Binary black hole waveforms in gravitational wave astrophysics

Badri Krishnan

Albert Einstein Institute Hannover, Germany LIGO-G1700951

May 20, 2017

(日)

Back of the envelope analysis for GW150914

The ringdown

Complete waveform models

Looking ahead

(Phys. Rev. Lett. 116, 061102 (2016))

- A number of analysis pipelines analyze the data in real time
- One of these, looking for unmodeled bursts, reported an event at 10:50 am, CET on Sep. 14
- Reported to the collaboration at 11:30 am, CET
- Was clear very quickly that this was most likely not an injection, and most likely from a binary black hole system
- Subsequent analyses confirmed that this is indeed a true signal
- Results published on February 11 (PRL 116 061102 (2016))

・ロット 御マ キョマ キョン

- Data has been band-passed between 50 and 350 Hz
- Strong spectral lines removed
- Signal arrived 6.9ms later at Hanford
- Hanford time series is shifted and inverted
- Comparison with numerical relativity simulation shown in solid line agrees with reconstructed waveform

The first observational run

- The first observational run (O1) of Advanced LIGO took place from Sep 12, 2015 to Jan 19, 2016.
- Total coincident time between H1 and L1 is 51.5 days
- After data-quality cuts, we are left with 46.1 days
- Detectors are being upgraded and the next run will begin later this year
- There are two BBH detections: GW150914 and GW151226 with significance better then 5σ
- There is a third, more marginal event, LVT151012 an unambiguous detection is not claimed for this event

・ロット 御マ キョマ キョン

The three events

LSC

ヘロト ヘ回ト ヘヨト ヘヨト

Template bank used in the search

(arXiv:1606.04856)

Parameter space is 4 dimensional $(m_1, m_2, \chi_1, \chi_2)$

(日)

The three events

Event	GW150914	GW151226	LVT151012
ρ	23.7	13.0	9.7
Significance	$>$ 5.3 σ	$>$ 5.3 σ	1.7σ
$m_1^{\rm source}/{ m M}_{\odot}$	$36.2^{+3.2}_{-3.8}$	$14.2^{+0.3}_{-3.7}$	23^{+10}_{-6}
$m_2^{ m source}/{ m M}_{\odot}$	$29.1^{+3.7}_{-4.4}$	$7.5^{+2.3}_{-2.3}$	13 ⁺⁴ _5
$\mathcal{M}^{source}/M_{\odot}$	$28.1^{+1.8}_{-1.5}$	$8.9^{+0.3}_{-0.3}$	$15.1^{+1.4}_{-1.1}$
$M^{ m source}/ m M_{\odot}$	$65.3^{+4.1}_{-3.4}$	21.8 ^{+5.9}	37 ⁺¹³
$\chi_{ m eff}$	$-0.06^{+0.14}_{-0.14}$	$0.21^{+0.20}_{-0.10}$	$0.0^{+0.3}_{-0.2}$
$M_{ m f}^{ m source}/ m M_{\odot}$	62.3 ^{+3.7} -3.1	$20.8^{+6.1}_{-1.7}$	35^{+14}_{-4}
$a_{ m f}$	$0.68^{+0.05}_{-0.06}$	$0.74_{-0.06}^{+0.06}$	0.66 ^{+0.09} -0.10
Z	$0.09^{+0.03}_{-0.04}$	$0.09^{+0.03}_{-0.04}$	$0.20^{+0.09}_{-0.09}$

What is all this good for?

- Wide range of issues in stellar evolution, astrophysics and cosmology. Example: what is the distribution of masses and spins in BBH mergers as a function of redshift? We make certain assumptions now, but better to just be able to measure it!
- Will allow us to test astrophysical scenarios for forming stellar mass BHs (e.g binary evolution vs. CHE?)
- Fundamental physics and deviations from gemeral relativity – deviations can be quite small and results possibly won't be accepted unless waveforms are sufficiently accurate

Different goals have different waveform accuracy and modeling requirements

A back of the envelope analysis with the simplest waveform

- Basic question: why is this a BBH system?
- The signal frequency increases from 35 to 150 Hz over about 8 cycles: a binary system is a plausible explanation (maximum orbital frequency is then 75Hz)
- At leading order, frequency evolution of a binary system follows:

$$\dot{f} = rac{96\pi^{8/3}}{5} \left(rac{G\mathcal{M}}{c^3}
ight)^{5/3} f^{11/3}$$

where \mathcal{M} is the chirp mass: $\mathcal{M} = (m_1 m_2)^{3/5}/(m_1 + m_2)^{1/5}$

Alternatively, we can integrate this:

$$f^{-8/3}(t) = rac{(8\pi)^{8/3}}{5} \left(rac{G\mathcal{M}}{c^3}
ight)^{5/3} (t_c - t)$$

• The chirp mass turns to be about $\mathcal{M} \approx 30 M_{\odot}$

Why is this a binary black hole system?

(arXiv:1608.01940)

(Green: best fit, Blue: $\mathcal{M} = 30M_{\odot}$, Red: $\mathcal{M} = 40M_{\odot}$)

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Why is this a binary black hole system?

▶ If the masses were equal, the total mass *M* is

$$M = m_1 + m_2 = 2 \times 2^{1/5} \mathcal{M} \approx 70 M_{\odot}$$

 At an orbital frequency of 75 Hz, Kepler's third law leads to a separation of

$$R = \left(\frac{GM}{\omega_{orb}^2}\right)^{1/3} \approx 350 \, \mathrm{km}$$

- The two objects need to fit within this orbit, i.e. $R_1 + R_2 < R$
- If the two objects were non-spinning Schwarzschild black holes, then their Schwarzschild radius would be 103 km so,

$$R_1 + R_2 \approx 206 \, \mathrm{km} < R$$

A D > A B > A B > A B >

Why is this a binary black hole system?

- No other plausible alternative stellar models predict stars which would be so massive and so compact.
- Argument can be easily extended for non-equal masses, eccentricity and spins
- This is not a proof because it does not include non-linearities of GR and does not use coordinate independent quantities, and it does not replace more detailed analysis – it does not work for weaker detections
- However, it is a useful consistency check we would have been worried if this had not given the approximate answer!

Is the final black hole a Kerr black hole?

- ► The ringdown waveform is a superposition of damped sinusoids determined by three quantum numbers (n, ℓ, m)
- Assuming the final BH to be Kerr, the frequencies and damping times are determined by the mass and spin of the final black hole
- Can we determine the final BH parameters based just on the ringdown? Can we check whether it is a Kerr BH?
- The complete waveform would have this information and would give smaller error bars
- However, fewer assumptions \implies stronger test

・ロト ・ 日本 ・ 日本 ・ 日本

Is the final black hole a Kerr black hole?

Key unknown: at what point can the final black hole be described as a perturbation of Kerr? We can hope to answer this question observationally! Testing Kerr nature requires more than 1 mode (Dreyer et al, 2004)

(日)

Numerical Relativity

- The most complete analysis requires complete waveforms, i.e. including inspiral, merger and ringdown
- This requires us to model the coalescence phase the best we can do currently is with numerical simulations
- We want to solve the Einstein field equations for black holes with some initial configuration configuration (d₀, m_{1,2}, P_{1,2}, S_{1,2}...)
- Specify initial data (q_{ab}, K_{ab}) satisfying the constraint equations on a spatial hypersurface

$$\widetilde{R} + K^2 - K_{ab}K^{ab} = 0$$

$$\widetilde{
abla}_{a}K^{ab}-q^{ab}\widetilde{
abla}_{a}K=0$$

・ロ・・ 日本・ 日本・ 日本

Numerical Relativity

- ► Simplest initial data is the Brill-Lindquist solution $K_{ab} = 0$, $q_{ab} = \psi^4 \delta_{ab}$
- ► The constraint reduces to the Laplace equation for ψ and a suitable solution is

$$\psi = 1 + \frac{m_1}{2r_1} + \frac{m_2}{2r_2}$$

with $r_{1,2}$ being the distances from the two "punctures" – head-on collision between two black holes

- Easy to generalize to include arbitrary linear momenta and spins (with K_{ab} non-zero)
- It is now well understood how to set up initial data, evolve it, extract waveforms, locate black holes and measure their parameters
- Black hole parameters measured on margnally trapped surfaces – typically with surface integrals

・ロット 御マ キョマ キョン

Numerical Relativity

The "Phenom" models

- Two approaches used so far: "Phenom" and "EOBNR"
- ▶ 8 intrinsic physical parameters of the system: m_{1,2}, S_{1,2}
- Extrinsic parameters: $D, \mathbf{n}, \psi, \iota$
- $M = m_1 + m_2, q = m_2/m_1, \eta = m_1 m_2/M^2, \chi = S/m^2$
- Searches assume aligned spins, i.e. S_{1,2} aligned with L
- Spins combined into a single "effective spin" parameter [Khan et al 2015, Puerrer et al 2016]

$$\chi_{eff} = \frac{m_1\chi_1 + m_2\chi_2}{m_1 + m_2} - \frac{38\eta}{113}(\chi_1 + \chi_2)$$

(additional rescaling to ensure $-1 < \chi_{eff} < 1$)

The "Phenom" models

- First Phenom model developed soon after successful BBH simulations: Ajith et al 2007
- Most recent aligned spin model: Khan et al 2015
- Main idea is to introduce phenomenological parameters which are convenient to model the waveform and fit with NR results
- Need a mapping between λ and physical parameters the latest Phenom model has 17 phenomenological parameters which are mapped to χ_{eff}, η

The "Phenom" models

- Use PN based ansatz in inspiral regime
- Merger uses fits inspired by NR
- Ringdown is of course a damped sinusoid with parameters from NR fits
- "Target" waveforms are hybrids of NR + PN/EOB
- Modeling is in frequency domain efficient for searches
- Analytic expressions in the end efficient for searches

The "EOBNR" models

- Developed initially by Damour & Buonanno in 1998
- Most recent update: Bohe et al 2017
- Main idea is to replace the real binary system by an "effective" model of a test particle orbiting a deformed Schwarzschild/Kerr black hole
- For non-spinning system use a deformed Schwarzschild effective metric

$$ds_{eff}^2 = -A(r)dt^2 + rac{D(r)}{A(r)}dr^2 + r^2d\Omega^2$$

 A(r) and D(r) chosen to get correct energies [Buonanno & Damour 1997]

$$A = 1 - \frac{2M}{r} + 2\eta \frac{M^3}{r^3} + \cdots$$
$$D = 1 - 6\eta \frac{M^2}{r^2} + \cdots$$

The "EOBNR" models

- Attractive idea but deformation of Kerr is not a solution of any field equations
- Additional "phenomenological" parameters are introduced in effective metric for the merger which is calibrated by NR simulations
- Uses both spins instead of a single spin parameter
- Ringdown attached at peak with correction for non-adiabatic evolution – calibrated with NR
- Requires numerical solution of ODEs not efficient for searches
- Speed up for searches reduced order modeling []
- For calibration uses both results from NR and extreme mass-ratio systems

・ロット 御マ キョマ キョン

The "EOBNR" models

- $4M_{\odot} < M < 100M_{\odot}$, O1 noise curve starting at 25Hz
- Only 2.1% of the points have effectualness less than 0.97
- The latest Phenom and EOB models agree well for aligned spin systems
- Disagreements only for high mass ratios and large spins

Including precession

- Consider now generic orientations of S_{1,2}
- Total angular momentum: $\mathbf{J} = \mathbf{L} + \mathbf{S}_1 + \mathbf{S}_2$
- New effect in general relativity: L and S_{1,2} precess around J
- Direction of J fixed to a good approximation
- Special case: if J vanishes at some point in the evolution transitional precession
- Searches including precession are much more expensive [Indik et al 2017, Harry et al 2015]
- Precessing models used mostly for parameter estimation

・ロット 御マ キョマ キョン

Including precession

- Very good approximation in inspiral phase: precessing waveform obtained by applying time dependent rotations on non-precessing waveform [Schmidt et al 2012]
- ► The rotations track the precession angles through the PN evolution and, if we start with the $\ell = m = 2$ mode, we will end up with all $\ell = 2$ modes
- The precession angles are assumed to carry through the merger – approximation
- Same procedure applied to EOBNR apply rotations corresponding to a prcessing EOB model to "twist-up" the non-precessing EOBNR
- Precession IMR models not calibrated with NR simulations

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

This was just the beginning....

- The second observational run is ongoing
- Eventually we hope to see enough events that we can meaningfully distinguish between different astrophysical stellar evolution scenarios
- We hope to see events involving neutron stars (BNS or NS-BH systems) and the associated electromagnetic counterparts
- Binary systems are not the only ones we hope to see. Some other possibilities are: continuous waves (CW) emitted by rapidly rotating neutron stars, supernovae, evidence of a stochastic background...
- BBH modeling: better understanding of precession effects in merger and higher modes
- Better accuracy required, especially for events with SNR > 25

