BLACK HOLE THERMODYNAMICS : A CURRENT PERSPECTIVE

Amit Ghosh Saha Institute of Nuclear Physics

IAGRG07-JMI

Outline:

- Laws of black hole mechanics
 - Black hole horizons
 - Isolated horizons
 - Dynamical horizons
- Quantization of horizons
 - Loop quantum gravity
 - State counting and entropy
- Summary and the future directions

Event horizons :

- Boundary of causal past of future nullinfinity in physical space-time
- Too global need the knowledge of entire future – not practical
- Laws of black hole mechanics proved

Killing horizons :

- A null-hypersurface and a neighborhood containing a Killing vector field K
- Local, detectable, admits laws of BHM
- Every EH is a KH
- Killing vector can be uniquely fixed

Isolated horizons :

- Equivalence class of null-normals : $[\xi \ell^a]$
- $heta_{(\ell)}\equiv q^{ab}
 abla_a\ell_b=0$
- $\theta_{(n)} < 0, n^a$ is shear and twist-free
- Local energy condition :
 - $T_{ab}\ell^b$ is causal
 - $T_{ab}\ell^b n^b = {
 m const} {
 m on} \ S^2$
- Einstein's eqs hold

Isolated horizons :

- Expansion-free \Rightarrow area A_{Δ} is constant
- Raychaudhuri's eq $\Rightarrow \ell^a$ shear and twist-free \Rightarrow it is locally Killing
- Free part of pull-back of SU(2)-connection A is a U(1)-connection $W \sim A^i \tau_i(\theta,\phi)$

•
$$F^i_{ab}(A) = -\frac{2\pi}{A_\Delta} \epsilon_{abc} E^{ci}, \quad F \sim dW$$

- 0^{th} law holds : $\ell^a \nabla_a \ell^b = \kappa \ell^b$, $\kappa = \text{const}$
- 1st law holds : depends on action and symp. st.

Isolated horizons :

- The appropriate action in presence of Δ

$$S(A,E) = S_{ ext{Holst}}(A,E) + rac{A_\Delta}{4\pi\gamma}S^{CS}_\Delta(A) + S_\infty$$

- The boundary action at Δ reduces to U(1) CSaction by IH boundary conditions
- The action gives rise to the symplectic structure

 $\Omega(\delta_1,\delta_2) = \Omega_{ ext{vol}}(\delta_1,\delta_2) + rac{A_\Delta}{8\pi^2 G \gamma} \oint_{S^2} \delta_1 W \wedge \delta_2 W$

• Phase space : $\Gamma_{vol} \times \Gamma_{\Delta}$

Dynamical horizons :

- Unlike IH a DH is a spacelike 3-surface : $S^2 \times R$ on which local dominant energy condition holds
- Sphere is marginally trapped : $\theta_{(\ell)} = 0$, $\theta_{(n)} < 0$ (ensures that area increases), so 2nd-law is built in, $\delta A \ge 0$
- Energy-flux exists for $\xi^a = N(r)\ell^a$, N(r) is the lapse of radial normal to the trapped sphere $\Delta M_{\xi} = \Delta E^{\xi}_{matter} + \Delta E^{\xi}_{grav rad}$

$$rac{1}{8\pi}\kappa(r)\delta A=\delta M_{m \xi}$$

IH in Loop quantum gravity :

- $H = H_{\rm vol} \otimes H_{\Delta}$ because of generalized conn.
- $F_{ab}^i \tau_i(\theta, \phi)$ is a volume-operator, but dW is a boundary-operator; therefore implementation of IH boundary conditions is a nontrivial test of the consistency of loop quantum gravity
- Curvature has a spectrum (in specific units)

$$[F_{ab}]_{\mathcal{P}}\sim -rac{4\pi}{A_{\Delta}}\sum_{p}m_{p}\delta^{2}(p,x)\epsilon_{ab},\;m_{p}\in\mathbb{Z}/2$$

•
$$H=\oplus_{\mathcal{P},J_p}H_{\mathcal{P},J_p},\;A_\Delta\sim 2\sum_p\sqrt{J_p(J_p+1)}$$

IH in LQG :

- For each puncture p, holonomy around p : $h_p \sim \exp(2i\pi n_p/k), \ n_p \in \mathbb{Z}_k, \ k = \text{level of CS}$
- In our units : $k=A_\Delta$
- Thus two spectra are consistent if $n_p = 2m_p$
- Ashtekar-Baez-Krasnov showed in detail how U(1) CS-theory admits such eigenstates of the holonomies in $H^{\mathcal{P},n_p}_\Delta$
- The eigenstates are labeled by J_p or J_P , these are Jacobi's theta-functions

IH in LQG :

• Since $\prod_p h_p = e$ (join loops by narrow paths)

 $\sum_p 2m_p = 0$

• States of H_{Δ} can be described by reduced density op : $\rho_{\Delta} = \text{Tr}' \rho$

 IH as a microcanonical ensemble has diagonal ρ_Δ, so entropy of BH

 $S_{\Delta} = \mathrm{Tr}
ho_{\Delta} \ln
ho_{\Delta} = \ln N_{\Delta}$

IH in LQG :

- Gauss, diffeo and scalar constraints are to be implemented on both Hilbert spaces
- $H = \oplus_{\mathcal{P},J_p} H_{\mathrm{vol}}^{\mathcal{P},J_p} \otimes H_{\Delta}^{\mathcal{P},2m_p}$ is U(1)-invariant
- A sequence *P* gauge fixes diffeo completely. Different sequences (# of punctures different) are gauge-inequivalent (MB-statistics)
- Scalar constraint has to be smeared by a lapse that vanishes on the horizon (related to IH b.c.)
- Physical states : spin-states satisfying IH b.c.

State counting and entropy :

- Choose units : $4\pi\gamma\ell_P^2 = 1$
- Area-spectrum (in the spin-network basis) : $A_{\{J_p\}} = 2\sum_p \sqrt{J_p(J_p+1)}$
- Counting of spin states under two constraints :

 # states = # states of the effective CS-theory obeying 1), 2)

First attempts :

- Maximum entropy ← Largest # punctures ← Each puncture carrying spin-1/2 (semiclassical)
- Ashtekar-Baez-Krasnov : $S = rac{\ln 2}{\sqrt{3}} A_{\Delta}$
- Kaul-Majumdar : SU(2) Chern-Simons theory of level k (= area) on punctured sphere
- # states = # conformal blocks (Witten, Verlinde) $S = rac{\ln 2}{\sqrt{3}} A_\Delta - rac{3}{2} \ln A_\Delta$
- Careful analysis show that dominant configuration is not spin-1/2 alone

Recursive method :

- $u(A_{\Delta},N) = \#$ states obeying $\sum_p 2m_p = N$
- Puncture #1 carries spin-1/2 : # states $u(A_{\Delta} \sqrt{3}, N 1) + \nu(A_{\Delta} \sqrt{3}, N + 1)$
- Puncture #1 carries spin-1 : # states

$$\sum_{-2}^{+2}
u(A_\Delta - \sqrt{8}, N-n)$$

• Puncture #1 carries spin-J : # states

$$\sum_{-2J}^{+2J}
u(A_\Delta - 2\sqrt{J(J+1)}, N-n)$$

Recursive method :

• Total # states $: \nu(A_{\Delta}, N) =$

$$\sum_{J=1/2}^{J_{ ext{max}}} \sum_{-2J}^{+2J} \,
u(A_\Delta - 2\sqrt{J(J+1)}, N-n)$$

- To solve Fourier transform $\,
 u(A_\Delta,N)\mapsto
 u_\omega(A_\Delta)$
- Recursion eq of $u_{\omega}(A_{\Delta})$ is solved by the ansatz $u_{\omega}(A_{\Delta}) = \exp(\lambda(\omega)A_{\Delta})$
- Solve (num) $\lambda(\omega) = 0.861 0.61\omega^2 o(\omega^4)$
- # states : $\nu(A_{\Delta}, 0) = \int_{-\pi}^{\pi} \frac{d\omega}{2\pi} \exp(\lambda(\omega)A_{\Delta})$ = $\frac{o(1)}{\sqrt{A}} \exp(0.861A_{\Delta})$

- Configuration : $\{N_J\}$ where N_J -punctures carry spin-J (AG-Mitra)
- Area : $A_{\{N_J\}} = 2\sum_{J=1/2}^{J_{\max}} N_J \sqrt{J(J+1)}$
- Each choice of $\{N_J\}$ has # states $\prod_J (2J+1)^{N_J}$
- Each $\{N_J\}$ can be chosen in $(\sum_J N_J)! / \prod_J N_J!$ many ways
- # states for a fixed configuration

$$d_{\{N_J\}} = rac{(\sum_J N_J)!}{\prod_J N_J!} \prod_J (2J+1)^{N_J}$$

- Total # states $d(A_\Delta) = \sum_{\{N_J\}} d_{\{N_J\}}$
- Maximizing it subject to the area constraint $N_J = (\sum_J N_J)(2J+1) \exp(-2\lambda \sqrt{J(J+1)})$ $\sum_J (2J+1) \exp(-2\lambda \sqrt{J(J+1)}) = 1$
- Thus $\lambda = 0.861, \ \sum_J N_J = 0.34 A_\Delta$ $d = \exp(\lambda A_\Delta) + o(1)$

expand total # states around dominant config and integrate the Gaussian fluctuations

- It is not difficult to incorporate spin-projection constraint configuration $\{N_{J,m}\}$
- Proceeding as before the total # states

$$d = \sum_{\{N_{J,m}\}} d_{\{N_{J,m}\}} = rac{o(1)}{\sqrt{A_{\Delta}}} \; \exp(0.861 A_{\Delta})$$

- Another recursive calculation (Lewandowski-Domagala, Meissner) gives a slightly lower # states, hence of the γ-parameter
- The differences occur because we used more quantum states : $|m
 angle~{
 m vs.}~|J,m
 angle$

- Pure surface states can also be counted using statistical method relevant configuration $\{N_m\}$ $N_m = \sum_J N_{J,m}, \ J = |m|, |m| + 1, ...$
- Maximize entropy to find the dominant config

- This gives $\lambda=0.790\,$ slightly higher than one of Meissner (|m=0
 angle states are counted here)
- Nevertheless, two methods/groups converge

Summary and future directions :

- Horizons play a key role in describing BH microstates – near-horizon or pure-horizon?
- IH does not describe a single solution so what point of view should one adopt for a BH?
- String theory is too tied to SUSY, hence extremal BHs – can corrections be computed?
- Hawking radiation in LQG :
 - Quantize dynamical horizons?
 - Calculate density matrix of canonical ensemble?

Summary and future directions :

- LQG gives a microcanonical temperature $T_H = \frac{\kappa_{(\ell)}\gamma}{2\lambda} + o(1/A_{\Delta})$ which for $\lambda = \pi\gamma$ gives Hawk-temperature; can it be made canonical?
- Which are the correct states |m
 angle or |J,m
 angle ?
- What are IH microstates in full LQG?
- Singularity resolution in the singlet-sector how can it be addressed from full LQG or even from this effective theory?
- What is the final-state of IH (if unstable in QM)?