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Why Quantum Gravity ?

• Black hole entropy : does not exist classically

• Inevitability of sptm singularities in cl GR : ‘big bang’ (pa st) and
black hole/naked (future)

Analogy with incompleteness of Maxwell electrodynamics⇒ expect ap-
propriate formulation of ‘Quantum Spacetime Geometry’ to resolve conun-
dra

No Complete Theory Yet of Quantum Sptm Geom !

SurveyLoop Quantum Gravity proposal on

• Ab initio understanding of black hole entropy→ area law+ signature
corrections

• Resolution of Big Bang singularity (simple models)



Created with pptalk Slide 2

Why Quantum Gravity ?

• Black hole entropy : does not exist classically

• Inevitability of sptm singularities in cl GR : ‘big bang’ (pa st) and
black hole/naked (future)

Analogy with incompleteness of Maxwell electrodynamics⇒ expect ap-
propriate formulation of ‘Quantum Spacetime Geometry’ to resolve conun-
dra

No Complete Theory Yet of Quantum Sptm Geom !

SurveyLoop Quantum Gravity proposal on

• Ab initio understanding of black hole entropy→ area law+ signature
corrections

• Resolution of Big Bang singularity (simple models)



Created with pptalk Slide 2

Why Quantum Gravity ?

• Black hole entropy : does not exist classically

• Inevitability of sptm singularities in cl GR : ‘big bang’ (pa st) and
black hole/naked (future)

Analogy with incompleteness of Maxwell electrodynamics⇒ expect ap-
propriate formulation of ‘Quantum Spacetime Geometry’ to resolve conun-
dra

No Complete Theory Yet of Quantum Sptm Geom !

SurveyLoop Quantum Gravity proposal on

• Ab initio understanding of black hole entropy→ area law+ signature
corrections

• Resolution of Big Bang singularity (simple models)



Created with pptalk Slide 2

Why Quantum Gravity ?

• Black hole entropy : does not exist classically

• Inevitability of sptm singularities in cl GR : ‘big bang’ (pa st) and
black hole/naked (future)

Analogy with incompleteness of Maxwell electrodynamics⇒ expect ap-
propriate formulation of ‘Quantum Spacetime Geometry’ to resolve conun-
dra

No Complete Theory Yet of Quantum Sptm Geom !

SurveyLoop Quantum Gravity proposal on

• Ab initio understanding of black hole entropy→ area law+ signature
corrections

• Resolution of Big Bang singularity (simple models)



Created with pptalk Slide 2

Why Quantum Gravity ?

• Black hole entropy : does not exist classically

• Inevitability of sptm singularities in cl GR : ‘big bang’ (pa st) and
black hole/naked (future)

Analogy with incompleteness of Maxwell electrodynamics⇒ expect ap-
propriate formulation of ‘Quantum Spacetime Geometry’ to resolve conun-
dra

No Complete Theory Yet of Quantum Sptm Geom !

SurveyLoop Quantum Gravity proposal on

• Ab initio understanding of black hole entropy→ area law+ signature
corrections

• Resolution of Big Bang singularity (simple models)



Created with pptalk Slide 2

Why Quantum Gravity ?

• Black hole entropy : does not exist classically

• Inevitability of sptm singularities in cl GR : ‘big bang’ (pa st) and
black hole/naked (future)

Analogy with incompleteness of Maxwell electrodynamics⇒ expect ap-
propriate formulation of ‘Quantum Spacetime Geometry’ to resolve conun-
dra

No Complete Theory Yet of Quantum Sptm Geom !

SurveyLoop Quantum Gravity proposal on

• Ab initio understanding of black hole entropy→ area law+ signature
corrections

• Resolution of Big Bang singularity (simple models)



Created with pptalk Slide 2

Why Quantum Gravity ?

• Black hole entropy : does not exist classically

• Inevitability of sptm singularities in cl GR : ‘big bang’ (pa st) and
black hole/naked (future)

Analogy with incompleteness of Maxwell electrodynamics⇒ expect ap-
propriate formulation of ‘Quantum Spacetime Geometry’ to resolve conun-
dra

No Complete Theory Yet of Quantum Sptm Geom !

SurveyLoop Quantum Gravity proposal on

• Ab initio understanding of black hole entropy→ area law+ signature
corrections

• Resolution of Big Bang singularity (simple models)



Created with pptalk Slide 2

Why Quantum Gravity ?

• Black hole entropy : does not exist classically

• Inevitability of sptm singularities in cl GR : ‘big bang’ (pa st) and
black hole/naked (future)

Analogy with incompleteness of Maxwell electrodynamics⇒ expect ap-
propriate formulation of ‘Quantum Spacetime Geometry’ to resolve conun-
dra

No Complete Theory Yet of Quantum Sptm Geom !

SurveyLoop Quantum Gravity proposal on

• Ab initio understanding of black hole entropy→ area law+ signature
corrections

• Resolution of Big Bang singularity (simple models)



Created with pptalk Slide 3

Gen. Sec. Law of thermo.Bekenstein, 1973 :δ(Sout + Sbh) ≥ 0.

Sbh =
Ahor

4l2P
(kB = 1)

lP ≡ (G~/c3)1/2 ∼ 10−33cm→ quantum gravity

Sbh ∝ l−2
P ⇒ non-perturbative

Need to go beyond classical GR - compulsion, not aesthetics
Physics at10−33 cm determines entropy of bh of size1011 cm – Extreme
Macro QM!

Two issues to be addressed:

• How is it that Sbh = Sbh(Ahor) while Sthermo = Sthermo(vol) ?

• What degrees of freedom contribute toSbh ?
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Grav energyglobally defined

HKomar =
1

8π

∫

S∞
d2σab∇aKb

Classically, bulk⇒ boundary entirely

Holography: 3 dim bulk info encoded on 2 dim bdy

QGR:∃ indep qu fluct on bdy :H = Hv ⊗Hb

|Ψ〉 =
∑

v,b

cvb |ψv〉︸︷︷︸

blk

|χb〉︸︷︷︸

bdy

∈ Hv ⊗Hb
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‘Quantum Einstein EQ’ (bulk)

Ĥv |ψv〉 = 0

Z =
∑

b




∑

v

|cvb|
2|| |ψv〉 ||

2



 〈χb| exp−βĤbdy|χb〉

≡ Z
bdy

Bulk states decouple! → Thermal holography ! (PM 2007, 2009)

Weaker version of holography cf ‘Holographic Hypothesis’’t Hooft 1993; Susskind

1995

Canonical Ensemble of (isolated) horizons (as sptm bdy) : States charac-
terized byAn ∼ n l2P , n ∈ Z (LQG)



Created with pptalk Slide 5

‘Quantum Einstein EQ’ (bulk)

Ĥv |ψv〉 = 0

Z =
∑

b




∑

v

|c
vb
|2|| |ψv〉 ||

2



 〈χ
b
| exp−βĤ
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Hor partition fct (G = c = kB = 1) Das, Bhaduri, PM 2001; Chatterjee, PM 2003, 2005

Z(β) =
∑

n

g(M (An)) exp−βM (An)

≃ exp [S(Ahor) − βM (Ahor)] · ∆
−1/2(Ahor)

Canon entropy

Scan(Ahor) = S(Ahor) +
1

2
log ∆

Stable thermal equil

⇒ Scan > 0 ⇒ ∆ > 0

Criterion forThermal Stability PM 2007

M (Ahor)

MP
>
S(Ahor)

kB
Classical geom not used in derivation : QG origin
But S(Ahor) =?
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• Equil (Isolated) horizon ?Ashtekar et. al. 1997-2000

• Horizon deg of freedom & dynamics ?Ashtekar et. al. 1997-2000; Basu, Kaul, PM 2009,;

Kaul, PM 2010; Basu, Chatterjee, Ghosh 2010; Engel et. al. 2009-10

• Counting of horizon states ?Ashtekar et. al. 1997,2000; Kaul, PM 1998,2000; Das, Kaul, PM 2001



Created with pptalk Slide 7

• Equil (Isolated) horizon ?Ashtekar et. al. 1997-2000

• Horizon deg of freedom & dynamics ?Ashtekar et. al. 1997-2000; Basu, Kaul, PM 2009,;

Kaul, PM 2010; Basu, Chatterjee, Ghosh 2010; Engel et. al. 2009-10

• Counting of horizon states ?Ashtekar et. al. 1997,2000; Kaul, PM 1998,2000; Das, Kaul, PM 2001



Created with pptalk Slide 7

• Equil (Isolated) horizon ?Ashtekar et. al. 1997-2000

• Horizon deg of freedom & dynamics ?Ashtekar et. al. 1997-2000; Basu, Kaul, PM 2009,;

Kaul, PM 2010; Basu, Chatterjee, Ghosh 2010; Engel et. al. 2009-10

• Counting of horizon states ?Ashtekar et. al. 1997,2000; Kaul, PM 1998,2000; Das, Kaul, PM 2001



Created with pptalk Slide 8

M1

M

M

M

2

3

4
H’

H

i 0

H’ H’

H H

M

M’



Created with pptalk Slide 9

• Start w/ Schwarzschild metric : choose a tetrad basis and compute spin
connection coeff and curvature compKaul, PM 2010

• Define Barbero-ImmirziSU(2) connection

• Pull back to horizon (sph fol) and compute curvature on sph

• Compute pull back of cross-product of tetrads to sph fol of horizon

• Result:
k

2π
Fab(A) = −Σab

where,k = # · (Ahor/l
2
P ) , k >> 1

• SU(2) Chern Simons gauge theory EoM

• Can gauge fix toU(1) CS with extra conditions on sources⇒ SU(2)
dynamicsBasu, Kaul, PM 2009; Kaul, PM 2010

• Gravity-gauge theory (topol) link derived
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Loop Quantum Gravity : background-indep, non-perturbativ e

SL(2, C) Variables :eIa , ω
IJ
a → ΣIJab ≡ eI

[a
eJ
b]
, RIJab ≡ ∂[aω

IJ
b]

+ωIK
[a
ωJ
b]K

S[e, ω] = SHP + SNY

SHP = −
1

16πG

∫

M
e ΣabIJ R

IJ
ab

SNY =
1

2γ

∫

M
ǫabcd

[

(Dae
I
b) (DcedI) −

1

2
ΣIJab RcdIJ

]

SNY is topological,γ (Barbero-Immirzi) resemblesθYM

Hamiltonian formulation (Date, Kaul, Sengupta 2008) : On spatial sliceMt local
Lorentz boosts gauge fixed to give Barbero-ImmirziSU(2) gauge theories

: A(γ)I
a ≡ γωIa +KI

a , E
a
I : | det q|qab = EaIE

b
Jδ
IJ

[

AIa(x), EbJ(y)
]

PB
= 8πGγ δba δ

I
J δ

(3)(x, y)
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First class constraints

GI(Λ) =

∫

Mt

ΛI Da(A) EaI Gauss

Ca(N
a) =

∫

Mt

Na EbI F
I
ab Diffeo

C(N ) =
1

16πGγ

∫

Mt

N
EaIE

b
J

|E|1/2

[
1

2
ǫIJKFabK(A) − (1 + γ−2)KI

aK
J
b

]

Hamil

Global variables :

holonomies hC(A) ≡ P exp

∫

C
A

fluxes E [S, f ] ≡

∫

S
EaI ǫabc dx

a ∧ dxbfI

Cylindrical functionals:ψ[A] = ψ
(
hC1

(A), hC2
(A), ...hCn(A)

)
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Algebra of observables :

ψ1 · ψ2 [A] = ψ1 [A] ψ2 [A]

[ ψ,E[S, r] ] = 8πGγ X [S, r] ψ

. . .

X [S, r] → derivation on{ψ}

Convenient basis : Generalized spin networks
Edges : oriented curves embedded inMt carrying SU(2) spin j =
0, 1/2, 1, 3/2, . . .
Vertices : invariantSU(2) tensors constructed out of spins on edges enter-
ing or leaving vertex

Graphg consisting ofl edges with spinsj1, . . . , jl andv vertices→ ψ =
∏

i∈{l} hi(A) ·
∏

k∈{v} Tk

A givenψ → linear combination of spinnet graphs
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Spin network : Quantum Space
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Area operator (also volume, length) have bded, discrete spectrum

sI

ÂS ≡
N∑

I=1

∫

SI

det1/2[2g(Ê)]

a(j1, . . . , jN ) =
1

4
γl2P

N∑

p=1

√

jp(jp + 1)

lim
N→∞

a(j1, ....jN ) ≤ Acl +O(l2P )

Equispaced∀jp = 1/2
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‘Quantum’ Isolated Horizon → effective description(Ashtekar, Baez, Corichi, Krasnov

1997)
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Need to computeSIH = log dimHCS+ptsources(j1,...jn)
for fixed AIH ±

O(l2P )

Witten (1986) :dimHCS = #conf blocks of SU(2)k WZW (CFT2) on
puncturedS2

4 dim gravity→ 2 dim CFT link

⇒ (Kaul, PM 1998)

dim HCS+(j1,...,jn)
=

n∏

p=1

jp
∑

mp=−jp

[δm1+···+mn,0

−
1

2
δm1+···+mn,−1

−
1

2
δm1+···+mn,1]
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If jp = 1
2 ∀ p = 1, . . . , n

Smc = SIH =
AIH
4l2P︸︷︷︸

(Ashtekar et. al. 1997)

−
3

2
log

(

AIH
4l2P

)

+ const. + O(A−1
IH)

︸ ︷︷ ︸

(Kaul,PM 2000)

Infinite series of corrections to semicl BHAL : characteristic signature
of LQG
Corollary :

β = βHaw

(

1 +
6l2P
Ahor

+ . . .

)
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Grav Hamiltonian operator

Ĉ(N ) =
∑

v,IJK

N (v)ǫIJK tr
[

hv,I hv+I,J h
−1
v+J,I h

−1
v,J hv,K [h−1

v,K, V̂ ]
]

Symmetry ReductionBojowald 2001; rev. Date 2010

Given H and symmetry groupG ,H/G → space of orbits. Restrict to
Hinv ⊂ H/G → space of trivial orbits

Strategy :Quantization after reduction : Reduce toΓinv ⊂ Γ/G and then
quantize

Example: sph symm models :ds2 = dτ2 − f2(τ,R)dR2 − r2(τ,R) (dθ2 +
sin2 θ dφ2) → f (τ,R) , r(τ,R) only dynamical dof

Mini-superspace : homogeneous and isotropic spacetimes (Bianchi cos-
mologies) described by finitely many dof→ quantum mech systemBojowald

2001
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Symmetry reduction on cl phase spaceΓ = {AIa , E
a
I}

AIa(t, x) = ΦIi (t) ω
i
a(x)

EaI (t, x) = piI(t)
√

g0(x)Xa
i (x)

ωi → Maurer-Cartan 1-forms onMt ≡ G∗ andXi → dual;g0 ≡ det(gij)

Isotropy ⇒

ΦIi (t) = c(t) ΛIi
piI(t) = p(t) ΛiI

[c , p]PB =
8πγG

3

Diagonal: gij diagonal⇒ ΦIi = ci ΛIi , p
i
I = pi ΛiI (ns)

[ci , p
j]PB = 8

3πGγ δ
j
i
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Singularity Resolution Lectures by G. Date 2010

Strategy : Couple (spatially flat) FRW backgd to massless scalar fieldφ→
‘emergent’ time and study classical and quantal dynamics

Connection and triads:c = γȧ , |p| = a2

Hcl = −
3

8πG

(

γ−2 c2
√

|p|
)

+
1

2
|p|−3/2 p2

φ

SolveHcl = 0 for c in terms ofp andpφ and then solve Hamilton’s equa-
tions forφ(t) , p(t) , pφ(t)

p(φ) = p(φ∗) exp±

(
8πGγ

3

)1/2

(φ− φ∗)

pφ(φ) = const.

where,φ̇(t) > 0 ⇒ φ→ emergent time

As φ→ ±∞ , p→ 0 , E ≡ p−6 p2
φ/2 → ∞ ⇒ Big Bang singularity !
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Loop Quantization
Algebra of observables→ algebra ofexp iλc , λ ∈ R

Explicit holonomy-flux rep.

p̂|µ〉 =
1

6
γ l2P µ|µ〉 , 〈µ|µ

′〉 = δµ,µ′

ĥν|µ〉 ≡ ˆexp iµc|µ〉 = |µ + ν〉 , µ, ν ∈ R

• p̂ has discrete spectrum; volumêV ≡ |p̂|3/2

• Matrix elements of̂hν not continuous inν ⇒ ĉ→ cannot be defined

• p̂−1 or its positive powers cannot exist since spectrum ofp̂ includes 0

Need ‘regularized’̂p usinghj(c) ≡ expµ0cΛ
IτI , 2j ∈ Z
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• Matrix elements of̂hν not continuous inν ⇒ ĉ→ cannot be defined
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ˆ
|p|−1
j,l |µ〉 =

(
1

3
jµoγl

2
P

)−1

[Fl(q)]
1/(l−1)|µ〉 ,

q ≡
µ

2µ0j
≡

p

2jp0
, l ∈ (0, 1)

Fl(q >> 1) ≈ ql−1

Fl(q ≈ 0) ≈
3q

l + 1

Eigenvalues bounded above⇒ matter densities remain bounded over
classical singularity !

⇒ singularity-causing∼ |p|−3/2 term in Hamiltonian remains finite→
seed for singularity-resolution
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Quantum gravitational Hamiltonian

Ĥgrav,sym|µ〉 =
3

µ0γl
2
P

(|Vµ+3µ0
− Vµ+µ0||µ + 4µ0〉

+ |Vµ−µ0 − Vµ−3µ0
||µ− 4µ0〉

−
[
|Vµ+3µ0

− Vµ+µ0| + |Vµ−µ0 − Vµ−3µ0
|
]
|µ〉)

Vµ ≡ (1
6γl

2
P |µ|)3/2 → eigenvalues of̂V

Wavefunction|Ψ〉 =
∑

µψ(φ, µ)|µ〉 gives the Wheeler-Dewitt equation
(with symmetric factor-ordering)

f+(µ)Ψ(φ, µ + 4µ0) + f0(µ)Ψ(φ, µ) + f−(µ)Ψ(φ, µ− 4µ0)

= −
16

3
πGγ3µ3

0l
2
P Hmat(µ)Ψ(φ, µ)

2nd order Difference eq on latticeL ≡ µ = µ′ + 4µ0n , n ∈ Z
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Effective Hamiltonian

WDW differential eq : assumeΨ(φ, µ) is slowly varying wrtµ

WKB approximation forµ >> µ0 ⇒ Heff = H̃grav+H̃mat where,H̃grav
has received corrections due to use loop quantization usingholonomies,
andH̃mat has received corrections due to use of regularizedˆp−1

Modified FRW : takep >> p0

3

8πG

(
ȧ

a

)2

≡ ρeff = ρcl

(

1 −
8πGγµ2

0

3
p ρcl

)

wherep = 1
4a

2 , ρcl ≡ Hmat |p|
−3/2

Solution has a bounce in the region of classical singularity!

Is the universe before the ‘Big Bounce’ identical to the present universe
?
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Summary : Black hole entropy

• Weaker version of holography derived from QGR, albeit heuristic

• Thermal stability: prelim non-semicl understanding why some black
holes decay and others may not

• Gravity-Gauge theory link explicit :SU(2) CS Topol gauge theory on
IH

• Microcan bh entropy understood for macro bhs; BH area law receives
infinite series of finite corrections (signature)

• Bekenstein entropy bound tightened due to LQG corrections
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Summary : Singularity Resolution

• FRW in terms of holonomy/flux⇒ big bang singularity moved away
from boundary (cf ADM big bang associated with ‘beginning’ requiring
boundary cond)

• Holonomy corrections adequate to resolve big bang through Wheeler
De Witt Difference Eq; but inverse volume corrections also do the job

• Big Bang→ ‘Big Bounce’ although not clear if earlier universe is iden-
tical to ours

• Natural prediction of an inflationary phaseAshtekar et. al. 2009; Bojowald et. al. 2009
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Pending Issues

• Beyond effective quantum horizon : horizon formation during collapse
Basu, Chakraborty, PM in prep.

• IH → Dynamical Hor unclear: Hawking radiation ?

• Info Loss Puzzle: can lowest area quantum be a remnant ? Even so, how
do we get back lost info ?CGHS: Ashtekar, Varadarajan 2007, ...

• Resolution of black hole singularity : midi-superspace ?Ashtekar, Bojowald 2003;

Pullin 2008; Modesto et. al. 2009, ...

• Relation between LQC and LQG ?

• Relation with pheno data : CMB fluctuations, non-Gaussianity, ...

• Dark matter and dark energy within LQC ?
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