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Kepler’s three laws [1609 & 1619]

1 Law of Ellipses

2 Law of Equal Areas

` = u− e sinu (Kepler’s equation)

3 Law of Harmonies

P 2

a3
= constant
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Newton’s universal law of gravitation [1687]

Newton’s gravitational law

d2rA
dt2

= −
∑
B 6=A

GmB

r2AB
nAB

Poisson’s equation

∆U = −4πGρ

Lagrangian and Hamiltonian formalisms

Celestial mechanics and perturbation theory

Non integrability of the three body problem

Ergodicity and theory of chaotic systems

Problem of the stability of the Solar System

· · ·
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The triumph of Newtonian mechanics

Le Verrier [1846] predicts the position of the planet Neptune
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Mercury’s periastron precession [Le Verrier 1859]

Planet Vulcain located between Sun and Mercury?

Presence of a ring of dust particles located in the ecliptic plane?

Modification of Newton’s law 1/r2 → 1/rα?
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Special relativity’s revolution [1905]

[Fizeau 1851] [Michelson & Morley 1887]

Luc Blanchet (IAP) Problem of motion ICGC-2015 6 / 44



Einstein’s equivalence principle [1911]

1 Weak equivalence principle. All test bodies have the same
acceleration in a gravitational field, independently of their
mass and internal structure

mi = mg

2 Local Lorentz invariance. The result of any non gravitational experiment
performed in a freely falling frame is independent of the velocity of the frame

3 Local position invariance. The result of any non gravitational experiment in a
freely falling frame is independent of the position in space and time

EEP is equivalent to a universal coupling of matter to the metric [Will 1993]

gµν

which reduces to the Minkowski metric ηαβ in freely falling frames
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GR: the perfect theory [Einstein, November 1915]

[Einstein & Grossmann 1912] [Hilbert 1915]

SGR =
c3

16πG

∫
d4x
√
−g R︸ ︷︷ ︸

Einstein-Hilbert action

+Sm[gµν ,Ψ]︸ ︷︷ ︸
matter fields

Field equations imply by Bianchi’s identity the matter equation of motion

General covariance implies at linear order the gauge invariance of a massless
spin-2 field (the “graviton”)

System of equations is a well-posed problem (“problème bien posé”) in the
sense of Hadamard [Choquet-Bruhat 1952]
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Mercury’s abnormal precession explained [1915]

1 First relativistic corrections to Newtonian gravity imply

∆ω =
6πGM�
c2 a(1− e2)

(
2 + 2γ − β

3

)
+ 3πJ2

(
R�

a(1− e2)

)2

= 43′′/century

[
2 + 2γ − β

3
+ 2 10−4

(
J2

10−7

)]
2 PPN parameters (γ = β = 1 in GR) [Eddington 1922, Nordtvedt 1968, Will 1972]

γ measures the spatial curvature
β measures the amount of non-linearity

Luc Blanchet (IAP) Problem of motion ICGC-2015 9 / 44



Einstein’s quadrupole formula [1916]

1 The GW amplitude is given by the first quadrupole formula

hij(x, t) =
2G

c4r

[
d2Qij

dt2

(
t− r

c

)]TT

+O
(

1

r2

)
2 The total GW energy flux is given by the Einstein quadrupole formula

(
dE

dt

)GW

=
G

5c5
d3Qij

dt3
d3Qij

dt3

3 The radiation reaction force is given by the third quadrupole formula
[Chandrasekhar & Esposito 1970; Burke & Thorne 1971]

FRR
i =

2G

5c5
ρ xj

d5Qij
dt5
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Post-Newtonian equations of motion [Lorentz & Droste 1917]

Obtain the equations of motion of N bodies at the 1PN ∼ (v/c)2 order

Even derive the 1PN Lagrangian!
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Einstein-Infeld-Hoffmann equations [1938]

d2rA
dt2

= −
∑
B 6=A

GmB

r2AB
nAB

[
1− 4

∑
C 6=A

GmC

c2rAC
−
∑
D 6=B

GmD

c2rBD

(
1− rAB · rBD

r2BD

)

+
1

c2

(
v2
A + 2v2

B − 4vA · vB −
3

2
(vB · nAB)2

)]
+
∑
B 6=A

GmB

c2r2AB
vAB [nAB · (3vB − 4vA)]− 7

2

∑
B 6=A

∑
D 6=B

G2mBmD

c2rABr3BD
nBD
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Post-Newtonian theory developing [1930s to 1970s]

[Fock 1939; Papapetrou 1951; Chandrasekhar 1965; Ehlers 1976; Thorne 1975; Will 1972; Damour 1980]
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The binary pulsar PSR 1913+16

[Hulse & Taylor 1974]
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Orbital decay of the binary pulsar [Taylor & Weisberg 1982]

Ṗ = −192π

5c5
µ

M

(
2πGM

P

)5/3 1 + 73
24e

2 + 37
96e

4

(1− e2)7/2
≈ −2.4× 10−12

[Peters & Mathews 1963, Esposito & Harrison 1975; Wagoner 1975; Damour & Deruelle 1983]
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30 years of GR effects in binary pulsars [e.g. Stairs 2003]

1 ω̇ relativistic advance of periastron

2 γ gravitational red-shift and second-order Doppler effect

3 r and s range and shape of the Shapiro time delay

4 Ṗ secular decrease of orbital period
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Modelling the compact binary inspiral

L

S

S1 2m

m
2

1

CM

J = L + S + S
1

1111

2

Luc Blanchet (IAP) Problem of motion ICGC-2015 17 / 44



The gravitational chirp of compact binaries

merger phase

inspiralling phase

ringdown phase

innermost circular orbit
r = 6M
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The gravitational chirp of compact binaries

merger phase

inspiralling phase

innermost circular orbit

post-Newtonian theory

numerical relativity

r = 6M

ringdown phase
perturbation theory
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Isolated matter system in general relativity

wave zone

x

t

isolated matter 
       system

inner zone

exterior zone
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Isolated matter system in general relativity

wave zone

x

t

F

h ij

isolated matter 
       system

radiation field observed 
     at large distances

radiation reaction
inside the source

reac

inner zone

exterior zone
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Isolated matter system in general relativity

1 Generation problem

What is the gravitational radiation field generated in a detector at large
distances from the source?

2 Propagation problem

Solve the propagation effects of gravitational waves from the source to the
detector, including non-linear effects

3 Motion problem

Obtain the equations of motion of the matter source including all conservative
non-linear effects

4 Reaction problem

Obtain the dissipative radiation reaction forces inside the source in reaction to
the emission of gravitational waves
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Conformal picture [Penrose 1963]

J+

J -

I

+

-

I

I

I

0 0
spatial infinity

future null infinity

past null infinity

past infinity

future infinity

spatial infinity

matter
source

J+

J -
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Asymptotic structure of space-time

1 What is the struture of space-time far away from an isolated matter system?

2 Does a general radiating space-time satisfy rigourous definitions [Penrose 1963,

1965] of asymptotic flatness in general relativity?

3 How to relate the asymptotic structure of space-time [Bondi et al. 1962, Sachs 1962]

to the matter variable and dynamics of an actual source?

4 How to impose rigourous boundary conditions on the edge of space-time
appropriate to an isolated system?
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No-incoming radiation condition

J -

I

+

-

I

I

I

0 0
matter
source

J -

J+

    no-incoming
radiation condition
     imposed at
  past null infinity

t+  =constr
c-

J+

lim
r→+∞

t+ r
c
=const

(
∂

∂r
+

∂

c∂t

)(
rhαβ

)
= 0
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Hypothesis of stationarity in the remote past

T stationary field
       when 

t - r < - Tc
GW source

In practice all GW sources observed in
astronomy (e.g. a compact binary
system) will have been formed and
started to emit GWs only from a finite
instant in the past −T
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Post-Minkowskian expansion
[Bertotti & Plebanski 1960; Thorne & Kovàcs 1975; Damour & Esposito-Farèse 1997]

For a weakly self-gravitating isolated matter source

γPM ≡
GM

c2a
� 1

{
M mass of source
a size of source

√
−ggαβ = ηαβ +

+∞∑
n=1

Gn hαβ(n)︸ ︷︷ ︸
G labels the PM expansion

�hαβ(n) =
16πG

c4
|g|Tαβ(n) +

know from previous iterations︷ ︸︸ ︷
Λαβ(n)[h(1), · · · , h(n−1)]

∂µh
αµ
(n) = 0
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Multipolar-post-Minkowskian expansion
[Blanchet & Damour 1986; Blanchet 1987; Damour & Iyer 1991]

Starts with the solution of the linearized equations outside an isolated source
in the form of multipole expansions [Thorne 1980]

An explicit MPM algorithm is constructed out of it by induction at any order
n in the post-Minkowskian expansion

A finite-part (FP) regularization based on analytic continuation is required in
order to cope with the divergency of the multipolar expansion when r → 0

1 The MPM solution is the most general solution of Einstein’s vacuum
equations outside an isolated matter system

2 It is asymptotically simple in the sense of [Penrose 1963, 1965] and recovers the
know asymptotic structure of radiative space-times at future null
infinity [Bondi et al. 1962, Sachs 1962]
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The MPM-PN formalism [Blanchet, Damour & Iyer 1995]

A multipolar post-Minkowskian (MPM) expansion in the exterior zone is matched
to a general post-Newtonian (PN) expansion in the near zone

near zone

PN source

wave zone

exterior zone
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The MPM-PN formalism [Blanchet, Damour & Iyer 1995]

A multipolar post-Minkowskian (MPM) expansion in the exterior zone is matched
to a general post-Newtonian (PN) expansion in the near zone

near zone

PN source

wave zone

matching zone

exterior zone
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The matching equation

This is a variant of the theory of matched asymptotic expansions
[Lagerström et al. 1967; Kates 1980; Anderson et al. 1982]

M(hαβ) =M(h̄αβ)

Left side is the NZ expansion (r → 0) of the exterior MPM field
Right side is the FZ expansion (r → ∞) of the inner PN field

The matching equation has been implemented at any post-Minkowskian
order in the exterior field and any PN order in the inner field

It gives a unique (formal) multipolar-post-Newtonian solution valid
everywhere inside and outside the source
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The matching equation

m
m

1

2

actual solution

h

r

exterior zone

near zone

matching zone
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The matching equation

m
m

1

2

multipole expansion

actual solution

h

r

exterior zone

near zone

matching zone
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The matching equation

m
m

1

2

PN expansion

multipole expansion

actual solution

h

r

exterior zone

near zone

matching zone
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The matching equation

m
m

1

2

PN expansion

multipole expansion

actual solution

h

r

exterior zone

near zone

matching zone
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General solution for the multipolar field

M(hµν) = FP�−1retM(Λµν) +

+∞∑
`=0

∂L

{
Mµν
L (t− r/c)

r

}
︸ ︷︷ ︸

homogeneous retarded solution

where Mµν
L (t) = FP

∫
d3x x̂L

∫ 1

−1
dz δ`(z) τ̄µν(x, t− zr/c)︸ ︷︷ ︸

PN expansion of the pseudo-tensor

The FP procedure plays the role of an UV regularization in the non-linearity
term but an IR regularization in the multipole moments

From this one obtains the multipole moments of the source at any PN order
solving the wave generation problem

This is a formal PN solution i.e. a set of rules for generating the PN series
regardless of the exact mathematocal nature of this series
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General solution for the inner PN field

h̄µν = FP�−1ret τ̄
µν +

+∞∑
`=0

∂L

{
RµνL (t− r/c)−RµνL (t+ r/c)

r

}
︸ ︷︷ ︸

homogeneous antisymmetric solution

where RµνL (t) = FP

∫
d3x x̂L

∫ ∞
1

dz γ`(z) M(τµν)(x, t− zr/c)︸ ︷︷ ︸
multipole expansion of the pseudo-tensor

The radiation reaction effects starting at 2.5PN order appropriate to an
isolated system are determined to any order

In particular nonlinear radiation reaction effects associated with tails are
contained in the second term and start at 4PN order
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Problem of point particles

x

y
1 2

y(t) (t)

+

m1 m
2

U(x, t) =
Gm1

|x− y1(t)|
+

Gm2

|x− y2(t)|

d2y1

dt2
= (∇U) (y1(t), t)

?
= −Gm2

y1 − y2

|y1 − y2|3

For extended bodies the self-acceleration of the body cancels out by
Newton’s action-reaction law

For point particles one needs a self-field regularization to remove the infinite
self-field of the particle
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Dimensional regularization [t’Hooft & Veltman 1972; Bollini & Giambiagi 1972]

Einstein’s field equations are solved in d spatial dimensions (with d ∈ C) with
distributional sources. In Newtonian approximation

∆U = −4π
2(d− 2)

d− 1
Gρ

For two point-particles ρ = m1δ(x− y1) +m2δ(x− y2) where δ is the
d-dimensional Dirac function we get

U(x, t) =
2(d− 2)k

d− 1

(
Gm1

|x− y1|d−2
+

Gm2

|x− y2|d−2

)
with k =

Γ
(
d−2
2

)
π

d−2
2

Computations are performed when <(d) is a large negative complex number
so as to kill all self-terms, and the result is analytically continued for any
d ∈ C except for poles occuring at integer values of d
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3.5PN energy flux of compact binaries
[Blanchet, Faye, Iyer & Joguet 2002; Arun et al. 2004]

FGW =− 32c5

5G
ν2x5

{
1 +

(
−1247

336
− 35

12
ν

)
x+

1.5PN tail︷ ︸︸ ︷
4πx3/2

+

(
−44711

9072
+

9271

504
ν +

65

18
ν2
)
x2 + [· · · ] x5/2︸ ︷︷ ︸

2.5PN tail

+ [· · · ] x3︸ ︷︷ ︸
3PN

includes a tail-of-tail

+ [· · · ] x7/2︸ ︷︷ ︸
3.5PN tail

+O
(
x4
)}

The orbital frequency and phase for quasi-circular orbits are deduced from an
energy balance argument

dE

dt
= −FGW
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3.5PN dominant gravitational wave modes
[Faye, Marsat, Blanchet & Iyer 2012; Faye, Blanchet & Iyer 2014]

h22 =
2Gmν x

R c2

√
16π

5
e−2iψ

{
1 + x

(
−107

42
+

55ν

42

)
+ 2πx3/2

+ x2
(
−2173

1512
− 1069ν

216
+

2047ν2

1512

)
+ [· · · ] x5/2︸ ︷︷ ︸

2.5PN

+ [· · · ] x3︸ ︷︷ ︸
3PN

+ [· · · ] x7/2︸ ︷︷ ︸
3.5PN

+O
(
x4
)}

h33 = · · ·
h31 = · · ·

Tail contributions in this expression are factorized out in the phase variable

ψ = φ− 2GMω

c3
ln

(
ω

ω0

)
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4PN spin-orbit effects in the orbital frequency
[Marsat, Bohé, Faye, Blanchet & Buonanno 2013]

ω̇

ω2
=

96

5
ν x5/2

{ non-spin terms︷ ︸︸ ︷
1 + x [· · · ] + x3/2 [· · · ] + x2 [· · · ] + x5/2 [· · · ] + x3 [· · · ]

+ [· · · ] x3/2︸ ︷︷ ︸
1.5PN SO

+ [· · · ] x2︸ ︷︷ ︸
2PN SS

+ [· · · ] x5/2︸ ︷︷ ︸
2.5PN SO

+ [· · · ] x3︸ ︷︷ ︸
3PN SOtail & SS

+ [· · · ] x7/2︸ ︷︷ ︸
3.5PN SO

+ [· · · ] x4︸ ︷︷ ︸
4PN S0tail & SS

+O
(
x4
)}

Leading SO and SS terms due to [Kidder, Will & Wiseman 1993; Kidder 1995]
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Summary of current PN results

Method Equations of motion Energy flux Waveform

Multipolar-post-Minkowskian & post-Newtonian 4PN non-spin 3.5PN non-spin 3PN non-spin
(MPM-PN) 3.5PN (NNL) SO 4PN (NNL) SO 1.5PN (L) SO

[BDI, Faye, Arun] 3PN (NL) SS 3PN (NL) SS 2PN (L) SS
3.5PN (L) SSS 3.5PN (L) SSS

Canonical ADM Hamiltonian 4PN non-spin
[Jaranowski, Schäfer, Damour] 3.5PN (NNL) SO

[Steinhoff, Hergt, Hartung] 4PN (NNL) SS
3.5PN (L) SSS

Effective Field Theory (EFT) 3PN non-spin 2PN non-spin
[Goldberger, Rothstein] 2.5PN (NL) SO

[Porto, Foffa, Sturani, Ross, Levi] 4PN (NNL) SS 3PN (NL) SS
Direct Integration of Relaxed Equations (DIRE) 2.5PN non-spin 2PN non-spin 2PN non-spin

[Will, Wiseman, Kidder, Pati] 1.5PN (L) SO 1.5PN (L) SO 1.5PN (L) SO
2PN (L) SS 2PN (L) SS 2PN (L) SS

Surface Integral [Itoh, Futamase, Asada] 3PN non-spin
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[Jaranowski, Schäfer, Damour] 3.5PN (NNL) SO

[Steinhoff, Hergt, Hartung] 4PN (NNL) SS
3.5PN (L) SSS

Effective Field Theory (EFT) 3PN non-spin 2PN non-spin
[Goldberger, Rothstein] 2.5PN (NL) SO

[Porto, Foffa, Sturani, Ross, Levi] 4PN (NNL) SS 3PN (NL) SS
Direct Integration of Relaxed Equations (DIRE) 2.5PN non-spin 2PN non-spin 2PN non-spin

[Will, Wiseman, Kidder, Pati] 1.5PN (L) SO 1.5PN (L) SO 1.5PN (L) SO
2PN (L) SS 2PN (L) SS 2PN (L) SS

Surface Integral [Itoh, Futamase, Asada] 3PN non-spin

Luc Blanchet (IAP) Problem of motion ICGC-2015 37 / 44



The 4PN equations of motion

THE 4PN EQUATIONS OF MOTION

Based on a collaboration with

Laura Bernard, Alejandro Bohé, Guillaume Faye & Sylvain Marsat
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The 4PN equations of motion

4PN equations of motion of compact binaries

dv1

dt
=− Gm2

r212
n12

+

1PN Lorentz-Droste-Einstein-Infeld-Hoffmann term︷ ︸︸ ︷
1

c2

{[
5G2m1m2

r312
+

4G2m2
2

r312
+ · · ·

]
n12 + · · ·

}
+

1

c4
[· · · ]︸ ︷︷ ︸

2PN

+
1

c5
[· · · ]︸ ︷︷ ︸

2.5PN
radiation reaction

+
1

c6
[· · · ]︸ ︷︷ ︸

3PN

+
1

c7
[· · · ]︸ ︷︷ ︸

3.5PN
radiation reaction

+
1

c8
[· · · ]︸ ︷︷ ︸

4PN
conservative & radiation tail

+O
(

1

c9

)

3PN


[Jaranowski & Schäfer 1999; Damour, Jaranowski & Schäfer 2001]

[Blanchet & Faye 2000; de Andrade, Blanchet & Faye 2001]

[Itoh, Futamase & Asada 2001; Itoh & Futamase 2003]

[Foffa & Sturani 2011]

ADM Hamiltonian

Harmonic equations of motion

Surface integral method

Effective field theory

4PN

{
[Jaranowski & Schäfer 2013; Damour, Jaranowski & Schäfer 2014]

[Bernard, Blanchet, Bohé, Faye & Marsat 2015]

ADM Hamiltonian

Fokker Lagrangian
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The 4PN equations of motion

Fokker action of N particles [Fokker 1929]

Start with the gauge-fixed action for a system of N point particles

S =
c3

16πG

∫
d4x
√
−g
[Landau-Lifchitz form of the action︷ ︸︸ ︷
gµν

(
ΓρµλΓλνρ − ΓρµνΓλρλ

)
−1

2
gµνΓµΓν︸ ︷︷ ︸

Gauge-fixing term

]
+ Sm

Sm = −
∑
A

mAc
2

∫
dt
√
−(gµν)A v

µ
Av

ν
A/c

2︸ ︷︷ ︸
N point particles without spin
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The 4PN equations of motion

Fokker action of N particles [Fokker 1929]

The Fokker action is obtained by inserting an explicit PN solution
of the relaxed Einstein field equations

gµν(x, t) −→ gµν(x;yB(t),vB(t), · · ·)

SF [yB(t),vB(t), · · ·] =

∫
d4xLg [x;yB(t),vB(t), · · ·]

−
∑
A

mAc
2

∫
dt
√
−gµν (yA(t);yB(t),vB(t), · · ·) vµAvνA/c2
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The 4PN equations of motion

Fokker action of N particles [Fokker 1929]

The PN equations of motion of the N particles in the field generated by the
particles themselves (self-gravitating system) are obtained as

δSF

δyA
≡ ∂LF

∂yA
− d

dt

(
∂LF

∂vA

)
+ · · · = 0
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The 4PN equations of motion

Fokker action in the PN approximation

The Fokker action is split into a PN (near-zone) term plus a contribution
involving the multipole (far-zone) expansion

SgF = FP
B=0

∫
d4x

( r
r0

)B
Lg + FP

B=0

∫
d4x

( r
r0

)B
M(Lg)

The multipole term gives zero for any “instantaneous” term∫
d4x

( r
r0

)B
M(Lg)

∣∣
inst

= 0

thus only “hereditary” terms contribute and they are at least 5.5PN

Finally we obtain

SgF = FP
B=0

∫
d4x

( r
r0

)B
Lg

where the constant r0 represents an IR cut-off scale and plays a crucial role
at the 4PN order
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The 4PN equations of motion

Gravitational wave tail effect at the 4PN order

At 4PN order there is an imprint of gravitational wave tails in the local
(near-zone) dynamics of the source

This leads to a non-local-in-time contribution in the Fokker action

Stail
F =

G2M

5c8
Pf
s0

∫∫
dtdt′

|t− t′|
I
(3)
ij (t) I

(3)
ij (t′)

The constant s0 is a priori different from the IR scale r0 but posing

s0 = r0 e
−α

we find that r0 finally cancels out so the result is IR finite

The remaining parameter α is a pure number and turns out to be an
“ambiguity” in the present formalism
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The method “n+ 2”

Adopt as basic gravitational variables

h ≡
(
h
00

+ h
ii
, h

0i
, h
ij
)

Suppose that h is known up to order 1/cn+2 thus

h = hn + δhn where δhn = O
(

1

cn+3

)
Expand the Fokker action around the known solution

SF[h] = SF[hn] +

∫
d4x

δSF

δh
[hn] δhn +O(δh

2

n)︸ ︷︷ ︸
is at least of order O(1/c2n+2)

Thus the Fokker action is known up to 1/c2n i.e. nPN order
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The 4PN equations of motion

Conserved energy for circular orbits at 4PN order

The energy for circular orbits at the 4PN order in the small mass ratio limit is
known from self-force calculations of the redshift variable [Detweiler 2008]

This permits to fix the ambiguity parameter α and to complete the 4PN
equations of motion

For instance the 4PN invariant energy for circular orbits reads

E4PN = −µc
2x

2

{
1 +

(
−3

4
− ν

12

)
x+

(
−27

8
+

19

8
ν − ν2

24

)
x2

+

(
−675

64
+

[
34445

576
− 205

96
π2

]
ν − 155

96
ν2 − 35

5184
ν3
)
x3

+

(
−3969

128
+

[
− 123671

5760
+

9037

1536
π2 +

896

15
γE +

448

15
ln(16x)

]
ν

+

[
−498449

3456
+

3157

576
π2

]
ν2 +

301

1728
ν3 +

77

31104
ν4
)
x4
}

(1)
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