of quantum ground state and/or
masses of elementary particles due to interaction.

⇒ tadpole divergences and mass renormalization
divergences.

Once we ask the right questions, these divergences
automatically disappear.

QFT’s come with an in built mechanism that tells us
how to ask the right questions and get rid of the IR
divergences.



Gravity

Applying standard QFT techniques to general theory
of relativity runs into difficulties with UV divergence.

The theory is not renormalizable.

Superstring theory resolves this problem by
regarding the elementary constituents of matter as
one dimensional objects – strings.

This theory has no UV divergences!

– gives finite results without any need of
renormalization.



However superstring theory has IR divergences
similar to those which appear in QFT’s.

Since IR divergences in QFT’s disappear once we ask
the right questions, one might expect that the same
may be true in superstring theory.

However conventional formulation of superstring
theory does not tell us how to ask the right questions
so that we get finite answers.

e.g. how to systematically take into account the effect
of change of the quantum ground state and/or
masses of ‘elementary particles’ due to interaction.



Often we work with

1. Ground states with large amount of supersymmetry
which do not get modified due to interactions

2. Massless particles whose masses are not modified
by interactions due to symmetry.

In such cases there are no IR divergences.

But for ground states with less supersymmetry and/or
massive particles we do have IR divergences that
need to be removed

– a necessary criteria for a consistent theory.



Recent progress

Construction of a quantum field theory whose
scattering amplitudes agree with that of superstring
theory.

– superstring field theory

This theory is free from UV divergences but has all
the IR divergences of superstring theory.

However, since this is a QFT, there is a systematic
procedure for taking into account shift of quantum
ground state / masses due to interaction

⇒ results free from IR divergences.



Conclusion

We now have a formulation of superstring theory that
gives results free from UV and IR divergences.



2. UV and IR divergences in QFT



Most commonly used approach for studying
scattering amplitude in QFT’s is perturbation theory.

Take all the interaction effects to be small and carry
out a Taylor series expansion in the parameters that
label the interaction strengths.

The coefficients of the Taylor series expansion are
given by sum of Feynman diagrams.



In d space-time dimensions, contribution from a
typical Feynman diagram looks like∫

dd`1 · · ·dd`g

r∏
j=1

(k2
j + m2

j )
−1N

each `i: a d-dimensional vector labelling
loop momenta

each kj: a d-dimensional vector given by appropriate
linear combination of the `i’s and p1, · · ·pn

p1, · · ·pn: the momenta carried by the incoming and
outgoing particles whose scattering amplitude we are
trying to calculate

mj: the mass of one of the particles in the theory

N : a polynomial in {`i} and {pk}



∫
dd`1 · · ·dd`g

r∏
j=1

(k2
j + m2

j )
−1N

UV divergences: divergences from the region of
integration where one or more of the `i’s become large

IR divergences: arise from the vanishing of one or
more factors of (k2

j + m2
j )



∫
dd`1 · · ·dd`g

r∏
j=1

(k2
j + m2

j )
−1N

1. Use (k2
j + m2

j )
−1 =

∫∞
0 dsj exp[−sj(k2

j + m2
j )]

2. Carry out integration over `j’s explicitly using rules
of gaussian integration

Result ∫ ∞
0

ds1 · · ·
∫ ∞

0
dsr F({si})

for some function F({si}).

UV divergence: one or more si → 0

IR divergence: one or more si →∞



3. Absence of UV divergence in superstring

theory



Just as a particle trajectory gives a curve in
space-time, the trajectory of a string gives a surface
in space-time.

⇒ simple expression for scattering amplitudes



scattering amplitude =
∞∑

g=0

∫
Mg,n

Ig,n

Mg,n: moduli spaces of two dimensional Riemann
surfaces of genus g with n marked points

Different points in Mg,n: Surfaces of different shape,
each of genus g and with n marked points

genus g: number of handles of the surface

n: total number of incoming and outgoing particles

Integrand Ig,n: depends on the states that are being
scattered and also the coordinates of Mg,n



Possible divergences now come from divergences in
the integration over Mg,n

– arise from singular Riemann surfaces

(a) (b)

– the Riemann surface either becomes a pair of
Riemann surfaces connected by an infinitely narrow
tube (a)

or develops an infinitely narrow handle connecting
two points on a single Riemann surface (b)



(a) (b)

In this limit the integration over Mg,n resembles
integration over the parameters si in the QFT’s with

si ∼ 1 / radius of the narrow tube

In the singular limit, radius of the tube→ 0

si →∞

– IR divergence



This shows that all divergences in string theory are IR
divergence and there are no UV divergences in the
theory.

However unlike in a QFT, conventional superstring
perturbation theory does not give us a systematic
mechanism for removing IR divergences.



4. Recent progress on understanding IR

divergences in superstring theory



If we could construct a QFT whose scattering
amplitudes give us the amplitudes of superstring
theory, then we would have a systematic procedure
for removing IR divergences in string theory.

– had been attempted earlier

– successfully formulated for a cousin of superstring
theory – the bosonic string theory. Zwiebach

For superstrings there is an apparent no go theorem.

Low energy limit of a superstring theory gives type
IIB supergravity for which we cannot write down an
action.



Resolution

It is possible to construct a QFT that gives the correct
scattering amplitudes of string theory, but contains
an additional set of particles which are free.

Pius, Rudra, A.S.; A.S., Witten; A.S.

These additional particles are unobservable since
they do not scatter.



Scattering amplitude for the interacting part is given
by a sum of Feynman diagrams as in conventional
QFT’s.

Each Feynman diagram gives integration over a part
of Mg,n, and the sum of all contribution gives integral
over full Mg,n.

All IR divergences come from s→∞ limit for one or
more propagators as in conventional QFT’s.

On the other hand this theory has no UV divergence
since its scattering amplitudes are the same as that
of string theory.



With the help of this theory one can successfully
remove the IR divergences of the theory following the
usual procedure followed in a QFT.

Therefore we have a formulation of string theory free
from all divergences.



Structure of the action

Two sets of string fields, ψ and φ

Each is an infinite component field, represented as a
vector

Action takes the form

S =

∫ [
−1

2
(φ,QXφ) + (φ,Qψ) + f(ψ)

]
Q, X: commuting operators (matrix with differential
operators as entries)

(,): Lorentz invariant inner product

f(ψ): a functional of ψ describing interaction term.



S =

∫ [
−1

2
(φ,Q Xφ) + (φ,Qψ) + f(ψ)

]
Equations of motion:

Q(ψ − Xφ) = 0

Qφ+ f′(ψ) = 0

first + X × second equation gives

Qψ + X f′(ψ) = 0

ψ: interacting fields, Xφ− ψ: free fields

Quantization of ψ gives the usual scattering
amplitudes of string theory while quantization of
Xφ− ψ produces particles which do not scatter.



Future prospects

Once we have a QFT description of string theory
scattering amplitudes, we can use QFT methods to
prove various other desirable features of the
scattering amplitudes.

1. Unitarity (conservation of probability)

2. Crossing symmetry, analyticity etc.


