



### Cosmological results from Planck 2015

### S. Galli KICP-University of Chicago On behalf of the Planck collaboration

ICGC, 17 December 2015

| ļ | Title                                                                                                             |
|---|-------------------------------------------------------------------------------------------------------------------|
|   | Planck 2015 results. I. Overview of products and results                                                          |
|   | Planck 2015 results. II. Low Frequency Instrument data processing                                                 |
|   | Planck 2015 results. III. LFI systematic uncertainties                                                            |
|   | Planck 2015 results. IV. LFI beams and window functions                                                           |
|   | Planck 2015 results. V. LFI calibration                                                                           |
|   | Planck 2015 results. VI. LFI maps                                                                                 |
|   | Planck 2015 results. VII. High Frequency Instrument data processing: Time-ordered information and beam processing |
|   | Planck 2015 results. VIII. High Frequency Instrument data processing: Calibration and maps                        |
|   | Planck 2015 results. IX. Diffuse component separation: CMB maps                                                   |
|   | Planck 2015 results. X. Diffuse component separation: Foreground maps                                             |
|   | Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of cosmological<br>parameters             |
|   | Planck 2015 results. XII. Full Focal Plane Simulations                                                            |
|   | Planck 2015 results. XIII. Cosmological parameters                                                                |
|   | Planck 2015 results. XIV. Dark energy and modified gravity                                                        |
|   | Planck 2015 results. XV. Gravitational lensing                                                                    |
|   | Planck 2015 results. XVI. Isotropy and statistics of the CMB                                                      |
|   | Planck 2015 results. XVII. Primordial non-Gaussianity                                                             |
|   | Planck 2015 results. XVIII. Background geometry and topology of the Universe                                      |
|   | Planck 2015 results. XIX. Constraints on primordial magnetic fields                                               |
|   | Planck 2015 results. XX. Constraints on inflation                                                                 |
|   | Planck 2015 results. XXI. The integrated Sachs-Wolfe effect                                                       |
|   | Planck 2015 results. XXII. A map of the thermal Sunyaev-Zeldovich effect                                          |
|   | Planck 2015 results. XXIII. Thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation               |
|   | Planck 2015 results. XXIV. Cosmology from Sunyaev-Zeldovich cluster counts                                        |
|   | Planck 2015 results. XXV. Diffuse, low-frequency Galactic foregrounds                                             |
|   | Planck 2015 results. XXVI. The Second Planck Catalogue of Compact Sources                                         |
|   | Planck 2015 results. XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources                              |
|   | Planck 2015 results. XXVIII. The Planck Catalogue of Galactic Cold Clumps                                         |

Authors Publication Planck 2015 Submitted to Collaboration A&A 2015 Submitted to Planck Collaboration A&A Planck 2015 Submitted to Collaboration A&A Planck 2015 Accepted by Collaboration A&A Planck 2015 Submitted to Collaboration A&A Planck 2015 Submitted to Collaboration A&A Planck 2015 Accepted by Collaboration A&A Planck 2015 Accepted by Collaboration A&A Planck 2015 Submitted to Collaboration A&A Planck 2015 Accepted by Collaboration A&A Planck 2015 Submitted to Collaboration A&A Planck 2015 Accepted by Collaboration A&A Planck 2015 Accepted by Collaboration A&A

### 2015 Release

• 28 papers

•

- Disclaimer: this talk will cover only a very small part of all these results!
  - Cosmological parameters (February 2015)
  - Likelihood (July 2015)





Hu & White (2004); artist: B. Christie/SciAm; available at http://background.uchicago.edu



Hu & White (2004); artist: B. Christie/SciAm; available at http://background.uchicago.edu

### **CMB** Polarization



Polarization generated by local quadrupole in temperature.

Sources of quadrupole:

- Scalar: E-mode
- Tensor: E-mode and Bmode





### The Planck satellite

### The Planck mission

- Third generation satellite missions.
- Launched in **2009** to L2, operated until **2013**.







## 9 Frequencies, 2 instruments



22 radiometers at
30, 44, 70 Ghz.

#### HFI:

- 50 bolometers (32 polarized) at 100, 143, 217, 353, 545, 857 Ghz.
- 30-353 Ghz polarized.

- 1<sup>st</sup> release 2013: Nominal mission, 15.5 months, Temperature only.
- 2<sup>nd</sup> release 2015: Full mission, 29 months for HFI, 48 months for LFI, Temperature + Polarization



### What changed since 2013?

4 things that changed since 2013 and that are relevant for cosmology

- Full mission data (more than double w.r.t. 2013). Also use smaller galactic masks.
- 2. Calibration -> +2%. Planck 2015 and WMAP now perfectly agree
- **3. Systematics** better handled (e.g. l~1800 dip due to the 4K line).
- 4. Polarization.
  - Low-I (large scales, I<30) polarization from Planck LFI instead of WMAP9 polarization (used in 2013) to constrain reionization.
  - **2.** High-I (small scales, I>30) polarization from HFI.



Multipole l





Multipole l

### 2015 Polarization power spectra



### **CMB** lensing

 $[L(L+1)]^2 C_L^{\phi\phi}/2\pi ~[ imes 10^7]$ 



1) Modifies the angular power spectrum at high-l (e.g.smooths the peaks/throughs)

### Planck detects lensing in the angular power spectrum at $10\sigma!$

- 2) Breaks isotropy of the CMB. Lensing potential reconstructed from the non-gaussian 4-point correlation function.
- Planck 2015 detects lensing from 4-p. function at  $40\sigma!$ (25 $\sigma$  in 2013)



### Results on $\Lambda CDM$

### **ACDM results from TT**

| [1] Parameter                                                                                                                                                | 2013N(DS)                                                                                                                                                                               | 2015F(CHM) (Pli                                                                                                                                                                           | k)                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| $ \frac{100\theta_{\rm MC}}{\Omega_b h^2} \dots \dots$ | $\begin{array}{c} 1.04131 \pm 0.00063\\ 0.02205 \pm 0.00028\\ 0.1199 \pm 0.0027\\ 67.3 \pm 1.2\\ 0.9603 \pm 0.0073\\ 0.315 \pm 0.017\\ 0.829 \pm 0.012\\ 0.089 \pm 0.013\\ \end{array}$ | $\begin{array}{c} 1.04086 \pm 0.00048\\ 0.02222 \pm 0.00023\\ 0.1199 \pm 0.0022\\ 67.26 \pm 0.98\\ 0.9652 \pm 0.0062\\ 0.316 \pm 0.014\\ 0.830 \pm 0.015\\ 0.078 \pm 0.019\\ \end{array}$ | -1 sigma shift<br>30% weaker<br>constraint |
| $10^9 A_{\rm s} e^{-2\tau}$                                                                                                                                  | $1.836 \pm 0.013$                                                                                                                                                                       | $1.881 \pm 0.014$                                                                                                                                                                         | +3.5 sigma shif                            |

2013=Planck Nominal 2013 TT+low-l WMAP polarization2015=Planck Full2015 TT+low-l Planck LFI polarization.

- Very good consistency between 2013-2015.
- Error bars improved by ~30%
- Calibration change shifts  $10^9 A_s e^{-2\tau}$ .
- 2015 constraint on optical depth weaker and lower than 2013.
   We use large scale polarization from Planck LFI !



### Planck 2015 Polarization at high-l

 $\tau$ 

### **ΛCDM best fit**



Remaining systematics present in polarization spectra, possibly due to unaccounted beam missmatch.

### **Comparison with other datasets:**







#### Direct measurements H<sub>o</sub>

H<sub>0</sub>=67.8±0.92 (PlanckTT+lowP+lensing)

#### VS

 $H_0 = 72.8 \pm 2.4$  [2 $\sigma$  tension] (Riess+11)

 $H_0=70.6 \pm 3.3$  [1 $\sigma$  tension] (Efstathiou+14)

H<sub>0</sub>=74.3 ± 2.6 [**2.5**σ **tension**] (Freedman+12) [in Km/s/Mpc]

### Extensions of $\Lambda CDM$

#### Excellent agreement with $\Lambda CDM!$

#### Curvature:

Compatible with flatness at the level of 10<sup>-3</sup>

#### Sum of neutrino masses:

Bound already stronger than what achievable by Katrin (tritium beta decay)

#### Number of relativistic species:

Compatible with standard predition N<sub>eff</sub>=3.046 with 3 active neutrinos

#### Helium abundance

Good agreement with measurements of primordial abundances and BBN predictions

### Running of the scalar spectral index

Compatible with no running

$$\Omega_K = 0.000 \pm 0.005 \; (95\%)$$

(PlanckTT+lowP+Lensing+BAO)

 $\sum m_{\nu} < 0.23 \text{ eV}$ 

(PlanckTT+lowP+Lensing+ext)

#### $N_{\rm eff} = 3.13 \pm 0.32$

(PlanckTT+lowP)

 $Y_{\rm P}^{\rm BBN} = 0.253 \pm 0.021$ (PlanckTT+lowP)



#### High-I Polarization further improves constraints! Curvature:

Compatible with flatness at the level of 10<sup>-3</sup>

#### Sum of neutrino masses:

Bound already stronger than what achievable by Katrin (tritium beta decay)

#### Number of relativistic species:

Compatible with standard predition N<sub>eff</sub>=3.046 with 3 active neutrinos

#### Helium abundance

Good agreement with measurements of primordial abundances and BBN predictions

### Running of the scalar spectral index

Compatible with no running

$$\Omega_K = 0.000 \pm 0.004$$
 (95%)

(PlanckTT+lowP+Lensing+BAO +TE+EE)

 $\sum m_{\nu} < 0.19 \text{ eV}$ 

(PlanckTT+lowP+Lensing+ext+TE+EE)

 $N_{\rm eff} = 3.04 \pm 0.17$ 

(PlanckTT+lowP+TE+EE)

 $Y_{\rm P}^{\rm BBN} = 0.251 \pm 0.014$ (PlanckTT+lowP+TE+EE)



### **Polarization is powerful: Dark Matter Annihilation**

$$\frac{dE}{dt} = \rho_c^2 c^2 \Omega_{DM}^2 (1+z)^6 \frac{f_{eff}}{m_{\chi}} < \sigma v > \frac{\rho_{ann}}{m_{\chi}}$$



Most of parameter space preferred by AMS-02/ Pamela/Fermi ruled out at 95%, under the assumption  $\langle \sigma v \rangle (z=1000) = \langle \sigma v \rangle (z=0)$ 

Thermal Relic cross sections at  $z \sim 1000$  ruled out for:

 $m \sim <40 \text{ GeV}$  (e<sup>-</sup>e<sup>+</sup>)  $m \sim <16 \text{ GeV}$  ( $\mu^+\mu^-$ )  $m \sim <10 \text{ GeV}$  ( $\tau^+\tau^-$ ).

Only a small part of the parameter space preferred by Fermi GC is excluded

## A slight preference for high lensing in the power spectrum



- A<sub>L</sub> parametrizes amplitude of lensing power spectrum.
- In LCDM+A<sub>L</sub> model, TT power spectrum prefers a ~2-sigma larger lensing amplitude than LCDM prediction.
- We do not think this is physical, because the lensing reconstruction does not share this preference for high amplitude.
- This could still just be an unlucky statistical fluctuation of the data. It has an impact on extensions of LCDM whichcan provide a larger lensing amplitude in the power spectrum.

# Small deviations of LCDM due to the preference of lensing

- To obtain more lensing in the power spectrum, one can have:
  - Negative  $\Omega_k$  (positive curvature)
  - Negative dark energy equation of state
  - Modified gravity models that modify perturbations

| Parameter                                                                                                                    | TT                                                                                                     | TT+lensing                                                                                  | TT+lensing+ext                                                                                               |         |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------|
| $\Omega_K \dots \dots$ | $\begin{array}{r} -0.052\substack{+0.049\\-0.055} < 0.715 \\ -1.54\substack{+0.62\\-0.50} \end{array}$ | $\begin{array}{r} -0.005^{+0.016}_{-0.017} \\ < 0.675 \\ -1.41^{+0.64}_{-0.56} \end{array}$ | $\begin{array}{r} -0.0001\substack{+0.0054\\-0.0052} < 0.234 \\ -1.006\substack{+0.085\\-0.091} \end{array}$ | 95% c.l |

 BUT! Statistically not very significant. Additionally, lensing reconstruction does not share this preference for higher amplitude amplitude, it drives back the constraints closer to LCDM.

### The BICEP story

- March 2014: BICEP2 claims detection of r = 0.16<sup>+0.06</sup><sub>-0.05</sub> in tension with Planck constraints from TT alone, r<0.11, unless open extensions of LCDM.</li>
- May 2014: Flauger+ 2014, Mortonson & Seljak 2014 notice high contamination of dust, Planck collaboration (PIP XIX) publishes at intermediate latitudes higher dust polarization fraction then assumed in BICEP foregrounds models.
- September 2014: Planck collaboration publishes results on dust polarization at high latitudes. Dust can account for all the signal observed by BICEP2.

### The Bicep2/Keck+Planck analysis

• February 2015: Joint analysis Bicep2/Keck+Planck collaborations

Sta

- Used all auto and cross-spectra BB of BICEP2/Keck at 150 and Planck at 217, 353 (detsets) at I=20-200.
- Dust: power law with D<sub>l</sub>~l<sup>-0.4</sup> and modified black body frequency spectrum (Fixed T<sub>d</sub>, prior on  $\beta$ )  $I_{\rm d}(\nu) \propto \nu^{\beta_{\rm d}} B_{\nu}(T_{\rm d})$   $T_{\rm d} = 19.6 \,{\rm K}$   $\beta_{\rm d} = 1.59 \pm 0.11$ 
  - BK+P B+P K+P 0.8 0.8 , 9.0 beak .9.0 0.4 0.4 0.2 0.2 0 0  $A_{d} = 80 & 353 \text{ GHz} [\mu \text{K}^2]$ 0.15 0.2 0.25 ٥ 0.05 0.1 0.3 6 0
  - r =0.048±0.035, r < 0.12 at 95% C.L.
  - 5.1 sigma detection of dust power
  - Adding Planck TT, r<0.08. Planck, Bicep & Keck collaborations 2015

### **Current constraints**

- BICEP2/Keck data at 150GHz and 95GHz
- Planck polarized (30–353 GHz) +WMAP 23 & 33GHz
- $\Lambda CDM + r + A_d + A_s$

 $r_{0.05} < 0.09$  BK+I $r_{0.05} < 0.12$  Plan

BK+Planck+WMAP, BB alone

PlanckTT+lowP+lensing+BSH

 $r_{0.05} < 0.07$ 

BICEP2&KECK 2015 (1510.09217)

BK+Planck+WMAP, BB + PlanckTT+lowP+lensing+BSH

- For the first time, constraints from BB alone are stronger than the ones from TT .
- Combination of Planck TT+BB data and BICEP/KECK BB provides strongest constraints on tensor to scalar ratio to date.

### What's next? upcoming



Modified from Watts 2015

### What's next? <2020

Errard+ 2015

|                   | Ta<br>Advanced ACTPol spe | ble 5. Pre-2020 inst<br>cifications, http://arxiv. | trument<br>org/abs/1 | S.406.4794    |                  |                  |                          |
|-------------------|---------------------------|----------------------------------------------------|----------------------|---------------|------------------|------------------|--------------------------|
| frequencies [GHz] | fractional bandpass [%]   | sensitivities $[\mu K-arcmin]$                     | f <sub>sky</sub> [%] | FWHM [arcmin] | $\ell_{\min}$    | $\ell_{\rm max}$ |                          |
| 90.0              |                           | 11.0                                               |                      | 2.2           |                  |                  | Advanced ACTed (ground)  |
| 150.0             | 30.0                      | 9.8                                                | 50.0                 | 1.3           | 20               | 4000             | Auvanceu Actpor (ground) |
| 230.0             |                           | 35.4                                               |                      | 0.9           |                  |                  |                          |
|                   | BIO                       | CEP3 + Keck specifications                         | 3                    | 1             |                  |                  |                          |
| frequencies [GHz] | fractional bandpass [%]   | sensitivities $[\mu K-arcmin]$                     | $f_{ m sky}$ [%]     | FWHM [arcmin] | $\ell_{\min}$    | $\ell_{\rm max}$ |                          |
| 95.0              | 20.0                      | 1.7                                                | 1.0                  | 25.0          | 20               | 1200             | PICED2+KECK (ground)     |
| 150.0             | 30.0                      | 3.4                                                | 1.0                  | 30.0          | 20               | 1300             | DICEPSTRECK (ground)     |
|                   | CLASS specificat          | ions, http://arxiv.org/a                           | bs/1408.4            | 1788          |                  |                  |                          |
| frequencies [GHz] | fractional bandpass [%]   | sensitivities $[\mu K\text{-arcmin}]$              | $f_{ m sky}$ [%]     | FWHM [arcmin] | $\ell_{\min}$    | $\ell_{\rm max}$ |                          |
| 38.0              |                           | 39.0                                               |                      | 90.0          |                  |                  |                          |
| 93.0              | 20.0                      | 10.0                                               | 70.0                 | 40.0          | 90               | 1100             | CLASS (ground)           |
| 148.0             | 30.0                      | 15.0                                               | 10.0                 | 24.0          | 20               | 1100             | $r < r < 10^{-5}$        |
| 217.0             |                           | 43.0                                               |                      | 18.0          |                  |                  |                          |
|                   | EBEX10K spe               | ecifications, proposal to NA                       | SA in 201            | 5             |                  |                  | (when combined with      |
| frequencies [GHz] | fractional bandpass [%]   | sensitivities $[\mu K\text{-arcmin}]$              | $f_{ m sky}$ [%]     | FWHM [arcmin] | $\ell_{\min}$    | $\ell_{\rm max}$ | (when combined with      |
| 150.0             |                           | 5.5                                                |                      | 6.6           |                  |                  | Planck)                  |
| 220.0             | 20.0                      | 11.0                                               | 95                   | 4.7           | 00               | 4000             | ,                        |
| 280.0             | 30.0                      | 25.4                                               | 2.5                  | 3.9           | 20               | 4000             | FBFX 10K (balloon)       |
| 350.0             |                           | 53.0                                               |                      | 3.3           |                  |                  |                          |
|                   | PIPER specificat          | ions, http://arxiv.org/a                           | bs/1407.2            | 2584          |                  |                  |                          |
| frequencies [GHz] | fractional bandpass [%]   | sensitivities $[\mu K-arcmin]$                     | $f_{ m sky}$ [%]     | FWHM [arcmin] | $\ell_{\rm min}$ | $\ell_{\rm max}$ |                          |
| 200.0             | 30.0                      | 31.4                                               |                      | 21.0          |                  |                  |                          |
| 270.0             | 30.0                      | 45.9                                               | 05.0                 | 21.0          | 00               | 1000             |                          |
| 350.0             | 16.0                      | 162.0                                              | 85.0                 | 21.0          | 20               | 1000             | PIPER (balloon)          |
| 600.0             | 10.0                      | 2659.2                                             |                      | 21.0          |                  |                  |                          |
|                   | Simons                    | s Array specifications, Ref.                       | [74]                 | I             |                  |                  |                          |
| frequencies [GHz] | fractional bandpass [%]   | sensitivities [ $\mu$ K-arcmin]                    | f <sub>sky</sub> [%] | FWHM [arcmin] | $\ell_{\min}$    | $\ell_{\rm max}$ |                          |
| 90.0              |                           | 14.4                                               |                      | 5.2           |                  |                  | SIMONIS Array (ground)   |
| 150.0             | 30.0                      | 11.8                                               | 65.0                 | 3.5           | 20               | 4000             | Silvions Array (ground)  |
| 220.0             |                           | 40.3                                               |                      | 2.7           |                  |                  |                          |
|                   | SPIDER specifica          | tions, http://arxiv.org/a                          | abs/0807.            | 1548          | <u> </u>         | ·                |                          |
| frequencies [GHz] | fractional bandpass [%]   | sensitivities [ $\mu$ K-arcmin]                    | $f_{ m sky}$ [%]     | FWHM [arcmin] | $\ell_{\min}$    | $\ell_{\rm max}$ |                          |
| 90.0              | 24.0                      | 21.2                                               | 80                   | 45.0          | 20               | 800              | Spider (balloon)         |
| 150.0             | 24.0                      | 17.7                                               | 0.0                  | 30.0          | 20               | 800              |                          |
|                   | SPT-3G specificat         | tions, http://arxiv.org/a                          | abs/1407.            | 2973          |                  |                  |                          |
| frequencies [GHz] | fractional bandpass [%]   | sensitivities [ $\mu$ K-arcmin]                    | $f_{ m sky}$ [%]     | FWHM [arcmin] | $\ell_{\min}$    | $\ell_{\rm max}$ |                          |
| 95.0              | 27.0                      | 7.0                                                |                      | 1.6           |                  |                  | SPT 3G (ground)          |
| 148.0             | 26.0                      | 4.5                                                | 6.0                  | 1.1           | 20               | 4000             |                          |
| 223.0             | 23.0                      | 7.5                                                |                      | 1.0           |                  |                  | Frrard+ 2015             |

### What's next? >2020

|                                                                                               | COrE+ specification                                             | ons, http://conservancy.                                                                                                                                                    | umn.edu/1                                                       | handle/11299/169                                                                                                                                                                   | 542                                                  |                                                |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------|
| frequencies [GHz]                                                                             | fractional bandpass [%]                                         | sensitivities $[\mu K-arcmin]$                                                                                                                                              | febry [%]                                                       | FWHM [arcmin]                                                                                                                                                                      | lmin                                                 | lmax                                           |
| 60.0                                                                                          | r                                                               | 16.0                                                                                                                                                                        | J SKY [/ °]                                                     | 14.0                                                                                                                                                                               | -11111                                               | -max                                           |
| 70.0                                                                                          |                                                                 | 14.9                                                                                                                                                                        |                                                                 | 12.0                                                                                                                                                                               |                                                      |                                                |
| 80.0                                                                                          |                                                                 | 12.9                                                                                                                                                                        |                                                                 | 10.5                                                                                                                                                                               |                                                      |                                                |
| 90.0                                                                                          |                                                                 | 9.2                                                                                                                                                                         |                                                                 | 9.3                                                                                                                                                                                |                                                      |                                                |
| 100.0                                                                                         |                                                                 | 8.5                                                                                                                                                                         |                                                                 | 8.4                                                                                                                                                                                |                                                      |                                                |
| 115.0                                                                                         |                                                                 | 7.0                                                                                                                                                                         |                                                                 | 7.3                                                                                                                                                                                |                                                      |                                                |
| 130.0                                                                                         |                                                                 | 5.9                                                                                                                                                                         |                                                                 | 6.5                                                                                                                                                                                |                                                      |                                                |
| 145.0                                                                                         | 20.0                                                            | 5.0                                                                                                                                                                         |                                                                 | 5.8                                                                                                                                                                                |                                                      |                                                |
| 160.0                                                                                         | 30.0                                                            | 5.4                                                                                                                                                                         | 70.0                                                            | 53                                                                                                                                                                                 | 2                                                    |                                                |
| 175.0                                                                                         |                                                                 | 5.3                                                                                                                                                                         |                                                                 | 1.8                                                                                                                                                                                |                                                      | 4000                                           |
| 105.0                                                                                         |                                                                 | 5.3                                                                                                                                                                         |                                                                 | 4.0                                                                                                                                                                                |                                                      | 4000                                           |
| 190.0                                                                                         |                                                                 | 0.0                                                                                                                                                                         |                                                                 | 4.0                                                                                                                                                                                |                                                      |                                                |
| 220.0                                                                                         |                                                                 | 0.1                                                                                                                                                                         |                                                                 | 0.0                                                                                                                                                                                |                                                      | 1                                              |
| 200.0                                                                                         |                                                                 | 12.0                                                                                                                                                                        |                                                                 | 0.0<br>2.0                                                                                                                                                                         |                                                      |                                                |
| 290.0                                                                                         |                                                                 | 49.7                                                                                                                                                                        |                                                                 | 2.9                                                                                                                                                                                |                                                      |                                                |
| 340.0                                                                                         |                                                                 | 43.7                                                                                                                                                                        |                                                                 | 2.0                                                                                                                                                                                |                                                      |                                                |
| 390.0                                                                                         |                                                                 | 11.8                                                                                                                                                                        |                                                                 | 2.2                                                                                                                                                                                |                                                      |                                                |
| 400.0                                                                                         |                                                                 | 104.8                                                                                                                                                                       |                                                                 | 1.9                                                                                                                                                                                |                                                      |                                                |
| 520.0                                                                                         |                                                                 | 418.2                                                                                                                                                                       |                                                                 | 1.0                                                                                                                                                                                |                                                      |                                                |
| 600.0                                                                                         |                                                                 | 1272.4                                                                                                                                                                      |                                                                 | 1.4                                                                                                                                                                                |                                                      |                                                |
| iteBIRD-ext spec                                                                              | fractional handpass [%]                                         | grenoble.cnrs.fr/IMG/Us                                                                                                                                                     | erFiles/1                                                       | EWHM [aromin]                                                                                                                                                                      | ura_2                                                | 0150720_LTD_v18.pdf                            |
| 40.0                                                                                          | Tractional baildpass [70]                                       |                                                                                                                                                                             | Jsky [70]                                                       | 108                                                                                                                                                                                | ∿min                                                 | ∿max                                           |
| 40.0<br>50.0                                                                                  |                                                                 | 26.0                                                                                                                                                                        |                                                                 | 86                                                                                                                                                                                 |                                                      |                                                |
| 60.0                                                                                          |                                                                 | 20.0                                                                                                                                                                        |                                                                 | 79                                                                                                                                                                                 |                                                      |                                                |
| 68.4                                                                                          |                                                                 | 15.5                                                                                                                                                                        |                                                                 | 63                                                                                                                                                                                 |                                                      |                                                |
| 78.0                                                                                          |                                                                 | 19.5                                                                                                                                                                        |                                                                 | 55                                                                                                                                                                                 |                                                      |                                                |
| 885                                                                                           |                                                                 | 10.0                                                                                                                                                                        |                                                                 | 40                                                                                                                                                                                 |                                                      |                                                |
| 100.0                                                                                         |                                                                 | 12.0                                                                                                                                                                        |                                                                 | 49                                                                                                                                                                                 |                                                      |                                                |
| 118.0                                                                                         | 20.0                                                            | 0.5                                                                                                                                                                         | 70.0                                                            | 40                                                                                                                                                                                 | 9                                                    | 1250                                           |
| 140.0                                                                                         | 30.0                                                            | 9.0                                                                                                                                                                         | 10.0                                                            | 00<br>91                                                                                                                                                                           | 2                                                    | 1900                                           |
| 140.0                                                                                         |                                                                 | 7.0                                                                                                                                                                         |                                                                 | 02                                                                                                                                                                                 |                                                      |                                                |
| 105.0                                                                                         |                                                                 | 1.U<br>5.0                                                                                                                                                                  |                                                                 | 20                                                                                                                                                                                 |                                                      |                                                |
| 190.0                                                                                         |                                                                 | 0.U<br>6.5                                                                                                                                                                  |                                                                 | 19                                                                                                                                                                                 |                                                      |                                                |
| 204.9                                                                                         |                                                                 | 0.0                                                                                                                                                                         |                                                                 | 10                                                                                                                                                                                 |                                                      |                                                |
| 200.0                                                                                         |                                                                 | 10.0                                                                                                                                                                        |                                                                 | 01                                                                                                                                                                                 |                                                      |                                                |
|                                                                                               |                                                                 | 10.0                                                                                                                                                                        |                                                                 |                                                                                                                                                                                    |                                                      | 1                                              |
| 337.4                                                                                         |                                                                 | 10.0                                                                                                                                                                        |                                                                 | 31                                                                                                                                                                                 |                                                      |                                                |
| 337.4<br>402.1                                                                                |                                                                 | 10.0<br>19.0                                                                                                                                                                |                                                                 | 31<br>26                                                                                                                                                                           |                                                      | . D. ( [04 77]                                 |
| 337.4<br>402.1<br>Stage-IV spe                                                                | cifications, derived so tha                                     | 10.0<br>19.0<br>t the noise after componen<br>sensitivities [uK-argmin]                                                                                                     | t separatio                                                     | $\frac{31}{26}$<br>m, $\sigma_{CMB}$ , is $\sim 1 \ \mu FWHM$ [arcmin]                                                                                                             | K-arcm                                               | in, Refs. $[64, 77]$                           |
| 337.4<br>402.1<br>Stage-IV spe<br>requencies [GHz]<br>40.0                                    | cifications, derived so tha<br>fractional bandpass [%]          | $ \begin{array}{r} 10.0 \\ 19.0 \\ \text{t the noise after componen} \\ \text{sensitivities } [\mu \text{K-arcmin}] \\ \end{array} $                                        | t separatio $f_{ m sky}$ [%]                                    | $\begin{array}{c} 31\\ 26\\ \text{m, } \sigma_{CMB}, \text{ is } \sim 1 \ \mu\text{H}\\ \hline \text{FWHM [arcmin]}\\ 11 \ 0 \end{array}$                                          | $\ell_{\min}$                                        | in, Refs. [64, 77]<br>                         |
| 337.4<br>402.1<br>Stage-IV spe<br>requencies [GHz]<br>40.0<br>90.0                            | ecifications, derived so tha<br>fractional bandpass [%]         | $ \begin{array}{r} 10.0\\ 19.0\\ \hline \text{t the noise after componen}\\ \hline \text{sensitivities } [\mu\text{K-arcmin}]\\ \hline 3.0\\ 1.5\\ \hline \end{array} $     | t separatio<br>$f_{ m sky}$ [%]                                 | $\begin{array}{c} 31\\ 26\\ \hline \text{m, } \sigma_{CMB}, \text{ is } \sim 1 \ \mu\text{H}\\ \hline \text{FWHM [arcmin]}\\ 11.0\\ 5 \ 0 \end{array}$                             | $\ell_{\min}$                                        | in, Refs. [64, 77]<br>$\ell_{\rm max}$         |
| 337.4<br>402.1<br><u>Stage-IV spe</u><br>requencies [GHz]<br>40.0<br>90.0<br>150.0            | cifications, derived so tha<br>fractional bandpass [%]          | 10.0<br>19.0<br>t the noise after componen<br>sensitivities [µK-arcmin]<br>3.0<br>1.5                                                                                       | t separatio<br>$f_{\rm sky}$ [%]                                | $\begin{array}{c} 31\\ 26\\ \hline m, \sigma_{CMB}, \text{ is } \sim 1 \ \mu\text{H}\\ \hline \text{FWHM [arcmin]}\\ 11.0\\ 5.0\\ 3.0\\ \end{array}$                               | K-arcm<br>$\ell_{\rm min}$                           | in, Refs. [64, 77]<br>$\ell_{\rm max}$         |
| 337.4<br>402.1<br>Stage-IV spe<br>requencies [GHz]<br>40.0<br>90.0<br>150.0<br>220.0          | ccifications, derived so tha<br>fractional bandpass [%]<br>30.0 | 10.0<br>19.0<br>t the noise after componen<br>sensitivities [µK-arcmin]<br>3.0<br>1.5<br>1.5<br>5.0                                                                         | t separatio $f_{\rm sky}$ [%]                                   | $\begin{array}{c} 31 \\ 26 \\ \hline m,  \sigma_{CMB},  \text{is} \sim 1  \mu\text{H} \\ \hline \text{FWHM [arcmin]} \\ 11.0 \\ 5.0 \\ 3.0 \\ 2.0 \\ \end{array}$                  | $\ell_{\rm min}$                                     | in, Refs. [64, 77]                             |
| 337.4<br>402.1<br>Stage-IV spo<br>requencies [GHz]<br>40.0<br>90.0<br>150.0<br>220.0<br>280.0 | ecifications, derived so tha<br>fractional bandpass [%]<br>30.0 | $ \begin{array}{r} 10.0\\ 19.0\\ t \text{ the noise after component}\\ \overline{\text{sensitivities } [\mu \text{K-arcmin}]}\\ 3.0\\ 1.5\\ 1.5\\ 5.0\\ 9.0\\ \end{array} $ | t separatio $f_{\rm sky}$ [%]                                   | $\begin{array}{c} 31\\ 26\\ \hline m,  \sigma_{CMB},  \text{is} \sim 1  \mu\text{H}\\ \hline \text{FWHM [arcmin]}\\ 11.0\\ 5.0\\ 3.0\\ 2.0\\ 1.5\\ \end{array}$                    | $\frac{\ell_{\rm min}}{\ell_{\rm min}}$              | in, Refs. [64, 77]<br>$\ell_{\rm max}$ 4000    |
| 337.4<br>402.1<br>Stage-IV sp<br>requencies [GHz]<br>40.0<br>90.0<br>150.0<br>220.0<br>280.0  | cifications, derived so tha<br>fractional bandpass [%]<br>30.0  | 10.0<br>19.0<br>t the noise after componen<br>sensitivities [µK-arcmin]<br>3.0<br>1.5<br>1.5<br>5.0<br>9.0<br>PIXIE specifications                                          | t separatio<br><i>f</i> <sub>sky</sub> [%]<br>50.0<br>Ref. [78] | $\begin{array}{c} 31\\ 26\\ \hline m,  \sigma_{CMB},  \text{is} \sim 1  \mu \text{K}\\ \hline \text{FWHM [arcmin]}\\ 11.0\\ 5.0\\ 3.0\\ 2.0\\ 1.5\\ \end{array}$                   | $\frac{\zeta - \operatorname{arcm}}{\ell_{\min}}$ 20 | in, Refs. [64, 77]<br>$\ell_{\rm max}$<br>4000 |
| 337.4<br>402.1<br>Stage-IV sp<br>requencies [GHz]<br>40.0<br>90.0<br>150.0<br>220.0<br>280.0  | cifications, derived so tha<br>fractional bandpass [%]<br>30.0  | 10.0<br>19.0<br>t the noise after component<br>sensitivities [μK-arcmin]<br>3.0<br>1.5<br>1.5<br>5.0<br>9.0<br>PIXIE specifications,<br>sensitivities [μK-arcmin]           | t separatio<br>$f_{sky}$ [%]<br>50.0<br>Ref. [78]               | $ \begin{array}{r} 31\\ 26\\ \hline m, \sigma_{CMB}, \text{ is } \sim 1 \ \mu\text{H}\\ \hline FWHM [arcmin]\\ 11.0\\ 5.0\\ 3.0\\ 2.0\\ 1.5\\ \hline FWHM [arcmin]\\ \end{array} $ | ζ-arcm<br>ℓ <sub>min</sub><br>20                     | in, Refs. [64, 77]                             |

#### COrE (satellite)

r<~10<sup>-4</sup>

LiteBIRD-ext (satellite)

Stage-IV (ground)

Pixie (satellite)

#### Errard+ 2015

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada.

