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Outline of talk

I Statistical properties of the CMB.

I CMB as probe physics of early universe.

I Investigation of non-Gaussian deviations in the CMB.



Cosmic Microwave Background (CMB) Radiation

T

T’

Background T0 Fluctuation : ∆T
T ≡

T−T0
T0



Cosmic Microwave Background (CMB) Radiation

T

T’

Background T0

Fluctuation : ∆T
T ≡

T−T0
T0



Cosmic Microwave Background (CMB) Radiation

T

T’

Background T0 Fluctuation : ∆T
T ≡

T−T0
T0



Properties of the CMB

Background:

I Black body spectrum with T0 = 2.725± 0.002 µK

Fluctuations

I Appear randomly distributed.

I Analyze by measuring statistical quantities.

mean, PDF, rms, 2-point correlation, 3-point correlation,

geometrical/topological quantities.



Properties of the CMB

Fluctuations : ∆T
T (n̂) ←→ a`m

I mean : zero by definition

I 1-point PDF : looks Gaussian

I rms ' 10−5

I 2-point correlation : Cθ ≡ 〈∆T
T

∆T
T 〉θ ←→ C` ≡ 1

2`+1

∑
m |a`m|2

Bashinsky & Bertschinger (2001) Larson et al (2010)



What physical process in the Universe produced the CMB ?

• Set up physical scenario how CMB photons would
have evolved from past till today.

• Solve evolution equation for ∆T and obtain C`.

• Big bang picture : Universe was smaller, denser,
hotter in the past due to expansion. Must have been
a time when CMB photons were tightly coupled with
matter.



Physics of CMB

• At decoupling epoch

∼ universe filled with plasma of photons, electrons,
protons, dark matter, etc.

∼ coupled by electromagnetic interaction and gravity.

I Photons and baryons – one fluid
with one equilibrium
temperature, T .

I T fluctuates from region to
region : assuming some initial
density fluctuation.

T T’

• Decoupling : mean free path of photons � H−1, H ≡ ȧ
a



Physics of CMB
[Peebles (1970)]
• Basic quantity : photon distribution function

f (p,T ) = f0 + δf

Then,

∆T ∝ δf

• The equations :

I Boltzmann equation : df /dt = C [f ].

I Perturbed Einstein’s equation : gµν → a(t) + δgµν .

• Schematically :

∆T (today , here, n̂) ∝
∫ today

ti

dt {all possible sources}
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Physical properties of the universe encoded in the CMB

C` is primordial power spectrum P(k) modulated by the physical
events around decoupling epoch and later.

C` =

∫
dk k2 P(k) ∆2

`(k)

C` ≡ C` {P(k) parameters,ΩΛ,Ωc ,Ωb, τ, . . .}

C` encodes

I primordial fluctuations

I composition of the universe

I evolution

Assuming scale-invariant
P(k) we get theoretical C`
that matches the observed
one.
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Physical properties of the universe encoded in the CMB :
extraction of cosmological parameters

Assume P(k) = A
k3

(
k
k0

)ns−1

Parameters best fit with WMAP 7
years data [Larsen et al (2011)]:

I ns = 0.963± 0.014

I A = (2.43± 0.11)× 10−9

I ΩΛ = 0.734± 0.029

I Ωc = 0.1109± 0.0056

I Ωb = (2.258+0.057
−0.056)× 10−2

I τ = 0.088± 0.015

Any early universe description that attempts to explain the primordial

perturbations must predict such a almost scale-invariant power spectrum.
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Inflation: Origin of primordial perturbations

ä > 0

Regions of space which were in

causal contact and local equilibrium

get stretched beyond causal contact.

time

I Typically realised as the slow rolling of a scalar field called inflaton
down its potential V (φ). Quantum fluctuations of inflaton produce
density and metric perturbations.

δφ⇐⇒ δgµν −→ Φ

I Accelerated expansion of space dilutes the perturbations.
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CMB as probe of inflationary physics: generic predictions
of inflation

I Scalar perturbations with almost scale-invariant power
spectrum.

PΦ(k) ∼ 〈ΦkΦk〉 '
A

k3

(
k

k0

)ns−1

A ∝ V

φ̇
, (ns − 1) ∝

(
dV

dφ
,
d2V

dφ2

)
I Tensor perturbations (or gravity waves) with almost scale

invariant power spectrum.

PT ∝ V

I Almost Gaussian distribution of perturbations.

These predictions are manifestations of the shape of the inflaton
potential.



CMB as probe of inflationary physics: Hints of deviations
of scalar power spectrum from scale invariance

I Running of ns : dns
d ln k = −0.034± 0.026

I Outliers in C` : Few `’s at which the measured C` values are
outside the theoretical curve.

` = 2, 22, 40

I Could indication of scalar power spectrum with deviations
from scale-invariance at specific scales.
Oscillations [Hamann et al (2007), Adams & Sarkar (2001)]

Cut-off at some scale followed by a bump [Hodges et al (1990), Leach & Liddle

(2001), Sinha & Souradeep (2004), Jain et al (2008) ]

I Non-trivial features in the inflaton potential ? Discontinuities,
or transition of different power law regimes,. . . .
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CMB as probe of inflationary physics: Tensor perturbations

I Detection of gravity waves generated during inflation would be
a direct probe of the energy scale at which inflation occurred.

I However not directly detectable by present day experiments.

I Parametrized in terms of tensor-to-scalar ratio r.

r ≡ PT

PΦ



CMB as probe of inflationary physics: Tensor perturbations

• A small fraction of the CMB photons are expected to be
polarized, due to quadrupole anisotropies, as decoupling
commences.

• The polarization vector is usually expressed as

I E modes which are curl free.

I B modes which are divergence free.

• WMAP has detected E modes.

• B modes have not been detected yet. The amplitude of its power
spectrum scales with r . Hence its detection is direct measure of r .

• WMAP 7 limits : r < 0.36(95%CL)



Non-Gaussian deviations : beyond the power spectrum

• Non-Gaussian deviations provide a means to distinguish and rule
out models of inflation.

Q. Are the CMB temperature fluctuations Gaussian ?

• Measure higher order statistics : 3-point function, 4-point
function, etc in real or multipole space.

OR

• Geometrical/Topological quantities whose Gaussian formula are
known and which encode n-point functions of all orders.



Non-Gaussian deviations

Non-Gaussian deviation of Φ

Φ ∼ ΦG + ∆Φ

Amplitude and shape of ∆Φ is dependent on the inflation model.

I If perturbations evolve linearly during decoupling epoch and
later, ∆T must inherit its statistical properties from Φ. By
studying properties of ∆T , we are ‘directly’ probing Φ.
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Non-Gaussian deviations

Issues: non-Gaussian signals in observed ∆T can come from

1. non-Gaussian Φ : primordial

2. subsequent non-linear evolution of ∆T : secondary

3. observational contaminants in the process of detection.

Each of these needs to be understood and disentangled to be able
to identify true primordial non-Gaussian signal.



How to understand non-Gaussian deviations of Φ

I Simulations of non-Gaussian maps with ∆Φ predicted by
different inflation models as input, serve as testing ground for
theoretical expectations and observational systematics.

I Also useful for designing optimum statistical estimators for
each type of ∆Φ.

I Measure same observables from observational data.

I Compare the theoretical predictions and measurement from
observational data.



Form of non-Gaussian Φ
Some references (biased): Salopek & Bond (1990), Gangui et al (1994), Maldacena (2003), Linde & Mukhanov (1997), Lyth,

Sasaki & Wands (2001), Enqvist & Takahashi (2006)

Consider expansion to cubic order as:

Φ(~x) = ΦG (~x) + fNL
(
(ΦG (~x))2 − 〈(ΦG )2〉

)
+ gNL(ΦG (~x))3 + . . .

I Characterized by non-linearity parameters fNL and gNL.

I Local since the non-linear contributions depend only on same
spatial point.

Note : simplified form, ignores the complicated scale-dependence
of the 3-pt function.



Effect of fNL on CMB maps
Liguori et. al. (2003)

Resolution = 13 arcmin:

Gaussian −→

fNL = 3000 −→



Effect of gNL maps
Chingangbam & Park (2009)

Resolution = 30 arcmin:

Gaussian −→

gNL = 5× 106 −→



Measuring non-Gaussianity

I Define statistical tools sensitive to non-Gaussianity on
harmonic space, pixel (real) space, wavelet space,. . ..

I Each statistic may be optimal for specific types of
non-Gaussianity.

I Different observables/statistical tools complement each other
and provide cross checks.



Constraints on fNL and gNL from WMAP data

I assume that measured ∆T contains either fNL or gNL type
non-Gaussianity

I find the value of fNL or gNL which best fits the data.

Latest constraints:

I fNL using bispectrum from WMAP 7 yr data, Komatsu et al (2010) :

−10 < fNL < 74 (95%CL)

I gNL using trispectrum from WMAP 5 year data, Smidt et al (2010) :

−7.4× 105 < gNL < 8.2× 105 (95%CL)



Minkowski Functionals
Gott et al (1990)

• Geometrical/topological statistics defined on the temperature

fluctuation field.

• Define threshold: ν ≡ ∆T/T
σ0

, σ0 =
√
〈∆T

T
∆T
T 〉.

I Area fraction above threshold ∼ V0(ν)

I Contour length of iso-temperature contours ∼ V1(ν)

I Genus = number of hot spots - number of cold spots ∼ V2(ν)
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Minkowski Functionals
Hikage et al (2003), Hikage et al (2008), Chingangbam & Park (2009), Chingangbam, Rossi & Park (in preparation), Matsubara

(2010)

Gaussian−→
fNL −→

gNL −→
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Minkowski Functionals from WMAP data
Chingangbam and Park (in preparation) from WMAP 5 years data
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Minkowski Functionals from WMAP data

I Non-Gaussian deviations are present in the data.

I The area-fraction seems to prefer fNL type non-Gaussianity.

I There is no clear agreement on the shape of the deviations of
all 3 Minkowski Functionals for fNL.

I gNL deviations also do not agree with data.

I Indicates that we need to understand if these deviations are
coming from residual contaminants and systematic errors.



Betti numbers
Park, Chingangbam, Weygaert, Pranav, Hellwing & Hidding (in preparation)

• At each ν the temperature field breaks up into connected
components and ‘circular’ holes.

• Define the Betti numbers for a 2 dimensional field

I β0 : the number of connected components at each ν.

I β1 : the number of circular holes at each ν.

• The genus is a linear combination of β1, β0

g = β1 − β0

• Using β1, β0 can potentially give us more information about
non-Gaussian deviations than the genus.



Betti numbers
Park, Chingangbam, Weygaert, Pranav, Hellwing & Hidding (in preparation)

• Analytic expressions of β1, β0 for a Gaussian field are not known.

• Numerically computed them for Gaussian simulations.

• We are currently applying them to non-Gaussian simulations.



Residual galaxy contamination in the cleaned WMAP data?
Chingangbam & Park (work in progress, requires more investigation)

I Take WMAP 7 years data

Cleaned CMB map Foreground map: g

I Construct galaxy peak field: p ≡ g35 − g105− < g35 − g105 >
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Residual galaxy contamination in the cleaned WMAP data?

I Scale CMB and peak fields by their rms values → νCMB, νgal,peak.

I Correlate the two : r ≡< νCMBνgal,peak >.
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I Test significance of r :
correlate νgal,peak with
1000 Gaussian realizations.

I Found almost zero
realizations with
r > 1.5× 10−3.

⇒ Indicates that cleaned
CMB still has galaxy
contamination.
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Summary

I The CMB encodes the primordial fluctuation properties,
composition and evolution of the universe.

I Precise measurement of the temperature fluctuations can
reveal the mechanism of their generation in the early universe.

I Predictions of generic models of inflation agree well with
observational data. Observables are few

I Understanding non-Gaussianity deviations in the CMB is an
important frontier in probing models of inflation.

I Future consolidation of our understanding relies on higher
precision data from Planck satellite and polarization
experiments such as CMBPol.

I In the meantime, one can devise new optimal ways to extract
physical information using available data.


