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Symmetry reduced spacetimes, such as cosmological, anisotropic
and black hole interiors provide a tractable, non-trivial and rich
setting to implement techniques of a full theory of quantum
gravity. Kindergarten to learn valuable lessons in QG.

What can one learn in this quantum gravity playground?

Rigorous construction of self consistent model quantum
spacetimes.

Develop and rigorously test different tools and techniques to
extract reliable physics.

How to rule out different quantizations using internal
consistency and physical predictions.

Understand potential quantum gravity implications for early
universe and black hole physics.

Caveat: Quantum mechanics of spacetime, not QFT. Viewpoint
that qualitative aspects are captured. In approach to spacelike
singularities, local evolution approximated by Bianchi models
(BKL conjecture)
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Outline:

Loop quantum cosmology: introduction to key results

An example of consistency check in loop quantization.
Black hole interior quantization.
Problems with approaches so far, and a resolution.

An example of new tools and techniques.
Robustness tests on quantum bounce.
Challenges and recent numerical simulations.
Tests of effective dynamics.
Anisotropic models (Cactus implementation)

Summary
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Loop quantum cosmology

A non-perturbative quantization of homogeneous spacetimes using
techniques of loop quantum gravity.

Basic variables: Ashtekar-Barbero connection (analogous to vector
potential) and the conjugate triad (analogous to electric field).
Classical Hamiltonian expressed in terms of the holonomies of the
connection and the fluxes of the triad, and quantized.

Quantum Hamiltonian constraint is a difference equation with
discreteness fixed by the underlying quantum geometry (Bojowald (2001);

Ashtekar, Bojowald, Lewandowski (2003)). Problems with early quantizations.
Cured in improved quantization (Ashtekar, Pawlowski, PS (06))

Quantum Hamiltonian constraint: ∂2φΨ = −ΘΨ

ΘΨ := C+(v)Ψ(v + 4, φ) + Co(v)Ψ(v, φ) + C−(v)Ψ(v − 4, φ) = ∂2φΨ

Leads to Wheeler-DeWitt equation at classical curvature.
GR recovered in infra-red regime.
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How is physics extracted?

Find physical Hilbert space: self-adjoint Hamiltonian
constraint, eigenfunctions and the inner product.

Identify (Dirac) observables to study relational dynamics.
Example: matter field can serve as a clock.

Construct physical initial states, such as Gaussian states on a
classical trajectory in a large macroscopic universe.

Evolve initial state numerically using quantum difference
equation towards the classical singularity.

Compute expectation values of observables (and their
fluctuations). Compare with the classical trajectory.

Loop quantum universes do not encounter big bang in the
backward evolution. Physical state bounces in Planck regime.
Sharply peaked initial states bounce at ρ = ρb ≈ 0.41ρPlanck.

No fine tuning or exotic matter required.
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Example: Closed FRW model with a massless scalar
(Ashtekar, Pawlowski, PS, Vandersloot (07))
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Perfect agreement with GR at late times for all cycles.
Tight constraints on the growth of fluctuations of state during
evolution (Corichi, PS (08); Kaminski, Pawlowski (10); Corichi, Montoya (11)) 6 / 21



In the last decade, rigorous quantization performed for a variety of
models. Including, spatially closed and open models; with ±Λ; in
presence of potentials (inflationary as well as cyclic); Bianchi-I, II
and IX spacetimes; black hole spacetimes, and Gowdy models
(inhomogenities Fock quantized).
(Ashtekar, Bentivegna, Chiou, Corichi, Diener, Gambini, Gupt, Karami, Kaminski, Lewandowski, Martin-Benito,

Megevand, Mena-Marugan, Olmedo, Pawlowski, PS, Pullin, Szulc, Vandersloot, Wilson-Ewing (2006-14))

Universal maximum on energy density predicted by an exactly
solvable model (Ashtekar, Corichi, PS (08)) (verified in all of the numerical
simulations carried out so far).

Fundamental issues on consistent quantum probabilities addressed.
The probability for the bounce computed to be unity (Craig, PS (13))

• Till recently all the numerical simulations performed for isotropic
models with sharply peaked Gaussian states only, bouncing far
away from Planck volume.
• So far, only one numerical study for quantum anisotropic models.
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Effective spacetime description

Under appropriate conditions, quantum evolution can be
approximated by a continuum effective spacetime description. For
isotropic model, Friedmann equation modified by a ρ2 term
(Taveras (08)). Numerical simulations so far showed that the effective
dynamics is an excellent approximation for sharply peaked states.

Effective dynamics primary tool to extract phenomenology.

Inflationary spacetimes: Ashtekar, Bojowald, Corichi, Karami, Lidsey, Mulryne, Nunes,

Sloan, PS, Tavakol, Vandersloot, Vereshchagin

Cyclic models: Bojowald, Cailleteau, Maartens, PS, Vandersloot

Stringy scenarios: De Risi, Garriga, Gupt, Maartens, PS, Vilenkin, Zhang

Anisotropic spacetimes: Chiou, Corichi, Dadhich, Gupt, Joe, Montoya, PS, Vandersloot

Cosmological perturbations: Barrau, Bojowald, Cailleteau, Calcagni, Dapor, Grain,

Hossain, Kagan, Mielczarek, Shankarnarayanan, Wilson-Ewing

Exotic singularities: Cailleteau, Cardoso, Gumjudpai, Sami, PS, Tsujikawa, Vandersloot,

Vidotto, Wands, Ward

Genericness of singularity resolution in isotropic and Bianchi-I
spacetimes: PS
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Restriction on quantizations using consistency
arguments
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A detour on viability of models

Loop quantization is based on constructing loops over which
holonomies are taken. There are ambiguities on how to implement
this. Many times these result in a different Hamiltonian, and
qualitatively different phenomenology.

A large class of these quantum ambiguities are eliminated
demanding the following three conditions (Corichi, PS (08))

Physical predictions of quantities which are classically
invariant under change in fiducial structure must be free of
dependence on any fiducial scale after quantization.

Well defined infra-red (classical) limit at small spacetime
curvature.

An unambiguous scale at which quantum gravitational effects
become important.

Leads to unique quantization in isotropic and Bianchi models (Corichi,

PS (08-09)), and Kantowski-Sachs spacetimes with matter (Joe, PS (14))
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Quantization of Schwarzschild interior

Schwarzschild interior corresponds to Kantowski-Sachs vacuum.
Can be quantized using loop quantum cosmological techniques.
Spatial manifold: R× S2. Non-compactness implies need of a
fiducial scale (Lo) to define symplectic structure. Quantum
Hamiltonian constraint non-singular.

However, problems with quantizations so far:

Ashtekar-Bojowald (05): Dependence on fiducial structure,
arbitrariness in physical predictions. White hole forms after
singularity resolution. But the white hole mass is arbitrary,
and can be changed by changing Lo.

Boehmer-Vandersloot (08): Physics free of fiducial scale but
Planck scale effects at horizon! No classical limit. “Charged”
Nariai spacetime emerges after bounce (Dadhich, Joe, PS (15))
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Schwarzschild interior quantization revisited

New quantization proposed which is free of fiducial structures,
resolves central singularity leading to a white hole, and gives GR at
small curvature scales (Corichi, PS (15)).
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(Different curves correspond to different Lo)
Mass of the black hole/white hole determined by pc when pb = 0.

Bounce highly asymmetric (unlike isotropic models).
Important new caveat for existing black hole phenomenology works
inspired by LQG. 12 / 21



Development of new tools and techniques
to extract physics
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Some of the open questions on robustness of physics

Is quantum bounce an artifact of choosing special kinds of
initial states? Does bounce occur if the initial state has very
large quantum fluctuations?

Only simulations with sharply peaked Gaussian states
considered so far, which bounce at volumes much larger than
the Planck volume. How do we probe deeper quantum
geometry? Is the effective spacetime description still a good
approximation?

Due to heavy computational costs, many details of quantum
bounce and validity of effective dynamics in anisotropic
models remain unexplored.
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Numerical challenges

Loop quantum Hamiltonian constraint (difference equation) is
extremely well approximated by the second order Wheeler-DeWitt
differential equation at small spacetime curvatures (large volumes).

∂2Ψ

∂φ2
= 12πGv

(
∂

∂v

(
v
∂Ψ

∂v

))
Characteristic speeds: λ± = ±

√
12πGv

The stability of evolution constraints the maximum time step ∆φ:

∆φ ≤ ∆v

|λ±|
∝ 1

v

Quantum geometry fixes volume discreteness. Maximal time step
inversely proportional to maximal volume on the grid.

States which are highly quantum, and which probe deep Planckian
geometry require a very large grid in volume. Computational cost
of such numerical simulations is extremely high.
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Computational cost
Isotropic models:

For states wich are sharply peaked in a macroscopic universe,
typical simulations consider boundary in volume at v ∼ 105.
On a single core ‘Intel-i7’ workstation, such a simulation can
be performed in approximately 15 minutes.
For widely spread states, typical simulations require volume
boundary at v ∼ 1012 (and higher). This requires 107 more
spatial grid points. Stability requirements lead to 107 finer
time steps. On a single core 1010 years needed.

Anisotropic models:
Non-hyperbolicity encountered for Bianchi-I vacuum model.
However, one can evaluate the entire physical wavefuntion by
integration

χ(b1, v2, v3) =

∫
dω2dω3χ̃(ω2, ω3)eω1

(b1)eω2
(v2)eω3

(v3)

For a state sharply peaked at ω2 = ω3 = 103, a typical
simulation requires 1014 floating-point operations.
For wider states, and states probing deep quantum geometry,
typical simulations require 1019 flop. Memory needed ∼ 5 Tb.
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Chimera scheme and test of effective dynamics

(Diener, Gupt, PS (14)) Use two grids: An inner grid where the LQC
difference equation is solved, and a carefully chosen outer grid in
logarithmic coordinate at large volumes where the WDW theory is
an excellent approximation. With vint = 12, 500 and
vouter = 2× 1012 evolution takes only 5 min on a single core.
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At a coarse level, effective theory captures underlying quantum
evolution quite well, especially for sharply peaked states. But
departures present for wide states. Subtle features revealed.
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Quantum bounce for highly quantum states

Bounce not restricted to any special states. Even occurs for states
which are highly non-Gaussian or squeezed.
(Diener, Gupt, Megevand, PS (2014))
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In the isotropic model, quantum fluctuations are found to always
lower the curvature scale at which the bounce occurs. Quantum
fluctuations in the state enhance the “repulsive nature of gravity”
in the quantum regime.
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Anisotropic quantum bounce

Till now only limited evidence of bounces in Bianchi-I vacuum
model (Martin-Benito, Mena Marugan, Pawlowski (2008)).

Using Cactus framework, physics of quantum bounce in Bianchi-I
vacuum spacetime now rigorously understood
(Diener, Joe, Megevand, PS (To appear))
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Effective description turns out to be a good approximation for
sharply peaked states in the Bianchi-I model.

Agreement between the quantum evolution and the effective
theory depends non-monotonically on the relative fluctuations
(similar features found in isotropic models).
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More work at analytical and numerical level needed to understand
various details and improve effective theory. Important exercise for
robustness and details of phenomenology. 20 / 21



Summary

LQC provides a glimpse of how non-perturbative quantum
gravity corrections may resolve singularities. Rigorous tools
being developed to extract reliable physics.

Many questions remain to be answered:
Singularity resolution an artifact of simplifications?
Singularities in homogenous and isotropic spacetimes were
believed to be artifacts of symmetry reduction (Eddington 1940’s).

But, turned out to be present in more general situations on
inclusion of anisotropies (Raychaudhuri 1950’s). Shown to be generic
in GR (Hawking, Penrose, Geroch 1960’s). (Will history repeat itself?)

Inhomogenieities? Insights from Gowdy model (Mena-Marugan, Olmedo,

Pawlowski, ...), Spinfoam cosmology (Bianchi, Rovelli, Vidotto), group field
theory (Gielen, Oriti, Sindoni) and full LQG (Alesci, Cianfrani, Lewandowski, ...)

Distinct signatures? A lot of ongoing interesting work by
various groups on perturbations (Agullo, Ashtekar, Barrau, Bojowald, Bonga,

Cailleteau, Calcagni, Dapor, Grain, Gupt, Hossain, Lewandowski, Mielczarek, Nelson, Wilson-Ewing ...)
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