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Large Scale universe is summarised by Λ-CDM, Singular

Space-Time.

Singularities are generic – Kasner, Bianchi IX, BKL.

Inflationary cosmology – Smaller scale structures seeded by

quantum fluctuations.

Role for a quantum theory of geometry and matter is

indicated. However, quantization per se is not enough.

Wheeler-De Witt Quantum Cosmology, Singularity persists.

Does Lop Quantum Cosmology provide a non-singular model?
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dr 2 + r 2dΩ2

}
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SEH = V0

∫
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{
3

8πG
(−aȧ2) +

1

2
a3φ̇2 − V (φ)a3

}

pa = − 3V0

4πG
aȧ , pφ = V0a

3φ̇ , V0 :=

∫

cell

d3x ;

H = Hgrav + Hmatter

=

[
−2πG

3

p2
a

V0a

]
+

[
1
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p2
φ

a3V0
+ a3V0V (φ)
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=
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8πG
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+
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8πG
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) (
Hmatter

V0a3
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(p̃, c̃) : |p̃| := a2

4
, c̃ := γȧ/2, {c̃, p̃} = (8πGγ)/(3V0).
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1/3
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φ
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c = ± γ

√
κ

6

|pφ|
|p| , ṗ = ±

√
2κ

3
|pφ||p|−1/2 .

φ̇ = pφ|p|−3/2 , ṗφ = 0 ,

dp

dφ
= ±

√
2κ

3
|p| ⇒ p(φ) = p∗e

±

√
2κ
3

(φ−φ∗)
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Hilbert space and basis:

〈Ψ|Ψ′〉kin := lim
T→∞

1

2T

∫ T

−T

dc

∫
dφΨ̄(c, φ)Ψ′(c, φ)

p̂Ψ(c, φ) = −i
γℓ2

P

3
∂cΨ(c, φ) , p̂φΨ(c, φ) = −i~∂φΨ(c, φ) .

〈c|µ〉 := e iµc/2 , 〈µ′|µ〉 = δµ′,µ ∀µ ∈ R

p̂|µ〉 =
γℓ2

P

6
µ|µ〉 , ê iµ′c/2|µ〉 = |µ+ µ′〉, ℓ2P := κ~ .

There is no ĉ operator ⇒ Must use holonomies –

hj(c) := eµ0cΛ·τ and inverse powers of p̂ do not exist so use:

|p|−1 =

[
3

8πGγl
{c, |p|l}

]1/(1−l)

, l ∈ (0, 1) .
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(
2jµ0

6
γℓ2P

)−1

(Fl(q))
1

1−l |µ〉 , q :=
µ

2µ0j
,

Fl(q ≫ 1) ≈
[
q−1

]1−l
, Fl(q ≈ 0) ≈

[
3q

l + 1

]
.

Scales and Regimes:

DeepQuantum ↔ |p| ≪ p0 :=
γℓ2

P

6
µ0,

Semiclassical ↔ p0 . |p| . 2jp0,

Classical ↔ |p| ≫ 2jp0.
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Introduce:

V̂ |µ〉 = (
1

6
γℓ2P|µ|)3/2|µ〉 := Vµ|µ〉

|Ψ〉 :=
∑

µ

ψ(µ, φ)|µ〉
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Difference Equation

A(µ+4µ0)ψ(µ+4µ0, φ)−2A(µ)ψ(µ, φ)+A(µ−4µ0)ψ(µ−4µ0, φ)

= − 2κ

3
µ3

0γ
3ℓ2PHmatter (µ)ψ(µ, φ) , A(µ) := Vµ+µ0

− Vµ−µ0
.

f+(µ)ψ(µ+ 4µ0, φ) + f0(µ)ψ(µ, φ) + f−(µ)ψ(µ− 4µ0, φ)

= − 2κ

3
µ3

0γ
3ℓ2PHmatter (µ)ψ(µ, φ) where,

f+(µ) := |Vµ+3µ0
− Vµ+µ0

| ,
f−(µ) := f+(µ− 4µ0) , f0 := − f+(µ) − f−(µ) .
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Non-Singularity of difference Equation

None of the coefficients blow-up!

Leading coefficients do vanish, but,

For the non-symmetric one, Ψ(0, φ) decouples.

For the symmetric one, parity operator,

(ΠΨ)(µ, φ) := ψ(−µ, φ), saves determinism.

Specification in a classical regime determines the solutions –

non-singularity!
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(– Date-Hossain, Banerjee-Date)

H
non−sym
eff = − 1

2κ

(
6

µ3
0γ

3ℓ2P

) [
B+(p)sin2(µ0c)+

(
A(p) − 1

2
B+(p)

)]
+ Hmatter ;

B+(p) := A(p + 4p0) + A(p − 4p0) ,

A(p) := (|p + p0|3/2 − |p − p0|3/2)

Hsym is obtained by

B+(p) → f+(p) + f−(p) , 2A(p) → f+(p) + f−(p).

These two differ only in the semiclassical regime.
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ȧ2

a2

)
:= ρeff =

(
Hmatter

p3/2

) {
1 − κµ2

0γ
2

3
p

(
Hmatter

p3/2

)}
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)
:= ρeff =

(
Hmatter

p3/2

) {
1 − κµ2

0γ
2

3
p

(
Hmatter

p3/2

)}

Extrema defined by ṗ = 0 ⇒ (i) sin(µ0c) = 0 OR (ii)

cos(µ0c) = 0.

(i) semiclassical extremum is a bounce and classical one is a

recollapse. p∗ varies inversely with pφ while ρ∗ varies directly.

(ii) semiclassical extremum is a recollapse and classical one is

a bounce. p∗ varies directly with pφ while ρ∗ varies inversely.

back
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Summary

(– Bojowald Living Review)

Basic variables are different; Quantization is very different; Full

theory framework is well defined.

Density, curvatures are bounded, thus indicating absence of

singularity; Effective dynamics is also non-singular via a

bounce; Accommodates inflationary phase naturally.

Most results pre-2005, followed from the inverse volume

modifications in the matter sector.
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Post-2004: Steps in Physical Level Analysis

Obtain the space of solutions;

Define physical inner product;

Choose a complete set of Dirac observables;

Identify semiclassical states;

Compute physical metric elements and uncertaintities of Dirac

observables.

These are the physical predictions.



Constraint equation

− 6

γ2
c2

√
|p| + κ p2

φ |p|−3/2 = 0 = Cgrav + Cmatter ;

κp̂2
φΨ(p, φ) = [B̃(p)]−1ĈgravΨ(p, φ) , [B̃(p)] = Eigen(|̂p|−3/2)

∂2Ψ(µ, φ)

∂φ2
= [B(µ)]−1

[
κ

(γ
6

)3/2

ℓ−1
P Ĉgrav

]
Ψ(µ, φ)

Θ̂Sch(µ)Ψ(µ, φ) = − 2κ

3
|µ|3/2∂µ

√
µ ∂µΨ(µ, φ)

Θ̂LQC(µ)Ψ(µ, φ) = −[B(µ)]−1
{
C+(µ)Ψ(µ+ 4µ0, φ)+

C 0(µ)Ψ(µ, φ) + C−(µ)Ψ(µ− 4µ0, φ)
}
.



General Solution

For each fixed φ, on the space of functions ψ(µ, φ), Θ̂ is a

positive, self-adjoint operator with the kinematical measure

scaled by B(µ). ⇒

Θ̂ek(µ) = ω2(k)ek(µ), k ∈ R, 〈ek |ek′〉 = δ(k, k ′). ⇒

Ψ(µ, φ) =

∫
dk Ψ̃+(k)ek(µ)e iω(k)φ + Ψ̃−(k)ēk(µ)e−iω(k)φ;

:= Ψ+(µ, φ) + Ψ−(µ, φ) .

The spectrum (label k) and ω(k) differ for different

quantizations.
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Dirac Observables

The classical, physical phase space is two dimensional, so need

two Dirac observables. Quantum mechanically, this means we

define two operators which leave the space of solutions

invariant. These are chosen to be:

p̂φΨ(µ, φ) := −i~∂φΨ(µ, φ) ,

|̂µ|φ0
Ψ(µ, φ) := e i

√
Θ̂(φ−φ0)|µ|Ψ+(µ, φ0) +

e−i

√
Θ̂(φ−φ0)|µ|Ψ−(µ, φ0)

On an initial datum, Ψ(µ, φ0):

̂|µ|φ0
Ψ(µ, φ0) = |µ|Ψ(µ, φ0) , p̂φΨ(µ, φ0) = ~

√
Θ̂Ψ(µ, φ0) .



Physical Inner Product

These operators are self-adjoint on the space of solutions

provided,

〈Ψ|Ψ′〉phys := “

∫

φ=φ0

dµB(µ)” Ψ̄(µ, φ)Ψ′(µ, φ) .

For Schrodinger quantization, the integral is really an integral

while for LQC it is actually a sum over µ taking values in a

lattice.
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= µ∗ is given by,

Ψsemi(µ, φ0) :=

∫
dke

−
(k−k∗)2
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√
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√
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For example, in Schrodinger quantization, a state peaked at

pφ = p∗

φ and |µ|φ0
= µ∗ is given by,

Ψsemi(µ, φ0) :=

∫
dke

−
(k−k∗)2

2σ2 ek(µ)e iω(φ0−φ∗)

k∗ := −
√

3/2κ~−1p∗

φ ,

φ∗ := φ0 + −
√

3/2κℓn|µ∗| .

Evolve with e i

√
Θ̂(φ−φ0).
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For a semiclassical solution Ψsemi(p
∗

φ, µ
∗ : φ), one obtains a

curve in the (µ, φ) plane computed as:

|µ|p∗

φ
,µ∗(φ) := 〈|̂µ|φ0

〉(φ).

This curve represents implications of quantum theory.

Schrodinger quantization: curves passes through zero volume;

Loop quantization: curves bounce away from zero volume; are

well approximated by the effective dynamics and Bounce

persists even if BLQC(µ) → BSch(µ). Density at bounce varies

inversely with p∗

φ – undesirable. – Ashtekar-Pawlowski-Singh.
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Hints for improved quantization

From the expression for effective density , one can see that the

bounce occurs for |p∗| =

√
κµ2

0γ
2

6
|pφ| and

ρ∗ := ρcl(p∗) = (
κµ2

0γ
2

3
p∗)

−1 =
√

2(
κµ2

0γ
2

3
)−3/2|pφ|−1.

If µ0 → µ̄(p) :=
√

∆/|p|, ∆ a constant, then

ρeff = 0 ⇒ ρcl = ρcrit := (κ∆γ2

3
)−1 , |p∗| = (

p2
φ

2ρcrit

)1/3.
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Fixing ∆

In expressing the curvature Fij in terms of holonomies around

a plaquette, one shrinks the plaquette.

Proposal: Shrinking should be done only till the physical area

reaches the area gap: ∆ = 2
√

3πγG~. –

Ashtekar-Pawlowski-Singh

Physical area is µ2
0|p|, so µ0 → µ̄(p) :=

√
∆/|p|.

Improved quantization proposes this replacement in all

holonomies. This is actually viable and the description

simplifies if one uses eigenbasis of V̂ = |p|3/2.



Improved quantization Expressions

Ambiguity parameters j = 1/2, l = 3/4 are chosen.

v := K sgn(µ)|µ|3/2 , K :=
2
√

2

3
√

3
√

3
;

V̂ |v〉 =
(γ

6

)3/2 ℓ3P
K
|v ||v〉 ,

̂
e ik

µ̄
2

cΨ(v) := Ψ(v + k) ,

̂
|p|−

1
2Ψ(v) =

3

2

(
γℓ2P
6

)−1/2

K 1/3|v |1/3

∣∣|v + 1|1/3 − |v − 1|1/3
∣∣ Ψ(v)

B(v) =

(
3

2

)3/2

K |v |
∣∣|v + 1|1/3 − |v − 1|1/3

∣∣3



Improved Quantization: Cont. . .

Θ̂impΨ(v , φ) = −[B(v)]−1
{
C+(v)Ψ(v + 4, φ)+

C 0(v)Ψ(v , φ) + C−(v)Ψ(v − 4, φ)
}
,

C+(v) :=
3πKG

8
|v + 2| | |v + 1| − |v + 3|| ,

C−(v) := C+(v − 4) , C 0(v) := −C+(v) − C−(v).



Bounce Results

Detailed analysis establishes singularity resolution via a bounce

– Ashtekar-Pawlowski-Singh.

The close model with free, massless scalar leads to a cyclic

universe – Ashtekar-Pawlowski-Singh.

A general, exactly solvable effective model has been given

which can serve as a perturbative basis for analysing bounce

scenarios. Its bouncing solutions “explain” the bounces seen

numerically and the model also allows several quantum effects

which can be incorporated perturbatively – Bojowald.
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Despite energy condition violations, stability of matter as well

as causal propagation of perturbations holds – Hossain;

Non-minimally coupled scalar model is non-singular, and can

accommodate successful inflation – Bojowald-Kagan;

Phenomenology induced by gravitational corrections has been

explored by Singh-Vandersloot-Vereshchagin;

Computation of density perturbations and their power spectra

has been explored – Hossain, Calcagni-Cortes;

A systematic approach to constructing effective theories has

been initiated – Bojowald-Skirzewski.
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Anisotropic models also show non-singularity at the difference

equation level. At the effective level, for vacuum, Bianchi I,

there are no inverse triad corrections. But the sin2

modifications suffice to give non-singular Kasner – Date;

Bianchi I with free massless scalar has been analyzed in the

improved quantization – Chiou.

Bianchi IX models are also being analysed with “improved

quantization”.
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Other Developments: Inhomogeneities

Inhomogeneities is a fact of nature although these are small in

the early universe. These can thus be treated perturbatively.

Work on “cosmological perturbation theory” in connection

variables has already begun.

One can also try to understand how starting from an

inhomogeneous model one can obtain a homogeneous one as a

good approximation. In particular qualitative implications of

the parent model for the homogeneous approximation has

been explored in a simplified lattice model and an alternative

argument for the µ̄(p) improvement has been advanced along

with removing the V0 dependence of the homogeneous models

– Bojowald.
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can do the physical level analysis to conclude that classical Big

Bang is replaced by a bounce triggered by energy density

reaching ∼ 0.82 Planck density. Close model also possesses
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In Summary:

General feature of singularity resolution in LQC continues to

hold. At least in the special case of free, massless scalar one

can do the physical level analysis to conclude that classical Big

Bang is replaced by a bounce triggered by energy density

reaching ∼ 0.82 Planck density. Close model also possesses

this feature.

The µ̄(p) improvement calls for a better understanding of

relation of homogeneous models to inhomogeneous ones –

whether as providing inputs for homogeneous models or

hinting at modifications of procedures of the full theory.

Thank You.


