ENTROPY OF SPACETIME AND GRAVITY

T. Padmanabhan

(IUCAA, Pune, India)

IAGRG 07, FEB 2007

PLAN OF THE TALK

- GRAVITY AND THERMODYNAMICS: HINTS OF A DEEPER CONNECTION
- THE SAKHAROV PARADIGM
- GRAVITY AS AN EMERGENT PHENOMENON
- ENTROPY OF NULL SURFACES AND SPACETIME DYNAMICS
- HORIZON ENTROPY
- PERSPECTIVE AND CONCLUSIONS

- Null surfaces \implies Causal Horizons for a class of observers
 - \implies observer dependent temperature and entropy.

- Null surfaces \implies Causal Horizons for a class of observers \implies observer dependent temperature and entropy.
- All this is very generic.

- Null surfaces \implies Causal Horizons for a class of observers \implies observer dependent temperature and entropy.
- All this is very generic.
- Uses only the kinematics special relativity and principle of equivalence — of gravity ["Spacetime tells matter how to move"]

- Null surfaces \implies Causal Horizons for a class of observers \implies observer dependent temperature and entropy.
- All this is very generic.
- Uses only the kinematics special relativity and principle of equivalence — of gravity ["Spacetime tells matter how to move"]

Question:

 Is there a deeper connection between these results and spacetime dynamics ["Matter tells spacetime how to curve"]? What is this telling us?

• Metric:

$$ds^{2} = f(r)dt^{2} - f(r)^{-1}dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

$$\equiv f(r)dt^{2} - f(r)^{-1}dr^{2} - dL_{\perp}^{2}$$

• Source:

$$T_t^t = T_r^r = \frac{\epsilon(r)}{8\pi}; \quad T_\theta^\theta = T_\phi^\phi = \frac{\mu(r)}{8\pi}$$

• Einstein's equations:

$$\frac{1}{r^2}(1-f) - \frac{f'}{r} = \epsilon; \quad \nabla^2 f = -2\mu$$

• Metric:

$$ds^{2} = f(r)dt^{2} - f(r)^{-1}dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

$$\equiv f(r)dt^{2} - f(r)^{-1}dr^{2} - dL_{\perp}^{2}$$

• Source:

$$T_t^t = T_r^r = \frac{\epsilon(r)}{8\pi}; \quad T_\theta^\theta = T_\phi^\phi = \frac{\mu(r)}{8\pi}$$

• Einstein's equations:

$$\frac{1}{r^2}(1-f) - \frac{f'}{r} = \epsilon; \quad \nabla^2 f = -2\mu$$

• Consider the case with horizon at r = a; that is, f = 0 at r = a with f'(a) = B > 0.

• Metric:

$$ds^{2} = f(r)dt^{2} - f(r)^{-1}dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

$$\equiv f(r)dt^{2} - f(r)^{-1}dr^{2} - dL_{\perp}^{2}$$

• Source:

$$T_t^t = T_r^r = \frac{\epsilon(r)}{8\pi}; \quad T_\theta^\theta = T_\phi^\phi = \frac{\mu(r)}{8\pi}$$

• Einstein's equations:

$$\frac{1}{r^2}(1-f) - \frac{f'}{r} = \epsilon; \quad \nabla^2 f = -2\mu$$

- Consider the case with horizon at r = a; that is, f = 0 at r = a with f'(a) = B > 0.
- Temperature of horizon: $k_B T = \hbar c B / 4\pi$.

• At $r = a, f(a) = 0, f'(a) \equiv B$. Einstein's equation gives:

$$\frac{c^4}{G}\left[\frac{1}{2}Ba - \frac{1}{2}\right] = -4\pi T_r^r a^2$$

• At $r = a, f(a) = 0, f'(a) \equiv B$. Einstein's equation gives:

$$\frac{c^4}{G}\left[\frac{1}{2}Ba - \frac{1}{2}\right] = -4\pi T_r^r a^2$$

$$\frac{\hbar cB}{4\pi} \frac{c^3}{G\hbar} d\left(\frac{1}{4}4\pi a^2\right) - \frac{1}{2}\frac{c^4 da}{G} = -T_r^r d\left(\frac{4\pi}{3}a^3\right)$$

• At $r = a, f(a) = 0, f'(a) \equiv B$. Einstein's equation gives:

$$\frac{c^4}{G}\left[\frac{1}{2}Ba - \frac{1}{2}\right] = -4\pi T_r^r a^2$$

$$\frac{\hbar cB}{4\pi} \frac{c^3}{G\hbar} d\left(\frac{1}{4}4\pi a^2\right) - \frac{1}{2}\frac{c^4 da}{G} = -T_r^r d\left(\frac{4\pi}{3}a^3\right)$$

$$P dV$$

• At $r = a, f(a) = 0, f'(a) \equiv B$. Einstein's equation gives:

$$\frac{c^4}{G}\left[\frac{1}{2}Ba - \frac{1}{2}\right] = -4\pi T_r^r a^2$$

• At $r = a, f(a) = 0, f'(a) \equiv B$. Einstein's equation gives:

$$\frac{c^4}{G}\left[\frac{1}{2}Ba - \frac{1}{2}\right] = -4\pi T_r^r a^2$$

• At $r = a, f(a) = 0, f'(a) \equiv B$. Einstein's equation gives:

$$\frac{c^4}{G}\left[\frac{1}{2}Ba - \frac{1}{2}\right] = -4\pi T_r^r a^2$$

• Multiply *da* to write:

• Read off $(L_P^2 \equiv G\hbar/c^3)$:

$$k_B^{-1}S = \frac{1}{4L_P^2}(4\pi a^2) = \frac{1}{4}\frac{A_H}{L_P^2}; \quad E = \frac{c^4}{2G}a = \frac{c^4}{G}\left(\frac{A_H}{16\pi}\right)^{1/2}$$

• At $r = a, f(a) = 0, f'(a) \equiv B$. Einstein's equation gives:

$$\frac{c^4}{G}\left[\frac{1}{2}Ba - \frac{1}{2}\right] = -4\pi T_r^r a^2$$

• Multiply *da* to write:

• Read off $(L_P^2 \equiv G\hbar/c^3)$:

$$k_B^{-1}S = \frac{1}{4L_P^2}(4\pi a^2) = \frac{1}{4}\frac{A_H}{L_P^2}; \quad E = \frac{c^4}{2G}a = \frac{c^4}{G}\left(\frac{A_H}{16\pi}\right)^{1/2}$$

• In normal units, there is no \hbar in TdS! (Compare: No k_B in thermodynamics)

• At $r = a, f(a) = 0, f'(a) \equiv B$. Einstein's equation gives:

$$\frac{c^4}{G}\left[\frac{1}{2}Ba - \frac{1}{2}\right] = -4\pi T_r^r a^2$$

• Multiply *da* to write:

• Read off $(L_P^2 \equiv G\hbar/c^3)$:

$$k_B^{-1}S = \frac{1}{4L_P^2}(4\pi a^2) = \frac{1}{4}\frac{A_H}{L_P^2}; \quad E = \frac{c^4}{2G}a = \frac{c^4}{G}\left(\frac{A_H}{16\pi}\right)^{1/2}$$

- In normal units, there is no \hbar in TdS! (Compare: No k_B in thermodynamics)
- Works for time-dependent horizons, Kerr, Lanczos-Lovelock theory; close to Membrane Paradigm in spirit

SOLIDS

SPACETIME

Mechanics; Elasticity $(\rho, \mathbf{v} \dots)$

Einstein's Theory $(g_{ab} \dots)$

Statistical Mechanics

of atoms/molecules

Statistical mechanics

of "atoms of spacetime"

<u>SOLIDS</u>

Mechanics; Elasticity $(\rho, \mathbf{v} \dots)$

Thermodynamics of solids

Statistical Mechanics

of atoms/molecules

Einstein's Theory $(g_{ab} \dots)$

SPACETIME

Statistical mechanics

of "atoms of spacetime"

<u>SOLIDS</u>

Mechanics; Elasticity (ρ , v ...)

Thermodynamics of solids

Statistical Mechanics

of atoms/molecules

SPACETIME

Einstein's Theory $(g_{ab} \dots)$

Thermodynamics of spacetime

Statistical mechanics

of "atoms of spacetime"

• We will take this analogy seriously.

- We will take this analogy seriously.
- The $g_{ab}(t, \mathbf{x})$ is non-dynamical and is more like density $\rho(t, \mathbf{x})$ of a solid.

- We will take this analogy seriously.
- The $g_{ab}(t, \mathbf{x})$ is non-dynamical and is more like density $\rho(t, \mathbf{x})$ of a solid.
- Long wavelength dynamics should come from a different variational principle.

- We will take this analogy seriously.
- The $g_{ab}(t, \mathbf{x})$ is non-dynamical and is more like density $\rho(t, \mathbf{x})$ of a solid.
- Long wavelength dynamics should come from a different variational principle.
- Strategy: Associate an entropy with a null surfaces. Demand maximisation of entropy of all null surfaces to get the dynamics.

- We will take this analogy seriously.
- The $g_{ab}(t, \mathbf{x})$ is non-dynamical and is more like density $\rho(t, \mathbf{x})$ of a solid.
- Long wavelength dynamics should come from a different variational principle.
- Strategy: Associate an entropy with a null surfaces. Demand maximisation of entropy of all null surfaces to get the dynamics.
- Note: There is no 'quantum thermodynamics'; for example, TdS = dE + PdV is valid with quantum corrections as well.

• Deformation field : $x^{\mu} \rightarrow x^{\mu} + v^{\mu}(x^{\nu})$.

- Deformation field : $x^{\mu} \rightarrow x^{\mu} + v^{\mu}(x^{\nu})$.
- The entropy is a quadratic functional of $Q_{\mu\nu} \equiv \nabla_{\mu} v_{\nu}$. Decompose $Q_{\mu\nu}$ into shear, expansion and rotation. Choose different coefficients ('elastic moduli') to describe different situations.

- Deformation field : $x^{\mu} \rightarrow x^{\mu} + v^{\mu}(x^{\nu})$.
- The entropy is a quadratic functional of $Q_{\mu\nu} \equiv \nabla_{\mu} v_{\nu}$. Decompose $Q_{\mu\nu}$ into shear, expansion and rotation. Choose different coefficients ('elastic moduli') to describe different situations.
- The form of entropy functional is phenomenological. Only a microscopic theory can predict it.

- Deformation field : $x^{\mu} \rightarrow x^{\mu} + v^{\mu}(x^{\nu})$.
- The entropy is a quadratic functional of $Q_{\mu\nu} \equiv \nabla_{\mu} v_{\nu}$. Decompose $Q_{\mu\nu}$ into shear, expansion and rotation. Choose different coefficients ('elastic moduli') to describe different situations.
- The form of entropy functional is phenomenological. Only a microscopic theory can predict it.
- Our state of knowledge of quantum gravity is worse that that of 18th century physicists about microstructure of solids! So we should not hesitate to be phenomenological.

ENTROPY OF SPACETIME AND GRAVITY

T.P, Gen.Rel.Grav., (2006), T.P., A.Paranjape, (2007)

• Deformation: $x^a \rightarrow \bar{x}^a = x^a + \xi^a(x)$.

ENTROPY OF SPACETIME AND GRAVITY

T.P, Gen.Rel.Grav., (2006), T.P., A.Paranjape, (2007)

- Deformation: $x^a \rightarrow \bar{x}^a = x^a + \xi^a(x)$.
- Associate with every vector field an entropy which is quadratic in deformation field:

$$S[\xi] = \int_{\mathcal{V}} d^D x \sqrt{-g} \left(4P^{abcd} \nabla_c \xi_a \nabla_d \xi_b - T^{ab} \xi_a \xi_b \right)$$
ENTROPY OF SPACETIME AND GRAVITY

T.P, Gen.Rel.Grav., (2006), T.P., A.Paranjape, (2007)

- Deformation: $x^a \rightarrow \bar{x}^a = x^a + \xi^a(x)$.
- Associate with every vector field an entropy which is quadratic in deformation field:

$$S[\xi] = \int_{\mathcal{V}} d^D x \sqrt{-g} \left(4P^{abcd} \nabla_c \xi_a \nabla_d \xi_b - T^{ab} \xi_a \xi_b \right)$$

• Demand that: (i) P^{abcd} has the symmetries of Riemann tensor; (ii) Covariant divergence on all indices are zero: $\nabla_a P^{abcd} = 0$; $\nabla_a T^{ab} = 0$. [Analogue of elastic "constants"]

ENTROPY OF SPACETIME AND GRAVITY

T.P, Gen.Rel.Grav., (2006), T.P., A.Paranjape, (2007)

- Deformation: $x^a \rightarrow \bar{x}^a = x^a + \xi^a(x)$.
- Associate with every vector field an entropy which is quadratic in deformation field:

$$S[\xi] = \int_{\mathcal{V}} d^D x \sqrt{-g} \left(4P^{abcd} \nabla_c \xi_a \nabla_d \xi_b - T^{ab} \xi_a \xi_b \right)$$

- Demand that: (i) P^{abcd} has the symmetries of Riemann tensor; (ii) Covariant divergence on all indices are zero: $\nabla_a P^{abcd} = 0$; $\nabla_a T^{ab} = 0$. [Analogue of elastic "constants"]
- We expect *P*^{*abcd*} to have a (RG-like) derivative expansion in powers of number of derivatives of the metric:

$$P^{abcd}(g_{ij}, R_{ijkl}) = c_1 \overset{(1)}{P}^{abcd}(g_{ij}) + c_2 \overset{(2)}{P}^{abcd}(g_{ij}, R_{ijkl}) + \cdots,$$

• If we do not use the curvature tensor:

$$\stackrel{(1)}{P}{}^{ab}_{cd} = rac{1}{32\pi} (\delta^a_c \delta^b_d - \delta^a_d \delta^b_c) = rac{1}{16\pi} rac{1}{2} \delta^{ab}_{cd} \, .$$

THE DERIVATIVE EXPANSION FOR P^{ab}_{cd}

• If we do not use the curvature tensor:

$${P}^{(1)}_{cd} = rac{1}{32\pi} (\delta^a_c \delta^b_d - \delta^a_d \delta^b_c) = rac{1}{16\pi} rac{1}{2} \delta^{ab}_{cd} \, .$$

• Linear on curvature:

$$\overset{(2)}{P}{}^{ab}_{cd} = \frac{1}{8\pi} \left(R^{ab}_{cd} - G^a_c \delta^b_d + G^b_c \delta^a_d + R^a_d \delta^b_c - R^b_d \delta^a_c \right) = \frac{1}{16\pi} \frac{1}{2} \delta^{aba_3a_4}_{cd \, b_3 \, b_4} R^{b_3b_4}_{a_3a_4} \,.$$

• If we do not use the curvature tensor:

$${P}^{(1)}_{cd} = rac{1}{32\pi} (\delta^a_c \delta^b_d - \delta^a_d \delta^b_c) = rac{1}{16\pi} rac{1}{2} \delta^{ab}_{cd} \, .$$

• Linear on curvature:

$$\overset{(2)}{P}{}^{ab}_{cd} = \frac{1}{8\pi} \left(R^{ab}_{cd} - G^a_c \delta^b_d + G^b_c \delta^a_d + R^a_d \delta^b_c - R^b_d \delta^a_c \right) = \frac{1}{16\pi} \frac{1}{2} \delta^{aba_3a_4}_{cd \, b_3 \, b_4} R^{b_3b_4}_{a_3a_4} \,.$$

• The *m*-th order term is unique:

$${}^{(m)}_{P \ cd} \propto \delta^{aba_3...a_{2m}}_{cdb_3...b_{2m}} R^{b_3b_4}_{a_3a_3} \cdots R^{b_{2m-1}b_{2m}}_{a_{2m-1}a_{2m}}$$

• If we do not use the curvature tensor:

$${}^{(1)}_{Cd}{}^{ab}_{cd} = \frac{1}{32\pi} (\delta^a_c \delta^b_d - \delta^a_d \delta^b_c) = \frac{1}{16\pi} \frac{1}{2} \delta^{ab}_{cd}.$$

• Linear on curvature:

$$\overset{(2)}{P}{}^{ab}_{cd} = \frac{1}{8\pi} \left(R^{ab}_{cd} - G^a_c \delta^b_d + G^b_c \delta^a_d + R^a_d \delta^b_c - R^b_d \delta^a_c \right) = \frac{1}{16\pi} \frac{1}{2} \delta^{aba_3a_4}_{cd \, b_3 \, b_4} R^{b_3b_4}_{a_3a_4} \,.$$

• The *m*-th order term is unique:

$${}^{(m)}_{P \ cd} \propto \delta^{aba_3...a_{2m}}_{cdb_3...b_{2m}} R^{b_3b_4}_{a_3a_3} \cdots R^{b_{2m-1}b_{2m}}_{a_{2m-1}a_{2m}}$$

• Explicit form:

$$S_1[\xi] = \int_{\mathcal{V}} \frac{d^D x}{8\pi} \left((\nabla_c \xi^c)^2 - \nabla_a \xi^b \nabla_b \xi^a \right)$$
$$S_2[\xi] = c_2 \int_{\mathcal{V}} d^D x \left(R^{cd}_{ab} \nabla_c \xi^a \nabla_d \xi^b - (G^c_a + R^c_a) (\nabla_c \xi^a \nabla_b \xi^b - \nabla_c \xi^b \nabla_b \xi^a) \right)$$

• If we do not use the curvature tensor:

$${}^{(1)}_{Cd}{}^{ab} = \frac{1}{32\pi} (\delta^a_c \delta^b_d - \delta^a_d \delta^b_c) = \frac{1}{16\pi} \frac{1}{2} \delta^{ab}_{cd}.$$

• Linear on curvature:

$$\overset{(2)}{P}{}^{ab}_{cd} = \frac{1}{8\pi} \left(R^{ab}_{cd} - G^a_c \delta^b_d + G^b_c \delta^a_d + R^a_d \delta^b_c - R^b_d \delta^a_c \right) = \frac{1}{16\pi} \frac{1}{2} \delta^{aba_3a_4}_{cd\,b_3\,b_4} R^{b_3b_4}_{a_3a_4} \,.$$

• The *m*-th order term is unique:

$${}^{(m)}_{P \ cd} \propto \delta^{aba_3...a_{2m}}_{cdb_3...b_{2m}} R^{b_3b_4}_{a_3a_3} \cdots R^{b_{2m-1}b_{2m}}_{a_{2m-1}a_{2m}}$$

• Explicit form:

$$S_1[\xi] = \int_{\mathcal{V}} rac{d^D x}{8\pi} \left((
abla_c \xi^c)^2 -
abla_a \xi^b
abla_b \xi^a
ight)$$

$$S_2[\xi] = c_2 \int_{\mathcal{V}} d^D x \left(R_{ab}^{cd} \nabla_c \xi^a \nabla_d \xi^b - (G_a^c + R_a^c) (\nabla_c \xi^a \nabla_b \xi^b - \nabla_c \xi^b \nabla_b \xi^a) \right)$$

• Closely related to the Lanczos-Lovelock Lagrangian:

$$P_a{}^{ijk} = \frac{\partial \mathcal{L}_m}{\partial R^a{}_{ijk}}$$

• A very natural, geometrical generalization of Einstein's theory in D-dimensions.

- A very natural, geometrical generalization of Einstein's theory in D-dimensions.
- The *D*-dimensional Lanczos-Lovelock Lagrangian is a polynomial in the curvature tensor (with $D \ge (2K+1)$):

$$\mathcal{L} = Q_a^{\ bcd} R^a_{\ bcd} = \sum_{m=1}^K c_m \mathcal{L}_m \ ; \ \mathcal{L}_m = \frac{1}{16\pi} 2^{-m} \delta^{a_1 a_2 \dots a_{2m}}_{b_1 b_2 \dots b_{2m}} R^{b_1 b_2}_{a_1 a_2} R^{b_{2m-1} b_{2m}}_{a_{2m-1} a_{2m}} \,,$$

- A very natural, geometrical generalization of Einstein's theory in D-dimensions.
- The *D*-dimensional Lanczos-Lovelock Lagrangian is a polynomial in the curvature tensor (with $D \ge (2K+1)$):

$$\mathcal{L} = Q_a^{bcd} R^a_{bcd} = \sum_{m=1}^K c_m \mathcal{L}_m \; ; \; \mathcal{L}_m = \frac{1}{16\pi} 2^{-m} \delta^{a_1 a_2 \dots a_{2m}}_{b_1 b_2 \dots b_{2m}} R^{b_1 b_2}_{a_1 a_2} R^{b_{2m-1} b_{2m}}_{a_{2m-1} a_{2m}} \,,$$

• The Lanczos-Lovelock Lagrangian separates to a bulk and surface terms

$$\sqrt{-g}L = 2\partial_c \left[\sqrt{-g}Q_a^{\ bcd}\Gamma^a_{bd}\right] + 2\sqrt{-g}Q_a^{\ bcd}\Gamma^a_{dk}\Gamma^k_{bc} \equiv L_{\rm sur} + L_{\rm bulk}$$

and is 'holographic':

$$[(D/2) - m]L_{sur} = -\partial_i \left[g_{ab} \frac{\delta L_{bulk}}{\delta(\partial_i g_{ab})} + \partial_j g_{ab} \frac{\partial L_{bulk}}{\partial(\partial_i \partial_j g_{ab})} \right]$$

- A very natural, geometrical generalization of Einstein's theory in D-dimensions.
- The *D*-dimensional Lanczos-Lovelock Lagrangian is a polynomial in the curvature tensor (with $D \ge (2K+1)$):

$$\mathcal{L} = Q_a^{bcd} R^a_{bcd} = \sum_{m=1}^K c_m \mathcal{L}_m \; ; \; \mathcal{L}_m = \frac{1}{16\pi} 2^{-m} \delta^{a_1 a_2 \dots a_{2m}}_{b_1 b_2 \dots b_{2m}} R^{b_1 b_2}_{a_1 a_2} R^{b_{2m-1} b_{2m}}_{a_{2m-1} a_{2m}} \,,$$

• The Lanczos-Lovelock Lagrangian separates to a bulk and surface terms

$$\sqrt{-g}L = 2\partial_c \left[\sqrt{-g}Q_a^{bcd}\Gamma^a_{bd}\right] + 2\sqrt{-g}Q_a^{bcd}\Gamma^a_{dk}\Gamma^k_{bc} \equiv L_{\rm sur} + L_{\rm bulk}$$

and is 'holographic':

$$[(D/2) - m]L_{sur} = -\partial_i \left[g_{ab} \frac{\delta L_{bulk}}{\delta(\partial_i g_{ab})} + \partial_j g_{ab} \frac{\partial L_{bulk}}{\partial(\partial_i \partial_j g_{ab})} \right]$$

• The surface term is closely related to horizon entropy in Lanczos-Lovelock theory.

• Demand that $\delta S = 0$ for variations of all null vectors:

 $2P_{ab}{}^{cd}\left(\nabla_c\nabla_d-\nabla_d\nabla_c\right)\xi^a-\bar{T}_{ab}\xi^a=0\,,$

• Demand that $\delta S = 0$ for variations of all null vectors:

$$2P_{ab}^{\ cd} \left(\nabla_c \nabla_d - \nabla_d \nabla_c\right) \xi^a - \bar{T}_{ab} \xi^a = 0 \,,$$

• This leads to Lanczos-Lovelock theory with an arbitrary cosmological constant:

$$16\pi \left[P_b^{\ ijk} R^a_{\ ijk} - \frac{1}{2} \delta^a_b \mathcal{L}_m \right] = 8\pi T^a_b + \Lambda \delta^a_b,$$

• Demand that $\delta S = 0$ for variations of all null vectors:

$$2P_{ab}^{\ cd} \left(\nabla_c \nabla_d - \nabla_d \nabla_c\right) \xi^a - \bar{T}_{ab} \xi^a = 0 \,,$$

• This leads to Lanczos-Lovelock theory with an arbitrary cosmological constant:

$$16\pi \left[P_b^{\ ijk} R^a_{\ ijk} - \frac{1}{2} \delta^a_b \mathcal{L}_m \right] = 8\pi T^a_b + \Lambda \delta^a_b,$$

• To the lowest order we get Einstein's theory with cosmological constant as integration constant. Equivalent to

$$(G_{ab} - 8\pi T_{ab})\xi^a \xi^b = 0$$

• Demand that $\delta S = 0$ for variations of all null vectors:

$$2P_{ab}^{\ cd} \left(\nabla_c \nabla_d - \nabla_d \nabla_c\right) \xi^a - \bar{T}_{ab} \xi^a = 0 \,,$$

• This leads to Lanczos-Lovelock theory with an arbitrary cosmological constant:

$$16\pi \left[P_b^{\ ijk} R^a_{\ ijk} - \frac{1}{2} \delta^a_b \mathcal{L}_m \right] = 8\pi T^a_b + \Lambda \delta^a_b,$$

• To the lowest order we get Einstein's theory with cosmological constant as integration constant. Equivalent to

$$(G_{ab} - 8\pi T_{ab})\xi^a \xi^b = 0$$

• In a derivative coupling expansion, Lanczos-Lovelock terms are corrections.

• The extremum value of entropy can be computed on-shell on a solution.

- The extremum value of entropy can be computed on-shell on a solution.
- On any solution with horizon it gives the standard result (Wald entropy):

$$S|_{\mathcal{H}}[\text{on-shell}] = 2\pi \oint_{\mathcal{H}} P^{abcd} n_{ab} n_{cd} \tilde{\boldsymbol{\epsilon}} = \sum_{m=1}^{K} 4\pi m c_m \int_{\mathcal{H}} d^{D-2} x_{\perp} \sqrt{\sigma} \mathcal{L}_{(m-1)} \,,$$

- The extremum value of entropy can be computed on-shell on a solution.
- On any solution with horizon it gives the standard result (Wald entropy):

$$S|_{\mathcal{H}}[\text{on-shell}] = 2\pi \oint_{\mathcal{H}} P^{abcd} n_{ab} n_{cd} \tilde{\boldsymbol{\epsilon}} = \sum_{m=1}^{K} 4\pi m c_m \int_{\mathcal{H}} d^{D-2} x_{\perp} \sqrt{\sigma} \mathcal{L}_{(m-1)} \,,$$

• At the lowest order, we get quarter of transverse area as entropy.

- The extremum value of entropy can be computed on-shell on a solution.
- On any solution with horizon it gives the standard result (Wald entropy):

$$S|_{\mathcal{H}}[\text{on-shell}] = 2\pi \oint_{\mathcal{H}} P^{abcd} n_{ab} n_{cd} \tilde{\boldsymbol{\epsilon}} = \sum_{m=1}^{K} 4\pi m c_m \int_{\mathcal{H}} d^{D-2} x_{\perp} \sqrt{\sigma} \mathcal{L}_{(m-1)} \,,$$

- At the lowest order, we get quarter of transverse area as entropy.
- For *any* solution, in a local Rindler frame, the causal horizons have the correct entropy.

THE REAL TROUBLE COSMOLOGICAL CONSTANT

• The matter sector and its equations are invariant under the shift of the Lagrangian by a constant: $L_{matter} \rightarrow L_{matter} - \rho$.

- The matter sector and its equations are invariant under the shift of the Lagrangian by a constant: $L_{matter} \rightarrow L_{matter} \rho$.
- But this changes energy momentum tensor by $T_{ab} \rightarrow T_{ab} + \rho g_{ab}$ and gravity sector is not invariant under this transformation.

- The matter sector and its equations are invariant under the shift of the Lagrangian by a constant: $L_{matter} \rightarrow L_{matter} \rho$.
- But this changes energy momentum tensor by $T_{ab} \rightarrow T_{ab} + \rho g_{ab}$ and gravity sector is not invariant under this transformation.
- So after you have "solved" the cosmological constant problem, if someone introduces $L_{matter} \rightarrow L_{matter} \rho$, you are in trouble again!

- The matter sector and its equations are invariant under the shift of the Lagrangian by a constant: $L_{matter} \rightarrow L_{matter} \rho$.
- But this changes energy momentum tensor by $T_{ab} \rightarrow T_{ab} + \rho g_{ab}$ and gravity sector is not invariant under this transformation.
- So after you have "solved" the cosmological constant problem, if someone introduces $L_{matter} \rightarrow L_{matter} \rho$, you are in trouble again!
- The only way out is to have a formalism for gravity which is invariant under $T_{ab} \rightarrow T_{ab} + \rho g_{ab}$.

- The matter sector and its equations are invariant under the shift of the Lagrangian by a constant: $L_{matter} \rightarrow L_{matter} \rho$.
- But this changes energy momentum tensor by $T_{ab} \rightarrow T_{ab} + \rho g_{ab}$ and gravity sector is not invariant under this transformation.
- So after you have "solved" the cosmological constant problem, if someone introduces $L_{matter} \rightarrow L_{matter} \rho$, you are in trouble again!
- The only way out is to have a formalism for gravity which is invariant under $T_{ab} \rightarrow T_{ab} + \rho g_{ab}$.
- This will also make gravity immune to bulk vacuum energy density.

• The entropy functional for null vectors is invariant under the shift $T_{ab} \rightarrow T_{ab} + \rho g_{ab}$!

- The entropy functional for null vectors *is* invariant under the shift $T_{ab} \rightarrow T_{ab} + \rho g_{ab}$!
- The field equations have a new 'gauge freedom' and has the form:

$$P_b^{\ ijk}R^a_{\ ijk} - \frac{1}{2}L\delta^a_b - \kappa T^a_b = (constant)\delta^a_b$$

- The entropy functional for null vectors *is* invariant under the shift $T_{ab} \rightarrow T_{ab} + \rho g_{ab}$!
- The field equations have a new 'gauge freedom' and has the form:

$$P_b^{\ ijk} R^a_{\ ijk} - \frac{1}{2} L \delta^a_b - \kappa T^a_b = (constant) \delta^a_b$$

• The classical bulk energy density of the form $T_b^a = \rho \delta_b^a$ can be gauged away.

- The entropy functional for null vectors *is* invariant under the shift $T_{ab} \rightarrow T_{ab} + \rho g_{ab}$!
- The field equations have a new 'gauge freedom' and has the form:

$$P_b^{\ ijk} R^a_{\ ijk} - \frac{1}{2} L \delta^a_b - \kappa T^a_b = (constant) \delta^a_b$$

- The classical bulk energy density of the form $T_b^a = \rho \delta_b^a$ can be gauged away.
- But not the quantum fluctuations in the energy density.

VACUUM FLUCTUATIONS AND $\rho_{\rm vac}$

T.P, CQG, 22, L107-L110, (2005) hep-th/0406060

• The coupling between gravity and T_{ab} allows gravity to act as "detector" of large scale vacuum fluctuations in energy density.
T.P, CQG, 22, L107-L110, (2005) hep-th/0406060

- The coupling between gravity and T_{ab} allows gravity to act as "detector" of large scale vacuum fluctuations in energy density.
- Given L_P and L_H we have $ho_{_{
 m UV}}=1/L_P^4$ and $ho_{_{
 m IR}}=1/L_H^4$.

T.P, CQG, 22, L107-L110, (2005) hep-th/0406060

- The coupling between gravity and T_{ab} allows gravity to act as "detector" of large scale vacuum fluctuations in energy density.
- Given L_P and L_H we have $\rho_{_{\rm UV}}=1/L_P^4$ and $\rho_{_{\rm IR}}=1/L_H^4$. The observed values is:

$$\rho_{\rm de} \approx \sqrt{\rho_{\rm uv} \rho_{\rm ir}} \approx \frac{1}{L_P^2 L_H^2} \approx \frac{H^2}{G}$$

T.P, CQG, 22, L107-L110, (2005) hep-th/0406060

- The coupling between gravity and T_{ab} allows gravity to act as "detector" of large scale vacuum fluctuations in energy density.
- Given L_P and L_H we have $\rho_{_{\rm UV}}=1/L_P^4$ and $\rho_{_{\rm IR}}=1/L_H^4$. The observed values is:

$$\rho_{\rm de} \approx \sqrt{\rho_{\rm uv} \rho_{\rm ir}} \approx \frac{1}{L_P^2 L_H^2} \approx \frac{H^2}{G}$$

$$\rho_{\text{vac}} = \frac{1}{L_P^4} + \frac{1}{L_P^4} \left(\frac{L_P}{L_H}\right)^2 + \frac{1}{L_P^4} \left(\frac{L_P}{L_H}\right)^4 + \cdots$$

T.P, CQG, 22, L107-L110, (2005) hep-th/0406060

- The coupling between gravity and T_{ab} allows gravity to act as "detector" of large scale vacuum fluctuations in energy density.
- Given L_P and L_H we have $\rho_{_{\rm UV}} = 1/L_P^4$ and $\rho_{_{\rm IR}} = 1/L_H^4$. The observed values is:

$$\rho_{\rm de} \approx \sqrt{\rho_{\rm uv} \rho_{\rm ir}} \approx \frac{1}{L_P^2 L_H^2} \approx \frac{H^2}{G}$$

$$\rho_{\text{vac}} = \frac{1}{L_P^4} + \frac{1}{L_P^4} \left(\frac{L_P}{L_H}\right)^2 + \frac{1}{L_P^4} \left(\frac{L_P}{L_H}\right)^4 + \cdots$$
Important: Bulk term
is now ignored by gravity

T.P, CQG, 22, L107-L110, (2005) hep-th/0406060

- The coupling between gravity and T_{ab} allows gravity to act as "detector" of large scale vacuum fluctuations in energy density.
- Given L_P and L_H we have $\rho_{\rm uv} = 1/L_P^4$ and $\rho_{\rm IR} = 1/L_H^4$. The observed values is:

$$\rho_{\rm de} \approx \sqrt{\rho_{\rm uv} \rho_{\rm ir}} \approx \frac{1}{L_P^2 L_H^2} \approx \frac{H^2}{G}$$

T.P, CQG, 22, L107-L110, (2005) hep-th/0406060

- The coupling between gravity and T_{ab} allows gravity to act as "detector" of large scale vacuum fluctuations in energy density.
- Given L_P and L_H we have $\rho_{\rm uv} = 1/L_P^4$ and $\rho_{\rm IR} = 1/L_H^4$. The observed values is:

$$\rho_{\rm de} \approx \sqrt{\rho_{\rm uv} \rho_{\rm ir}} \approx \frac{1}{L_P^2 L_H^2} \approx \frac{H^2}{G}$$

• Gravity described by is an emergent, long-wavelength phenomenon like elasticity. The $g_{ab}(t, \mathbf{x})$ is like $\rho(t, \mathbf{x})$.

- Gravity described by is an emergent, long-wavelength phenomenon like elasticity. The $g_{ab}(t, \mathbf{x})$ is like $\rho(t, \mathbf{x})$.
- Maximizing the entropy associated with all null surfaces gives Einstein's theory with Lanczos-Lovelock corrections [but not, e.g., f(R) gravity].

- Gravity described by is an emergent, long-wavelength phenomenon like elasticity. The $g_{ab}(t, \mathbf{x})$ is like $\rho(t, \mathbf{x})$.
- Maximizing the entropy associated with all null surfaces gives Einstein's theory with Lanczos-Lovelock corrections [but not, e.g., f(R) gravity].
- Since metric is not dynamical, usual problems of surface term etc. in the action do not arise.

- Gravity described by is an emergent, long-wavelength phenomenon like elasticity. The $g_{ab}(t, \mathbf{x})$ is like $\rho(t, \mathbf{x})$.
- Maximizing the entropy associated with all null surfaces gives Einstein's theory with Lanczos-Lovelock corrections [but not, e.g., f(R) gravity].
- Since metric is not dynamical, usual problems of surface term etc. in the action do not arise.
- Connects with the radial displacements of horizons and TdS = dE + PdV as the key to obtaining a thermodynamic interpretation of gravitational theories.

- Gravity described by is an emergent, long-wavelength phenomenon like elasticity. The $g_{ab}(t, \mathbf{x})$ is like $\rho(t, \mathbf{x})$.
- Maximizing the entropy associated with all null surfaces gives Einstein's theory with Lanczos-Lovelock corrections [but not, e.g., f(R) gravity].
- Since metric is not dynamical, usual problems of surface term etc. in the action do not arise.
- Connects with the radial displacements of horizons and TdS = dE + PdV as the key to obtaining a thermodynamic interpretation of gravitational theories.
- The deep connection between gravity and thermodynamics *goes well beyond Einstein's theory*. Closely related to the holographic structure of Lanczos-Lovelock theories.

OPEN QUESTIONS

- Why does all this work ?
 - Conditions on P_{cd}^{ab} , derivatives of curvature tensor
 - Thermodynamics goes beyond Einstein's theory!
 - Does not work in gauge theories, f(R) gravity,

OPEN QUESTIONS

- Why does all this work ?
 - Conditions on P_{cd}^{ab} , derivatives of curvature tensor
 - Thermodynamics goes beyond Einstein's theory!
 - Does not work in gauge theories, f(R) gravity,
- Matter sector is horribly inelegant. Possible clue in

$$S = \int d^{D}x \left[4 \frac{\partial \mathcal{L}}{\partial R^{ab}_{cd}} \nabla_{c} \xi^{a} \nabla_{d} \xi^{b} + \frac{1}{2} \frac{\partial \mathcal{L}}{\partial g^{ab}} \xi^{a} \xi^{b} \right]$$

OPEN QUESTIONS

- Why does all this work ?
 - Conditions on P_{cd}^{ab} , derivatives of curvature tensor
 - Thermodynamics goes beyond Einstein's theory!
 - Does not work in gauge theories, f(R) gravity,
- Matter sector is horribly inelegant. Possible clue in

$$S = \int d^{D}x \left[4 \frac{\partial \mathcal{L}}{\partial R^{ab}_{cd}} \nabla_{c} \xi^{a} \nabla_{d} \xi^{b} + \frac{1}{2} \frac{\partial \mathcal{L}}{\partial g^{ab}} \xi^{a} \xi^{b} \right]$$

 Analogy: horizons in euclidean spacetime ↔ defects in solids. Clue for a new path integral prescription ?

REFERENCES

- 1. Original ideas were developed in:
 - T. Padmanabhan, *Class.Quan.Grav.* **19**, 5387 (2002). [gr-qc/0204019]
 - T. Padmanabhan, *Gen.Rel.Grav.*, **34** 2029-2035 (2002) [gr-qc/0205090] [Second Prize essay; Gravity Research Foundation Essay Contest, 2002]
 - T. Padmanabhan, *Gen.Rel.Grav.*, **35**, 2097-2103 (2003) [Fifth Prize essay; Gravity Research Foundation Essay Contest, 2003]
 - T. Padmanabhan, *Gen.Rel.Grav.*, **38**, 1547-1552 (2006) [Third Prize essay; Gravity Research Foundation Essay Contest, 2006]
- 2. Summary of the basic approach is in:
 - T. Padmanabhan Phys. Reports, 406, 49 (2005) [gr-qc/0311036]
- 3. Current results are based on:
 - Aseem Paranjape, Sudipta Sarkar, T. Padmanabhan, *Phys.Rev., D* 74, 104015 (2006) [hep-th/0607240]
 - A. Mukhopadhyay, T. Padmanabhan, *Phys.Rev., D* 74, 124023 (2006) [hep-th/0608120]
 - Dawood Kothawala, Sudipta Sarkar, T. Padmanabhan, [gr-qc/0701002]
 - T. Padmanabhan, Aseem Paranjape, [gr-qc/0701003]