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The "mesoscopic” domain of spacetime
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... and its implications for quantum gravity

spacetime can have “thermal” properties

gravity affects the causal horizons of observers — these horizons have thermal properties —
their displacements are given by laws of thermodynamics = hence the connection between

gravitational dynamics and thermodynamics

quantum+-gravity effect imply existence of a minimal
spacetime length, /5 ~ 0(1)1073% cm

QM requires concentration of high energy to probe small length scales — GR predicts
formation of BHs under such circumstances — limits access to info behind their event

horizons = “spacetime intervals can’t be operationally def to precision better than ¢,”



Small scale structure of spacetime

‘? What is the best mathematical

. description of spacetime at small scales The qmetric g.,(p; po. o)

9ab(P) = qab(Pi Po, o)

Thermal entropy and spacetime curvature

‘7 What are the effects of spacetime curvature on
thermal properties of a freely falling quantum system

‘? What information about spacetime
curvature can be obtained from thermal
properties of acceleration horizons T

(II) ? Entropy/(degree of freedom)
2

he
/ sa = (const.) R(wug, ug) (;;_;)



On the Hypotheses which lie at the Bases of Geometry
Bernhard Riemann, Gottingen lecture, 1854 (translated by W. Clifford)

Now it seems that the empirical notions on which the metrical determinations of space are founded,
the notion of a solid body and of a ray of light, cease to be valid for the infinitely small. We are
therefore quite at liberty to suppose that the metric relations of space in the infinitely small do not
conform to the hypotheses of geometry; and we ought in fact to suppose it, if we can thereby
obtain a simpler explanation of phenomena.

The question of the validity of the hypotheses of geometry in the infinitely small is bound up with
the question of the ground of the metric relations of space ...

The answer to these questions can only be got by starting from the conception of phenomena
which has hitherto been justified by experience, and which Newton assumed as a foundation, and by
making in this conception the successive changes required by facts which it cannot explain ...

This leads us into the domain of another science, of physic, into which the object of this work does
not allow us to go today.
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QM+SR+GR = spacetime intervals can not be operationally def to an accuracy
better than ¢y ~ 10733 cm
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The minimal length scale

various arguments based on principles of QM and GR suggest the existence of a
minimal spacetime length Lo = puy\/Gh/c3, p = O(1)
Review: L.Garay, gr-qc/9403008

there is considerable evidence that such a length might manifest itself in a
Lorentz invariant manner via modification of geodesic distance o%(p, P)

the short distance behavior of the propagator gets modified as

1

G(p,P)= = - —5——5
(P, P)= — o

B. S. DeWitt (1964, 1981): graviton exchange between scalar particles; non-local effective action based on o2(p, P)
M. R. Brown (1981, 1984): non-analytic structure of “effective metric” at small scales

Narlikar & Padmanabhan (1985): quantum conformal fluctuations;
Padmanabhan (1997): path-integral duality

Ohanian (1997, 1999): path integral average over gravitational field h = g — n
I. Agullo, J. Salas, G. Olmo, Parker (2008): deformation of two-point functions and trans-planckian effects

AND MANY OTHERS ...



The World Function

geodesic intervals as more fundamental than the metric

e the key input:

quantum gravitational fluctuations modify the geodesic distance
d(p, P) = Veo? between the spacetime events p and P in the background
metric g,p such that

<02(p, Pl(g o h))>= o*(p, Plg) + €L

where
def
PFpP) = Or-N) ettt 29(pP)
C
= —(t—T)>+(x—X)? flat spacetime

e to describe a space(time) in which IimP d(P, p) # 0 calls for a non-trivial
p—
modification of conventional description of spacetime geometry

this seems to first have been noticed in A. March, Z. Phys. 104, 93 (1936)



e indeed, almost all information about spacetime geometry can be encoded in the
coincidence limit (denoted below by “[...]") of covariant derivatives of Q(p, P)

gty = 8ab = [VaVbQ(x,x/)] = [Vazver(X,x/)}

Rar(c’ bt (3/2) [VaVsVeVaQ(x, x)]

e for a smooth differentiable manifold, the metric near any event has a Taylor exp

1
8ab(x; X) = nap(X) — gRacbd(X) (x = X)¢(x — X)9 + higher order terms



e indeed, almost all information about spacetime geometry can be encoded in the
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9ab(P) = Nav(po) + O(Rz?)

/1



9ab(p) = qab(P; Do, Lo)

/1



e Our key inputs would be much less restrictive and/or specialized:

Q1: geodesic distances have a Lorentz invariant lower bound.

> = S, [02]

S0 = 4

Q2: the modified d'Alembartian p/OT:I/p yields the following modification for the
two point functions G(p, po) of fields in all maximally symmetric spacetimes:

G [0%] = G [0°] = G [Sg, [07]]
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e Our key inputs would be much less restrictive and/or specialized:

Q1: geodesic distances have a Lorentz invariant lower bound.

> = S, [02]

S0 = 4

Q2: the modified d'Alembartian p/OT:I/p yields the following modification for the
two point functions G(p, po) of fields in all maximally symmetric spacetimes:

G [0%] = G [0°] = G [Sg, [07]]

Since the leading form of the two point function is given by

A
G(p, po) := % X (1 4 subdominant terms)
(02) 2

we expect A and o2 to play a key role in our analysis
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The “qgmetric”
e to implement Q1, we use the defining Hamilton-Jacobi eq for the world fn

g” 0.0 0,0 =20 — ¢70,50)05Se, =4S,

e to implement Q2, we use 0 and following identities satisfied by the VVD

ViV Q(p, po)

1 (p) (P0)
Alp,po) = ————d
N STV Et{ }

Dy
I1: VglnA = —
€o?
12 Vina = —2L L K2 4 Rugle
: g'n ——;4’ T Rapg™q

sin6 sinh(|o|/a)}

for max. symm. spaces : NAC , 1,
0 lo|/a



2&'{"» o*(p.py)=0

timelike geodesic

null cone

o*(p.py)=0

(a) Equi-geodesic surfaces o¢ attached to an event (b) o¢ in Minkowski spacetime.
po in an arbitrary curved spacetime.

Figure: The geodesic structure of spacetime.



The “gmetric”

e the final result turns out to be

2
Csy (o VT, JSE sy (a
9 = \as g8 T € 5, o2 \As

which is:

« a non-local bi-tensor, disformally coupled to gas
« is singular in the limit 6> — 0

li =

)+’§1}t®t



e given the singular behaviour of q, it is unclear whether local scalars constructed
out of q,p reduce, in the limit £5 — 0, to their corresponding form in g; for e.g.,

F?\l/c] (po) < Ric(po) + terms of order £y

e i will now discuss the structure of the gravitational lagrangian

(167L2) Sgrav :/R[g] + 2/K[h]
% v
and show that

« lim lim Ric(p, po) # Ric(po)
Lo—0 5250

« the surface term K+/h is finite in the limit o2 — 0, and vyields entropy
density of spacetime with a zero-point term

o the key results are independent of precise form of S, (c?)
... hence, presumably also of the exact details of QG



£y — 0 with o2 £ 0 (no
surprises here!)

Strategy of this work

p — Pwith £y # 0 (leads
to entropy density of emergent
gravity paradigm)

o2 Uz(P, p)

&2
(

5~ o2 (P.p)

a2b(P, p. £3) — gap(P)

R(P, p, £3) — R(P)

start with the geodesic interval (7‘2(17Y P) for a metric g,
incorporate zero-point | hvia 02 (P 02) = o2(P 2
P point length via U(q)( , P, £g) = (P, p) + £

find the “qmetric” q,4(P, p, Z%) associated with o(zq)(P, P, ZS)

compute the Ricci biscalar R(P, p, £3) for the q,p(P, p, £3)

o — 0
2
o(q)%fo

diverges as (Zg/UQ)\a_,O

N
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£y — 0 with o2 £ 0 (no
surprises here!)

Strategy of this work

p — Pwith £y # 0 (leads
to entropy density of emergent
gravity paradigm)

o2 02<P, p)

&2
(

5~ o2 (P.p)

a2b(P, p. £3) — gap(P)

R(P, p, £3) — R(P)

start with the geodesic interval (7‘2(17Y P) for a metric g,
incorporate zero-point | hvia 02 (P 02) = o2(P 2
P point length via U(q)( , P, £g) = (P, p) + £

find the “qmetric” q,4(P, p, Z%) associated with o(zq)(P, P, Z%)

compute the Ricci biscalar R(P, p, £3) for the q,p(P, p, £3)

o — 0
2
o(q)%fo

diverges as (Zg/UQ)\a_,O

R(P, p, £3) — Sg + O(£g)




The exact form of the Ricci scalar can be written in a compact form in terms of
geometric quantities associated with o2 = const surface, *

D1D;
S,

N 2
Ric(p, po) = [;42“’1 Ree, — 222 1 4(D+1)(InAs)* ]
0

‘EZO b 1 2 D 2
— =2 KpK?* — —K + 4S8 ——[(InAs)®]* +2(InAg)**®
)\282§{ b D, ‘o D, [(n ) ] (n )

where

¢=A/As
(InAg)® =dInAg/dSy,
(InAgs)*® =d(In Ag)*/dS,,

24
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! 1 1, 1, .
> K = Xhab — gAsab-F E)\ VS — %A Fap + O(XY)
D1 1, 1, .
K = =228+ —XV,S— —\F+0(x
N IS T RN VS S GO
DD 2¢(D + 1
Ry = 6;22+R— < 3+ )s+ oM

where: S,, = Ra,'bjtit‘j, S = Rabtatb

Fap = V2Su+ (4/3)54S%; F = Fug™

using the above, a lengthy calculation yields the desired local object defined by:

[Ric] (po) = Jim Ric(p, po)

u]

o)
I
i

it




e the final result is

[Ric] (po) = lim Rie(p, po)

271 3. 5
= Rapt?t?|  — 2% 28,804+ 28 + =52
(e [ ab :|P0 15 |3 ab + 2 + 3 .
N——
O(1) term

0(502) term

the limit, therefore, is non-trivial

although qap — gap when lp =0, Ry # R(g) in the same limit!

the ‘“zero-point length” leaves it's vestige ... like the Grin of the Cheshire cat!



e the final result is

[Ric] (po) = lim Rie(p, po)

2 71 3., 5
= Rapt?tt|  — 0 |28,,8 + 28+ =82
(e [ ab :|P0 15 |3 ab + 2 + 3 .
—_——
O(1) term

0(802) term

the limit, therefore, is non-trivial

although qap — gap when lp =0, Ry # R(g) in the same limit!

the ‘“zero-point length” leaves it's vestige ... like the Grin of the Cheshire cat!

most importantly, the leading term above is precisely the entropy density
which arises as Noether charge of diff-invariance, and is prominent in

emergent gravity paradigm!



Summary

2

o 1 b 3a 5.
28828542

2a05 35057 T35+ 39

1 —~
m [Ric](po) = o S

4
. 7
— | KVh|l =8 — —
87rL%, AT?O [ f] q So 247 S¢

= to/Lp = O(1)
Sab = Raipjt't/
So = (3/87) 1?

Sg = Rypt?th




Some important comments on the result

e note that there are no terms of the form 1/(% in curvature; these can, however,
appear in regions where the Riemann tensor diverges

e the coincidence limit of Ricci scalar is finite although for the metric it is not

e the above points are a consequence of some miraculous cancellations in the
intermediate steps, that happen solely because of the differential geometric
properties of the Synge world fn bi-scalar and the vanVleck determinant, and
remove terms like 1/52 and 1/Zg; this in turn is a consequence of the disformal
structure of the gmetric

such terms do appear, for e.g., in quantised conformal fluctuations



Disformal vs. Conformal transforms [DK, arxiv:1406.2672]

Ric [F’g — ca '@ t@ t] = (1+©) Ric [F’g| = © (R +2¢V - a)pa, + €© F 'Ky 12,

(©=aF?-1)
CONFORMAL DISFORMAL

* 2 2 -2
* 2 = F —e(FP—F tat
Zap = Fagap 8ab 8ab 5( ) atp
* 5 * 2
hap = F hap hap = F hap
* * 3 2
Kap = FKap + (Ve F) hyp Kap = FKap + (F VtF) hap

X -1 -2
TrKap = F " TrK+ Dy F -2V ¢F Trk ,p = FTeK + DV ¢F




Relics of the space-time minimal length

our result suggests that non-local and non-analytic effects of a minimal length
might leave residues which are independent of ¢y

in our case, such effects leave their imprints in the form of

So = 3u?/8m zero-point entropy density of space-time

Sg = R.pt2th gravitational entropy density of space-time

such quantum relics are not unfamiliar in physics; e.g.

effects of Lorentz violating regulators at higher energies can generically get dragged
to lower energies due to radiative corrections, leaving O(1) residual effects
[Collins et. al., Polchinski]

conformal anomaly; D — 4 limit in dimensional regularization
[see, for e.g., Birrell & Davies]

non-relativistic relic of the O(1/c) expansion of the relativistic point particle wave fn
[Padmanabhan et. al.]

nonlocal quantum residue of discreteness of the causal set type [Sorkin]
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Volume and Area of spacetime regions bounded by
equi-geodesic surfaces

e it is also interesting to calculate the volume bounded by an equi-geodesic
surface corresponding to an event pp, and the surface are:

Vi=o(o?+8) [1 25 (o +e3)} NS

Vh= (02 +8) [1- £55 (02 + )| Vin

In the limit o — 0: volume — 0 while area remains finite! Holography ??

e define an “effective” geometric dimension based on equi-geod surfaces of size R

B d Vo(R, o)
Dea = D+ dlnR{In (VD(R,ZO - 0)) }

1



4
Dot = 4 — .
2+ (%)
5 10 15 20
E
lo
a simple calculation then shows that
Dcff — 4 (R > fo)
Deff — 2 (R < Z0)

See [Carlip 1009.1136] for relevance of such a dimensional reduction in QG

1



Implications for space-time thermodynamics

The above analysis also leads to an unexpected and non-trivial
connection between

small scale struct of spacetime <—> spacetime thermod and gravity

o the object S; =  5t7t? is well-known to be connected with the Noether charge of Diff inv,
and hence to entropy of local Rindler horizons; this in turn has been used to derive
gravitational dynamics from space-time thermodynamics [Jacobson, Padmanabhan]

e our result for modified Ricci scalar and surface term in gravitational action suggests that
even classically, the correct variational principle for gravity must be based on R.t?t? rather
than the conventional Einstein-Hilbert lagrangian R

e such a thermodynamic variational principle for gravity based on an entropy functional is
already known in which the d.o.f varied are arb. normalised vectors t* [Padmanabhan et.al.]

1



Einstein eqns equivalent to
eqns of thermodynamics

“Entropy functional” of
spacetime

QFT’s in presence of a
minimal length

—
—

Spacetime with a minimal
length

1



Einstein eqns equivalent to “Entropy functional” of
eqns of thermodynamics spacetime

Stior = ié

QFT’s in presence of a Spacetime with a minimal
minimal length length
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Thermal entropy and spacetime curvature

Motivation: There are several peculiar effects that arise in the study of statistical mechanics of
self-gravitating systems, such as negative specific heat, deriving mostly from the fact that gravity

couples to everything and operates unshielded with an infinite range.

A black hole magnifies the quantum effects in it’s vicinity, revealing a gamut of exotic
features, the most famous being its thermal attributes.

This gravity & quantum < thermodynamics connection has been gaining increasing attention in

recent years due to it’s potential relevance for our understanding of gravity, and perhaps spacetime

itself, at a fundamental level.



Thermal entropy and spacetime curvature

t

What information about spacetime curvature can be obtained from thermal properties of
acceleration horizons
O

1
om
\
1
\
\
\

T
\‘ A

i = —1/(1,— AZ()

J




Thermal entropy and spacetime curvature

What information about spacetime curvature can be obtained from thermal properties of
acceleration horizons ,

T A

O

TéA ﬁ G(UR, UR)

-------"-------I

— zi=—1/a— Az

— 2z =—1/a

T8S = FAzp+ dE,

A A
1y 685 = —1N (}[ngz)@_ AZO‘F% <2ZO>

A 4



Thermal entropy and spacetime curvature

‘7 What are the effects of spacetime curvature on thermal properties of a freely falling quantum system

Consider the following result for canonical partition function for a box of ideal gas and a collection of
harmonic oscillators

1lirnTAZ (B, Rapea, {7¢}) = (const.)RooA* + {5¢} dependent terms
arge

which leads to the following conjecture for thermal entropy / (degree of freedom)

Entropy of a system at temperature T generically acquires a system indepen-

dent contribution in a curved spacetime characterized by the dimensionless
quantity

A = R(uff, uff) (hC/kT)2

at sufficiently large temperatures T.



Thermal entropy and spacetime curvature

A combined description of a freely falling thermal system and the thermodynamics associated with
an accelerated observer can yield physically useful insights into interplay between quantum
mechanics, thermodynamics, and spacetime curvature.

(IT) Entropy / (degree of freedom)

he \ 2
/ sa = (const.) R(ug, ug) (Ij—é)



The gmetric
Qab(p;po,£0)

T

(H) Entropy/(degree of freedom) 5
? ~ (const.) R(ug, ug) | =
/ S = (const. U, Ut LT




The gmetric
Qab(p;po,£0)

(H) ? Entropy/(degree of freedom) 5

s = (const.) R(ug, ug)

?T“m
o



The gmetric
Qab(p;po,£0)

A A G(uR7 UR)

>t
)

(H) ? Entropy/(degree of freedom) 5

s = (const.) R(ug, ug)



The gmetric

The Cosmological constant ~ Gas(p: o o)

as a relic of the small scale structure of spacetime

A +— G(ugr,uR)

>t
)

(H) ? Entropy/(degree of freedom) 5

s = (const.) R(ug, ug)



Future Outlook

implications for the cosmological constant problem

our approach seems to connect the notion of the cosmological constant being a non-local
relic of quantum gravity and it's role in the emergent gravity paradigm

implications of the non-locality for QFT in curved spacetime

implications for spacetime singularities

implications for the emergent gravity paradigm

for a first step in this direction, see:

T. Padmanabhan, Distribution function of the Atoms of Spacetime and the Nature of
Gravity (arXiv:1508.06286)
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Thank You



