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To whom it may concern: 

Recommendation letter supporting the postdoc application of Shasvath J Kapadia 

Dear colleagues, 

I am writing to express my strongest support for the postdoc application of Shasvath J Kapadia. 
Shasvath is a highly motivated, ambitious and hardworking young researcher, and is one of the 
strongest candidates in his peer group in gravitational-wave (GW) physics and astronomy. 

I have known Shasvath for the last three years. I met him in 2012 at a conference in KITP Santa 
Barbara where he was presenting an interesting poster on floating orbits in extreme-mass-ratio 
inspirals. He asked whether he could with me on a project related to LIGO’s science. Although, I 
tried to brush him aside citing the difficulty of long-distance collaboration (I was moving to 
India at that time), he persisted. After a year or so we actually started working together which 
turned out to be a very fruitful collaboration. I will be basing my letter on the aspect of his work 
that I know the best. However, his PhD work is quite diverse, covering problems related to the 
computation of orbits of extreme-mass-ratio inspirals, use of machine learning algorithms to 
distinguish between real GW triggers and spurious noise-generated triggers in the search for 
GWs from compact binaries using LIGO, etc. I hope that his other referees will elaborate on these 
aspects. 

The project (arXiv:1509.06366) that Shasvath worked with myself and Nathan Johnson-McDaniel 
was on computing the effective higher order terms in the post-Newtonian (PN) expansions of the 
gravitational binding energy and GW energy flux from inspiralling compact binaries. In the 
adiabatic PN approximation, the phase evolution of GWs from inspiralling compact binaries is 
computed by equating the change in binding energy with the GW flux. This energy balance 
equation can be solved in different ways, which result in multiple “approximants” of the PN 
waveforms. Due to the poor convergence of the PN expansion, these approximants tend to differ 
from each other during the late inspiral. Which of these approximants should be chosen as 
templates for GW detection and parameter estimation is not obvious. We computed some 
effective higher order (beyond the currently available 4PN and 3.5PN) non-spinning terms in the 
PN expansion of the energy and the flux that minimize the difference of multiple PN 
approximants (TaylorT1, TaylorT2, TaylorT4, TaylorF2) with effective one body waveforms 
calibrated to numerical relativity (EOBNR). We showed that PN approximants constructed using 
the effective higher order terms show significantly better agreement (as compared to 3.5PN) with 
the inspiral part of the EOBNR. For non-spinning binaries with component masses 1.4 -- 15 M⊙, 
most of the approximants have a match (faithfulness) of better than 99% with both EOBNR and 
each other. Although these effective terms are not the same as actual higher order terms, they find 
immediate practical use in GW searches. PN waveforms employing these effective higher order 
terms can be used in LIGO/Virgo searches for compact binaries as computationally inexpensive 
surrogates of EOBNR waveforms in the “low-mass” region of the parameter space. We are in the 
process of extending this computation to the case of spinning binaries, where this work is of 
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The quest for the direct detection of gravitational waves

• A worldwide network of  ground-based detectors has started an exciting search for GWs.  

2

LIGO Observatories in Hanford and Livingston, USA



The quest for the direct detection of gravitational waves

• Initial LIGO detectors achieved 
their design sensitivity in 2007. 

Non-detection is consistent 
with the astrophysical 
expectations. 
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ΔL ~ 10−19 m 

ΔL ~ 2 x 10−20 m [Keita Kawabe’s talk]



The quest for the direct detection of gravitational waves

• Initial LIGO detectors achieved 
their design sensitivity in 2007.

• Advanced LIGO detectors started 
operation in Sep 2015. With 
~3-5x improved sensitivity as 
compared to Initial LIGO, 
~30-100x improvement in the 
expected detection rates. 

• Expected to achieve design 
sensitivity by 2018 (~10x 
compared to Initial LIGO). 
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[LIGO document: G1500632]

Representative noise spectrum from the ongoing 
observation run of Advanced LIGO.

[Keita Kawabe’s talk]



The quest for the direct detection of gravitational waves

• Initial LIGO detectors achieved 
their design sensitivity in 2007.

• Advanced LIGO detectors started 
operation in Sep 2015. With 
~3-5x improved sensitivity as 
compared to Initial LIGO, 
~30-100x improvement in the 
expected detection rates. 

• Expected to achieve design 
sensitivity by 2018 (~10x 
compared to Initial LIGO). 

5
10x increase in the sensitivity ➝ 1000x improvement in the event rates.  
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When can we expect the first detections? 

• Difficult to make accurate predictions 
due to the uncertainties in the 
astrophysical event rates and 
challenges in the commissioning. 

• Plausible observing scenarios
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When can we expect the first detections? 

• Difficult to make accurate predictions! 

Uncertainties in the astrophysical event rates. 
Even the best estimates (of  BNS, based on the 
observed rate of  galactic double NR binaries) suffer 
from large errors!

Uncertainties in the commissioning time.  
Constructing and commissioning of  the most precise 
(length) measurement devices ever constructed by 
mankind! 
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Early (2015, 40 − 80 Mpc)
Mid (2016−17, 80 − 120 Mpc)
Late (2017−18, 120 − 170 Mpc)
Design (2019, 200 Mpc)
BNS−optimized (215 Mpc)
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Early (2016−17, 20 − 60 Mpc)
Mid (2017−18, 60 − 85 Mpc)
Late (2018−20, 65 − 115 Mpc)
Design (2021, 130 Mpc)
BNS−optimized (145 Mpc)

Figure 1: aLIGO (left) and AdV (right) target strain sensitivity as a function of frequency. The
average distance to which binary neutron star (BNS) signals could be seen is given in Mpc. Current
notions of the progression of sensitivity are given for early, middle, and late commissioning phases,
as well as the final design sensitivity target and the BNS-optimized sensitivity. While both dates
and sensitivity curves are subject to change, the overall progression represents our best current
estimates.

BNS ranges for the various stages of aLIGO and AdV expected evolution are also provided in Fig. 1.
The installation of aLIGO is well underway. The plan calls for three identical 4 km interfer-

ometers, referred to as H1, H2, and L1. In 2011, the LIGO Lab and IndIGO consortium in India
proposed installing one of the aLIGO Hanford detectors, H2, at a new observatory in India (LIGO-
India). As of early 2013 LIGO Laboratory has begun preparing the H2 interferometer for shipment
to India. Funding for the Indian portion of LIGO-India is in the final stages of consideration by
the Indian government.

The first aLIGO science run is expected in 2015. It will be of order three months in duration,
and will involve the H1 and L1 detectors (assuming H2 is placed in storage for LIGO-India). The
detectors will not be at full design sensitivity; we anticipate a possible BNS range of 40 – 80Mpc.
Subsequent science runs will have increasing duration and sensitivity. We aim for a BNS range of
80 – 170Mpc over 2016–18, with science runs of several months. Assuming that no unexpected
obstacles are encountered, the aLIGO detectors are expected to achieve a 200Mpc BNS range circa
2019. After the first observing runs, circa 2020, it might be desirable to optimize the detector
sensitivity for a specific class of astrophysical signals, such as BNSs. The BNS range may then
become 215Mpc. The sensitivity for each of these stages is shown in Fig. 1.

Because of the planning for the installation of one of the LIGO detectors in India, the installation
of the H2 detector has been deferred. This detector will be reconfigured to be identical to H1 and
L1 and will be installed in India once the LIGO-India Observatory is complete. The final schedule
will be adopted once final funding approvals are granted. It is expected that the site development
would start in 2014, with installation of the detector beginning in 2018. Assuming no unexpected
problems, first runs are anticipated circa 2020 and design sensitivity at the same level as the H1
and L1 detectors is anticipated for no earlier than 2022.

The commissioning timeline for AdV [3] is still being defined, but it is anticipated that in
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[Aasi et al, arXiv:1304.0670]

Epoch Plausible BNS 
detections

% BNS localized 
within 5 [20] deg

2015
2016-17
2017-18
2019+
2022+ (India)

0.0004 ! 3
0.006 ! 20
0.04 ! 100
0.2 ! 200
0.4 ! 400

1 ! 2 [10 !12]
3 ! 8 [8 !28]
17 [48]

Plausible observing scenarios

Epoch
Plausible 
BNS 
detections

% BNS located 
within 5 [20] sq 
deg

2015
2016-17
2017-18
2019+
2022+ India

0.0004 ⎯ 3
0.006 ⎯ 20
0.04 ⎯ 100
0.2 ⎯ 200
0.4 ⎯ 400

1 ⎯ 2 [10 ⎯ 
12]
3 ⎯ 8 [8 ⎯ 28]
17 ⎯ [48]

[LIGO & Virgo Collab arXiv:1304.0670]



GW astronomy: Sources and science 

Core-collapse and supernova

Spinning neutron stars

Coalescing compact binaries

Stochastic GW background



Searches for spinning neutron stars 

• Known pulsars phase evolution known; do fully 
coherent targeted search.  

Initial LIGO upper limits for 174 known pulsars.  
For Crab/Vela, well below the “spindown” limit 
[Aasi et al 2014]

• Unknown neutron stars Computational 
constraints make coherent search unfeasible; need 
to do semi-coherent search, e.g. Einstein@Home .

• Known neutron stars not seen as pulsars 
(e.g., SN remnants, LMXBs); do directed search 
which still has to deal with residual parameter 
uncertainties. 

Useful input from Astrosat x-ray data. 

8
Spitzer/Hubble/Chandra

[Talk by John Whelan]



Searches for unmodeled transient sources

• Searches for unmodeled transient sources 
Search for excess power that is coherent in 
multiple detectors.

Can add additional constraints to tune the 
search for different sources. 
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6

same chirality (◆-waves). A more narrow sub-class of ◆-
waves are non-precessing binary systems, where the pa-
rameters e[i] are related to the inclination angle of the
source and therefore e[i] = const. The angles  [i] define
the orientation of the reconstructed response vectors in
the network plane. Assuming that the parameters e[i]
are free, the constraint  [i] = const describes a par-
ticular class of GW signals with the same direction of
the network responses ⇠0 ( -waves). The elliptical, lin-
ear and circular waves are defined when both angles e[i]
and  [i] are constrained. The constraints for the ◆-waves
and  -waves, and their combinations characterizing dif-
ferent polarization models are summarized in Table I.
The simplest solution is for the waves with the circular

e  pattern polarization

constraint constraint constraint state

- - - r-waves

sign(e[i]) = const - - ◆-waves

-  [i] = const -  -waves

e[i] = const  [i] = const - elliptical

e[i] = 0  [i] = const - linear

- - ⇠̃
0
⇥ = 0 loose linear

e[i] = ±1 - - circular

- - ⇠0
⇥ = 0 loose circular

TABLE I: The constraints on e (first column),  (second col-
umn) and the pattern vector (third column). The correspond-
ing polarization states are shown in the last column.

polarization: e[i] = ±1. A less strict (loose) circular po-
larization constraint is when ⇠0⇥ = 0. In this case the

network responses are defined by the vectors ⇠0
+

and ⇠̃
0
⇥

and the condition e[i] = ±1 is not enforced. For linear
waves e[i] = 0 and all 0�-phase response vectors are co-
aligned, or  [i] = const. Respectively, a less strict (loose)
linear polarization constraint is defined by the condition

⇠̃
0
⇥ = 0 when the condition  [i] = const is not enforced.

The polarization constraints can be used to construct
weakly modeled burst searches targeting broad classes of
GW transients. The i-wave constraint can be applied
to any rotating source. The elliptical, circular and the
 -wave constraints can be used to search for compact bi-
nary sources with di↵erent spin configurations. Also the
polarization constraints significantly improve the source
localization. Figure 3 shows that the  -wave constraint
reduces the search area in the sky by almost an order
of magnitude for the advanced Livingston-Hanford-Virgo
network.

D. Likelihood solutions

The solution for the wave parameters h�[i], e[i] and
 [i], and hence, the waveforms ⇠ and ⇠̃, can be obtained
by maximizing the likelihood functional in Equations 3.3-
3.4. For un-constraints case when all the wave parame-

FIG. 3: Fraction of sources (vertical axis) reconstructed by ad-
vanced Livingston-Hanford-Virgo network (at designed sensi-
tivity) within the search area (horizontal axis) for a simulated
population of binary black holes: uniform in volume distri-
bution with component masses between 15 and 25 solar mass
and spin parameter between 0 and 0.9

ters are free, it is straightforward to show that the so-
lutions for the network responses (⇠

r

,⇠̃
r

) are given by
the projections of the data vectors (w,w̃) on the net-
work plane. As described above the un-modeled burst
analysis can be constrained to search for GW signals
with various polarization states. In general case, the
constrained likelihood problem is hard to solve analyt-
ically and the numerical solutions are computationally
prohibitive. To solve this problem, we apply the phase
transformation in Equation 3.5 to the data vectors w

and w̃. This transformation reveals the underlying po-
larization pattern, which is smeared by the detector
noise. The detector responses can be reconstructed di-
rectly from the pattern. The solutions for di↵erent po-
larization states can be obtained by imposing the po-
larization constraints in Table I. As follows from Equa-
tions 3.10-3.12, for linear (e = 0) and circular (e ± 1)

waves the components ⇠̃
0
⇥r

= 0 and ⇠0⇥r

= 0 respectively.
The reconstructed responses for the loose linear polar-

ization constraint are (⇠0
+r

= w

0
+

, ⇠0⇥r

= w

0
⇥, ⇠̃

0
⇥r

= 0)
and for the loose circular polarization constraint they are

(⇠0
+r

= w

0
+

, ⇠0⇥r

= 0, ⇠̃
0
⇥r

= w̃

0
⇥). The solution for lin-

ear waves is (⇠0
+r

= p

0
+

, ⇠0⇥r

= p

0
⇥, ⇠̃

0
⇥r

= 0) where p

0

are the projections of w0 on their average vector. The
analytic solutions for the other polarization constraints
are straightforward to find and we do present them here.
Such significant simplification of the inverse problem is
possible due to the polarization transformations intro-
duced in this paper. It enables rapid searches over the
entire sky and reconstruction of source coordinates in real
time.

[Klimenko et al 2015]

[Poster by Atmajt]



Searches for unmodeled transient sources, stochastic GW 
background 

• Searches for stochastic background 
Produced by astrophysical or cosmological 
sources. Cross correlate the data from 
multiple detectors.

Potential for observing the stochastic 
background produced by astrophysical 
sources.
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[Talk by Anirban Ain]

[Wu et al 2011]
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FIG. 2: Accessibility of binary coalescence GWB to current and future gravitational wave detectors. The two columns corre-
spond to two estimates of the star formation rate: Hopkins & Beacom [27] (left) and Nagamine et al [30] (right). The three
rows correspond to BNS, BBH, and BHNS respectively, top to bottom. For each plot we show the ∏ °Mc plane: the region
of the parameter space excluded by the S5 LIGO result [22], and the expected sensitivities of the Advanced LIGO collocated
detector pair (assuming 1 year of exposure [4]), and of the Einstein Telescope (assuming two collocated detectors with ET-D
sensitivity and one year of exposure [8]). These regions are to be compared with the expected local coalescence rates shown as
horizontal dashed lines: top-to-bottom they correspond to maximal, optimistic, realistic, and pessimistic estimates presented
in [33].
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GW searches for CBCs: Matched filtering

• Signals are rare, weak, and buried in the noise. 
Need sophisticated data analysis techniques. 
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GW searches for CBCs: Waveform templates 

• The signal waveforms can be accurately 
computed by solving the Einstein 
equations (+ MHD in the case of  neutron 
star binaries).  

12

[Talks by Luc Blanchet, Harald Pfeiffer, Luca Baioti, 
Nathan Johnson McDaniel, Chandra Kant Mishra]

h(t)

Post-Newtonian 
theory   

BH perturbation 
theory 

Numerical 
Relativity   

Inspiral	
  Merger       Ring down

(Pic. K. Thorne)



GW searches for CBCs: Template banks 

• Waveform depends on the (unknown) 
parameters of  the system. 

• Need to cross correlate the data with 
a bank of  (~million) theoretical      
templates. 

• Template banks are constructed in 
such a way that the signal manifold is 
(semi) optimally covered.

13
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GW searches for CBCs: Template banks 

• Current searches use inspiral, merger, 
ringdown templates including (non-
precessing) spin effects of  compact 
objects. 

14
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[Talks by Prayush Kumar, Swetha Bhagavat]



GW searches for CBCs: Template banks 

• Current searches use inspiral, merger, 
ringdown templates including (non-
precessing) spin effects of  compact 
objects. 

15

The analysis performed here differs from previous
attempts toward the inclusion of spin effects in search
templates in a number of ways. First, this analysis makes
use of a template family that captures the effect of non-
precessing spins by using a small number of physical
parameters, which allows us to construct a simple
three-dimensional template bank. Recent studies have sug-
gested that such template banks are effectual for a signifi-
cant fraction or precessing binaries as well [26,35,47].
This is in sharp contrast with the earlier work, which
either used phenomenological parameters to capture spin
effects [17,21] or methods to maximize the SNR over a
number of extrinsic parameters that produced elevated
background [22].

This analysis also used an autocorrelation χ2 statistic,
analogous to the time-frequency statistic χ2 developed in
Ref. [16] used in recent LIGO and Virgo compact binary
searches [13–15]. The autocorrelation statistic is based
on the principle that the SNR time series obtained from
filtering data which contains a signal against a template
that closely matches the signal is approximately equal to
the autocorrelation function of the template plus noise.
Subtracting the template autocorrelation from the SNR time
series and computing the residual noise power gives a mea-
sure of the consistency of that data with the signal model.
As discussed in the introduction, previous studies on the

inclusion of spin effects in template waveforms suffered in
part due to the lack of sufficiently strong signal consistency

FIG. 3 (color online). Comparison of search sensitivities as a function of false alarm rate threshold. Here we compare the sensitivities
to aligned spin systems withMtotal ∈ ½15; 25"M⊙ for an analysis which used templates with χ ≥ 0 and an analysis which used templates
with χ ¼ 0. The template banks each covered the mass range Mtotal ∈ ½10; 35"M⊙. In (a-c), we show the absolute sensitivities for these
analyses in terms of the average distance to which the analyses identify an injection with a trigger above a given false alarm rate
threshold. In (d), we show the ratios of the sensitive volumes for each of the three spin bins. We find that for injections with
χ ≥ 0.2, the spinning search observes a larger sensitive volume than the nonspinning search for all false alarm rates by as much
as 45%. For injections with 0 ≤ χ ≤ 0.2, we observe a small but statistically significant decrease in sensitive volume on the order
of 5% incurred by the use of spinning templates.

IMPROVING THE SENSITIVITY OF A SEARCH FOR … PHYSICAL REVIEW D 89, 024003 (2014)

024003-7

[Privitera et al (2014)]

Expected increase in the observational volume of search 
using spinning templates Vs. a search using non-spinning 
templates in detecting spinning BH binaries (Iniital LIGO 
S5 data)



GW searches for CBCs: Data quality cuts 

• In order to reduce the effect of  noise 
transients, the frequency-distribution 
of  power is compared against the 
expectation (“chi-square” test). 

• Parameters of  the triggers extracted 
from multiple detectors require to be 
consistent. 

• Data quality cuts and vetoes using 
10^5 auxiliary channels to minimize 
the effect of  non-GW transients. 

16

8

FIG. 2: Representative distributions of SNR and �2
r values for simulated signal (red circle) and background (black ‘⇥’) triggers

in the LIGO detectors, with contours of the detection statistics used in the search. Note the systematically lower values of
�2 for background events with SNR ⇢ > 10 in shorter-duration templates (right plot) compared to longer-duration (left plot).
Left—triggers with template duration greater than 0.2 s; dashed lines indicate contours of constant re-weighted SNR statistic,
Eq. (1). Right—triggers with template duration below 0.2 s; dashed lines indicate contours of constant e↵ective SNR, Eq. (2).

transient noise sources and detector output, and peri-
ods when a statistical correlation was found although a
coupling mechanism was not identified. In our primary
search, both for the identification of GW candidates and
the calculation of upper limits, times in both these cat-
egories, and any coincident events falling in these times,
were removed (“vetoed”) from the analysis. We also per-
formed a secondary search for possible loud candidate
events, in which only times with clear coupling of non-
GW transients to detector output were vetoed. The total
time searched for GW candidate events, in which only the
first category of vetoes were applied, was 0.53 yr.

Even after applying vetoes based on auxiliary (envi-
ronmental and instrumental) sensors, significant num-
bers of delta-function-like glitches with large amplitude
remained unvetoed in the LIGO detectors. It was found
that these caused artifacts in the matched filter output
over a short time surrounding the glitch: thus, 8 s of time
on either side of any matched filter SNR exceeding 250
was additionally vetoed. Times removed from the pri-
mary search by this veto were still examined for loud
candidate events.

Approximately 0.47 yr of coincident search time re-
mained after applying all vetoes. Additionally, approxi-
mately 10% of the data, designated playground, was used
for tuning and data quality investigations. These data
were searched for gravitational waves, but not used in cal-
culating upper limits. After all vetoes were applied and
playground time excluded, there was 0.09 yr of H1L1V1
coincident time, 0.17 yr of H1L1 time, 0.10 yr of H1V1
time, and 0.07 yr of L1V1 time, giving a total analysis
time of 0.42 yr.
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FIG. 3: Cumulative distribution of coincident events found in
the search vs. estimated inverse false alarm rate (FAR), over
the total time searched for possible GW candidates, 0.53 yr.
Grey contour shading indicates the consistency at 1� (dark)
through 5� (light) level of search coincident events with the
expected background.

IV. SEARCH RESULTS

We found no significant or plausible gravitational-wave
detection candidates above the noise background of the
search. The cumulative distribution of coincident events
found in the search vs. estimated inverse false alarm rate
(FAR) is shown in Figure 3. The distribution is consis-
tent with the expected background over the total time
searched for GW candidates, 0.53 yr.

The most significant coincident event found in the
search, with lowest estimated FAR (highest inverse
FAR), was at GPS time 939789782 and had an esti-
mated FAR of 0.41 yr�1. This event, an H1V1 coin-
cidence in H1V1 coincident time with SNR values of

[Abadie et al (2012)]
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FIG. 3: The cumulative rate of events with chirp mass
3.48  M/M� < 7.40 coincident in the H1 and L1 detec-
tors, seen in four months of data around the 16 September
candidate, as a function of the threshold ranking statistic ⇢c.
The blue triangles show coincident events. Black dots show
the background estimated from 100 time-shifts. Black crosses
show the extended background estimation from all possible
5-second shifts on this data restricted, for computational rea-
sons, to only the tail of loudest events. The gray dots and
crosses show the corresponding background estimates when 8
seconds of data around the time of the candidate are excluded.
Gray shaded contours show the 1 � 5� (dark to light) con-
sistency of coincident events with the estimated background
including the extended background estimate, for the events
and analysis time shown, including the candidate time. This
event was later revealed to have been a blind injection.

of this event in this analysis, over the 0.47 yr of coinci-
dent time remaining after all vetoes were applied, was
7 ⇥ 10�5.

The detectors’ environmental monitoring channels
record data from seismometers, accelerometers, micro-
phones, magnetometers, radio receivers, weather sensors,
and a cosmic ray detector. Injections of environmen-
tal signals and other tests indicate that these channels
are much more sensitive to environmental signals than
the gravitational wave readout channels are. Arrays of
these detectors were operating and providing full cover-
age at the time of the event, and did not record envi-
ronmental signals that could account for the event. En-
vironmental signal levels at our observatories and at ex-
ternal electromagnetic weather observatories were typi-
cal of quiet times. Mechanisms that could cause coinci-
dent signals among widely separated detectors — such
as earthquakes, microseismic noise due to large weather
systems, and electromagnetic disturbances in the iono-
sphere [25, 26] — were therefore ruled out.

A loud transient occurred in L1 9 seconds before the
coalescence time of the signal. That transient belonged to
a known family of sharp (⇠ 10 ms) and loud (SNR ⇡ 200-
80000) glitches that appear 10–30 times per day in the

output optical sensing system of this detector. Since the
candidate signal swept through the sensitive band of the
detector, from 40 Hz to coalescence, in less than 4 sec-
onds, it did not overlap the loud transient. Studies, in-
cluding re-analysis of the data with the glitch removed,
indicated that the signal was not related to the earlier
instrumental glitch. No evidence was found that the ob-
served signal was associated with, or corrupted by, any
instrumental e↵ect.

Following the completion of this analysis, the event
was revealed to be a blind injection. While the analy-
sis groups did not know the event was an injection prior
to its unblinding, they did know that one or more blind
injections may be performed during the analysis period.
Such blind injections have been carried out before: see [4]
for the results of a blind injection performed in a previ-
ous run. This event was the only coherent CBC blind
injection performed during S6 and VSR2 and 3. The in-
jection was identified as a gravitational-wave candidate
with high probability, and the blind injection challenge
was considered to be successful [3].

In order to more accurately determine the parameters
of the event prior to the unblinding, we performed coher-
ent Bayesian analyses of the data using models of both
spinning and non-spinning compact binary objects [27–
31]. These analyses showed evidence for the presence of
a weak signal in Virgo, consistent with the signal seen
by the two LIGO detectors. The strength of a signal
in Virgo is an important input to the localization of a
source in the sky. Parameter estimates varied signifi-
cantly depending on the exact model used for the grav-
itational waveform, particularly when we included spin
e↵ects. However, conservative unions of the confidence
intervals from the di↵erent waveform models were con-
sistent with most injected parameters, including chirp
mass, time of coalescence, and sky location. In addi-
tion, the signal was correctly identified as having at least
one highly-spinning component with the spin misaligned
with the angular orbital momentum. We will describe the
details of parameter estimation on this and other CBC
injections in a future paper (in preparation).

V. SEARCH RESULTS

After the event was revealed to be a blind injection the
data containing it was removed from the analysis. With
the injection excluded, there were no gravitational-wave
candidates observed in the data. Indeed the search re-
sult was consistent with the background estimated from
time-shifting the data. The most significant event was an
L1V1 coincidence in L1V1 time with a combined FAR of
1.2 yr�1. The second and third most significant events
had combined FARs of 2.2 yr�1 and 5.6 yr�1, respec-
tively. All of these events were consistent with back-
ground: having analyzed ⇠ 0.5 yr of data, we would ex-
pect the loudest event to have a FAR of 2 ± 2 yr�1. Al-
though no detection candidates were found, a detailed
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spinning and non-spinning compact binary objects [27–
31]. These analyses showed evidence for the presence of
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the injection excluded, there were no gravitational-wave
candidates observed in the data. Indeed the search re-
sult was consistent with the background estimated from
time-shifting the data. The most significant event was an
L1V1 coincidence in L1V1 time with a combined FAR of
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of the event (Phinney 2009; Mandel & O’Shaughnessy
2010), for example an association with specific stellar
populations (e.g., Fong et al. 2010).
Motivated by the importance of EM detections, in this

paper we address the critical question: What is the most
promising EM counterpart of a compact object binary
merger? The answer of course depends on the definition
of “most promising”. In our view, a promising coun-
terpart should exhibit four Cardinal Virtues, namely it
should:

1. Be detectable with present or upcoming telescope
facilities, provided a reasonable allocation of re-
sources.

2. Accompany a high fraction of GW events.

3. Be unambiguously identifiable (a “smoking gun”),
such that it can be distinguished from other astro-
physical transients.

4. Allow for a determination of ∼ arcsecond sky posi-
tions.

Virtue #1 is necessary to ensure that effective EM
searches indeed take place for a substantial number of
GW triggers. Virtue #2 is important because a large
number of events may be necessary to build up statis-
tical samples, particularly if GW detections are rare; in
this context, ALIGO/Virgo is predicted to detect NS-
NS mergers at a rate ranging from ∼ 0.4 to ∼ 400 yr−1,
with a “best-bet” rate of ∼ 40 yr−1 (Abadie et al. 2010b;
cf. Kopparapu et al. 2008), while the best-bet rate for
detection of NS-BH mergers is ∼ 10 yr−1. Virtue #3 is
necessary to make the association with high confidence
and hence to avoid contamination from more common
transient sources (e.g., supernovae). Finally, Virtue #4
is essential to identifying the host galaxy and hence the
redshift, as well as other relevant properties (e.g., asso-
ciation with specific stellar populations).
It is important to distinguish two general strategies

for connecting EM and GW events. One approach is to
search for a GW signal following an EM trigger, either in
real time or at a post-processing stage (e.g., Finn et al.
1999; Mohanty et al. 2004). This is particularly promis-
ing for counterparts predicted to occur in temporal co-
incidence with the GW chirp, such as short-duration
gamma-ray bursts (SGRBs). Unfortunately, most other
promising counterparts (none of which have yet been in-
dependently identified) occur hours to months after co-
alescence6. Thus, the predicted arrival time of the GW
signal will remain uncertain, in which case the additional
sensitivity gained from this information is significantly
reduced. For instance, if the time of merger is known
only to within an uncertainty of ∼ hours(weeks), as we
will show is the case for optical(radio) counterparts, then
the number of trial GW templates that must be searched
is larger by a factor ∼ 104 − 106 than if the merger time
is known to within seconds, as in the case of SGRBs.

6 Predicted EM counterparts that may instead precede the
GW signal include emission powered by the magnetosphere of the
NS (e.g. Hansen & Lyutikov 2001; McWilliams & Levin 2011), or
cracking of the NS crust due to tidal interactions (e.g. Troja et al.
2010), during the final inspiral. However, given the current uncer-
tainties in these models, we do not discuss them further.

BH
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θj
Tidal Tail & Disk Wind

Ejecta−ISM Shock

Merger Ejecta 

v ~ 0.1−0.3 c

Optical (hours−days)

Kilonova
Optical (t ~ 1 day)

Jet−ISM Shock (Afterglow)

GRB
(t ~ 0.1−1 s)

Radio (weeks−years)

Radio (years)

Fig. 1.— Summary of potential electromagnetic counterparts
of NS-NS/NS-BH mergers discussed in this paper, as a function
of the observer angle, θobs. Following the merger a centrifugally
supported disk (blue) remains around the central compact object
(usually a BH). Rapid accretion lasting ! 1 s powers a collimated
relativistic jet, which produces a short-duration gamma-ray burst
(§2). Due to relativistic beaming, the gamma-ray emission is re-
stricted to observers with θobs ! θj , the half-opening angle of the
jet. Non-thermal afterglow emission results from the interaction of
the jet with the surrounding circumburst medium (red). Optical af-
terglow emission is observable on timescales up to∼ days−weeks by
observers with viewing angles of θobs ! 2θj (§3.1). Radio afterglow
emission is observable from all viewing angles (isotropic) once the
jet decelerates to mildly relativistic speeds on a timescale of weeks-
months, and can also be produced on timescales of years from sub-
relativistic ejecta (§3.2). Short-lived isotropic optical emission last-
ing ∼ few days (kilonova; yellow) can also accompany the merger,
powered by the radioactive decay of heavy elements synthesized in
the ejecta (§4).

A second approach, which is the primary focus of
this paper, is EM follow-up of GW triggers. A poten-
tial advantage in this case is that counterpart searches
are restricted to the nearby universe, as determined by
the ALIGO/Virgo sensitivity range (redshift z ! 0.05−
0.1). On the other hand, a significant challenge are the
large error regions, which are estimated to be tens of
square degrees even for optimistic configurations of GW
detectors (e.g., Gürsel & Tinto 1989; Fairhurst 2009;
Wen & Chen 2010; Nissanke et al. 2011). Although it
has been argued that this difficulty may be alleviated
if the search is restricted to galaxies within 200 Mpc
(Nuttall & Sutton 2010), we stress that the number of
galaxies with L " 0.1L∗ (typical of SGRB host galax-
ies; Berger 2009, 2011b) within an expected GW error
region is ∼ 400, large enough to negate this advantage
for most search strategies. In principle the number of
candidate galaxies could be reduced if the distance can
be constrained from the GW signal; however, distance
estimates for individual events are rather uncertain, es-
pecially at that low SNRs that will characterize most de-
tections (Nissanke et al. 2010). Moreover, current galaxy
catalogs are incomplete within the ALIGO/Virgo volume
(e.g. Kulkarni & Kasliwal 2009), especially at lower lu-
minosities. Finally, some mergers may also occur outside
of their host galaxies (Berger 2010a; Kelley et al. 2010).
At the present there are no optical or radio facilities

that can provide all-sky coverage at a cadence and depth
matched to the expected light curves of EM counter-

gamma-rays

optical/IR

radio

[Metzger & Berger (2011)]
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Table 3

Filter Design Sub-Bank of 1314 Templates.

f s [ts, ts+1) - log10 (1-SVD tolerance)
(Hz) (s) Ns 1 2 3 4 5 6

12
.5

76
.5

14
0.5

26
8.5

39
6.5

46
0.5

58
8.5

84
4.5

11
00

.5

time relative to coalescence (s)

st
ra

in
am

pl
itu

de

32 Hz
64 Hz
128 Hz

256 Hz
512 Hz
4096 Hz

4096 [0, 0.5) 2048 1 4 6 8 10 14

512 [0.5, 4.5) 2048 2 6 8 10 12 16

256 [4.5, 12.5) 2048 2 6 8 10 12 15

128 [12.5, 76.5) 8192 6 20 25 28 30 32

64 [76.5, 140.5) 4096 1 8 15 18 20 22

64 [140.5, 268.5) 8192 1 7 21 25 28 30

64 [268.5, 396.5) 8192 1 1 15 20 23 25

32 [396.5, 460.5) 2048 1 1 3 9 12 14

32 [460.5, 588.5) 4096 1 1 7 16 18 21

32 [588.5, 844.5) 8192 1 1 8 26 30 33

32 [844.5, 1100.5) 8192 1 1 1 12 20 23

Note. — From left to right, this table shows the sample rate, time interval, number of samples, and number of orthogonal templates for each time slice. We
vary SVD tolerance from

�
1 - 10-1� to

�
1 - 10-6�.

the S/N loss due to the truncation of the SVD at Ls
< M ba-

sis templates. As remarked upon in Cannon et al. (2010) and
Section 3.2.2, this effect is measured by the SVD tolerance.
The second comes from the limited bandwidth of the interpo-
lation filters used to match the sample rates of the partial S/N
streams. The maximum possible bandwidth is determined by
the length of the filter, N⇥. S/N loss could also arise if the
combination of both the decimation filters and the interpola-
tion filters reduces their bandwidth measurably, if the deci-
mation and interpolation filters do not have perfectly uniform
phase response, or if there is an unintended subsample time
delay at any stage.

To measure the accuracy of our GStreamer implemention
of LLOID including all of the above potential sources of S/N
loss, we conducted impulse response tests. The GStreamer
pipeline was presented with an input consisting of a unit im-
pulse. By recording the outputs, we can effectively “play
back” the templates. These impulse responses will be similar,
but not identical, to the original, nominal templates. By tak-
ing the inner product between the impulses responses for each
output channel with the corresponding nominal template, we
can gauge exactly how much S/N is lost due to the approxima-
tions in the LLOID algorithm and any of the technical imper-
fections mentioned above. We call one minus this dot product
the mismatch relative to the nominal template.

The two adjustable parameters that affect performance and
mismatch the most are the SVD tolerance and the length of the
interpolation filter. The length of the decimation filter affects
mismatch as well, but has very little impact on performance.

Effect of SVD tolerance — We studied how the SVD toler-
ance affected S/N loss by holding N⇤ = N⇥ = 192 fixed as
we varied the SVD tolerance from

�
1 - 10-1

�
to

�
1 - 10-6

�
.

The minimum, maximum, and median mismatch are shown
as functions of SVD tolerance in Figure 5(a). As the SVD
tolerance increases toward 1, the SVD becomes an exact ma-

trix factorization, but the computational cost increases as the
number of basis filters increases. The conditions presented
here are more complicated than in the original work (Can-
non et al. 2010) due to the inclusion of the time-sliced tem-
plates and interpolation, though we still see that the average
mismatch is approximately proportional to the SVD tolerance
down to

�
1 - 10-4

�
. However, as the SVD tolerance becomes

even higher, the median mismatch seems to saturate around
2 ⇥ 10-4. This could be the effect of the interpolation, or an
unintended technical imperfection that we did not model or
expect. However, this is still an order of magnitude below our
target mismatch of 0.003. We find that an SVD tolerance of�
1 - 10-4

�
is adequate to achieve our target S/N loss.

Effect of interpolation filter length — Next, keeping the SVD
tolerance fixed at

�
1 - 10-6

�
and the length of the decima-

tion filter fixed at N⇤ = 192, we studied the impact of the
length N⇥ of the interpolation filter on mismatch. We use
GStreamer’s stock audioresample element, which pro-
vides an FIR decimation filter with a Kaiser-windowed sinc
function kernel. The mismatch as a function of N⇥ is shown
in Figure 5(b). The mismatch saturates at ⇠2 ⇥ 10-4 with
N⇥ = 64. We find that a filter length of 16 is sufficient to meet
our target mismatch of 0.003.

Having selected an SVD tolerance of
�
1 - 10-4

�
and N⇥ =

16, we found that we could reduce N⇤ to 48 without exceeding
a median mismatch of 0.003.

We found that careful design of the decimation and inter-
polation stages made a crucial difference in terms of com-
putational overhead. Connecting the interpolation filters in
cascade fashion rather than in parallel resulted in a significant
speedup. Also, only the shortest interpolation filters that met
our maximum mismatch constraint resulted in a sub-dominant
contribution to the overall cost. There is possibly further room
for optimization beyond minimizing N⇥. We could design

[Canon et al (2011)]
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zero-mean, unit-variance, Gaussian random process, so

hnii = 0 , (2a)

hninji = �ij , (2b)

where h i denotes the ensemble average. When the tem-

plate waveforms are normalized such that <~h↵ · <~h↵ =
=~h↵ · =~h↵ = 1, (2) yields

h~h⇤

↵ · ~ni = 0 , (3a)

h(<~h↵ · ~n)2i = h(=~h↵ · ~n)2i = 1 . (3b)

When (3) is true, ⇢↵ is called the SNR and indicates how
likely it is that a signal is present in the data at that
point in time [9].

As explained in Sec. I, ~h↵ · ~h↵0 > 0.95 for adjacent
templates. For those templates, ⇢↵ and ⇢↵0 di↵er by at
most 5%. This suggests the existence of an approxima-
tion scheme that would allow the SNRs to be computed
to reasonable accuracy without explicitly evaluating all
the template inner products. Next, we will look at how
the truncated SVD can be used to replace the template
bank with an approximate, lower-rank, orthogonal basis
from which the SNRs can be reconstructed.

B. Reducing the number of filters with truncated
singular value decomposition

The waveforms are parameterized by their component
masses and we denote the ↵th template waveform of the
M templates required to search a given parameter space
as ~h↵ = {h(m1,m2, ti)}. Rather than filter the data with
N = 2M real-valued filters (M complex-valued filters),
we linearly combine the output of a basis set of fewer,
real-valued, filters, ~uµ, to reproduce ⇢↵ to the desired
accuracy, ⇢0↵. The goal is to have

⇢0↵ =
N 0X

µ=1

A↵µ(~uµ · ~s) , (4)

where A is the complex-valued reconstruction matrix we
wish to find and the number of inner products is reduced
from N to N 0. In order to find the basis vectors, ~uµ, we
use the SVD of the real-valued template matrix, H

H = {Hµj}
= {<~h1,=~h1,<~h2,=~h2, ...,<~hM ,=~hM} , (5)

where µ identifies rows of H and indexes the filter num-
ber, and j identifies the columns ofH and indexes sample
points. In this definition, the row vectors ~H(2↵�1) and
~H(2↵) are, respectively, the real and imaginary parts of

the ↵th complex waveform, ~h↵. An illustrative template
matrix can be seen in Fig. 1.

FIG. 1. An example template matrix, H. Top: An illus-
tration of how the input template time series is packed into
the template matrix. Bottom: The matrix of the template
time series where the y-axis indicates the template waveform
and the x-axis indicates the time samples. It should be noted
that these waveforms have been shortened and have not been
whitened for illustrative purposes.

The SVD factors a matrix such that [10, Sec. 14.4]

Hµj =
NX

⌫=1

vµ⌫�⌫u⌫j , (6)

where v is an orthonormal matrix of reconstruction co-
e�cients whose columns, vµ⌫ , satisfy

X

µ

vµ⌫vµ� = �⌫� , (7)

~� is a vector of singular values ranked in order of im-

3

FIG. 2. An example basis matrix, u. Top: An illustration of
the resulting orthonormal basis vectors ordered from most to
least important (bottom to top) in reconstructingH. Bottom:
The matrix of basis waveforms produced by the SVD. The y-
axis indexes the basis waveforms and the x-axis indicates time
samples. It should be noted that these basis vectors have been
computed from shortened, non-whitened template waveforms
as mentioned in Fig. 1 purely for illustrative purposes.

portance in reconstructing the H, and u is a matrix of
orthonormal bases (e.g. an illustration can be found in
Fig. 2) whose rows are basis vectors, ~uµ, satisfying

X

j

uµju⌫j = �µ⌫ . (8)

However, since a search for CBC signals only needs
waveform accuracies of a few percent to be successful, it

is possible to make an approximate reconstruction of H

Hµj ⇡ H 0

µj :=
N 0X

⌫=1

vµ⌫�⌫u⌫j , (9)

where N 0 < N . This reduces the number of rows of u
used in the reconstruction. We create a new basis matrix
u = {u⌫j} = {~u1, ~u2, ...~uN 0}, where ⌫ indexes the filter
number, j indexes sample points, and we have discarded
the basis vectors that look least like the template wave-
forms (i.e. with the lowest singular values). We can write
(4) as

⇢0↵ =
⇣
~H 0

(2↵�1) � i ~H 0

(2↵)

⌘
· ~s

=
N 0X

⌫=1

�
v(2↵�1)⌫�⌫ � iv(2↵)⌫�⌫

�
(~u⌫ · ~s) , (10)

where we have made use of the packing of H (5) and (9).

C. Reconstruction accuracy

As we are not reconstructing the original template
waveforms exactly, there will be some inherent mismatch
between ~H 0

µ and ~Hµ. We want to know the expected
fractional SNR we will lose because of this di↵erence.
As stated previously, the inner product of a (normal-

ized) template waveform, ~Hµ, with itself is

~Hµ · ~Hµ = 1 =
NX

⌫=1

v2µ⌫�
2
⌫ , (11)

where, in the second line, we have made use of the or-
thogonality of basis vectors (8). A similar relation can
be found for the inner product of the reconstructed wave-
form, ~H 0

µ, with itself

~H 0

µ · ~H 0

µ =
N 0X

⌫=1

v2µ⌫�
2
⌫ = 1�

NX

⌫=N 0+1

v2µ⌫�
2
⌫ . (12)

Because of the orthogonality of the basis vectors (8), the
inner product between a template waveform, ~Hµ, with a

reconstructed waveform, ~H 0

⌫ , is

~Hµ · ~H 0

⌫ = ~H 0

µ · ~H⌫ = ~H 0

µ · ~H 0

⌫ . (13)

In addition, the two phases of the templates, which are
packed adjacently in H (5), are orthogonal

~H(2µ�1) · ~H(2µ) =
NX

⌫=1

v(2µ�1)⌫v(2µ)⌫�
2
⌫ = 0 . (14)
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Low-latency data analysis for detection and “essential” 
parameter estimation 

• During the S6 alerts from 
candidate GW triggers were sent 
with latency ~30 mins.
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Fig. 2.A simplified flowchart of the online analysis with approx-
imate time requirements for each stage. Data and information
on data quality were generated at the Hanford, Livingston, and
Virgo interferometers (H1, L1, and V1) and copied to central-
ized computer centers. The online event trigger generators pro-
duced coincident triggers which were written into the GraCEDb
archive. The LUMIN and GEM algorithms selected statistically
significant triggers from the archive and chose pointing loca-
tions. Significant triggers generated alerts, and were validated
manually. If no obvious problem was found, the trigger’s esti-
mated coordinates were sent to telescopes for potential follow-
up.

information on data quality were copied from the interferome-
ter sites to computing centers, three different data analysis algo-
rithms identified triggers and determined probability skymaps.
The process of downselecting this large collection of triggers to
the few event candidates that received EM follow-up is described
in this section.

After event candidates were placed in a central archive, addi-
tional software used the locations of nearby galaxies and Milky
Way globular clusters to select likely source positions (Sect. 5).
Triggers were manually vetted, then the selected targets were
passed to partner observatories which imaged the sky in an at-
tempt to find an associated EM transient. Studies demonstrating
the performance of this pipeline on simulated GWs are presented
in Sect. 7.

4.1. Trigger Generation

Sending GW triggers to observatories with less than an hour la-
tency represents a major shift from past LIGO/Virgo data anal-
yses, which were reported outside the collaboration at soonest
several months after the data collection. Reconstructing source
positions requires combining the data streams from the LIGO-
Virgo network using either fully coherent analysis or a coinci-
dence analysis of single-detector trigger times. A key step in la-
tency reduction was the rapid data replication process, in which
data from all three GW observatory sites were copied to several
computing centers within a minute of collection.

For the EM follow-up program, three independent GW de-
tection algorithms (trigger generators), ran promptly as data
became available, generating candidate triggers with latencies
between five and eight minutes. Omega Pipeline and coherent
WaveBurst (cWB), which are both described in Abadie et al.
(2010b), searched for transients (bursts) with only loose as-
sumptions regarding waveform morphology. The Multi-Band
Template Analysis (MBTA) (Marion 2004), searched for sig-
nals from coalescing compact binaries. Triggers were ranked by
their “detection statistic”, a figure of merit for each analysis,
known as Ω, η, and ρcombined, respectively. The statistics η for

cWB and ρcombined for MBTA are related to the amplitude SNR
of the signal across all interferometers while Ω is related to the
Bayesian likelihood of a GW signal being present. Triggers with
a detection statistic above a nominal threshold, and occurring in
times where all three detectors were operating normally, were
recorded in the Gravitational-wave Candidate Event Database
(GraCEDb).

The trigger generators also produced likelihood maps over
the sky (skymaps), indicating the location from which the signal
was most likely to have originated. A brief introduction to each
trigger generator is presented in Sects. 4.1.1 – 4.1.3.

4.1.1. Coherent WaveBurst

Coherent WaveBurst has been used in previous searches for GW
bursts, such as Abbott et al. (2009b) and Abadie et al. (2010b).
The algorithm performs a time-frequency analysis of data in the
wavelet domain. It coherently combines data from all detectors
to reconstruct the two GW polarization waveforms h+(t) and
h×(t) and the source coordinates on the sky. A statistic is con-
structed from the coherent terms of the maximum likelihood ra-
tio functional (Flanagan & Hughes 1998; Klimenko et al. 2005)
for each possible sky location, and is used to rank each lo-
cation in a grid that covers the sky (skymap). A detailed de-
scription of the likelihood analysis, the sky localization statistic
and the performance of the cWB algorithm is published else-
where (Klimenko et al. 2011).

The search was run in two configurations which differ in
their assumptions about the GW signal. The “unconstrained”
search places minimal assumptions on the GW waveform, while
the “linear” search assumes the signal is dominated by a single
GW polarization state (Klimenko et al. 2011). While the uncon-
strained search is more general, and is the configuration that was
used in previous burst analyses, the linear search has been shown
to better estimate source positions for some classes of signals.
For the online analysis, the two searches were run in parallel.

4.1.2. Omega Pipeline

In the Omega Pipeline search (Abadie et al. 2010b), triggers
are first identified by performing a matched filter search with
a bank of basis waveforms which are approximately (co)sine-
Gaussians. The search assumes that a GW signal can be decom-
posed into a small number of these basis waveforms, and so is
most sensitive to signals with a small time-frequency volume.
Coincidence criteria are then applied, requiring a trigger with
consistent frequency in another interferometer within a physi-
cally consistent time window. A coherent Bayesian position re-
construction code (Searle et al. 2008, 2009) is then applied to
remaining candidates. The code performs Bayesian marginaliza-
tion over all parameters (time of arrival, amplitude and polariza-
tion) other than direction. This results in a skymap providing the
probability that a signal arrived at any time, with any amplitude
and polarization, as a function of direction. Further marginaliza-
tion is performed over this entire probability skymap to arrive at
a single number, the estimated probability that a signal arrived
from any direction. TheΩ statistic is constructed from this num-
ber and other trigger properties.

4.1.3. MBTA

The Multi-Band Template Analysis (MBTA) is a low-latency
implementation of the matched filter search that is typically used

[LIGO+Virgo+others arXIv:1109.3498v2]

[Talk by Poonam Chandra]

[Singer 2014]



Estimating the source parameters from detected signals 

• Posteriors on the source parameters 
computed from data (containing detected 
signals) using Bayesian inference. 
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Estimating the source parameters from detected signals 

• Parameter space is large-D. Need to use 
stochastic techniques (MCMC, nested sampling) 
to sample the parameter space.
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Extracting science: Estimating the source parameters from 
detected signals 

• Posteriors on the source parameters 
computed from data (containing detected 
signals) using Bayesian inference. 

• Parameter space is large-D. Need to use 
stochastic techniques (MCMC, nested 
sampling) to sample the parameter space.
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FIG. 7: Comparison of probability density functions for the BNS signal (table II) as determined by each sampler. Shown are
selected 2D posterior density functions in greyscale, with red cross-hairs indicating the true parameter values, and contours
indicating the 90% credible region as estimated by each sampler. On the axes are superimposed the one-dimensional marginal
distributions for each parameter, as estimated by each sampler, and the true value indicated by a vertical red line. The colours
correspond to blue: Bambi, magenta: Nest, green: MCMC. (left) The mass posterior distribution parametrized by chirp mass
and symmetric mass ratio. (centre) The location of the source on the sky. (right) The distance dL and inclination ✓JN of the
source showing the characteristic V-shaped degeneracy.

FIG. 8: Comparison of probability density functions for the NSBH signal (table II), with same color scheme as fig 7. (first row
left) The mass posterior distribution parametrized by chirp mass and symmetric mass ratio. (first row centre) The location of
the source on the sky. (first row right) The distance dL and inclination ✓JN of the source. In this case the V-shaped degeneracy
is broken, but the large correlation between dL and ✓JN remains. (second row left) The spin magnitudes posterior distribution.
(second row centre) The spin and mass of the most massive member of the binary illustrating the degeneracy between mass
and spin. (second row right) The spin and symmetric mass ratio.

[Veitch et al 2014]



LIGO grid computing sites 

[“LSC Computing Plan”, LIGO Document # LIGO-T050053]

LIGO 
Hanford

LIGO 
Livingston

LIGO 
Caltech

Tier 1 centers
• Storage & archival of 

10,000s of channels 
(~800 TB/year). 

• Storage of data 
products (~1.3 PB/
year). 

• Modest computing 
facility

Max Planck 
Institute

Wisconsin 
Milwaukee

Syracuse

Tier 2 centers
Major computing 
resource for the LSC. 
Preference to internal 
users. 

Tier 3 centers
Computing resources 
for and by member 
institutions. 

ICTS-TIFRPenn State

Cardiff Birmingham

IUCAA

KISTIAEI Potsdam

UTB

7

Grid computing for gravitational-wave astronomy 
[“LSC Computing Plan”, LIGO Document # LIGO-T050053]
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• Data analysis performed at distributed computing sites 
part of  the LIGO data grid (particle physics model).

• Current data analysis demands ~30K CPU cores. Will 
grow 10x by 2018.



Extracting science: Black hole astrophysics 

• Component masses of  BHs measured with 
~25% median accuracy.  Mass & spin of  the 
final BH measured with better accuracy. 

Can point to the existence of  IMBHs. 
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FIG. 4: The top panel shows the distribution of the 1� errors in estimating the “redshifted” mass parameters (redshifted component masses mz
1,2,

chirp massMz, total mass Mz and the final mass Mz
f ) from the simulated population of coalescing binary black holes. In each subplot, the three

distributions correspond to non-spinning binary black holes detected by the 3-detector network and the 5-detector network that we consider,
and the population of binary black holes with non-precessing spins detected by the 3-detector network. The vertical lines show the median of
the distribution. The bottom panels show the distribution of the errors in estimating the “physical” parameters. It can be seen that the error in
measuring the “physical” mass parametersM, M and Mf are significantly larger than that in measuring the “redshifted” parameters, and are
dominated by the error in measuring the luminosity distance. The error in the component masses are dominated by that in measuring the mass
ratio of the system, and hence are not very di↵erent in the top and bottom panels. Note that the mass ratio ⌘, the final spin af /Mf , the luminosity
distance dL and the sky location ⌦ are independent of the cosmological redshift.
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intermediate masses 150M� . Mz . 200M�, while the mass
of the final black hole Mz

f is the best estimated mass parameter
for high masses Mz & 200M�. Figure 4 shows the distributions
of the expected 1� statistical errors on the estimated quantities
from the simulated source population. The top panel shows
the distributions of the “redshifted” parameters and the bottom
panel shows the distribution of the “physical” parameters. The
vertical lines of the same colors indicate the median of the
respective distributions. A verbal summary of the results is as
follows:

a. Measurement of redshifted parameters: For the case
of non-spinning binaries, the chirp massMz, the total mass
Mz, and the final mass Mz

f are estimated to better than 4%

(4%) for more than half of the population, using a five (three)
detector network. In contrast, the component masses m1,2
are estimated to about 16% (17%). In the case of aligned-
spin binaries, the measurement accuracies deteriorate, due to
correlations between mass and spin. The median measurement
accuracies for mz

1,2,Mz, Mz, Mz
f are 19%, 9%, 9%, 8% using

a three-detector network.

b. Measurement of “physical” parameters: For the case
of non-spinning binaries, the chirp mass M, the total mass
M, and the final mass Mf are estimated to better than 16%
(18%) for more than half of the population, using a five (three)
detector network. Component masses m1,2 are estimated to
about 23% (25%). For aligned-spin binaries, the median mea-
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[Ghosh et al 2015]

the line of sight between Earth and the binary. Although the
orientation and the sky location were the same in all
simulations, we do not expect the measurement of the mass
and the aligned-spin parameters to be significantly affected
by this choice since we do not include higher modes which
can couple mass ratio measurement to extrinsic parameter
accuracy [41]. The distance was chosen to yield a constant
coherent signal-to-noise ratio (SNR) of 15.
For the Bayesian analysis, we used flat priors on the

component masses within the rangem1; m2 ∈ ½5; 1000"M⊙,
limited the total mass to Mtotal ≤ 1000M⊙, and limited the
mass ratiom2=m1 ≥ 0.01. We did not assume that any of the
source parameters were known when performing parameter
estimation, allowing an isotropic prior on orientation, and a
uniform-in-volume prior on binary location out to a lumi-
nosity distance of 15 Gpc (a redshift of ∼1.9). The prior on
the single aligned spin χ was fixed to be flat in ½−1; 0.6", the
range of validity of the SEOBNRv1 [32] approximant. Since
this prior distribution does not match the distribution of
sources analyzed, we should anticipate that posteriors on
individual injections can be centered away from the true
values, despite the self-consistency of LALINFERENCE, which
has been demonstrated to produceX% credible intervals that
contain the true value X% of the time [37,38,42]. For
example, the low a priori probability of high-mass extreme

mass ratio injections with nonspinning components, coupled
to the asymmetry in the impact of remnant spin on the well-
measured central frequency of the dominant ringdown
harmonic (see, e.g., Ref. [43]), will lead to a typical
overestimate of the inferred total mass for such sources.
This is compounded by the prior on distance pðdLÞ ∝ d2L,
which for a fixed amplitude tends to prefer higher-mass
sources at greater distances.
Results.—Mass measurement: Figure 2 shows the 90%

credible interval for the chirp mass, M ¼ m3=5
1 m3=5

2 M−1=5
total ,

as a function of the total mass Mtotal.
At lowermasses, the signal is dominated by the “chirping”

inspiral portion, and the phase evolution is a function ofM at
leading order, which is, therefore, the most strongly con-
strained parameter when analyzing lower-mass systems [44].
We find that the width of the 90% credible interval onM is
0.3M⊙–0.5M⊙ at Mtotal ¼ 50M⊙ and 0.7M⊙–3.5M⊙ at
Mtot ¼ 100M⊙. For comparison, the same interval is typi-
cally ≲0.01; 0.03; 0.1M⊙ for binary neutron-star systems,
neutron-star–black-hole binaries, and stellar-mass binary
black holes, respectively (see, e.g., Refs. [44–46]).
Meanwhile, as the mass increases, the inspiral moves to

progressively lower frequencies and out of the sensitive band
of the detector (see Fig. 1) and the merger and the ringdown
contribute an increasing fraction of the SNR (see Fig. 3). At
masses above∼100M⊙, the SNR is dominated by themerger
and the ringdown, and above∼200M⊙, by the ringdown.The
ringdown frequency depends only on the total mass and spin
of themerger product (the latter is a function of themass ratio
for nonspinning components). We therefore expect the total
mass of high-mass systems to be better constrained than the
chirp mass (this was previously pointed out by Graff,

FIG. 3 (color online). The relative SNR, the ratio of the SNR
above, and theSNRbelow theGWfrequency at the innermost stable
circular orbit (ISCO). We use the Schwarzschild ISCO fISCO ¼
6−3=2=ðπMÞ, which is, strictly speaking, only valid in the test
particle limit. The relative SNRwith respect to the ISCOdepends on
the mass ratio. In contrast, the ratio of SNRs above and below half
the ringdown frequency of each system is only weakly dependent
on the mass ratio and reaches unity at a total mass of 150M⊙.

FIG. 4 (color online). The 90% credible intervals for Mtotal.

FIG. 5 (color online). The
90% credible intervals for
the component masses m1

(left panel, larger companion)
and m2 (right panel, smaller
companion).

PRL 115, 141101 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
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141101-3
Distribution of the 1-
σ error in measuring 
the parameters of 
BBHs by Adv LIGO. 
Sources are 
distributed uniformly 
in co-moving volume.

[Ghosh et al 2015]

[Veitch et al 2015]

[Veitch et al 2015, Graff  et al 2015]
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2

deformability between polytropes and “realistic” EOS.
In this paper, we calculate the deformability for realistic
EOS, and show that a tidal signature is actually only
marginally detectable with Advanced LIGO.

In Sec. II we describe how the Love number and tidal
deformability can be calculated for tabulated EOS. We
use the equations for k

2

developed in [15], which arise
from a linear perturbation of the Oppenheimer-Volko↵
(OV) equations of hydrostatic equilibrium. In Sec. III we
then calculate k

2

and � as a function of mass for several
EOS commonly found in the literature. We find that,
in contrast to the Love number, the tidal deformability
has a wide range of values, spanning roughly an order of
magnitude over the observed mass range of neutron stars
in binary systems.

As discussed above, the direct practical importance of
the stars’ tidal deformability for gravitational wave ob-
servations of NS binary inspirals is that it encodes the
EOS influence on the waveform’s phase evolution during
the early portion of the signal, where it is accurately mod-
eled by post-Newtonian (PN) methods. In this regime,
the influence of tidal e↵ects is only a small correction to
the point-mass dynamics. However, when the signal is
integrated against a theoretical waveform template over
many cycles, even a small contribution to the phase evo-
lution can be detected and could give information about
the NS structure.

Following [11], we calculate in Sec. IV the measurabil-
ity of the tidal deformability for a wide range of equal-
and unequal- mass binaries, covering the entire expected
range of NS masses and EOS, and with proposed detector
sensitivity curves for second- and third- generation detec-
tors. We show that the measurability of � is quite sensi-
tive to the total mass of the system, with very low-mass
neutron stars contributing significant phase corrections
that are optimistically detectable in Advanced LIGO,
while larger-mass neutron stars are more di�cult to dis-
tinguish from the k

2

= 0 case of black holes [16, 17]. In
third-generation detectors, however, the tenfold increase
in sensitivity allows a finer discrimination between equa-
tions of state leading to potential measurability of a large
portion of proposed EOSs over most of the expected neu-
tron star mass range.

We conclude by briefly considering how the errors
could be improved with a more careful analysis of the
detectors and extension of the understanding of EOS ef-
fects to higher frequencies.

Finally, in the Appendix we compute the leading or-
der EOS-dependent corrections to our model of the tidal
e↵ect and derive explicit expressions for the resulting cor-
rections to the waveform’s phase evolution, extending the
analysis of Ref. [11]. Estimates of the size of the phase
corrections show that the main source of error are post-
1 Newtonian corrections to the Newtonian tidal e↵ect
itself, which are approximately twice as large as other,
EOS-dependent corrections at a frequency of 450 Hz.
Since these point-particle corrections do not depend on
unknown NS physics, they can easily be incorporated into

the analysis. A derivation of the explicit post-Newtonian
correction terms is the subject of Ref. [18].

Conventions: We set G = c = 1.

II. CALCULATION OF THE LOVE NUMBER
AND TIDAL DEFORMABILITY

As in [11] and [15], we consider a static, spherically
symmetric star, placed in a static external quadrupolar
tidal field Eij . To linear order, we define the tidal de-
formability � relating the star’s induced quadrupole mo-
ment Qij to the external tidal field,

Qij = ��Eij . (1)

The coe�cient � is related to the l = 2 dimensionless
tidal Love number k

2

by

k
2

=
3
2
�R�5. (2)

The star’s quadrupole moment Qij and the external
tidal field Eij are defined to be coe�cients in an asymp-
totic expansion of the total metric at large distances r
from the star. This expansion includes, for the met-
ric component gtt in asymptotically Cartesian, mass-
centered coordinates, the standard gravitational poten-
tial m/r, plus two leading order terms arising from the
perturbation, one describing an external tidal field grow-
ing with r2 and one describing the resulting tidal distor-
tion decaying with r�3:

� (1 + gtt)
2

= �m

r
� 3Qij

2r3

ninj + . . . +
Eij

2
r2ninj + . . . ,

(3)

where ni = xi/r and Qij and Eij are both symmetric and
traceless. The relative size of these multipole components
of the perturbed spacetime gives the constant � relating
the quadrupole deformation to the external tidal field as
in Eq. (1).

To compute the metric (3), we use the method dis-
cussed in [15]. We consider the problem of a linear static
perturbation expanded in spherical harmonics following
[19]. Without loss of generality we can set the azimuthal
number m = 0, as the tidal deformation will be axisym-
metric around the line connecting the two stars which
we take as the axis for the spherical harmonic decompo-
sition. Since we will be interested in applications to the
early stage of binary inspirals, we will also specialize to
the leading order for tidal e↵ects, l = 2.

Introducing a linear l = 2 perturbation onto the spher-
ically symmetric star results in a static (zero-frequency),
even-parity perturbation of the metric, which in the
Regge-Wheeler gauge [20] can be simplified [15] to give

ds2 = �e2�(r) [1 + H(r)Y
20

(✓,')] dt2

+e2⇤(r) [1�H(r)Y
20

(✓,')] dr2

+r2 [1�K(r)Y
20

(✓,')]
�

d✓2 + sin2 ✓d'2

�

,

(4)

induced quadrupole 
moment of the star

external tidal 
field

tidal 
deformabilityLISA
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the left hand side of Eq. (6) be normalized. Finally, the
likelihood is given by [19]

pðdnj ~!;"0;"1; IÞ

¼ N exp
!
$2

Z fLSO

f0

df
j~dnðfÞ $ ~hlinð ~!;"0;"1; fÞj2

SnðfÞ

"
;

(7)

where N is a normalization factor, ~dn is the Fourier
transform of the data stream for the nth detection, and SnðfÞ
is the one-sided noise power spectral density; f0 is a
lower cutoff frequency, which we take to be 20 Hz.
~hlinð ~!;"0;"1; fÞ is our frequency domain waveform, with
the linearized expression for "ðmÞ, Eq. (4), substituted into
the tidal contribution to the phase, Eq. (1). To explore the
likelihood function, we used the method of nested sampling
as implemented by Veitch and Vecchio [19].

In Fig. 1, we show the evolution with an increasing
number of sources of the medians and 95% confidence
intervals in the measurement of "0, for three different EOS
models from Hinderer et al. [6]: a hard EOS (MS1), a
moderate one (H4), and a soft one (SQM3). In each case,
after a few tens of sources, the value of "0 is recovered with
a statistical uncertainty%10%, and it is easily distinguish-
able from the ones for the other EOS. (On the other hand,
"1 remains uncertain.) We see that the posterior medians
for "0 are ordered correctly, which suggests a second
method to identify the EOS, namely, hypothesis ranking.

Method 2: Hypothesis ranking.—Hinderer et al. com-
puted the function "ðmÞ for a large number of (families of)
equations of state, some of them mainly involving
neutrons, protons, electrons, and muons, others allowing
for pions and hyperons, and a few assuming strange quark
matter. Given a (arbitrarily large) discrete set fH kg

of models, each corresponding to a different EOS, or
equivalently a different deformability "ðmÞ, the relative
odds ratios for any pair of models H i, H j can be
computed as

Oi
j ¼

PðH ijd1; d2; . . . ; dN; IÞ
PðH jjd1; d2; . . . ; dN; IÞ

: (8)

Again, assuming independence of the detector outputs
d1; d2; . . . ; dN and using Bayes’ theorem, one can write

Oi
j ¼

PðH ijIÞ
PðH jjIÞ

YN

n¼1

PðdnjH i; IÞ
PðdnjH j; IÞ

: (9)

PðH ijIÞ is the probability of the model H i before any
measurement has taken place, and similarly forH j; in the
absence of more information, these can be set equal to each
other for all models H k. The evidences for the various
models are given by

pðdnjH k; IÞ ¼
Z

d ~!pðdnjH k; ~!; IÞpð ~!jH k; IÞ; (10)

with ~! the parameters of the template waveforms (masses,

sky position, etc.) and pð ~!jH k; IÞ the prior probabilities
for these parameters, which we choose to be the same as in

Ref. [18]. The likelihood function pðdnjH k; ~!; IÞ takes
the form

pðdnjH k; ~!; IÞ ¼ N exp
!
$2

Z fLSO

f0

df
j~dn $ ~hkð ~!; fÞj2

SnðfÞ

"
:

(11)

This time, ~hkð ~!; fÞ is the waveform model corresponding
to the EOS H k, meaning the abovementioned frequency
domain approximant with tidal contributions to the phase
as in Eq. (1), with a deformability "ðmÞ corresponding to
that EOS. Here, too, we use nested sampling to probe the
likelihood [19].
The set fH kg could comprise all the models consid-

ered in, e.g., Ref. [6], and many more. In this Letter,
we wish to show that it will at least be possible to
distinguish between a hard, a moderate, and a soft
EOS. Accordingly, we focus on just three EOS models,
the ones labeled MS1, H4, and SQM3 in Ref. [6]. In
addition, we consider the point particle model (PP) in
which "ðmÞ & 0. Figure 2 shows the cumulative distri-
bution of lnOk

j for different signal models H k against

the true EOS model H j, for Oð30Þ simulated catalogs of
20 sources each. A useful criterion for correct identifi-
cation of the underlying EOS is that the log odds ratio of
the incorrect models against the true EOS be decisive
according to the Jeffreys scale, i.e., <$ 5 in log odds
(odds less than 1:150, which one can think of as being
roughly similar to 3#) [20]. When the signals’ EOS is
MS1 (top right panel of Fig. 2), we see that the runner-
up model H4 is decisively disfavored ( lnOH4

MS1 <$5) for

FIG. 1 (color online). Median and 95% confidence interval
evolution for the "0 parameter as an increasing number of
sources is taken into consideration, for three different equations
of state in the signals: a hard (MS1), a moderate (H4), and a
soft (SQM3) EOS. In each case, the dashed line indicates the
true value.
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TABLE 1
Measurement errors in H0 for a sample of GW-EM events. Results are presented for unbeamed and beamed
sources, for both NS-NS and NS-BH mergers, and for a range of detector networks. The % values are the
68% c.l. fractional errors, and the number of binaries detected by each network is given in parentheses.

Network LIGO+Virgo (LLV) LLV+LIGO India LLV+KAGRA LLV+LIGO India+KAGRA

NS-NS Isotropic 5.0% (15) 3.3% (20) 3.2% (20) 2.1% (30)

NS-NS Beamed 1.1% (19) 1.0% (26) 1.0% (25) 0.9% (30)

NS-BH Isotropic 4.9% (16) 3.5% (21) 3.6% (19) 2.0% (30)

NS-BH Beamed 1.2% (18) 1.0% (25) 1.1% (24) 0.9% (30)
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Fig. 2.— H0 measurement error as a function of the number of
multi-messenger (GW+EM) NS-NS merger events observed by a
LIGO-Virgo network. The solid bars indicate the 68% c.l. mea-
surement error in H0 for the joint PDF of the independent binary
mergers; the dashed line shows the 68% c.l. measurement error
in H0 derived assuming Gaussian errors for each GW-EM merger.
When specifying the particular order of events shown, we choose
the GW-EM merger in the remaining ensemble with the mean mea-
surement error in H0.

of uncertainty in binary merger rates. Current estimates
suggest that the median timescale to achieve this number
of events is likely about one year, but could be as short
as a few months, or as long as a decade.

5. IMPLICATIONS FOR COSMOLOGY

Assuming GR accurately describes the inspiral dynam-
ics and GW emission, GW standard sirens should pro-
vide a measure of H0 based on absolutely-calibrated GW
distances that are independent of the cosmological dis-
tance ladder. Given that we anticipate a network of ad-
vanced GW interferometers reaching their design sensi-
tivity within the next decade, this physics-based tech-
nique could play a large role in precision determination of
the Hubble constant, especially in conjuction with other
approaches (see Suyu et al. 2012 and references therein).
In this work, by envisioning a range of scenarios using

di↵erent networks of GW detectors and di↵erent popula-
tions of NS binary progenitors, we show that ensembles of
GW standard sirens have the power to constrainH0 to an
accuracy of ⇠ 1%. We have assumed joint GW and EM
observations of the NS binary merger; other works, for
instance Taylor, Gair & Mandel (2012), Del Pozzo (2012)
and Messenger & Read (2012), examine H0 constraints
using solely GW observations, and are based on statisti-
cal arguments or galaxy catalogs to infer the mergers’
redshifts. We emphasize that an individual standard
siren may only constrain H0 to a precision ranging from
5 to 50%. We have shown that the error in H0 depends
critically on the number of GW-EM mergers observed,
which in turn depends on the NS binary progenitor, on
whether the NS binary is face-on (due to GRB beaming),

and on the number and sensitivy of GW interferometers
in a network. We find that the critical limitation when
projecting the timescale for this measurement (once the
GW detectors are operational) is the few orders of magni-
tude uncertainty in NS binary merger rates, independent
of GW detections. Using mean NS merger rates derived
from population synthesis or the observed Galactic bi-
nary pulsar distribution, we estimate that percent-level
measurements of H0 are possible within ⇠ 1 year of ob-
servation, or may take as long as a decade for pessimistic
event rates.
For flat cosmologies, a measurement of H0 at the per-

cent level, when combined with precision CMB measure-
ments of the absolute distance to the last scattering sur-
face, would constrain the dark energy equation of state
parameter w to ⇠ 10% (D06). The power of such a result
(e.g., to falsify the cosmological constant model for dark
energy) depends critically on understanding the system-
atic errors associated with the measurement of H0. It
is for this reason that GW standard sirens may have an
important role to play in constraining cosmology in the
near future.
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FIG. 5: Confidence interval evolution for H0 as a function
of the number of events considered in the analysis. The dots
correspond to the posterior median value obtained from 20
realisations of 50 GW sources. The error bars correspond to
the mean 95% confidence interval.
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Appendix A: Advanced LIGO Zero Detuning High
Power noise curve

The noise curve used to calculate the S/N ratio is the
Zero Detuning High Power design sensitivity. The ana-
lytic fit is given by:
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with S0 = 1.35× 10−50. The curve is shown in Fig. 6.
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clearly identified as BNS events according to the criterion
M < 1.3M�, then one will want to construct a back-
ground distribution for catalogs of N sources each. We
computed backgrounds using the injection sets of Fig. 7,
but now randomly combining injections into catalogs of
15 sources each. The results are shown in Fig. 8. When
information from multiple GR sources is combined, one
expects H

GR

to be much more favored over H
modGR

,
and this is what we see: in both cases, the distribution
of lnOmodGR

GR

stretches to much more negative values.
However, when making comparisons of di↵erent physical
set-ups, combining information from multiple sources can
make the di↵erences show up much more clearly than in
the case of single sources. For the purposes of this paper,
a much smaller number of simulations were performed
than one would in reality; one has (cat)Dspins,all

N,N 0 = 0.24,
but this will in large part be due to small number statis-
tics. Reassuringly, even for catalogs of sources, the two
background distributions are rather similar, with both
favoring strongly negative values of log odds.

FIG. 8: The same comparison as in Fig. 7, but now for cat-
alogs of 15 sources each. Note how GR is typically much
more favored when information from multiple GR sources is
combined.

Finally, we want to show at least one example of how
well violations of GR might be detectable in the presence
of strong tidal e↵ects, instrumental calibration errors,
and precessing spins. Recalling that the 1.5PN contri-
bution to the orbital motion is where, according to GR,
the dynamical self-interaction of spacetime first becomes
visible [7, 8], we consider a (heuristic) violation of GR
at that order, taking the form of a �10% shift in the
relevant coe�cient in the expansion of dv/dt(v):

dv

dt
(v) = G

PP

(v) + G
tidal

(v)

+ �⇠
3

↵
3

(m
1

,m
2

, ~S
1

, ~S
2

) v12, (15)

where we note that the leading-order contribution to
dv/dt goes like v9; ↵

3

(m
1

,m
2

, ~S
1

, ~S
2

) is the 1.5PN co-
e�cient predicted by GR, and �⇠

3

= �0.1.

In Fig. 9, we show background as well as foreground log
odds ratio distributions, for catalogs of 15 sources each,
where in both cases the injections include neutron star
tidal deformation, instrumental calibration errors, and
precessing spins. As before, the recovery is with TaylorF2
waveforms that allow for (anti-)aligned spins, cut o↵ at a
frequency of 400 Hz. We see that the separation between
the distributions is complete: almost regardless of false
alarm probability, with 15 BNS detections the e�ciency
in finding the given GR violation is essentially 100%.
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FIG. 9: Log odds ratio distributions for catalogs of 15 sources
each. The blue, dotted histogram is the GR background for
TaylorT4 signals with precessing spins, neutron star tidal
deformation, and instrumental calibration errors. The red,
dashed one is a foreground distribution for signals with the
same e↵ects present, and with a GR violation that takes the
form of a constant �10% shift at 1.5PN, as explained in the
main text. In both cases, the recovery is with (anti-)aligned
spinning TaylorF2 waveforms cut o↵ at 400 Hz.

IV. CONCLUSIONS AND FUTURE
DIRECTIONS

We have developed TIGER, a data analysis pipeline to
perform model-independent tests of general relativity in
the strong-field regime, using detections of compact bi-
nary coalescence events with second-generation gravita-
tional wave detectors. The basic idea is to compare the
GR hypothesis H

GR

with the hypothesis H
modGR

that
one or more coe�cients in the post-Newtonian expres-
sion for the phase do not depend on component masses
and spins in the way GR predicts. Though the latter hy-
pothesis has no waveform model associated with it, it can
be written as the logical union of mutually exclusive sub-
hypotheses, in each of which a fixed number of phase coef-
ficients are free parameters on top of component masses,
spins, sky position, orientation, and distance, while the
others depend on masses and spins in the way GR pre-
dicts. In present form, the pipeline can in principle al-
ready be applied to binary neutron star events, for which
waveform models that are reliable and can be generated
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performed effectively with all  k’s, especially in the case
of LISA. This is another reason why LISA is such an
important mission. All the test parameters, including the
log-terms at 2.5PN and 3PN order, can be estimated with
fractional accuracies better than 10!2 in the case of LISA
for massive BBH binaries with the total mass in the range
104–107 M", and with fractional accuracies better than
100% in the case of EGO for stellar mass BBH binaries
with the total mass range 2–10M". This demonstrates the
exciting possibility of testing the nonlinear structure of
general relativity using the GW observations by EGO and
LISA. A similar analysis in the case of Advanced LIGO for
sources with the total mass #10M", shows that all the
parameters, except  4 and  6l, can be measured to a
relative accuracy of 100%. Thus, though the 3PN log-
term cannot be probed with Advanced LIGO, the 2.5PN
log-term can be tested leading to an interesting possibility
in the more immediate future.

With reference to Fig. 2, one may wonder why the error
in  4 is the largest relative to the other, higher order,  ’s.
We believe that there are several reasons for this odd
behavior: recall that the PN terms in the Fourier phase
are given by  kf$k!5%=3. When k & 5, there is no depen-
dence on frequency and when k & 4 the term varies very
slowly as f!1=3. Therefore, terms close to k & 5 are likely
to suffer from large variances since the frequency depen-
dence of the corresponding term is weak. Although one
might expect  6 also to suffer from large relative errors, the
fact that in this case the term increases with frequency as
f1=3 contributes to making it a more important term than
 4. We also observe that  4 has significantly larger cova-
riances with  0 and  2 which adds to its poor
determination.

In Fig. 3, we have depicted the power of the proposed
test in the m1–m2 plane. We present the uncertainty con-
tours, with 1-! error bars, associated with the different test
parameters in them1–m2 plane, when  0 and  2 are used to
parametrize the waveform and in the case of LISA. The
parameter  6l is much better determined by LISA than
EGO, as one would expect. This figure is an explicit
demonstration of the efficacy of the proposed test and the

accuracy with which the future GW observations of BH
binaries by EGO and LISA can test GR in its strong field
regime.

As mentioned earlier, the spin and angular parameters
add a lot of structure to the waveform which contain addi-
tional information that can be extracted and more tests
conducted. Covariance between the old and new parame-
ters is likely to increase the error boxes but the tests
become more demanding as a result of seeking consistency
amongst a greater number of parameters. Future studies
should look into the more general case incorporating the
effects of spin and systematic effects of orbital eccentricity
that could affect the tests, and more interestingly, go be-
yond the restricted waveform approximation by incorpo-
rating the amplitude corrections [22] to the GW phasing.

We conclude by discussing the extent to which we can
extend the current proposal to discriminate between differ-
ent theories of gravity such as massive graviton theories
and scalar-tensor theories [6,23]. The limitations of GW
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FIG. 3 (color online). Plot showing the regions in the m1–m2

plane that correspond to 1-! uncertainties in the test parameters
 T &  3,  4,  5l,  6,  6l,  7 for a $106; 106%M" supermassive
black hole binary at a redshift of z & 1 as observed for a year by
LISA. (Note that the 1-! uncertainty in  3 is smaller than the
thickness of the line.)
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FIG. 2 (color online). Plot showing the relative errors ! T= T , in the test parameters  T &  3,  4,  5l,  6,  6l,  7 as a function of
the total massM of a supermassive BBH at a redshift of z & 1 observed by LISA (right panel) and of a stellar mass compact binary at a
distance of DL & 200 Mpc observed by EGO (left panel). The rest of the details as in Fig. 1.
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Distribution of the odds ratios between a model 
where at least one PN coefficient is different from 
the GR prediction against the GR model.  
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detector.

The most promising astrophysical sources for this test are short-hard GRBs (assuming that they
are powered by compact-binary inspirals). The time-delay �ts between the GW and EM emissions
at the source is currently uncertain by a few seconds, and the measurement error �tm (few millisec-
onds [147]) is negligible compared to this. It can be seen from Eq.(4) that the sensitivity of this
test is proportional to the distance to the source, and the best bound is provided by sources located
at the horizon distance of the detector (see left panel of Figure 8).

Mass of the graviton: One particular scenario in which the speed of GWs could di↵er from c is
in the case of graviton having a non-zero rest mass. This is characterized by the dispersion relation
v2g/c

2 = 1 � m2
g c4/E2

g, where mg is the rest mass and Eg ⌘ h fGW the energy of the graviton with
frequency fGW, h being the Planck constant. If a velocity vg , c is determined from the time-delay
between GW and EM signals, this provides the following bound on the graviton mass:

mg .
h fGW

c2

q
1 � v2g/c2 (5)

If the GW signal contains multiple frequencies, the bound on mg is limited by the maximum fre-
quency content. In the case of CBCs, the largest frequency (say, the ISCO frequency) is inversely
proportional to the total mass of the binary. Thus, the more massive the binary is the better is
the bound. Figure 8 (middle panel) shows the expected bounds on the Compton wavelength
(�g ⌘ h/mgc) of the graviton from observations of di↵erent equal-mass binaries (larger bounds
are more sensitive).

CBC observations also enable to estimate the mass of the graviton even in the absence of an EM
counterpart. In the case of CBCs, the GW frequency sweeps from lower to higher frequencies.
If the graviton is massive, di↵erent frequency components travel with di↵erent speeds, causing
a distortion in the observed waveform [148]. In particular, the observed GW phase  ( f ) in the
frequency domain will be deviated from the phase  GR( f ) predicted by GR:

 ( f ) =  GR( f ) � ⇡D
�2
g(1 + z)

f �1, (6)

where �g ⌘ h/mgc is the Compton wavelength of the graviton. The right panel of Figure 8 shows
the expected bounds on �g assuming 3.5PN non-spinning inspiral waveforms for  GR( f ).

Decay of GWs during propagation: If GWs decay during propagation (apart from the expected
1/r fallo↵; e.g. due to dissipation), distant sources would appear to be systematically weaker.
The detection of this requires a population of coincident GW+EM observations with red shift z
estimation (say, from the merger binary neutron stars). Then we look for a systematic suppression
of GW amplitude for higher-z sources. The sensitivity of this test would be proportional to the
distance traveled by the GWs. Assuming that the red shift can be accurately estimated for sources
located at arbitrary distances, the relevant figure of merit for GW detectors is simply the horizon
distance.

Detecting transverse scalar polarizations: At leading order in ⌦L/c, where ⌦ is the GW fre-
quency and L is arm length, a transverse scalar component of GW, which produces light phase
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Expected bounds on the Compton wavelength of 
the graviton from Advanced LIGO observations of 
binary black holes.

[Del Pozzo et al (2011)]
• Mass of the “graviton” from the 

propagation of GWs  A massive 
graviton will produce an non-trivial 
dispersion relation for GWs. Different 
frequency components travel with 
different speeds ➾ characteristic 
deformation in the observed 
waveform [Will 1998]

tained by applying Eq. (22), are reported. The results
confirm the behavior that one expects and that we have
shown using the proof-of-concept example described in
Sec. VA and summarized in Fig. 7. Given the discrete
nature of the process, the sampling of the original PDFs
might influence the results presented in Fig. 8. We tested
the robustness of our combination method against this
effect by studying the scatter introduced on !95%

g by ran-
domly resampling the nested sampling output chains which
yield the marginalized posterior PDFs. For a given single
observation, we randomly resample the output chains of
the nested sampling algorithm to produce 100 marginal-
ized PDFs of !g. Using the procedure that we have de-
scribed earlier in the section, for each of the marginalized
PDFs we evaluate log10ð!95%

g Þ, and then compute the sam-
ple mean of the single observation log10ð!95%

g Þ’s and the

spread of these values. In particular, we consider the inter-
val over which 68% of the log10ð!95%

g Þ’s fall; with slight

abuse of terminology, we call this the ‘‘1" interval.’’ We
repeat this procedure for each of the individual detections.
For a fixed order of the observations, we then draw ran-
domly a value of !95%

g coming from the single observation
and produce the combined 95% limit on !g; we repeat the

procedure 100 times to compute a sample mean and a 1"
interval in the same way as above. The results are summa-
rized in Fig. 9.

The results of this test confirm that our procedure is
robust. We do observe some variations in the combined
value of log10ð!95%

g Þ, but this is restricted to # 0:1.
Moreover, the trend of the mean is consistent with that
presented in both Figs. 7 and 8, and shows a clear improve-
ment (well beyond the uncertainty region) with respect to
single observations. We are therefore confident in the

histogram method of combining multiple independent ob-
servations of a constant underlying parameter; it can be
applied to any experiment detecting even a small number
of gravitational-wave events.
Our study already shows a significant improvement on

the value of !95%
g after the combination of only five PDFs

of !g, which turns out to be larger (by a factor of a few)
than the value that any single experiment yields. It is
therefore clear that the ability of collectively using the
results from many detections shall provide a powerful
tool to tighten the observational constraints on the relevant
parameters and physical quantities.

VI. CONCLUSIONS

We have developed a statistical framework and an
analysis approach to discriminate among theories of
gravity using gravitational-wave observations of binary
systems. This is a general framework and analysis pipeline
that can be straightforwardly extended to any source. Our
analysis strategy is based on Bayesian inference; using a
nested sampling algorithm, we can compute the evidence
of each theory and then the Bayes factors between them.
As a by-product of the analysis, we are also able to com-
pute marginalized posterior probability functions of each
model parameter. This approach not only provides a rig-
orous mathematical quantification of the relative probabil-
ity of two (or more) theories of gravity given prior
information and observations, but also allows the explora-
tion of correlations and bias on the process of parameter
estimation in addition to purely statistical errors. We are
able to quantify the bias introduced in the analysis if the
assumed model does not actually correspond to the ‘‘real
world’’ one.
In this framework, we have also introduced the combi-

nation of the results from observations of an arbitrary
number of sources as a natural extension of the method
that enables more powerful inference and therefore better
constraints. We consider the fundamental conceptual is-
sues, and the practical ones that derive from dealing with
manipulating sampling distributions with few data points.
As a proof of principle, we have applied this analysis

strategy to simulated data sets from second-generation
instruments containing gravitational waves generated dur-
ing the inspiral phase of nonspinning compact binary
systems in general relativity and in a massive-graviton
theory of gravity. The focus of this paper has been the
methodology, rather than the ability of future experi-
ments to test massive-graviton theories, due to the
simplifications that we have made on the gravitational
waveform. However, we have derived results that comple-
ment past studies that are solely concerned with estimating
the expected statistical errors using approximations of the
variance-covariance matrix. We have shown that Advanced
LIGO (and other instruments of comparable sensitivity)
will be capable of putting a limit on !g that is a few times

FIG. 9 (color online). The shaded region is the 1" confidence
region over the 95% lower limit on log10ð!gÞ obtained by

combining 100 realizations of the single observation PDFs.
The order of the observations is held fixed. The circles are the
95% lower limits on log10ð!gÞ for each single observation. The

error bars are the 1" confidence interval of each point.
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Source parameters can be extracted independently from the inspiral and the merger-ringdown parts of 
the signal. If the signal is consistent with GR, the two estimations have to be mutually consistent.

h(t)

Inspiral	
  Merger       Ring down

(Pic. K. Thorne)
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[Talk by Abhirup Ghosh]

Multiple observations could be combined to produce tighter constraints on deviations. 



Summary 

• GW astronomy has come of  age. Instruments, source modeling as well as data analysis 
techniques for detection, parameter estimation and extraction of  the science. 

Data analysis pipelines are mature to make detections without significant loss of  
sensitivity, and to estimate the source parameters without significant systematic errors, 
over most regions in the parameter space. 

Work is ongoing to prepare for “precision astronomy”. 

• All we need is a signal. Stay tuned!
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