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THERMODYNAMICS OF THE HORIZON

• Null surfaces =⇒ Causal Horizons for a class of observers

=⇒ observer dependent temperature and entropy.

• All this is very generic.

• Uses only the kinematics — special relativity and

principle of equivalence — of gravity [“Spacetime tells

matter how to move”]

Question:

• Is there a deeper connection between these results and

spacetime dynamics [“Matter tells spacetime how to

curve”]? What is this telling us?
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HINT OF A DEEPER CONNECTION

Spherically symmetric spacetimes with horizon(s)

• Metric:

ds2 = f(r)dt2 − f(r)−1dr2 − r2(dθ2 + sin2 θdφ2)

≡ f(r)dt2 − f(r)−1dr2 − dL2
⊥

• Source:

T t
t = T r

r =
ε(r)

8π
; T θ

θ = T φ
φ =

µ(r)

8π

• Einstein’s equations:

1

r2
(1 − f) − f ′

r
= ε; ∇2f = −2µ

IAGRG, Feb 07



HINT OF A DEEPER CONNECTION

Spherically symmetric spacetimes with horizon(s)

• Metric:

ds2 = f(r)dt2 − f(r)−1dr2 − r2(dθ2 + sin2 θdφ2)

≡ f(r)dt2 − f(r)−1dr2 − dL2
⊥

• Source:

T t
t = T r

r =
ε(r)

8π
; T θ

θ = T φ
φ =

µ(r)

8π

• Einstein’s equations:

1

r2
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• Consider the case with horizon at r = a; that is, f = 0 at r = a with

f ′(a) = B > 0.
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HINT OF A DEEPER CONNECTION

Spherically symmetric spacetimes with horizon(s)

• Metric:

ds2 = f(r)dt2 − f(r)−1dr2 − r2(dθ2 + sin2 θdφ2)

≡ f(r)dt2 − f(r)−1dr2 − dL2
⊥

• Source:

T t
t = T r

r =
ε(r)

8π
; T θ

θ = T φ
φ =

µ(r)

8π

• Einstein’s equations:

1

r2
(1 − f) − f ′

r
= ε; ∇2f = −2µ

• Consider the case with horizon at r = a; that is, f = 0 at r = a with

f ′(a) = B > 0.

• Temperature of horizon: kBT = ~cB/4π.
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AN INTERPRETATION OF EINSTEIN’S EQUATIONS

T.P., CQG 19, 5387 (2002). [gr-qc/0204019]
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AN INTERPRETATION OF EINSTEIN’S EQUATIONS

T.P., CQG 19, 5387 (2002). [gr-qc/0204019]

• At r = a, f(a) = 0, f ′(a) ≡ B. Einstein’s equation gives:

c4

G

[
1

2
Ba − 1

2

]

= −4πT r
r a2
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c4

G
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1
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• Multiply da to write:

~cB
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• Read off (L2
P ≡ G~/c3):

k−1
B S =

1

4L2
P

(4πa2) =
1

4

AH

L2
P

; E =
c4

2G
a =

c4

G

(
AH

16π

)1/2
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• In normal units, there is no ~ in TdS! (Compare: No kB in thermodynamics)
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• Read off (L2
P ≡ G~/c3):

k−1
B S =

1

4L2
P

(4πa2) =
1

4

AH

L2
P

; E =
c4

2G
a =

c4

G

(
AH

16π

)1/2

• In normal units, there is no ~ in TdS! (Compare: No kB in thermodynamics)

• Works for time-dependent horizons, Kerr, Lanczos-Lovelock theory ......; close to

Membrane Paradigm in spirit
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Thermodynamics of solids Thermodynamics of spacetime
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THE SPACETIME SOLID!

• We will take this analogy seriously.

• The gab(t,x) is non-dynamical and is more like density ρ(t,x) of a

solid.

• Long wavelength dynamics should come from a different variational

principle.

• Strategy: Associate an entropy with a null surfaces. Demand

maximisation of entropy of all null surfaces to get the dynamics.

• Note: There is no ‘quantum thermodynamics’; for example,

TdS = dE + PdV is valid with quantum corrections as well.
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A PRIMER ON ELASTICITY

• Deformation field : xµ → xµ + vµ(xν).

• The entropy is a quadratic functional of Qµν ≡ ∇µvν. Decompose

Qµν into shear, expansion and rotation. Choose different

coefficients (‘elastic moduli’) to describe different situations.

• The form of entropy functional is phenomenological. Only a

microscopic theory can predict it.

• Our state of knowledge of quantum gravity is worse that that of

18th century physicists about microstructure of solids! So we

should not hesitate to be phenomenological.
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ENTROPY OF SPACETIME AND GRAVITY

T.P, Gen.Rel.Grav., (2006), T.P.,A.Paranjape, (2007)

• Deformation: xa → x̄a = xa + ξa(x).
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ENTROPY OF SPACETIME AND GRAVITY

T.P, Gen.Rel.Grav., (2006), T.P.,A.Paranjape, (2007)

• Deformation: xa → x̄a = xa + ξa(x).

• Associate with every vector field an entropy which is quadratic in

deformation field:

S[ξ] =

∫

V
dDx

√
−g

(
4P abcd∇cξa∇dξb − T abξaξb

)
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T.P, Gen.Rel.Grav., (2006), T.P.,A.Paranjape, (2007)

• Deformation: xa → x̄a = xa + ξa(x).

• Associate with every vector field an entropy which is quadratic in

deformation field:

S[ξ] =

∫

V
dDx

√
−g

(
4P abcd∇cξa∇dξb − T abξaξb

)

• Demand that: (i) P abcd has the symmetries of Riemann tensor; (ii)

Covariant divergence on all indices are zero: ∇aP abcd = 0;∇aT ab = 0.

[Analogue of elastic “constants” ]
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T.P, Gen.Rel.Grav., (2006), T.P.,A.Paranjape, (2007)

• Deformation: xa → x̄a = xa + ξa(x).

• Associate with every vector field an entropy which is quadratic in

deformation field:

S[ξ] =

∫

V
dDx

√
−g

(
4P abcd∇cξa∇dξb − T abξaξb

)

• Demand that: (i) P abcd has the symmetries of Riemann tensor; (ii)

Covariant divergence on all indices are zero: ∇aP abcd = 0;∇aT ab = 0.

[Analogue of elastic “constants” ]

• We expect P abcd to have a (RG-like) derivative expansion in powers

of number of derivatives of the metric:

P abcd(gij, Rijkl) = c1

(1)

P abcd(gij) + c2

(2)

P abcd(gij, Rijkl) + · · · ,
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THE DERIVATIVE EXPANSION FOR P ab
cd

• If we do not use the curvature tensor:

(1)

P ab
cd =

1

32π
(δa

c δ
b
d − δa

dδ
b
c) =

1

16π

1

2
δab

cd .
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• Linear on curvature:
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8π

(
Rab

cd − Ga
cδ

b
d + Gb
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=
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• The m-th order term is unique:

(m)

P ab
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• Explicit form:

S1[ξ] =

∫

V

dDx

8π

(
(∇cξ

c)2 −∇aξ
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a
)

S2[ξ] = c2

∫

V
dDx

(
Rcd

ab∇cξ
a∇dξ

b − (Gc
a + Rc

a)(∇cξ
a∇bξ

b −∇cξ
b∇bξ
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)
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• Explicit form:
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(
(∇cξ

c)2 −∇aξ
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)

S2[ξ] = c2

∫

V
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(
Rcd

ab∇cξ
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b − (Gc
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a)(∇cξ
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a)
)

• Closely related to the Lanczos-Lovelock Lagrangian:

P ijk
a =

∂Lm

∂Ra
ijk

.

IAGRG, Feb 07



PRIMER ON LANCZOS-LOVELOCK GRAVITY

T.P (2006); A.Mukhopadhyay and T.P (2006)

IAGRG, Feb 07



PRIMER ON LANCZOS-LOVELOCK GRAVITY

T.P (2006); A.Mukhopadhyay and T.P (2006)

• A very natural, geometrical generalization of Einstein’s theory in D-dimensions.

IAGRG, Feb 07



PRIMER ON LANCZOS-LOVELOCK GRAVITY

T.P (2006); A.Mukhopadhyay and T.P (2006)

• A very natural, geometrical generalization of Einstein’s theory in D-dimensions.

• The D-dimensional Lanczos-Lovelock Lagrangian is a polynomial in the curvature

tensor (with D ≥ (2K + 1)):

L = Q bcd
a Ra

bcd =

K∑

m=1

cmLm ; Lm =
1

16π
2−mδa1a2...a2m

b1b2...b2m

Rb1b2
a1a2

Rb2m−1b2m

a2m−1a2m

,
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PRIMER ON LANCZOS-LOVELOCK GRAVITY

T.P (2006); A.Mukhopadhyay and T.P (2006)

• A very natural, geometrical generalization of Einstein’s theory in D-dimensions.

• The D-dimensional Lanczos-Lovelock Lagrangian is a polynomial in the curvature

tensor (with D ≥ (2K + 1)):

L = Q bcd
a Ra

bcd =

K∑

m=1

cmLm ; Lm =
1

16π
2−mδa1a2...a2m

b1b2...b2m

Rb1b2
a1a2

Rb2m−1b2m

a2m−1a2m

,

• The Lanczos-Lovelock Lagrangian separates to a bulk and surface terms

√
−gL = 2∂c

[√
−gQ bcd

a Γa
bd

]
+ 2

√
−gQ bcd

a Γa
dkΓ

k
bc ≡ Lsur + Lbulk

and is ‘holographic’:

[(D/2) − m]Lsur = −∂i

[

gab
δLbulk

δ(∂igab)
+ ∂jgab

∂Lbulk

∂(∂i∂jgab)

]
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T.P (2006); A.Mukhopadhyay and T.P (2006)

• A very natural, geometrical generalization of Einstein’s theory in D-dimensions.

• The D-dimensional Lanczos-Lovelock Lagrangian is a polynomial in the curvature

tensor (with D ≥ (2K + 1)):

L = Q bcd
a Ra

bcd =

K∑

m=1
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1

16π
2−mδa1a2...a2m

b1b2...b2m

Rb1b2
a1a2

Rb2m−1b2m

a2m−1a2m

,

• The Lanczos-Lovelock Lagrangian separates to a bulk and surface terms

√
−gL = 2∂c

[√
−gQ bcd

a Γa
bd

]
+ 2

√
−gQ bcd

a Γa
dkΓ

k
bc ≡ Lsur + Lbulk

and is ‘holographic’:

[(D/2) − m]Lsur = −∂i

[

gab
δLbulk

δ(∂igab)
+ ∂jgab

∂Lbulk

∂(∂i∂jgab)

]

• The surface term is closely related to horizon entropy in Lanczos-Lovelock theory.
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2P cd
ab (∇c∇d −∇d∇c) ξa − T̄abξ
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• This leads to Lanczos-Lovelock theory with an arbitrary

cosmological constant:

16π

[

P ijk
b Ra

ijk −
1

2
δa

bLm

]

= 8πT a
b + Λδa

b ,

IAGRG, Feb 07



EXTREMISING ENTROPY TO GET DYNAMICS

• Demand that δS = 0 for variations of all null vectors:

2P cd
ab (∇c∇d −∇d∇c) ξa − T̄abξ

a = 0 ,

• This leads to Lanczos-Lovelock theory with an arbitrary

cosmological constant:

16π

[

P ijk
b Ra

ijk −
1

2
δa

bLm

]

= 8πT a
b + Λδa

b ,

• To the lowest order we get Einstein’s theory with cosmological
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• Demand that δS = 0 for variations of all null vectors:

2P cd
ab (∇c∇d −∇d∇c) ξa − T̄abξ

a = 0 ,

• This leads to Lanczos-Lovelock theory with an arbitrary

cosmological constant:

16π

[

P ijk
b Ra

ijk −
1

2
δa

bLm

]

= 8πT a
b + Λδa

b ,

• To the lowest order we get Einstein’s theory with cosmological

constant as integration constant. Equivalent to

(Gab − 8πTab)ξ
aξb = 0

• In a derivative coupling expansion, Lanczos-Lovelock terms are

corrections.
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EXTREMUM VALUE OF ENTROPY

• The extremum value of entropy can be computed on-shell on a

solution.

• On any solution with horizon it gives the standard result (Wald

entropy):

S
∣
∣
H[on − shell] = 2π

∮

H
P abcdnabncdε̃ =

K∑

m=1

4πmcm

∫

H
dD−2x⊥

√
σL(m−1) ,
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EXTREMUM VALUE OF ENTROPY

• The extremum value of entropy can be computed on-shell on a

solution.

• On any solution with horizon it gives the standard result (Wald

entropy):

S
∣
∣
H[on − shell] = 2π

∮

H
P abcdnabncdε̃ =

K∑

m=1

4πmcm

∫

H
dD−2x⊥

√
σL(m−1) ,

• At the lowest order, we get quarter of transverse area as entropy.

• For any solution, in a local Rindler frame, the causal horizons have

the correct entropy.
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THE REAL TROUBLE COSMOLOGICAL CONSTANT

Gravity seems to be immune to bulk vacuum energy

• The matter sector and its equations are invariant under the shift of

the Lagrangian by a constant: Lmatter → Lmatter − ρ.

• But this changes energy momentum tensor by Tab → Tab + ρgab and

gravity sector is not invariant under this transformation.

• So after you have “solved” the cosmological constant problem, if

someone introduces Lmatter → Lmatter − ρ, you are in trouble again!

• The only way out is to have a formalism for gravity which is

invariant under Tab → Tab + ρgab.

• This will also make gravity immune to bulk vacuum energy density.
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GRAVITY IS IMMUNE TO BULK ENERGY

• The entropy functional for null vectors is invariant under

the shift Tab → Tab + ρgab !

• The field equations have a new ‘gauge freedom’ and has

the form:

P ijk
b Ra

ijk −
1

2
Lδa

b − κT a
b = (constant)δa

b

• The classical bulk energy density of the form T a
b = ρδa

b

can be gauged away.

• But not the quantum fluctuations in the energy density.
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T.P, CQG, 22, L107-L110, (2005) hep-th/0406060

• The coupling between gravity and Tab allows gravity to act as

“detector” of large scale vacuum fluctuations in energy density.
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• The coupling between gravity and Tab allows gravity to act as

“detector” of large scale vacuum fluctuations in energy density.

• Given LP and LH we have ρ
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= 1/L4
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= 1/L4

H . The observed

values is:

ρ
DE
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ρ

UV
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IR
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• The hierarchy:

ρvac =
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• The coupling between gravity and Tab allows gravity to act as

“detector” of large scale vacuum fluctuations in energy density.

• Given LP and LH we have ρ
UV

= 1/L4
P and ρ

IR
= 1/L4

H . The observed

values is:

ρ
DE
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ρ

UV
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IR
≈ 1
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• The hierarchy:

ρvac =
1

L4
P

+
1
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(
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)2

+
1

L4
P

(
LP

LH

)4
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Important: Bulk term

is now ignored by gravity

observed value; comes

directly from the

quantum fluctuations

thermal energy density

of de Sitter ρrad ∝ T 4

GH
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SUMMARY

• Gravity described by is an emergent, long-wavelength phenomenon

like elasticity. The gab(t,x) is like ρ(t,x).

• Maximizing the entropy associated with all null surfaces gives

Einstein’s theory with Lanczos-Lovelock corrections [but not, e.g.,

f(R) gravity].

• Since metric is not dynamical, usual problems of surface term etc.

in the action do not arise.

• Connects with the radial displacements of horizons and

TdS = dE + PdV as the key to obtaining a thermodynamic

interpretation of gravitational theories.

• The deep connection between gravity and thermodynamics goes

well beyond Einstein’s theory. Closely related to the holographic

structure of Lanczos-Lovelock theories.
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cd , derivatives of curvature tensor ......

– Thermodynamics goes beyond Einstein’s theory!

– Does not work in gauge theories, f(R) gravity, ....
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• Why does all this work ?

– Conditions on P ab
cd , derivatives of curvature tensor ......

– Thermodynamics goes beyond Einstein’s theory!

– Does not work in gauge theories, f(R) gravity, ....

• Matter sector is horribly inelegant. Possible clue in

S =

∫

dDx

[

4
∂L

∂Rab
cd

∇cξ
a∇dξ

b +
1

2

∂L
∂gab

ξaξb

]
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OPEN QUESTIONS

• Why does all this work ?

– Conditions on P ab
cd , derivatives of curvature tensor ......

– Thermodynamics goes beyond Einstein’s theory!

– Does not work in gauge theories, f(R) gravity, ....

• Matter sector is horribly inelegant. Possible clue in

S =

∫

dDx

[

4
∂L

∂Rab
cd

∇cξ
a∇dξ

b +
1

2

∂L
∂gab

ξaξb

]

• Analogy: horizons in euclidean spacetime ↔ defects in solids. Clue

for a new path integral prescription ?
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