

GRATIONAL WAVE EXPERIMENTS: CURRENT STATUS

S. V. DHURANDHAR

IUCAA

PUNE

GRAVITATIONAL WAVES

General Relativity predicts the existence of gravitational waves

Observation:

Decay in the orbit of the binary pulsar PSR 1913+16

Nobel Prize to

Hulse & Taylor 1993

Gravitational Waves EXIST!

GRAVITATIONAL WAVE ASTRONOMY

Enormous differences between

GW and EM

- Produced by bulk motions of matter
- Compact objects:

Blackholes, neutron stars

Binary Inspiral of NS, BH

PROBES OF THE UNIVERSE

GW ASTRONOMY!!

Effect on a ring of test particles

Metric:

$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial}{\partial t^2}\right) h_{ik} = 0$$

General Wave: $h_{ik} = h_{+} (t - z/c) e_{ik}^{+} + h_{\times} (t - z/c) e_{ik}^{\times}$

But h is awfully small!

Quadrupole formula:

$$h \sim \frac{G}{c^4} \left(\frac{E^{kin-ns}}{0.1 \, M_{\odot} c^2} \right) \left(\frac{R}{100 \, Mpc} \right)^{-1} 10^{-21}$$

Geodesic deviation – change in armlength:

$$\delta L \sim h L$$

Interferometer Concept

• Laser used to measure relative lengths of two orthogonal arms

- Arms in LIGO are 4km
- Measure difference in length to one part in 10²¹ or 10⁻¹⁸ meters

LIGO Louisiana 4 km armlength (US)

5 - 8 February 2007

CURRENT DETECTOR STATUS

- Several large scale laser interferometric detectors constructed: armlength of 300 m to 4 km
- LIGO, VIRGO, GEO, TAMA, AIGO
- S5 run of LIGO in progress from November 2005
- VIRGO: Science run
 - Space based detector LISA 5 million km
 - Launch in 2015

Technology pushed to the limits

5 - 8 February 2007

IAGRG - 24

Experimental noise curves: Initial LIGO S1 – S5

*http://www.ligocaltech.edu/~lazz/distribution/LSC Data

Astrophysical Sources

- Compact binary inspiral: "chirps"
 - NS-NS waveforms are well described
 - BH-BH need better waveforms
 - search technique: matched templates
- Supernovae / GRBs: "bursts"
 - burst signals in coincidence with signals in electromagnetic radiation
 - prompt alarm (~ one hour) with neutrino detectors
- Pulsars in our galaxy: "periodic"
 - search for observed neutron stars (frequency, doppler shift)
 - all sky search (computing challenge)
- Cosmological Signals "stochastic background"

Source Strengths

Binary inspiral:

$$h \sim 2.5 \times 10^{-23} \left[\frac{M}{M_{\text{sun}}} \right]^{5/3} \left[\frac{r}{100 \, Mpc} \right]^{-1} \left[\frac{f_a}{100 \, Hz} \right]^{2/3}$$

Periodic:

$$h \sim 1.9 \times 10^{-25} \left[\frac{I}{10^{45} \ gm.cm^2} \right] \left[\frac{f}{500 \ Hz} \right]^2 \left[\frac{r}{10 \ kpc} \right]^{-1} \left[\frac{\varepsilon}{10^{-5}} \right]$$

Stochastic background:

$$\tilde{h}(f) \sim 10^{-26} \left[\frac{f}{10 \, Hz} \right]^{-3/2} \left[\frac{\Omega_{GW}(f)}{10^{-12}} \right]^{1/2}$$

Data Analysis!

Setting upper limits

• Although at this early stage no detection can be announced we can place upper limits for example on the inspiral event rate

$$P(\rho > \rho^*) = 1 - e^{-N_G(\rho^*)RT}$$

For example for S2 data:

$$R_{90\%} < 35 \text{ y}^{-1} MWEG^{-1}$$

A rate > than above means there is more than 90% probability that one inspiral event will be observed with SNR > highest SNR observed in the data.

Much better event rate from S3, S4, S5 data!

Astrophysical Results

• Chirps:

- S2: 385 hours of coincident (2X, 3X) interferometer operation
- Sensitive to D ~ 2 Mpc
- R 90% < 35 events/year/MWEG (Component masses: 3 Msun 20 Msun)

• Bursts:

- S2: For $h \sim 10^{-19} 10^{-20}$, R 90% < 0.26/day (limited by observation time)
- Minimum h $\sim 10^{-20}$ ~ 8 times better over previous S1 result
- S2: 50% detection efficiency $h \sim 10^{-20}$

• Periodic:

- S2: LIGO & GEO interferometers -- Targeted 28 known pulsars
- $h < 1.7 \times 10^{-24} (J1910-5959D)$
- e < 4.5 x 10⁻⁶ (J2124-3358) Bayesian methods employed
- Crab limit on h within 30X of spindown rate, if spindown were due to GW emission
- Order of magnitude better than S1 results
- All sky search upper limit: $h \sim 4.43 \times 10^{-23}$

• Stochastic background:

- S4: cross-correlation statistics 13 times improvement over previous S3
- Sensitivity estimated to be Ω_{GW} < 6.5 x 10⁻⁵ 50 Hz < f < 150 Hz

The LIGO Scientific Collaboration

500 scientists at 42 institutions 27 US & 15 international

CORNELL

Towards the Detection of Gravitational Waves

From Initial LIGO Advanced LIGO Next Generation LIGO (QND)

From 14 Mpc (NN inspiral) — 200 Mpc and beyond

From Upper Limits
 Searches
 Detections

From Generic Waveforms
 Specified Waveforms

From Single Detectors
 Global Networks

Stochastic GW background: Directed search

S.Mitra, SVD, T. Souradeep, A. Lazzarini, V. Mandic, S. Bose (2007)

• Produced by unresolved gravitational wave sources – Blackhole mergers, r-modes, LMXBs, ...

Waveforms not well modelled

• Statistic: Cross-correlation between two detectors with a directed optimal filter Q

$$S\left(\stackrel{\wedge}{\Omega}\right) = \int dt \iint dt' dt'' \ s_1(t') \ s_2(t'') \ Q\left(\stackrel{\wedge}{\Omega};t,t'-t''\right)$$

The Directed Optimal Filter

The Fourier transform of Q:

$$\tilde{Q}\left(\stackrel{\wedge}{\Omega},t;f\right) = \frac{H(f)}{P_1(f)P_2(f)} \gamma^* \left(\stackrel{\wedge}{\Omega},t;f\right)$$

For a point source with equal power in both polarisations:

$$\gamma(\overset{\wedge}{\Omega},t;f) = \left[F_{1+}(t;\overset{\wedge}{\Omega})F_{2+}(t;\overset{\wedge}{\Omega}) + F_{1\times}(t;\overset{\wedge}{\Omega})F_{2\times}(t;\overset{\wedge}{\Omega})\right]e^{2\pi i f\overset{\wedge}{\Omega}\bullet\overset{\rightarrow}{\Delta x}(t)/c}$$

The Kernel or Point Spread Function

LIGO detectors

Point Source on the equator – Image not a point!

De-convolving the GW sky-map

The integral equation must be inverted!

$$\mathbf{D} = \mathbf{B} \cdot \mathbf{P} + \mathbf{n}, \qquad D_i = D(\Omega_i)$$

D: data

B: known beam matrix

P: GW power distribution over sky pixels

n: noise Gaussian distributed

Solution:

ML estimator:
$$\hat{\mathbf{P}} = (\mathbf{B}^{T} \mathbf{N}^{-1} \mathbf{B})^{-1} \mathbf{B}^{T} \mathbf{N}^{-1} \cdot \mathbf{D}$$

Solution for a broadened point source

Source 4 pixels:

Dirty:

Cleaned:

Solution for a 'galactic distribution'

Source:

Dirty:

Cleaned:

LISA

- A Collaborative ESA / NASA Mission to observe low-frequency gravitational waves
- Cluster of 3 S/C in heliocentric orbit at 1 AU
- Equilateral triangle with 5 Million km arm-length

- Trailing the earth by 20°
- S/Ccontain lasers and free-flying test masses
- Equivalent to a Michelson interferometer

LISA: Space based detector for detecting low frequency GW

LISA sensitivity curve

- Confusion noise problem not faced by ground-based detectors
- Low frequency long duration sources

LISA SCIENCE

Fundamental Physics:

- Tests of strong field GR by mergers of comparable mass BHs:
 - Area theorem before(inspiral)/after(ringdown) measurements of M and J
 - Cosmic Censorship is a/M > 1 after merger?
 - EMRIs typically $\mu/M \sim 10^{-5} 10~M_{\odot}$ BH falling into $10^6~M_{\odot}$ BH event rate ~ 100 /yr out to z ~ 1 High SNR: 30 300 Test no-hair theorem \sim detailed waveforms with 10^5 cycles in the last year M, S to fractional accuracy $\sim 10^{-4}$ Kerr quadrupole moment = S² / M = Q Δ Q $\sim 10^{-2} 10^{-4}$ at SNR = 100 (Barack & Cutler 2006)
- Observe GW bursts from cosmic strings or other exotic sources

LISA SCIENCE contd

Astrophysics:

- Detect MBH $\geq 10^5 \,\mathrm{M}_{\odot}$ mergers
 - Event rate: 10 35 yr⁻¹
 - SNR $\sim 10^3$ at z = 1 for M $\sim 10^5$ M_{\odot}
 - E. Berti (2006), Sesana, Volonteri (2006)
- Study compact WD binaries
 - obtain mass spectrum ...

- Detect hundreds of EMRIs
 - obtain spectrum of masses, spins
- Discover unexpected sources, dark matter components

LISA data analysis at IUCAA

Time-delay Interferometry (TDI)

• Cancellation of laser frequency noise and other systematic noises — optical bench motion, clock jitter, etc,

IUCAA-Nice group — SVD, J-Y Vinet, R. Nayak, A. Pai, S. Koshti, B. Chauvineau

$$\frac{\Delta v}{v_0} \sim 10^{-14} \qquad h \sim 10^{-21}$$

Noise cancellation required to 1 part in $\sim 10^7$

Combine time-delayed data streams: Algebraic operation

Module of syzygies: Space of TDI combinations

SVD, R. Nayak, J-Y Vinet, Phys. Rev. D 65, 102002 (2002)

Real World Model of LISA

- Previous analysis for stationary LISA Analysis needs to be generalised to include moving LISA, changing arm-lengths
- second generation TDI: Tinto & SVD Liv. Rev. Rel. 8, 4 (2005) combinatorial approach M. Vallisineri, Phys.Rev. D 72, 042003 (2005).
- Non-stationarity Sagnac effect: $\Delta (L_1 + L_2 + L_3) \sim 28 \text{ km}$
- Changing armlengths $\Delta L \sim 10 \, m \, / \sec$

General relativistic **dynamical** model of LISA required: Sagnac effect, changing arm-lengths, gravitational redshift, Shapiro delay LISA simulator: SVD, J-Y Vinet, B. Chauvineau (2007)

Basic questions: What is operationally a time-delay? GPS, Fermi-Walker transport of the LISA frame

FUTURE DIRECTIONS

- Global Network of detectors LIGO, VIRGO, TAMA, GEO, AIGO
- Advanced detectors: Improvement in amplitude, bandwidth sensitivity

Event rate improvement: $\sim 10^4$

• LISA will open the low frequency window: 10^{-4} Hz – 1 Hz

Hopefully detections should begin soon with ground- based detectors!