Probing strong gravity with ASTROSAT

Dipankar Bhattacharya IUCAA, Pune

A Satellite Mission for Multi-wavelength Astronomy

Indian Space Research Organisation

ASTROSAT is an Indian satellite scheduled for launch in 2009

It will carry five astronomy payloads covering optical, UV, soft-X ray and hard X-ray bands

ASTROSAT INSTRUMENTS Large Area X-ray Proportional Counter (LAXPC)

Scanning Sky Monitor (SSM)

UV Imaging Telescope (UVIT)

Soft X-ray telescope (SXT)

> Cadmium Zinc Telluride Imager (CZTI)

Charged Particle Monitor (CPM)

ASTROSAT

5 instruments

LAXPC, CZTI, SXT, UVIT : co-aligned

SSM : orthogonal to the rest, large-FOV monitor

ASTROSAT configuration

Observable signatures of strong gravity

- Luminosity production by matter accretion
- High frequency intensity variations
- Gravitational redshift
- Light bending
- Lense-Thirring effect
- Geodetic precession
- Post-Keplerian binary orbit
- Gravitational Radiation (and its reaction)

Applicable sites are collapsed objects

- Neutron Stars: stellar mass
- Black Holes: stellar mass supermassive

Compact Star in accreting binary system

- Matter accretes in the form of a disk
- X-rays are generated by accreting matter
- Outer parts of the disk radiate in UV/optical

Accretion on a magnetized neutron star

Stellar spin + polar hot spot => pulsar activity (needs B > 10⁹ G) Complex structure in X-ray intensity variations, even for low B X-ray timing rich source of information; key strength of ASTROSAT

Beat frequency model for twin QPO

Burst Oscillations

Relativistic precession model

For spinning neutron stars, gravitomagnetic effect will modify frequencies

Epicyclic Resonance in disk oscillation: vertical/radial

Thampan, Bhattacharya, Datta 1998

Thermal spectrum from accretion disk

Multicolour Blackbody : T(r) : inner disk hotter

Temperature depends on

- compact object mass
- accretion rate

Observed emission modified by

- gravitational redshift
- light bending

In presence of BH horizon: ADAF

Gravitational Redshift from NS surface

Gravitational Redshift from the Accretion Disk: Fe Kα line

Observable signatures of strong gravity

Accretion Disk Thermal Spectrum

Black Holes

Black Hole is fully characterized by M, J

Does not radiate by itself.

Studied through influence on its surroundings

Accretion flow entering the BH samples regions nearest to it. Matter approaches the BH in a disk, gets hot and radiates up to 50% of the rest mass of accreted matter

Study of the accretion flow is one of the most important ways to study Black Holes

Accreting Black Hole: Radiation Components

lower M

higher J

- Thermal disk radiation (soft) matter closest to BH hottest : (ISCO
- Compton upscattered hard photons from hot electrons
- "Reflected" hard photons from the accretion disk
- Fe K-α line
- Jets and outflows, non-thermal synchrotron

DW jets: launching mechanism

Radio Galaxy Cygnus X-I

Stellar Mass Black Holes

Luminosity/Spectral state change monitoring (SSM) Broadband spectra (SXT, LAXPC, CZTI) Timing, fluctuation spectra - QPO, LFN (LAXPC) Multi-wavelength campaign: jet launch in microquasars

Ultra Luminous X-ray Sources

Broadband spectra and timing/QPO : mass estimates

Active Galactic Nuclei

Stellar Mass Black Holes

Luminosity/Spectral state change monitoring (SSM) Broadband spectra (SXT, LAXPC, CZTI) Timing, fluctuation spectra - QPO, LFN (LAXPC) Multi-wavelength campaign: jet launch in microquasars

Ultra Luminous X-ray Sources

Broadband spectra and timing/QPO : mass estimates

Active Galactic Nuclei

Stellar Mass Black Holes

Luminosity/Spectral state change monitoring (SSM) Broadband spectra (SXT, LAXPC, CZTI) Timing, fluctuation spectra - QPO, LFN (LAXPC) Multi-wavelength campaign: jet launch in microquasars

Ultra Luminous X-ray Sources

Broadband spectra and timing/QPO : mass estimates

Active Galactic Nuclei

GX 339-4 low-hard state simultaneous XMM - RXTE spectrum

Stellar Mass Black Holes

Luminosity/Spectral state change monitoring (SSM) Broadband spectra (SXT, LAXPC, CZTI) Timing, fluctuation spectra - QPO, LFN (LAXPC) Multi-wavelength campaign: jet launch in microquasars

Ultra Luminous X-ray Sources

Broadband spectra and timing/QPO : mass estimates

Active Galactic Nuclei

Cygnus X-I: variation of Power Density Spectrum

ms X-ray flare from Cyg X-I

Black Hole twin QPO

GRO J1655-40

M82 ULX: Intermediate Mass Black Hole

MCG 6-30-15 ASCA

MCG 6-30-15 XMM

Stellar Mass Black Holes

Luminosity/Spectral state change monitoring (SSM) Broadband spectra (SXT, LAXPC, CZTI) Timing, fluctuation spectra - QPO, LFN (LAXPC) Multi-wavelength campaign: jet launch in microquasars

Ultra Luminous X-ray Sources Broadband spectra and timing/QPO : mass estimates

Active Galactic Nuclei

Stellar Mass Black Holes

Luminosity/Spectral state change monitoring (SSM) Broadband spectra (SXT, LAXPC, CZTI) Timing, fluctuation spectra - QPO, LFN (LAXPC) Multi-wavelength campaign: jet launch in microquasars

Ultra Luminous X-ray Sources

Broadband spectra and timing/QPO : mass estimates

Active Galactic Nuclei

Rapid X-ray variability in Seyfert I galaxy IRAS 13224-3809 observed from the ASCA satellite

Multiwavelength science: AGN :: Blazars

Multiwavelength science: AGN :: Blazars

Multiwavelength science: AGN :: Blazars

Multiwavelength science: AGN :: Disk photons+Compton

log photon energy

Multiwavelength science: AGN :: Disk photons+Compton

log photon energy

ASTROSAT will be a multi-purpose observatory. Will operate via AO, proposals

Proposals may be made for one or more of the co-aligned instruments

Proposals will be peer reviewed. Acceptance will be decided by the ASTROSAT time allocation committee

Rights to data obtained with the instruments asked for in the proposal will rest with the PI of the proposal for 18 months. Public release of data after the expiry of the lock-in period.

ASTROSAT time allocation

T0 +	l st yr	2nd yr	3rd yr	4th yr
Instrument teams	6m - PV 6m - GT	50%	30%	
CSA		3%	3%	3%
Leicester		3%	3%	3%
Open IND	-	35%	45%	65%
Open Intl	_	-	10%	20%
TOO		5%	5%	5%
Calib		4%	4%	4%

Summary

- ASTROSAT will provide an important platform to study regions of strong gravity.
- Large fraction of ASTROSAT observing time will be open to the Indian community.
- Project ideas are welcome. For details/discussions/ assistance contact any of us in the ASTROSAT community.

dipankar@iucaa.ernet.in http://meghnad.iucaa.ernet.in/~astrosat/ Thank you

ASTROSAT

	Energy range	Description	Angular resolution	sensitivity
SXT	0.3 – 8 keV	Focussing X-ray mirror + CCD (39 shells) FOV=42'	3 – 4 arcmin	~0.01milliCrab (10,000 sec)
LAXPC	2 – 80 keV	Large proportional counters (3)	1 deg collimator	0.1 milliCrab (1000 sec)
CZTI	10 – 150 keV	CZT array (hard X-ray imager)	8 arcmin	0.5 milliCrab (1000 sec)
SSM	2 – 10 keV	All sky monitor (3) on a rotating platform	5 – 10 arcmin	30 milliCrab (300 sec)
UVIT	1300 – 6500 Ang	Twin RC telescopes – 40 cm each (NUV,VIS, FUV)	1.8 arc sec	21 magnitude (1800 sec)

Ignition and spreading

2D shallow water model on a sphere v=300 Hz; 200 revolutions

Spitkovsky, Levin, & Ushomirsky (2002)