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Outline - GR effects on the Cosmological Distance-Redshift
relation and implications for cosmological parameter estimation

« Recent works 1n 2nd order cosmological perturbation theory:
 claim: non-linear “back-reaction' may have a significant impact
« 2 applications - both relate to biases 1n D(z)
» Bias in D(z) at high z from gravitational lensing
» very long and confusing story
« subtle relativistic effects (first recognised 1n '80s)
* NK+JP: history riddled with misconceptions
« conventional methods for CMB + SN1la analysis justified
» Bias in D(z) - and therefore Hop - at low z from peculiar motions
» related to "homogeneous Malmquist bias" studied by astronomers
« Also a claimed new probe of cosmology
* "Doppler lensing" - perturbation to D(z)

« relation to conventional cosmic-flow studies and SN1a cosmology



Context: cosmological parameters from the CMB
It 1s usually assumed that we are looking here at a

spherical surface at z~1100 with D = Dy(z=1100)
But are we?




How far away is the CMB?
D = fﬁ dz
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What is the distance to the CMB?
How relativistic corrections remove the tension with local H;, measurements

Chris Clarkson!, Obinna Umeh?, Roy Maartens?® and Ruth Durrer?

L Astrophysics, Cosmology & Gravity Centre, and, Department of Mathematics &
Applied Mathematics, University of Cape Town, Cape Town 7701, South Africa.
2 Physics Department, University of the Western Cape, Cape Town 7535, South Africa
3 Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth PO1 3FX, United Kingdom
* Département de Physique Théorique & Center for Astroparticle Physics,
Université de Geneve, Quai E. Ansermet 24, CH-1211 Geneéeve 4, Switzerland.

The success of precision cosmology depends not only on accurate observations, but also on the the-
oretical model — which must be understood to at least the same level of precision. Subtle relativistic
effects can lead to biased measurements if they are neglected. One such effect gives a systematic
shift in the distance-redshift relation away from its background value, due to the accumulation of all
possible lensing events. We estimate the expectation value of this aggregated lensing using second-
order perturbations about a concordance background, and show that the distance to last scattering
is shifted by several percent. Neglecting this shift leads to significant bias in the background cos-
mological parameters. We show that this removes the tension between local measurements of Hy
and those measured through the CMB and favours a closed universe.




Hubble diagram from SN1a - assumes no flux bias from lensing
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What do we mean by "distance" here?

Distances in cosmology:
 redshift (monotonic 1n distance - absent peculiar velocities)
- “conformal' or comoving' distance ¥

« asin ds? = -dt? + a%(t)(dy + Sk%(y) do?)

« not observable, but useful to relate other observable "distances"
 angular diameter distance: dl = a(t(y)) Sk(x) dO = Da dO
 luminosity distance: F =L/ (4 w Dy?)

Here we are interested in DA and Dy as a function of redshift
- at given z these differ only by a constant

 since surface brightness depends only on z
Lensing by structure changes D for any individual object
« D becomes a random function of direction
key question here:
 does structure bias angular sizes or flux densities?



Preliminaries 2: basics of grav. lensing: deflection & shear

Basic quantities in gravitational lensing
Deflection angle (1 “blob") 0; ~ | dAA\V®/c2 ~ GM/bc? ~ (HM/c)2A

cumulative deflection 0 ~ N2 6; ~ (HA/c)32A
where A = Ap/p ~ E2 ~ 1/\
so 0O is

dominated by large scales (~30 Mpc)
~ few arc-minutes ~ 10-3 radians at high z
but usually thought to be unobservable

What is observable 1s the gradient of the deflection angle

1.e. the change of the deflection across a source

2x2 1mage distortion tensor

 ftrace: kappa = » — magnification

« other 2 d.o.f.: Yy — 1mage shear/distortion

®? ,v? ~ 1073 at ~ degree scales for sources at z >> 1 (e.g. CMB)
but scales as ~ Al

large, possibly very large, effects small-scale structure
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OBSERVATIONS IN A UNIVERSE HOMOGENEOUS IN THE MEAN

Ya. B. | Zel’dovich

Translated from Astronomicheskii Zhurnal, Vol. 41, No. 1,

pp. 19-24, January-February, 1964

Original article submitted June 12, 1963

A local nonuniformity of density due to the concentration of matter of the universe into separate

galaxies produces a significant change in the angular dimensions and luminosity of distant ob-
jects as compared to the formulas for the Friedman model.

The propagation of light in a homogeneous and
isotropic model of the expanding universe (irst
studied by A. A. Friedman) has been investigated
in a number of papers [1, 2, 3].

In these papers expressions wereobtained for
the observed angular diameter ® and the observed
brightness of an object with a known absolute diam-
eter and absolute brightness as a function of the dis-
tance or, strictly speaking, the red shift of the ob-
ject A = (wy — w) /wy.

In particular, there is a remarkable feature
in the function ®(A), namely, the presence of a
minimum when A is approximately equal to 1/2.
Formula (10) and Fig. 6 in the appendix show the
variation of the function f(A) =rH/c® which is in-
versely proportional to ® for a given density of mat-
ter. Here r is the radius of the object, His Hubble's

Fig. 2.

A mass situated between these rays bends the
latter in such a way that ® is increased (Fig. 2).
What we have in mind is the bending of light rays
by the gravitational field predicted by Einstein; this
bending amounts to 1.75" for a light ray passing
near the limb of the solar disc and has been con-
firmed by observation.




ON THE PROPAGATION OF LIGHT IN INHOMOGENEOUS
COSMOLOGIES. I. MEAN EFFECTS

James E. GUNN

. ifornia Institute of Technology and Jet Propulsion Laboratory
¢ Received February 23, 1967 revised May 23, 1967

\ ABSTRACT

The statistical effects of local inhomogeneities on the propagation of light are investigated, and
deviations (including rms fluctuations) from the idealized behavior in homogeneous universes are in-
vestigated by a perturbation-theoretic approach. The effect discussed by Feynman and recently by
Bertotti of the density of the intergalactic medium being systematically lower than the mean mass
density is examined, and expressions for the effect valid at all redshifts are derived.

I. INTRODUCTION

In an unpublished colloquium given at the California Institute of Technology in
1964, Feynman discussed the effect on observed angular diameters of distant objects
if the intergalactic medium has lower density than the mean mass density, as would
be the case if a significant fraction of the total mass were contained in galaxies. It is
an obvious extension of the existence of this effect that luminosities will also be affected,
though this was apparently not realized at the time. This realization prompted the
conviction that the effect of known kinds of deviations of the real Universe from the
homogeneous isotropic models (upon which predictions had been based in the past)
upon observable quantities like luminosity and angular diameter should be investigated.
The author (1967) has recently made such a study for angular diameters; the present
work deals primarily with mean statistical effects upon luminosity. A third paper will
deal with possible extreme effects one may expect to encounter more rarely. Some of
the results discussed here have been discussed independently by Bertotti (1966) and
Zel’dovich (1965).



Kantowski '69

CORRECTIONS IN THE LUMINOSITY-REDSHIFT RELATIONS
OF THE HOMOGENEOUS FRIEDMANN MODELS

R. KANTOWSKI®

Southwest Center for Advanced Studies, Dallas, Texas
Received January 22, 1968, revised March 22, 1968

ABSTRACT

In this paper the bolometric luminosity-redshift relations of the Friedmann dust universes (A = 0)
are corrected for the presence of inhomogeneities. The “locally” inhomogeneous Swiss-cheese models
are used, and it is first shown that the introduction of clumps of matter into Friedmann models does not
significantly affect the R(z) or R(v) relations (Friedmann radius versus the redshift or affine parameter)
along a null ray. Then, by the use of the optical scalar equations, a linear third-order differential equation
is arrived at for the mean cross-sectional area of a light beam as a function of the affine parameter. This
differential equation is confirmed by rederiving its small redshift solution from an interesting geometrical
point of view. The geometrical argument is then extended to show that “mild” inhomogeneities of a
transparent type have no effect on the mean area of a light beam.
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Fi1c. 1.—Spacelike section of a typical Swiss-cheese universe




Dyer & Roeder '72

THE DISTANCE-REDSHIFT RELATION FOR UNIVERSES
WITH NO INTERGALACTIC MEDIUM

C. C. DYEr* AND R. C. ROEDERT

Kitt Peak National Observatory,i Tucson, Arizona
Recetved 1972 April 19

ABSTRACT

The distance-redshift relation is derived for model universes in which there is negligible intergalactic
matter and in which the line of sight to a distant object does not pass close to intervening galaxies. When
fitted to observations, this relation yields a higher value of gy than does a homogeneous model.

No. 3, 1972 DISTANCE-REDSHIFT RELATION L117

q.~1.82

Hs 75 km/sec
2 /Mpc -
A T
1 1 J 1
0 .05 A 15 2 25

F16. 1.—The dimming, relative to the homogeneous model, assuming that the beam passes far from
any intervening galaxies (Jlower curve) and assuming that the beam passes no closer than 2 kpc to the
center of galaxies similar to our own (upper curve).




Weinberg 1976 - no effect (flux conservation)
APPARENT LUMINOSITIES IN A LOCALLY INHOMOGENEOUS UNIVERSE

STEVEN WEINBERG

Center for Astrophysics, Harvard College Observatory and Smithsonian Astrophysical Observatory; and
Department of Physics, Harvard University
Received 1976 April 6, revised 1976 May 20

ABSTRACT

Apparent luminosities are considered in a locally inhomogeneous universe, with gravitational
deflection by individual clumps of matter taken into account. It is shown that as long as the clump
radii are sufficiently small, gravitational deflection by the clumps will produce the same average

effect as would be produced if the mass were spread out homogeneously. The conventional formulae
for luminosity distance as a function of redshift consequently remain valid, despite the presence

of any local inhomogeneities of less than galactic dimensions. For clumps of galactic size, the validity
of the conventional formulae depends on the selection procedure used and the redshift of the object
studied.

Subject headings: cosmology — galaxies: redshifts — gravitation




Weinberg's argument (that <magnification> = 1)

telescope
aperture

But this assumes that the total area iIs unchangead



Lensing and caustic effects
on cosmological distances.

G. F. R. ErLuis!, B. A. BasserT!?, AND P. K. S. DUNSBY!

1 Department of Applied Mathematics, University of Cape Town,

Rondebosch 7700, Cape Town, South Africa.

2 International School for Advanced Studies, SISSA - ISAS
Via Beirut 2-4, 34014, Trieste, Italy.

December 4, 2013

Abstract

We consider the changes which occur in cosmological distances
due to the combined effects of some null geodesics passing through
low-density regions while others pass through lensing-induced caus-
tics. This combination of effects increases observed areas correspond-
ing to a given solid angle even when averaged over large angular scales,
through the additive effect of increases on all scales, but particularly
on micro-angular scales; however angular sizes will not be significantly
effected on large angular scales (when caustics occur, area distances
and angular-diameter distances no longer coincide). We compare our
results with other works on lensing, which claim there is no such ef-
fect, and explain why the effect will indeed occur in the (realistic)
situation where caustics due to lensing are significant. Whether or not
the effect is significant for number counts depends on the associated
angular scales and on the distribution of inhomogeneities in the uni-
verse. It could also possibly affect the spectrum of CBR anisotropies
on small angular scales, indeed caustics can induce a non-Gaussian
signature into the CMB at small scales and lead to stronger mixing of
anisotropies than occurs in weak lensing.

EBD '98

Figure 1: A lens L and resulting caustics on the past light cone C~(P)
(2-dimensional section of the full light cone), showing in particular the cross-
over line Lo and cusp lines L_1, L1 meeting at the conjugate point ). The
intersection of the past light cone with a surface of constant time defines
exterior segments C'~, C' of the light cone together with interior segments

Cl) 027 03'



Ellis, Bassett & Dunsby '98 critique of Weinberg 76
EDB98 make two points:

Weinberg assumes that which
1S to be proven

* we agree: W76 assumes
that the surface of constant
z around a source (or
observer) 1s a sphere

I\

Small scale strong lensing
causes the surface to be
folded over on itself so total
area greatly enhanced

* (uite possibly true

1|

Thus Weinberg's claim 1s
disproved

» we disagree: W76 still
applies if multiple images
are unresolved




Enter Schneider, Ehlers, Seitz etc... ('80s, '90s)

» Two consistent threads:
» Lens equation:
» at least one 1mage 1s made brighter

* Optical scalar equations (Sachs 1961):
* -> focusing theorem (Seitz et al. 1994)

» Things viewed through 'clumpiness' are further
than they appear...



Seitz, Schneider & Ehlers (1994)

Finally, we have derived an equation for the size of a light beam in a clumpy universe,
relative to the size of a beam which is unaffected by the matter inhomogeneities. If we
require that this second-order differential equation contains only the contribution by
matter clumps as source term, the independent variable is uniquely defined and agrees
with the y-function previously introduced [see SEF, eq. (4.68)] for other reasons. This
relative focusing equation immediately yields the result that a light beam cannot be less

focused than a reference beam which is unaffected by matter inhomogeneities, prior to
the propagation through its first conjugate point. In other words, no source can appear

fainter to the observer than in the case that there are no matter inhomogeneities close

to the line-of-sight to this source, a result previously demonstrated for the case of one
(Schneider 1984) and several (Paper I, Seitz & Schneider 1994) lens planes.




The focusing theorem: D/D = —(R+ X°)

Derived from Sachs '61 "optical scalars”
from A.K. Raychaudhuri's (Landau) equation
« transport of expansion, vorticity and shear
R = Rapk?k® where Rap 1s the Ricci curvature
 local focusing by matter in the beam

22 1s the cumulative effect of Weyl curvature
« 1.e. the tidal effect of matter outside the beam
« 2 being the rate of image shearing

Like cosmological acceleration equation:

« d?%a/dt? = - 4nG(p+3P/c?)a

» so 27 here plays the role of pressure???
Also like Hawking-Ellis singularity theorem
 both terms are positive => focusing

e.g. Narlikar (Introduction to Relativity):

« "Thus the normal tendency of matter

* 15 to focus light rays"




Fig. 18.3. The bundle of
geodesics focusses in the
future with its cross section A
decreasing to zero. This effect
was discussed in the context o
spacetime singularity by A. K.
Raychaudhuri.

Narlikar on the focusing theorem

The Raychaudhuri equation can be stated in a slightly different form
as a focussing theorem. In this form it describes the effect of gravity
on a bundle of null geodesics spanning a finite cross section. Denoting
the cross section by A, we write the equation of the surface spanning
the geodesics as [/ = constant. Define the normal to the cross-sectional
surface by &, = df/dx'. Figure 18.3 shows the geometry of the bundle.

Using a calculation similar to that which led to the geodetic deviation
equation in Chapter 5, we get the focussing equation as

| &A1
JA da? 2
Equation (18.10) is similar to the Raychaudhuri equation with |o |

being the square of the magnitude of shear, With Einstein’s equations,
we can rewrite (18.10) as

| VA
JA da?

For dust we have 7;,, = pu,u,, and this condition is satisfied with
the left-hand side equalling p(u, k' )%, (Remember that £; is a null vector,
$O ik k™ = 0.) Thus the normal tendency of matter is to focus light
rays by gravity.

R.EK" — o, (18.10)

e (r,,,, - ;g,,,T) Kk™ — o). (18.12)



more on the focusing theorem: D/D = —(R + X£7)

In a cosmological context we are interested in how D deviates from the
background value D = Do + D; + ...

Focussing vanishes in the background

If we take the average, and linearise,

 and assuming <OR>=0 we have the averaged focusing theorem
(D)/Dy = —(X?) < 0.

There 1s an 1nevitable tendency for structure to cause beams to focus

* related to the (rate of) shearing of the beam

predicts decrease of distance qualitatively the same as Clarkson et al.

* 1..alarge - and possibly ultra-violet divergent - effect!

So Weinberg was wrong?



GRAVITATIONAL MAGNIFICATION OF THE COSMIC MICROWAVE BACKGROUND

R. BENTON METCALF AND JOSEPH SILK
Departments of Physics and Astronomy and Center for Particle Astrophysics, University of California, Berkeley, Berkeley, CA 84720
Received 1996 November 6 ; accepted 1997 June 12

ABSTRACT

Some aspects of gravitational lensing by large-scale structure are investigated. We show that lensing
causes the damping tail of the cosmic microwave background (CMB) power spectrum to fall less rapidly
with decreasing angular scale than previously expected. This is because of a transfer of power from
larger to smaller angular scales, which produces a fractional change in power spectrum that increases
rapidly beyond /7 ~ 2000. We also find that lensing produces a nonzero mean magnification of structures
on surfaces of constant redshift if weighted by area on the sky. This is a result of the fact that light rays
that are evenly distributed on the sky oversample overdense regions. However, this mean magnification
has a negligible affect on the CMB power spectrum. A new expression for the lensed power spectrum 1s
derived, and 1t 1s found that Tuture precision observations of the high-/ tail of the power spectrum will
need to take lensing into account when determining cosmological parameters.

Subject headings: cosmic microwave background — gravitational lensing




Kibble & Lieu (2005)

AVERAGE MAGNIFICATION EFFECT OF CLUMPING OF MATTER

T. W. B. KiBBLE
Blackett Laboratory, Imperial College, London SW7 2AZ, UK; kibble@imperial.ac.uk

AND

RicHARD LIEU
Department of Physics, University of Alabama at Huntsville, Huntsville, AL 35899; lieur@cspar.uah.edu

Received 2004 December 9, accepted 2005 June 20

ABSTRACT

The aim of this paper is to reexamine the question of the average magnification in a universe with some inhomoge-
neously distributed matter. We present an analytic proof, valid under rather general conditions, including clumps of
any shape and size and strong lensing, that as long as the clumps are uncorrelated, the average “‘reciprocal” magnifica-
tion (in one of several possible senses) 1s precisely the same as in a homogeneous universe with an equal mean density.
From this result, we also show that a similar statement can be made about one definition of the average “direct” mag-
nification. We discuss, in the context of observations of discrete and extended sources, the physical significance of the
various different measures of magnification and the circumstances in which they are appropriate.

Subject headings: cosmology: miscellaneous — distance scale — galaxies: distances and redshifts —
oravitational lensing



Kibble & Lieu 2005

There 1s another important distinction to be made. We may
choose at random one of the sources at redshift z, or we may
choose a random direction in the sky and look for sources there.
These are not the same; the choices are differently weighted. If
one part of the sky 1s more magnified, or at a closer angular-size
distance, the corresponding area of the constant-z surface will
be smaller, so fewer sources are likely to be found there. In other
words, choosing a source atrandom will give on average a smaller
magnification or larger angular-size distance.

* Weinberg: <u> = 1 when averaged over sources (or area)
» Kibble & Lieu: <1/u> =1 when averaged over directions on the sky
» latter 1s more relevant for CMB observations



Recent developments...

Relativists raised the concern that physical cosmologists have erred 1n
failing to take into account the inherent non-linearity of Einstein's
equations

* the backreaction "mantra": averaging and non-linearity (of Einstein's
equations) do not commute

« s0 maybe cosmic acceleration 1s a mirage

requires calculations 1n 2nd order perturbation theory...

now mostly accepted that effects are too small to get rid of A
but maybe there are still appreciable impacts:

 Clarkson, Ellis++ '12 - large (O(%?)) source magnification

« Clarkson++ '14 - sitmilarly large area increase
« "backreaction" strikes back?
and the size of the effect 1s qualitatively consistent with expectation of
« singularity theorem (Sachs... Raychaudhury... Narlikar ....)
« and focusing theorem (Schneider, Ehlers & Sietz)



What is the distance to the CMB?
How relativistic corrections remove the tension with local H;, measurements

Chris Clarkson!, Obinna Umeh?, Roy Maartens?® and Ruth Durrer?

L Astrophysics, Cosmology & Gravity Centre, and, Department of Mathematics &
Applied Mathematics, University of Cape Town, Cape Town 7701, South Africa.
2 Physics Department, University of the Western Cape, Cape Town 7535, South Africa
3 Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth PO1 3FX, United Kingdom
* Département de Physique Théorique & Center for Astroparticle Physics,
Université de Geneve, Quai E. Ansermet 24, CH-1211 Geneéeve 4, Switzerland.

The success of precision cosmology depends not only on accurate observations, but also on the the-
oretical model — which must be understood to at least the same level of precision. Subtle relativistic
effects can lead to biased measurements if they are neglected. One such effect gives a systematic
shift in the distance-redshift relation away from its background value, due to the accumulation of all
possible lensing events. We estimate the expectation value of this aggregated lensing using second-
order perturbations about a concordance background, and show that the distance to last scattering
is shifted by several percent. Neglecting this shift leads to significant bias in the background cos-
mological parameters. We show that this removes the tension between local measurements of Hy
and those measured through the CMB and favours a closed universe.




Clarkson et al. 2014

(A) ~ g <<5§A)2> — g (K?) (1.5)

where k is the usual linear lensing convergence. This is actually the leading contribution
to the expected change to large distances. We prove this remarkably simple and important
result in a variety of ways in several appendices. It implies that the total area of a sphere of
constant redshift will be larger than in the background. Physically this is because a sphere
about us in redshift space is not a sphere in real space — lensing implies that this ‘sphere’
becomes significantly crumpled in real space, and hence has a larger area. When interpreted

-

~

4 Conclusions

We have demonstrated an important overall shift in the distance redshift relation when the
aggregate of all lensing events is considered, calculated by averaging over an ensemble of
universes. This result is a consequence of flux conservation at second-order in perturbation
theory. This is a purely relativistic effect with no Newtonian counterpart — and it is the first
quantitative prediction for a significant change to the background cosmology when averaging
over structure [21]. The extraordinary amplification of aggregated lensing comes mainly

from the integrated lensing of structure on scales in the range 1-100 Mpc, although structure
down to 10kpc scales contributes significantly. We have estimated the size of the effect using



NK + Peacock 2015

Weinberg assumes that the area of a surface of constant redshift 1s
unperturbed by lensing by intervening structures

 seems reasonable since static lenses do not affect redshift
» and leads to conservation of e.g. source-averaged flux density

 but not strictly true and breaks down at some level

But if we assume this assumption is valid the claims for large effects can
all be readily understood as purely statistical effects:

» The mean flux magnification p of a source 1s unity
* SO <A!J>source =0
* but p1s a fluctuating quantity

* so any non-linear function of w (e.g. D/Do =1/ Vv w) will not average to
unity



KP15: Statistical biases...

Example: Source averaged distance bias:
 D/Dp=wl2=(1+Au"2=1-An/2+3(An?8 + ...

* 50 <D/Do>source = 1 + 3<(AW)>>/8 + ...=1 + 3<u?>/2 + ...
Similarly for source averaged mean inverse magnification

« <D?/Do’>source = 1 +4 <u?>+ ...

These are precisely the results for the mean perturbation to the distance
and distance squared found by Clarkson et al. 2014

But e.g. the latter 1s not the perturbation to the constant z surface area
» that would be the average over directions rather than over sources

Similarly, Clarkson et al. 2012 claim mean source averaged flux
magnification is <u>=1+ <3n2 +y>+ ... =1 + <4u>> + ...

» but this 1s the direction averaged magnification
These come from non-commutativity of averaging and non-linearity
» <f(x)> !=1(<x>) if x 1s a fluctuating quantity

* but have nothing to do with the non-linearity of Einstein's equations



KP2013: closing the loophole in Weinberg’s argument

Surface of constant distance travelled

Surface of constant
cosmic time 1
l"

|

~ 5
T @ dA

1
\

Ao

2 effects:
wiggly lines don't get as far as straight lines
wrinkly surface has more area than a smooth one

but both effects are ~(bending angle)2 ~ 106



Key features of KP15 calculation of area of photosphere

» Calculations are rather technical, some key features are:
*  Weak field assumption:
- we model the metric as weak field limit of GR
 but we allow for non-rel motion of sources
» these have negligible effects
 similarly for gravitational waves
« "photons can't surf a gravitational wave"
« going beyond 1st order can be estimated and is tiny effect
* result is isomorphic to light propagation in "lumpy glass"
« Boundary conditions:
 Perturbation theory calculations assume photosphere 1s constant z
* Not true. It 1s more realistically a surface of constant cosmic time
 Pert. theo. results may be qualitatively OK, but fail quantitatively
 Final result for perturbation to the area of the photosphere is
A0
(AA)/Ag = % A\ (2200 — A) +AD)J(\).  where
0

0
0

_ / _ 2 but J = d<06>>/d\ and JX is on the
= -8 / dy§¢(y)/y—2W/kA¢(k) dln k, order of 10-6

— o0



What about the "focusing theorem"? (D)/Do = —(%?) < 0.

« 2 lessons from foregoing:

. 1% The theorem applies to a bundle of rays fired
along a given direction

* 1.e. adirection - not source-averaged quantity
» and paths to sources avoid over-densities
5o care 1s needed 1n interpreting this

- 2) D 1s a non-linear function of A

* s0, because A 1s a fluctuation quantity, we
automatically expect a statistical bias in D

* and the size of the effect 1s ~ <u?>

* So i% (ghe "normal tendency of matter to focus light
rays"’

» as inferred from the averaged focusing theorem

 or simply this statistical effect?

' f.
C ; A - D
Fig. 18.3. The bundle of
geodesics focusses in the
future with its cross section A
decreasing to zero. This effect
was discussed in the context of

spacetime singularity by A. K.
Raychaudhuri,



Optical scalars (in weak-

r = V.n Geodesic equation
n o= [(1 - 26(r)/c*) /(1 + 2¢(r) /)]

Optical tensor transport equation:
K = (ViVk — KO )t — Vet Vit — K - K

Optical scalar transport equations:

S AYE . 2 2 2

> =({V.V.} —2o\)7n —{V.aV. 7} — 205
Solve for 6

The solution of A/2A4 = 6(\) = X\71 + Af(N) is
A
A=QNexp |2 / d\ AO(\)

0

field GR or lumpy glass)

Figure D1. Illustration of a bundle of rays (thin curves) and
associated wave-fronts (thick curves) and ray direction vectors
i = dr/d\ (arrows). The base of each arrow is labelled by distance
(physical for lumpy glass, background conformal for perturbed
FRW) along the path. Close to the guiding ray the ray vectors
will vary linearly with transverse displacement. The optical tensor
K is the derivative of the ray direction with respect to coordinates
x on the plane that is tangent to the wavefront at the location
of the guiding ray. The optical tensor transport equation tells us
how K evolves as the bundle propagates through any metric or
refractive index fluctuations. Since rays are perpendicular to the



Part ll: relativistic effects on D(z) at low z

® Two recent results from relativity:
® “Doppler lensing” as a new probe of structure
® related to SNIa error analysis
® Bias in Ho at low-z
® another 2nd order effect

® But things are again not quite as they might appear.....



Cosmology with Doppler lensing
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ABSTRACT

Doppler lensing is the apparent change in object size and magnitude due to pecu-
liar velocities. Objects falling into an overdensity appear larger on its near side, and
smaller on its far side, than typical objects at the same redshifts. This effect dominates
over the usual gravitational lensing magnification at low redshift. Doppler lensing is

a promising new probe of cosmology, and we explore in detail how to utilize the ef-
‘tect with forthcoming surveys. We present cosmological simulations of the Doppler
and gravitational lensing effects based on the Millennium simulation. We show that
Doppler lensing can be detected around stacked voids or unvirialised over-densities.
New power spectra and correlation functions are proposed which are designed to be
sensitive to Doppler lensing. We consider the impact of gravitational lensing and in-
trinsic size correlations on these quantities. We compute the correlation functions and
forecast the errors for realistic forthcoming surveys, providing predictions for con-
straints on cosmological parameters. Finally, we demonstrate how we can make 3-D
potential maps of large volumes of the Universe using Doppler lensing.

Key words: Cosmology: theory; cosmology: observations; gravitational lensing: weak
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Cosmology with Doppler lensing

David J. Bacon!, Sambatra Andrianomena?, Chris Clarkson?,
Krzysztof Bolejko®, Roy Maartens'*

1 INTRODUCTION

Light rays from distant sources are focused by overdensi-
ties (or defocused by underdensities) along the line of sight,
leading to apparent magnification (or demagnification) of
images. But besides this gravitational lensing, there is a fur-
ther effect which appears to magnify or demagnify the im-
ages of objects in the Universe. This Doppler lensing effect

arises from the peculiar velocity of the source, and was first

highlighted and investigated in general by Bonvin (2008)

(see also Bonvin et al. (2006)). Bolejko et al. (2013) then
showed that the effect can dominate over gravitational lens-
ing, and even reverse its effect, leading to an ‘anti-lensing’
phenomenon. Doppler lensing gives a new window into the

peculiar velocity field in addition to the usual redshift space

distortion measurements.

The effect is a consequence of the distortion introduced
by mapping from redshift-space to real space, as illustrated
in Figure 1. Imagine we have three spherical galaxies with
the same physical size, and (as an extreme case) the same

" Q-

Figure 1. Three spherical galaxies of the same physical size and
same observed redshift. A is at the centre of a spherical overden-
sity while B and C are falling towards the centre.
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Antilensing: The Bright Side of Voids

Krzysztof Bolejko,1 Chris Clarkson,” Roy Maartens,>* David Bacon,* Nikolai Meures,* and Emma Beynon4

'Sydney Institute for Astronomy, The University of Sydney, Sydney, New South Wales 2006, Australia
*Centre for Astrophysics, Cosmology and Gravitation and, Department of Mathematics and Applied Mathematics,
University of Cape Town, Cape Town 7701, South Africa
3Physics Department, University of the Western Cape, Cape Town 7535, South Africa

*Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, United Kingdom
(Received 1 October 2012; published 10 January 2013)

More than half of the volume of our Universe is occupied by cosmic voids. The lensing magnification
effect from those underdense regions is generally thought to give a small dimming contribution: objects on
the far side of a void are supposed to be observed as slightly smaller than if the void were not there, which
together with conservation of surface brightness implies net reduction in photons received. This is
predicted by the usual weak lensing integral of the density contrast along the line of sight. We show that
this standard effect is swamped at low redshifts by a relativistic Doppler term that is typically neglected.
Contrary to the usual expectation, objects on the far side of a void are brighter than they would be
otherwise. Thus the local dynamics of matter in and near the void is crucial and is only captured by the full
relativistic lensing convergence. There are also significant nonlinear corrections to the relativistic linear
theory, which we show actually underpredicts the effect. We use exact solutions to estimate that these can
be more than 20% for deep voids. This remains an important source of systematic errors for weak lensing
density reconstruction in galaxy surveys and for supernovae observations, and may be the cause of the
reported extra scatter of field supernovae located on the edge of voids compared to those in clusters.

DOI: 10.1103/PhysRevLett.110.021302 PACS numbers: 98.62.Sb
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PHYSICAL REVIEW D 78, 123530 (2008)
Effect of peculiar motion in weak lensing

Camille Bonvin™

Département de Physique Théorique, Université de Geneve, 24 quai Ernest Ansermet, CH-1211 Geneve 4, Switzerland
(Received 1 October 2008; published 29 December 2008)

We study the effect of peculiar motion in weak gravitational lensing. We derive a fully relativistic
formula for the cosmic shear and the convergence in a perturbed Friedmann universe. We find a new
contribution related to galaxies” peculiar velocities. This contribution does not affect cosmic shear in a
measurable way, since it is of second order in the velocity. However, its effect on the convergence (and
consequently on the magnification, which is a measurable quantity) is important, especially for redshifts
z = 1. As a consequence, peculiar motion modifies also the relation between the shear and the
convergence.

DOI: 10.1103/PhysRevD.78.123530 PACS numbers: 98.80.Es, 95.30.Sf, 95.35.+d, 98.62.Sb
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PHYSICAL REVIEW D 73, 023523 (2006)
Fluctuations of the luminosity distance

Camille Bonvin,* Ruth Durrer,” and M. Alice Gasparini*

Deépartement de Physique Théorigque, Université de Geneve, 24 quai Ernest Ansermet, CH-1211 Geneve 4, Switzerland
(Received 7 November 2005; published 27 January 2006)

We derive an expression for the luminosity distance in a perturbed Friedmann universe. We define the
correlation function and the power spectrum of the luminosity distance fluctuations and express them in
terms of the initial spectrum of the Bardeen potential. We present semianalytical results for the case of a
pure CDM (cold dark matter) universe. We argue that the luminosity distance power spectrum represents a
new observational tool which can be used to determine cosmological parameters. In addition, our results
shed some light into the debate whether second order small scale fluctuations can mimic an accelerating
universe.

CAMILLE BONVIN, RUTH DURRER, AND M. ALICE GASPARINI PHYSICAL REVIEW D 73, 023523 (2006)
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We now consider a Friedmann universe with scalar
p perturbations. In longitudinal (or Newtonian) gauge the

H = a/a = a_lﬁE Ha metric is given by
@ = a’[—(1 +2W)dn? + (1 — 2®)y;;dx'dx’]
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So what’s new in Doppler (or anti) lensing?



THE ASTRONOMICAL JOURNAL VOLUME 81, NUMBER 9 SEPTEMBER 1976

Motion of the Galaxy and the Local Group determined from the vélocity
anisotropy of distant Sc I galaxies. II. The analysis for the motion

Vera C. Rubin,*! Norbert Thonnard,’ and W. Kent Ford Jr."
Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015

Morton S. Roberts

National Radio Astronomy Observatory, Green Bank, West Virginia
(Received 18 May 1976; revised 28 June 1976)

For an all-sky sample of 96 Sc I-Sc II galaxies, 3500 <V . < 6500 km sec !, for which radial velocities and
magnitudes have been obtained, the quantity HM=log V', —0.2m . =log H —0.2M (—35 varies across the
sky. The form of the variation is consistent with a motion of the Sun of V »=600+125 km sec”! toward
a=32"£20°, §=+53°+11°, (I =135°, b = —8°), corresponding to a motion of the Galaxy and the Local Group
of galaxies of V guy=454=+125 km sec™' toward [ =163°, b = —11°. The mean error arises from the scatter
of the data and does not take possible systematic errors into account. The Galaxy is moving almost edge-on;
the leading edge is in the anticenter direction. Alternative explanations which might account for the observed
anisotropy are examined: (1) that apex galaxies are intrinsically fainter than antapex galaxies; (2) that apex
(anticenter) galaxies are more obscured; (3) that the Hubble constant varies by 20% across the sky. Each of
these explanations is shown to be less likely than a motion of the observer. It is also demonstrated that a
Malmquist bias does not produce the observed anisotropy. Additionally, undetected systematic errors in the
magnitude system are probably no larger than 0™.1, so can account for no more than one-fourth of the observed
effect. Moreover, 22 nearer galaxies, 1600 <V .<3500 km sec! exhibit a more pronounced anisotropy in HM
than the sample 3500< V. <6500 km sec™'. Of the explanations considered above, only a motion of our
Galaxy is consistent with the variation in HM observed at both distances. Support for this explanation comes
also from a sample of E and SO galaxies, 3500 <V . <6500 km sec™' (Sandage 1975). After correction for
the motion of the observer, the random motions of these Sc galaxies are small, (AV) 42 <200 km sec™},
and the Hubble flow is uniform, o(AH /H )<0.04.




What'’s new in Doppler (or anti) lensing?

® | ong history of observations
® Rubin-Ford effect (1976)
o ... Tully-Fisher ... Faber-Jackson ... Dn-sigma ...
® Cosmic flows ll; 6df survey...

® What'’s new in theory?



The magnitude—redshift relation in a perturbed
Friedmann universe

Misao Sasaki Research Institute for Theoretical Physics, Hiroshima University,
Takehara, Hiroshima 725, Japan Accepted 1987 April 30, Received 1987 April 29; in original form 1987 March 2

Summary. A general formula for the magnitude-redshift relation in a linearly
perturbed Friedmann universe is derived. The formula does not assume any
specific gauge condition, but the gauge-invariance of it is explicitly shown. Then
the application of the formula to the spatially flat background model is considered
and the implications are discussed. |
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What'’s new in Doppler (or anti) lensing?

® | ong history of observations
® Rubin-Ford effect (1976)
o ... Tully-Fisher ... Faber-Jackson ... Dn-sigma ...
® Cosmic flows ll; 6df survey...
® What’s new in theory!?
® |ong history back to Zel'dovich '64
® classic paper by Sasaki et al '87
® Wasn'’t this all thrashed out in relation to SN la cosmology?
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Correlated fluctuations in luminosity distance and the importance of peculiar motion in
supernova surveys

Lam Hui">* and Patrick B. Greene!>"

Unstitute for Strings, Cosmology and Astro-particle Physics (ISCAP)
*Department of Physics, Columbia University, New York, New York 10027, USA

*Department of Physics and Astronomy, University of Texas at San Antonio, Texas 78249, USA
(Received 7 December 2005; published 23 June 2006)

Large scale structure introduces two different kinds of errors in the luminosity distance estimates from
standardizable candles such as supernovae Ia (SNe)—a Poissonian scatter for each SN and a coherent
component due to correlated fluctuations between different SNe. Increasing the number of SNe helps
reduce the first type of error but not the second. The coherent component has been largely ignored in
forecasts of dark energy parameter estimation from upcoming SN surveys. For instance it is commonly
thought, based on Poissonian considerations, that peculiar motion 1s unimportant, even for a low redshift
SN survey such as the Nearby Supernova Factory (SNfactory; z = 0.03-0.08), which provides a useful
anchor for future high redshift surveys by determining the SN zero point. We show that ignoring coherent
peculiar motion leads to an underestimate of the zero-point error by about a factor of 2, despite the fact
that SNfactory covers almost half of the sky. More generally, there are four types of fluctuations: peculiar
motion, gravitational lensing, gravitational redshift and what is akin to the integrated Sachs-Wolfe effect.
Peculiar motion and lensing dominates at low and high redshifts, respectively. Taking into account all
significant luminosity distance fluctuations due to large scale structure leads to a degradation of up to 60%
in the determination of the dark energy equation of state from upcoming high redshift SN surveys, when
used in conjunction with a low redshift anchor such as the SNfactory. The most relevant fluctuations are
the coherent ones due to peculiar motion and the Poissonian ones due to lensing, with peculiar motion
playing the dominant role. We also discuss to what extent the noise here can be viewed as a useful signal,
and whether corrections can be made to reduce the degradation.

DOI: 10.1103/PhysRevD.73.123526 PACS numbers: 98.80.—k, 95.30.Sf, 98.80.Es, 98.80.Jk



Hui & Greene 2006

In summary, the total peculiar motion and lensing con-
tributions to 6, are
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To reiterate: v, and v, are the peculiar velocities of the
emitter and observer, and n 1s the line-of-sight unit vector
pointing away from the observer (n here plays the role of 6
in Eq. (7)); the comoving distance to emitter y,, the scale
factor at emission a, and its derivative with respect to
conformal time a/ are evaluated at redshift z. One can
see from above that for small y, or at a low redshift, the
peculiar motion term proportional to 1/y, becomes im-
portant, while at a large redshift, the lensing term (second
line) is more important. A more rigorous derivation of o, ,
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PHYSICAL REVIEW D 73, 103002 (2006)

Large-scale bulk motions complicate the Hubble diagram

Asantha Cooray'
LCenter for Cosmology, Department of Physics and Astronomy, University of California, Irvine, California 92697, USA

Robert R. Caldwell?

“Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, New Hampshire 03755, USA
(Received 17 January 2006; published 15 May 2006)

We investigate the extent to which correlated distortions of the luminosity distance-redshift relation due
to large-scale bulk flows limit the precision with which cosmological parameters can be measured. In
particular, peculiar velocities of type la supernovae at low redshifts, z < 0.2, may prevent a sufficient
calibration of the Hubble diagram necessary to measure the dark energy equation of state to better than
10%, and diminish the resolution of the equation of state time-derivative projected for planned surveys.
We consider similar distortions of the angular-diameter distance, as well as the Hubble constant. We show
that the measurement of correlations in the large-scale bulk flow at low redshifts using these distance
indicators may be possible with a cumulative signal-to-noise ratio of order 7 in a survey of 300 type la
supernovae spread over 20 000 square degrees.

combination, we obtair{ (see, Ref. [28] for details including

4+
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where 1 is the unit vector along the line-of-sight, vgy. is the
SN velocity, v, 1s the velocity of the observer, y is the
comoving radial distance to the SN, and the prime denotes
the derivative with respect to the conformal time. Unless
otherwise stated, here and throughout, we take a unit
system in which ¢ = 1. The covariance matrix of errors
in luminosity distance is

Cov;; = O'iznt(Zi)5ij + C""(z;, Zj eij); (2)
2

where o (z;) is the variance term that affects each dis-
tance individually (e.g. due to random velocities, or the
intrinsic uncertainty in the calibration of SN light curves).
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THE EFFECT OF PECULIAR VELOCITIES ON SUPERNOVA COSMOLOGY

TamMarRA M. Davis! 2, Lam Hur’, JosHUA A. FRIEMAN*®, TROELS HAUGB@LLE’, RICHARD KESSLER*">, BENJAMIN SINCLAIR!,
JESPER SOLLERMAN’'3, BRUCE BASSETT”" %11 JoHN MARRINER®, EDVARD MORTSELL!?, ROBERT C. NicHOL'?,

MIcHAEL W. RICHMOND'*, MAsAO SAKO'?, DONALD P. SCHNEIDER'®, AND MATHEW SMITH'’
We analyze the effect that peculiar velocities have on the cosmological inferences we make using luminosity

distance indicators, such as Type Ia supernovae. In particular we study the corrections required to account for
(1) our own motion, (2) correlations in galaxy motions, and (3) a possible local under- or overdensity. For all
of these effects we present a case study showing the impact on the cosmology derived by the Sloan Digital Sky
Survey-II Supernova Survey (SDSS-II SN Survey). Correcting supernova (SN) redshifts for the cosmic microwave
background (CMB) dipole slightly overcorrects nearby SNe that share some of our local motion. We show that
while neglecting the CMB dipole would cause a shift in the derived equation of state of Aw ~ 0.04 (at fixed €2,,), the
additional local-motion correction is currently negligible (Aw < 0.01). We then demonstrate a covariance-matrix
approach to statistically account for correlated peculiar velocities. This down-weights nearby SNe and effectively
acts as a graduated version of the usual sharp low-redshift cut. Neglecting coherent velocities in the current sample
causes a systematic shift of Aw ~ 0.02. This will therefore have to be considered carefully when future surveys
aim for percent-level accuracy and we recommend our statistical approach to down-weighting peculiar velocities
as a more robust option than a sharp low-redshift cut.

The peculiar-motion-induced magnitude covariance is related

2
to the velocity correlation function l.Vjel by Cvel — d 1 — ai ¢ 1 — a; ¢
Y cIn10 a. xi a’ X
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where c 1s the speed of light, x = Ry is the radial comoving < 20+ D ilkw) i (k¥ PR - X;
distance, a = R/R is the normalized scale factor, and the EX_;( Ve kxi) Jo(kxPe(Xi - X)),

prime denotes the conformal time derivative. All quantities with



What'’s new in Doppler (or anti) lensing?

Long history of observations
® Rubin-Ford effect (1976)

® Tammann, Sandage & Yahil (1979)

° ... Tully-Fisher ... Faber-Jackson ... Dn-sigma ...

® Cosmic flows ll; 6df survey...

What’s new in theory!?

® |ong history back to Zel'dovich '64

® classic paper by Sasaki et al '87

Wasn'’t this all thrashed out in relation to SN la cosmology?
® Hui & Greene '06; Cooray & Caldwell '06; Davis et al 201 |
So it’s “not even wrong’?

® not quite... lowest order effect is traditional pec. vel.

® but next order (finite z) effect depends on absolute motion
® violates Equivalence Principle!



Kaiser & Hudson, 2014

Perturbation to the distance (at fixed z) from velocities (alone)
® (0d/d)z = - (a/a'X)(vs.n - vo.n) + vs.n
At low z,a'X/a=z, so first term dominates
® it depends only on relative velocity
But for finite z we need 2nd term
® this depends on absolute peculiar motion of sources
® what if observer and sources share a common motion!?
® perhaps caused by the attraction of a distant mass excess
® would we see a dipole in (0d/d)z = vs.n?
Ans: no
theorists have kept only velocity driven term
have discarded another term of the same order (SVV ‘67)
KH14: consistent analysis respects EP
needed to allow for effect of large-scale motions in SNla HO






2) Bias in Ho from 2nd order pert" theory
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Scale dependence of cosmological backreaction

Nan Li* and Dominik J. Schwarz™

Fakultdt fiir Physik, Universitdt Bielefeld, Universitdtsstrafse 25, D-33615 Bielefeld, Germany
(Received 2 November 2007; published 23 October 2008)

Because of the noncommutation of spatial averaging and temporal evolution, inhomogeneities and

anisotropies (cosmic structures) influence the evolution of the averaged Universe via the cosmological

backreaction mechanism. We study the backreaction effect as a function of averaging scale in a

perturbative approach up to higher orders. We calculate the hierarchy of the critical scales, at which
10% effects show up from averaging at different orders. The dominant contribution comes from the
averaged spatial curvature, observable up to scales of ~200 Mpc. The cosmic variance of the local Hubble
rate 1s 10% (5%) for spherical regions of radius 40 (60) Mpc. We compare our result to the one from
Newtonian cosmology and Hubble Space Telescope Key Project data.

SCALE DEPENDENCE OF COSMOLOGICAL BACKREACTION
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FIG. 2 (color online). Relative fluctuation of the Hubble rate
from cosmological backreaction and its cosmic variance band
(thick lines) compared to the empirical mean and variance of dp
obtained from the HST Key Project data [5] as a function of
averaging radius. The thin line shows the ensemble mean of 6.
The band enclosed by the thick lines indicates the effect of the
inhomogeneities ( « 1/7?), and the dashed lines are the effect
from sampling with given measurement errors in an otherwise
perfectly homogeneous Universe.
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Influence of structure formation on the cosmic expansion

Chris Clarkson,* Kishore Ananda,” and Julien Larena®

Cosmology & Gravity Group, Department of Mathematics and Applied Mathematics, University of Cape Town,

Rondebosch 7701, Cape Town, South Africa
(Received 4 August 2009; published 23 October 2009)

We investigate the effect that the average backreaction of structure formation has on the dynamics of
the cosmological expansion, within the concordance model. Our approach in the Poisson gauge is fully
consistent up to second order in a perturbative expansion about a flat Friedmann background, including a
cosmological constant. We discuss the key length scales which are inherent in any averaging procedure of
this kind. We 1dentify an intrinsic homogeneity scale that arises from the averaging procedure, beyond
which a residual offset remains in the expansion rate and deceleration parameter. In the case of the
deceleration parameter, this can lead to a quite large increase in the value, and may therefore have
important ramifications for dark energy measurements, even if the underlying nature of dark energy is a
cosmological constant. We give the intrinsic variance that affects the value of the effective Hubble rate and
deceleration parameter. These considerations serve to add extra intrinsic errors to our determination of the
cosmological parameters, and, in particular, may render attempts to measure the Hubble constant to
percent precision overly optimistic.




The Hubble rate in averaged
cosmology
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E-mail: umeobinna@gmail.com, julien.larena@gmail.com, chris.clarkson@uct.ac.za,

Received November 23, 2010
Revised January 27, 2011
Accepted March 3, 2011
Published March 21, 2011

Abstract. The calculation of the averaged Hubble expansion rate in an averaged perturbed

Friedmann-Lemaitre-Robertson-Walker cosmology leads to small corrections to the back-

ground value of the expansion rate, which could be important for measuring the Hubble

constant from local observations. It also predicts an intrinsic variance associated with the
finite scale of any measurement of Hy, the Hubble rate today. Both the mean Hubble rate
and its variance depend on both the definition of the Hubble rate and the spatial surface on
which the average is performed. We quantitatively study different definitions of the averaged
Hubble rate encountered in the literature by consistently calculating the backreaction effect
at second order in perturbation theory, and compare the results. We employ for the first
time a recently developed gauge-invariant definition of an averaged scalar. We also discuss
the variance of the Hubble rate for the different definitions.

Keywords: cosmic flows, cosmological perturbation theory, dark energy theory



The second-order luminosity-redshift
relation in a generic inhomogeneous
cosmology

Ido Ben-Dayan,*’ Giovanni Marozzi,”? Fabien Nugier® and
Gabriele Veneziano®/

Published November 22, 2012

Abstract. After recalling a general non-perturbative expression for the luminosity-redshift
relation holding in a recently proposed “geodesic light-cone” gauge, we show how it can
be transformed to phenomenologically more convenient gauges in which cosmological per-
turbation theory is better understood. We present, in particular, the complete result on
the luminosity-redshift relation in the Poisson gauge up to second order for a fairly generic
perturbed cosmology, assuming that appreciable vector and tensor perturbations are only
generated at second order. This relation provides a basic ingredient for the computation of
the effects of stochastic inhomogeneities on precision dark-energy cosmology whose results
we have anticipated in a recent letter. More generally, it can be used in connection with any
physical information carried by light-like signals traveling along our past light-cone.
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Backreaction on the
luminosity-redshift relation from gauge

invariant light-cone averaging

|. Ben-Dayan,*’ M. Gasperini,“’ G. Marozzi,” F. Nugier/ and
G. Veneziano®Y
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Figure 4. The distance-modulus difference of eq. (6.3) is plotted for a pure CDM model (thin line),
for a CDM model including the contribution of IBRy (dashed blue line) plus/minus the dispersion
(coloured region), and for a ACDM model with Q, = 0.73 (thick line) and Q5 = 0.1 (dashed-dot
thick line). We have used for all backreaction integrals the cut-off k = 1 Mpc™?.



Average and dispersion of the
luminosity-redshift relation in the

concordance model
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Figure 6. The fractional correction to the flux (fe, thin curves) and to the luminosity distance ( fg,
thick curves), for a perturbed ACDM model with 29 = 0.73. Unlike in figure 3, we have taken
into account the non-linear contributions to the power spectrum given by the HaloFit model of [17]
(including baryons), and we have used the following cutoff values: kyy = 10h Mpe™' (dashed curves)

and kyy = 30h Mpce ™! (solid curves).
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Do Stochastic Inhomogeneities Affect Dark-Energy Precision Measurements?

I. Ben-Dayan,'* M. Gasperini,”* G. Marozzi,” F. Nugier,’ and G. Veneziano>’

The effect of a stochastic background of cosmological perturbations on the luminosity-redshift relation
1s computed to second order through a recently proposed covariant and gauge-invariant light-cone
averaging procedure. The resulting expressions are free from both ultraviolet and infrared divergences,
implying that such perturbations cannot mimic a sizable fraction of dark energy. Different averages are
estimated and depend on the particular function of the luminosity distance being averaged. The energy
flux being minimally affected by perturbations at large z 1s proposed as the best choice for precision
estimates of dark-energy parameters. Nonetheless, its irreducible (stochastic) variance induces statistical
errors on (), (z) typically lying in the few-percent range.
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FIG. 2. The fractional correction to the flux f¢ of Eq. (7) (thin
curves) is compared with the fractional correction to the lumi-
nosity distance f; of Eq. (13) (thick curves) for a ACDM model
with ), = 0.73. We have used two different cutoff values:
kyy = 0.1 Mpc™! (dashed curves) and kyy = 1 Mpc™! (solid
curves). The spectrum is the same as that of Fig. 1 adapted to
ACDM.

FIG. 3. The averaged distance modulus (u) — u™ (thick solid
curve) and its dispersion of Eq. (15) (shaded region) are com-
puted for ), = 0.73 and compared with the homogeneous value
for the unperturbed ACDM models with (), = 0.69, 0.71, 0.73,
0.75, 0.77 (dashed curves). We have used kyy = 1 Mpc~! and
the same spectrum as in Fig. 2.
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Value of H, in the Inhomogeneous Universe

Ido Ben—Dayan,1 Ruth Durrer,2 Giovanni Marozzi,2 and Dominik J. Schwarz’
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Local measurements of the Hubble expansion rate are affected by structures like galaxy clusters or voids.
Here we present a fully relativistic treatment of this effect, studying how clustering modifies the mean
distance- (modulus-)redshift relation and its dispersion in a standard cold dark matter universe with a
cosmological constant. The best estimates of the local expansion rate stem from supernova observations at
small redshifts (0.01 < z < 0.1). It is interesting to compare these local measurements with global fits to
data from cosmic microwave background anisotropies. In particular, we argue that cosmic variance (i.e., the
effects of the local structure) is of the same order of magnitude as the current observational errors and must
be taken into account in local measurements of the Hubble expansion rate.

(d*)(z) = (d) 21+ fa(2)]. (4)

where for 7 < 1,

The brightness of supernovae is typically expressed in
terms of the distance modulus u. Because of the nonlinear
function relating ¢ and ®, one obtains different second
1 >2 order contributions,
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would nearly double the effect in Eq. (5). The dominant
peculiar velocity contribution at low redshift gives

140 =~ () T2 [ Fer, 0. ©

z)An H,

where at 7z < 1, we also find

<((I)1/‘I)0>2> =—4f5. (8)




Bias in Ho from 2nd order pert" theory

® Backreaction causes systematic bias in H measurement
® interesting bias in flux density, distance etc at low-z

® But isn’t this just the residual “homogeneous Malmquist bias” in
“inverse + type II” method?



Malmquist bias!?

® Obijects in a region of estimated distance space will have a
distance that is biased

® because of (large) uncertainty in distance
® But“Schechter’s method” largely avoids that
® don't measure velocity as a function of distance
® do it the other way round
® small scatter in distance for objects at same redshift

® but not completely free from bias

® analysed by Lynden-Bell 92 and Willick & Strauss ‘97



DLB 92

Eddington—Malmquist Bias,
Streaming Motions, and the
Distribution of Galaxies

D. Lynden-Bell

ABSTRACT Schechter's method of eliminating Malmquist bias is reviewed
and presented in the context of the D, —o relationship for elliptical galaxies.
A Malmaquist-like correction occurs which is dependent on the dispersion
in the velocity field of galaxies; however, this correction does not increase
with distance so it is much less important than the normal Malmquist bias
that this method eliminates. The method is applied to a bulk flow model
of the ellipticals and gives almost identical results to those found using the
other reduction method which employs the Malmquist corrections. Ways
of using the method to model the density and velocity fields out to 10,000
km/sec are briefly indicated.

. m o mm e — = e — =
L= .

is already small.
Solving for R. we obtain the value Ry at which the maximum occurs

Rpm =1 {w + \/w? + 402 [3 + ) l;l(;;/:")] 1+ u’(u)]‘z} . (9.16)

Equations (9.16) and (9.15) constitute our solution for Rm. Notice that
when w >> gy, then

2 dl a
Rp=w {1 + E% [3 -+ Z(El/rv)] [1 4 HI(U)]-z} (9.17)




Willick et al 1997 (astro-ph vs Ap|)

2.2.2.  Further discussion of the vELMoD likelihood

The physical meaning of the vELmobp likelihood expressions is clarified by considering them in a suitable
limit. If we take o, to be “small,” in a sense to be made precise below, the integrals in Egs. (11) and (12) may
be approximated using standard techniques. If in addition we neglect sample selection (S = 1) and density
variations (n(r) = constant), and assume that the redshift-distance relation is single-valued, we find for the

forward relation: — |0 = 2%5

P(mln, cz) ~ \/iae exp{—zig (m— [M(n) +5logw + 11?OA2D2} | (15)

P(m|n, cz) ~ fa exp |[ 1 {m — [M(n) + Slogw+ 3 X% % Az:l}z]l , (15)

We thank Marc Davis, Carlos Frenk, and Amos Yahil for extensive discussions of various aspects of this project, as well as
the support of the entire Mark III team: David Burstein, Stéphane Courteau, and Sandra Faber. We also thank the referee,
Alan Dressler, for an insightful report that improved the quality of the paper. J. A. W. and M. A. S. are grateful for the

® KHI5:The “3” here comes from the standard formula for HMB.
® The right answer is |.5
® as found by the relativistic backreaction folks!



Kinematic Bias in Cosmological Distance Measurement

Nick Kaiser & Michael J. Hudson

L Institute for Astronomy, University of Hawasi
2 Department of Physics and Astronomy, University of Waterloo

ABSTRACT

Recent calculations using non-linear relativistic cosmological perturbation theory show
biases in the mean luminosity distance and distance modulus at low redshift. We show
that these effects may be understood very simply as a non-relativistic, and purely kine-
matic, Malmquist-like bias, and we describe how the effect changes if one averages over
sources that are limited by apparent magnitude. This effect is essentially identical to
the distance bias from small-scale random velocities that has previously been con-
sidered by astronomers, though we find that the standard formula overestimates the
homogeneous bias by a factor 2.

Figure 1. Dotted lines are lines of longitude and latitude on the
surface of constant redshift. On this surface, peculiar velocities
are equally likely to be positive as negative. The cone illustrates
how a section of this sphere maps to real space for the case of
a negative peculiar velocity. The section is pushed out radially
away from the observer — who resides at the centre of the sphere
— and consequently is expanded in area. Similarly, for a positive
peculiar velocity the section would be compressed. The result of
this is that the average of the distance, when weighted by real-
space area, is positive. This is the cause of the bias found in the
relativistic perturbation theory analyses. More relevant to real ob-
servations is the bias in distance averaged over the sources that
lie in a shell of given redshift. We consider this in §2.2. There
we find that there are some relatively minor differences that arise
from the clustering of sources and from the Jacobian involved in
transforming volumes from redshift to real space, but the main
difference is that the generalisations of (8) have different numeri-
cal pre-factors when the sources are subject to selection based on
flux density.



Conclusions - 1. biases in cosmological parameters
« Recent advances 1n non-linear relativistic perturbation theory

 claimed to find significant biases 1n D(z)
 from lensing at high z
 from velocities at low z -> biased Ho
- attributed to “backreaction'
« But effects found are purely statistical in nature
» regarding lensing:
»  Weinberg was almost right - SN1a flux densities are unbiased
» conventional CMB analysis 1s legitimate
» focusing theorem has been misunderstood
« no large systematic focusing - area decrease - of beams
+ regarding velocities:
 bias in Hp 1s "homogeneous Malmquist bias'

* but reveals a subtle error in standard formula



Concluding 2. Doppler lensing

« Perturbations to D(z) from peculiar motions
* not a new probe of large-scale structure
 rehash of cosmic-flow analysis from 70's, 80's etc.
» relativistic calculations go beyond lowest order (~ Ov/cz) terms
» previously used in SN1a error analysis
* but violate equivalence principle
+ Consistent treatment requires including gravitational redshift
* no observable effect from ultra-large scale structure (beyond tide)

» consistent method for SN1a covariance analysis



