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The “mesoscopic” domain of spacetime



… and its implications for quantum gravityQUANTUM GRAVITY – and the “clues” from semi-classical analyses
. . .

spacetime can have “thermal” properties

gravity a↵ects the causal horizons of observers ! these horizons have thermal properties !
their displacements are given by laws of thermodynamics ) hence the connection between

gravitational dynamics and thermodynamics

quantum+gravity e↵ect imply existence of a minimal
spacetime length, `0 ⇠ O(1)10�33 cm

QM requires concentration of high energy to probe small length scales ! GR predicts

formation of BHs under such circumstances ! limits access to info behind their event

horizons ) “spacetime intervals can’t be operationally def to precision better than `0”
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Small scale structure of Spacetime

What is the best mathematical description of spacetime at smallest of scales?

• A description using smooth, local, tensorial objects such as gab,Rabcd , . . . is likely to fail,

since one expects quantum gravitational fluctuations to play a key role at small scales.

• Semiclassical results might provide a hint as to what kind of variables might be more

relevant for describing the small scale structure of spacetime. A generic implication of

combining basic principles of quantum mechanics and general relativity is the notion of a

zero-point length of spacetime: `
0

⇡ 10

�33

cm.

• Key essence of a minimal length can be captured in a locally Lorentz invariant manner

through modification of geodesic intervals; for e.g.

h�2(p, p
0

|g � h)i = �2(p, p
0

|g) + `2

0

where h represents quantum gravitational fluctuations.

Our framework :Use non-local bi-tensors to characterise spacetime geometry in presence of
a Lorentz invariant minimal length.

The qmetric qab(p; p0

, `
0

):

We have developed a formalism, fairly independent of any specific theory of quantum

gravity, to describe the small scale structure of spacetime semi-classically using a 2

nd

rank bi-tensor qab(p; p0

, `
0

) derived from two inputs:

• Key input 1: The geodesic distances get modified as �2(p, p
0

)! S`
0

(�2(p, p
0

)) where S`
0

(x)
is an arbitrary real valued function satisfying lim

x!0

S`
0

(x) = `2

0

; lim

`
0

!0

S`
0

(x) = x .

• Key input 2: The modified massless scalar propogator

eG(�2) := G(S`
0

(�2)) becomes the

kernel of non-local d’Alembertian 2q corresponding to qab when gab is maximally symmetric.

• The qmetric qab is found

†
to be

qab(p; p
0

, `
0

) =
�2

S`
0

✓
�

�S

◆�2/D
1
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where � is the van Vleck determinant corresponding to gab, and �s(�2) := �(S`
0

).

• The Ricci scalar for the above metric is given by a complicated expression, but has the

following interesting limit:

lim

`
0

!0

lim

�!0

g
Ric(p, p

0

) = ± (Dimension of spacetime)⇥ Rabtatb(p
0

)

The above limit is not equal to the Ricci scalar of gab, implying that existence of a minimal
length can leave a non-trivial relic even at low energies.

• The term quantity Rabtatb
is also precisely the entropy term that appears prominently in the

thermodynamic approaches to gravity - the so called emergent gravity paradigm.

Thermal Entropy and Spacetime curvature

Is there a deeper clue hidden in the connection between gravitational dynamics and

thermodynamics?

• This aspect of my research is based on several peculiar effects arising from statistical

mechanics of self-gravitating systems, such as negative specific heat, deriving mostly

from the fact that gravity couples to everything and operates unshielded with an infinite
range.

• A black hole horizon magnifies the quantum effects in it’s vicinity, revealing a gamut of

exotic features, the most famous being its thermal attributes. This gravity$ quantum$
thermodynamics connection has been gaining increasing attention in recent years due to

it’s potential relevance for our understanding of gravity, and perhaps spacetime itself, at a

fundamental level. I have investigated two very specific questions in this area:

What information about spacetime curvature can be obtained from thermal properties of
local acceleration horizons?

This part of my research largely focuses on exploring spacetime geometry in vicinity of an

accelerated observer. Specifically, I have tried to clarify the relation between area
variation and Einstein tensor

T �
?
A !

?
G(uR,uR)

by trying to answer each of the “?”s in the above expression. My work addresses and

clarifies some of the subtle issues that are important for progress in this area.

What are the effects of spacetime curvature on thermal properties of a freely falling

quantum system?

My work on this topic studies geodesic free fall of a thermal system across the local

horizon of such an observer. Motivated by results from a couple of examples, I conjecture

that the partition function and thermal entropy of any quantum system at high

temperatures T acquire a system independent correction term characterised by the

dimensional quantity R(uff,uff) (~c/kT )2 which contributes an (entropy)/(degree of

freedom) of

Entropy/(degree of freedom) = (const.) R(uff,uff) (~c/kT )2

What could be possible implications of this?

• Existence of a universal term that depends on the Ricci tensor, in expression for entropy

of systems at high temperatures, can lead to important insights into understanding the

interplay between thermal and quantum fluctuations in a curved spacetime.

• Such analyses can also add interesting (and non-trivial) physics to arguments given by

Bekenstein in support of the so called generalised second law (GSL)

�SBlack Hole +�Sexterior > 0

by clarifying the role of curvature corrections to thermodynamic attributes and hence

�Sexterior. This research work is currently under progress.
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Small scale structure of spacetime

Thermal entropy and spacetime curvature

What is the best mathematical 
description of spacetime at small scales

What are the effects of spacetime curvature on 
thermal properties of a freely falling quantum system

What information about spacetime 
curvature can be obtained from thermal 
properties of acceleration horizons
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The “mesoscopic” domain of quantum spacetime

On the Hypotheses which lie at the Bases of Geometry
Bernhard Riemann, Gottingen lecture, 1854 (translated by W. Cli↵ord)

Now it seems that the empirical notions on which the metrical determinations of space are founded,

the notion of a solid body and of a ray of light, cease to be valid for the infinitely small. We are

therefore quite at liberty to suppose that the metric relations of space in the infinitely small do not

conform to the hypotheses of geometry; and we ought in fact to suppose it, if we can thereby

obtain a simpler explanation of phenomena.

The question of the validity of the hypotheses of geometry in the infinitely small is bound up with

the question of the ground of the metric relations of space . . .

The answer to these questions can only be got by starting from the conception of phenomena

which has hitherto been justified by experience, and which Newton assumed as a foundation, and by

making in this conception the successive changes required by facts which it cannot explain . . .

This leads us into the domain of another science, of physic, into which the object of this work does

not allow us to go today.
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Heirarchy of Measurement of Observables

QM+SR+GR =) spacetime intervals can not be operationally def to an accuracy
better than `0 ⇠ 10�33 cm
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The minimal length scale

• various arguments based on principles of QM and GR suggest the existence of a
minimal spacetime length L0 = µ

p
G~/c3, µ = O(1)

Review: L.Garay, gr-qc/9403008

• there is considerable evidence that such a length might manifest itself in a
Lorentz invariant manner via modification of geodesic distance �2(p,P)

• the short distance behavior of the propagator gets modified as

G(p,P) ⌘
1

�2
!

1

�2 + `20

B. S. DeWitt (1964, 1981): graviton exchange between scalar particles; non-local e↵ective action based on �2(p, P)

M. R. Brown (1981, 1984): non-analytic structure of “e↵ective metric” at small scales

Narlikar & Padmanabhan (1985): quantum conformal fluctuations;
Padmanabhan (1997): path-integral duality

Ohanian (1997, 1999): path integral average over gravitational field h ⌘ g � ⌘

I. Agullo, J. Salas, G. Olmo, Parker (2008): deformation of two-point functions and trans-planckian e↵ects

AND MANY OTHERS . . .
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The World Function
geodesic intervals as more fundamental than the metric

• the key input:

quantum gravitational fluctuations modify the geodesic distance
d(p,P) =

p
✏�2 between the spacetime events p and P in the background

metric gab such that
*
�2(p,P|(g � h))

+
= �2(p,P|g) + ✏L20

where

�2(p,P) = (�P � �p)

Z

C

gabt
atb

def
:= 2⌦(p,P)

= �(t � T )2 + (x � X )2 flat spacetime

• to describe a space(time) in which lim
p!P

d(P, p) 6= 0 calls for a non-trivial

modification of conventional description of spacetime geometry

this seems to first have been noticed in A. March, Z. Phys. 104, 93 (1936)
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• indeed, almost all information about spacetime geometry can be encoded in the
coincidence limit (denoted below by “[. . .]”) of covariant derivatives of ⌦(p,P)

ga0b0 = gab =
⇥
rarb⌦(x , x 0)

⇤
=

⇥
ra0rb0⌦(x , x 0)

⇤

Ra0(c0d0)b0 = (3/2)
⇥
rarbrcrd⌦(x , x 0)

⇤

• for a smooth di↵erentiable manifold, the metric near any event has a Taylor exp

gab(x ;X ) = ⌘ab(X )�
1

3
Racbd (X ) (x � X )c (x � X )d + higher order terms
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• Our key inputs would be much less restrictive and/or specialized:

Q1: geodesic distances have a Lorentz invariant lower bound.

�2 ! S`0

⇥
�2⇤

S`0 [0] = `20

Q2: the modified d’Alembartian ]p0⇤p yields the following modification for the
two point functions G(p, p0) of fields in all maximally symmetric spacetimes:

G
⇥
�2⇤ ! eG

⇥
�2⇤ = G

⇥
S`0

⇥
�2⇤⇤

Since the leading form of the two point function is given by

G(p, p0) :=

p
�

(�2)
D�2
2

⇥ (1 + subdominant terms)

we expect � and �2 to play a key role in our analysis
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• Our key inputs would be much less restrictive and/or specialized:

Q1: geodesic distances have a Lorentz invariant lower bound.

�2 ! S`0

⇥
�2⇤

S`0 [0] = `20

Q2: the modified d’Alembartian ]p0⇤p yields the following modification for the
two point functions G(p, p0) of fields in all maximally symmetric spacetimes:

G
⇥
�2⇤ ! eG

⇥
�2⇤ = G

⇥
S`0

⇥
�2⇤⇤

Since the leading form of the two point function is given by

G(p, p0) :=

p
�

(�2)
D�2
2

⇥ (1 + subdominant terms)

we expect � and �2 to play a key role in our analysis
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The “qmetric”

• to implement Q1, we use the defining Hamilton-Jacobi eq for the world fn

gab @a⌦ @b⌦ = 2⌦ �! qab@aS`0@bS`0 = 4S`0

• to implement Q2, we use e⇤ and following identities satisfied by the VVD

�(p, p0) =
1

p
|g(p)|

p
|g(p0)|

det

(
(p)

ra

(p0)

rb ⌦(p, p0)

)

I1 : r
q

ln� =
D1p
✏�2

� K

I2 : r2
q

ln� = �
D1

✏�2
+ K 2

ab + Rabq
aqb

for max. symm. spaces : ��1/(D�1) =

(
sin ✓

✓
, 1,

sinh(|�|/a)
|�|/a

)
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(a) Equi-geodesic surfaces �G attached to an event
p0 in an arbitrary curved spacetime.

(b) �G in Minkowski spacetime.

Figure: The geodesic structure of spacetime.
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The “qmetric”

• the final result turns out to be

q =
S`0
�2

⇣
�
�S

⌘+ 2
D1 g + ✏

(
�2S02

`0
S`0

� S`0
�2

⇣
�
�S

⌘+ 2
D1

)
t ⌦ t

which is:

• a non-local bi-tensor, disformally coupled to gab

• is singular in the limit �2 ! 0

• lim

`0!0
q = g
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• given the singular behaviour of q, it is unclear whether local scalars constructed
out of qab reduce, in the limit `0 ! 0, to their corresponding form in g ; for e.g.,

h
fRic

i
(p0)

?
= Ric(p0) + terms of order `0

• i will now discuss the structure of the gravitational lagrangian

�
16⇡L2p

�
Sgrav =

Z

V

R[g ] + 2

Z

@V

K [h]

and show that

• lim
`0!0

lim
�2!0

fRic(p, p0) 6= Ric(p0)

• the surface term K
p
h is finite in the limit �2 ! 0, and yields entropy

density of spacetime with a zero-point term

• the key results are independent of precise form of S`0 (�
2)

. . . hence, presumably also of the exact details of QG
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`0 ! 0 with �2 6= 0 (no
surprises here!)

Strategy of this work p ! P with `0 6= 0 (leads
to entropy density of emergent
gravity paradigm)

�2 ! �2(P, p) start with the geodesic interval �2(p, P) for a metric gab �2 ! 0

�2
(q)

! �2(P, p) incorporate zero-point length via �2
(q)

(P, p, `20) = �2(P, p) + `20 �2
(q)

! `20

qab (P, p, `20) ! gab (P) find the “qmetric” qab (P, p, `20) associated with �2
(q)

(P, p, `20) diverges as (`20/�
2)|�!0

R(P, p, `20) ! R(P) compute the Ricci biscalar R(P, p, `20) for the qab (P, p, `20) R(P, p, `20) ! Sg + O(`0)
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The exact form of the Ricci scalar can be written in a compact form in terms of
geometric quantities associated with �2 = const surface, ⌃

fRic(p, p0) =
"
�2

S`0

⇣�2/D1 R⌃G,p0
�

D1D2

S`0

+ 4(D + 1)(ln�S)
•
#

�
S`0

�2S02
`0

(
KabK

ab �
1

D1
K2

)
+ 4S`0

(
�

D

D1
[(ln�S)

•]2 + 2(ln�S)
••

)

where

⇣ = �/�S
(ln�S)• = d ln�S/dS`0
(ln�S)•• = d(ln�S)•/dS`0
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Kab =
1

�
hab �

1

3
�Sab +

1

12
�2r

t

Sab �
1

60
�3Fab + O(�4)

K =
D1

�
�

1

3
�S +

1

12
�2r

t

S �
1

60
�3F + O(�4)

R⌃ =
✏D1D2

�2
+ R �

2✏(D + 1)

3
S + O(�)

where: Sab = Raibj t
i tj , S = Rabt

atb

Fab = r2
t

Sab + (4/3)SakSk
b ; F = Fabg

ab

using the above, a lengthy calculation yields the desired local object defined by:
h
fRic

i
(p0) = lim

p!p0

fRic(p, p0)
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• the final result is

h
fRic

i
(p0) = lim

p!p0

fRic(p, p0)

= ↵
h
Rabt

atb
i

p0| {z }
O(1) term

�
`20
15


1

3
SabSab +

3

2
S̈ +

5

3
S2

�

p0| {z }
O(` 2

0 ) term

the limit, therefore, is non-trivial

although qab ! gab when `0 = 0, R(q) 6= R(g) in the same limit!

the “zero-point length” leaves it’s vestige . . . like the Grin of the Cheshire cat!

most importantly, the leading term above is precisely the entropy density
which arises as Noether charge of di↵-invariance, and is prominent in

emergent gravity paradigm!
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�
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
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Summary

1

16⇡L2P
[fRic](p0) = ↵Sg �

µ2

240⇡


1

3
SabSab +

3

2
S̈ +

5

3
S2

�

1

8⇡L2P
lim
�!0

h
K
p
h
i

q
= S0 �

µ4

24⇡
Sg

• µ = `0/Lp = O(1)

• Sab = Raibj ti tj

• S0 = (3/8⇡)µ2

• Sg = Rabtatb
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Some important comments on the result

• note that there are no terms of the form 1/`20 in curvature; these can, however,
appear in regions where the Riemann tensor diverges

• the coincidence limit of Ricci scalar is finite although for the metric it is not

• the above points are a consequence of some miraculous cancellations in the
intermediate steps, that happen solely because of the di↵erential geometric
properties of the Synge world fn bi-scalar and the vanVleck determinant, and
remove terms like 1/�2 and 1/`20; this in turn is a consequence of the disformal
structure of the qmetric

such terms do appear, for e.g., in quantised conformal fluctuations
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Disformal vs. Conformal transforms [DK, arxiv:1406.2672]

Ric
h
F 2

g � ✏↵�1⇥ t ⌦ t

i
= (1 + ⇥) Ric

h
F 2

g

i
� ⇥ (R⌃ + 2✏r · a)F2h

+ ✏⇥̇ F�1K⌃,F2h

(⇥ = ↵F 2 � 1)

CONFORMAL DISFORMAL

?
g ab = F2gab

?
hab = F2hab

?
Kab = FKab + (r

t

F ) hab

Tr
?
Kab = F�1TrK + D1F

�2r
t

F

?
g ab = F2gab � ✏

⇣
F2 � F�2

⌘
tatb

?
hab = F2hab

?
Kab = F3Kab +

⇣
F2r

t

F
⌘
hab

Tr
?
Kab = FTrK + D1rt

F
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Relics of the space-time minimal length

• our result suggests that non-local and non-analytic e↵ects of a minimal length
might leave residues which are independent of `0

• in our case, such e↵ects leave their imprints in the form of

• S0 = 3µ2/8⇡ zero-point entropy density of space-time

• Sg = Rabtatb gravitational entropy density of space-time

• such quantum relics are not unfamiliar in physics; e.g.

• e↵ects of Lorentz violating regulators at higher energies can generically get dragged
to lower energies due to radiative corrections, leaving O(1) residual e↵ects

[Collins et. al., Polchinski]

• conformal anomaly; D ! 4 limit in dimensional regularization
[see, for e.g., Birrell & Davies]

• non-relativistic relic of the O(1/c) expansion of the relativistic point particle wave fn
[Padmanabhan et. al.]

• nonlocal quantum residue of discreteness of the causal set type [Sorkin]
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Volume and Area of spacetime regions bounded by
equi-geodesic surfaces

• it is also interesting to calculate the volume bounded by an equi-geodesic
surface corresponding to an event p0, and the surface are:

p
q = �

�
�2 + `20

� 
1�

1

6
S

g

�
�2 + `20

��p
h⌦

p
h =

�
�2 + `20

�3/2

1�

1

6
S

g

�
�2 + `20

��p
h⌦

In the limit � ! 0: volume ! 0 while area remains finite! Holography ??

• define an “e↵ective” geometric dimension based on equi-geod surfaces of size R

De↵ = D +
d

d lnR

(
ln

✓
VD(R, `0)

VD(R, `0 = 0)

◆)
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a simple calculation then shows that

De↵ ! 4 (R � `0)

De↵ ! 2 (R ⌧ `0)

See [Carlip 1009.1136] for relevance of such a dimensional reduction in QG
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Implications for space-time thermodynamics

The above analysis also leads to an unexpected and non-trivial
connection between

small scale struct of spacetime () spacetime thermod and gravity

• the object Sg = Rabt
atb is well-known to be connected with the Noether charge of Di↵ inv,

and hence to entropy of local Rindler horizons; this in turn has been used to derive
gravitational dynamics from space-time thermodynamics [Jacobson, Padmanabhan]

• our result for modified Ricci scalar and surface term in gravitational action suggests that
even classically, the correct variational principle for gravity must be based on Rabt

atb rather
than the conventional Einstein-Hilbert lagrangian R

• such a thermodynamic variational principle for gravity based on an entropy functional is
already known in which the d.o.f varied are arb. normalised vectors ta [Padmanabhan et.al.]
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Thermal entropy and spacetime curvature

 
       
Motivation: There are several peculiar effects that arise in the study of statistical mechanics of 

self-gravitating systems, such as negative specific heat, deriving mostly from the fact that gravity 

couples to everything and operates unshielded with an infinite range. 
D. Lynden-Bell, R. Wood, MNRAS 138, 495 (1968)

T. Padmanabhan, Phys. Rep.188, 285 (1990)

A black hole magnifies the quantum effects in it’s vicinity, revealing a gamut of exotic 
features, the most famous being its thermal attributes. 

This gravity ↔ quantum ↔ thermodynamics connection has been gaining increasing attention in 
recent years due to it’s potential relevance for our understanding of gravity, and perhaps spacetime 

itself, at a fundamental level.
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Thermal entropy and spacetime curvature

What information about spacetime curvature can be obtained from thermal properties of 
acceleration horizons

Quantum Effects, Spacetime Curvature, and Gravity

Dawood Kothawala

Assistant Professor

Department of Physics, IIT Madras

Small scale structure of Spacetime

What is the best mathematical description of spacetime at smallest of scales?

• A description using smooth, local, tensorial objects such as gab,Rabcd , . . . is likely to fail,

since one expects quantum gravitational fluctuations to play a key role at small scales.

• Semiclassical results might provide a hint as to what kind of variables might be more

relevant for describing the small scale structure of spacetime. A generic implication of

combining basic principles of quantum mechanics and general relativity is the notion of a

zero-point length of spacetime: `
0

⇡ 10

�33

cm.

• Key essence of a minimal length can be captured in a locally Lorentz invariant manner

through modification of geodesic intervals; for e.g.

h�2(p, p
0

|g � h)i = �2(p, p
0

|g) + `2

0

where h represents quantum gravitational fluctuations.

Our framework :Use non-local bi-tensors to characterise spacetime geometry in presence of
a Lorentz invariant minimal length.

The qmetric qab(p; p0

, `
0

):

We have developed a formalism, fairly independent of any specific theory of quantum

gravity, to describe the small scale structure of spacetime semi-classically using a 2

nd

rank bi-tensor qab(p; p0

, `
0

) derived from two inputs:

• Key input 1: The geodesic distances get modified as �2(p, p
0

)! S`
0

(�2(p, p
0

)) where S`
0

(x)
is an arbitrary real valued function satisfying lim

x!0

S`
0

(x) = `2

0

; lim

`
0

!0

S`
0

(x) = x .

• Key input 2: The modified massless scalar propogator

eG(�2) := G(S`
0

(�2)) becomes the

kernel of non-local d’Alembertian 2q corresponding to qab when gab is maximally symmetric.

• The qmetric qab is found

†
to be

qab(p; p
0

, `
0

) =
�2

S`
0

✓
�

�S

◆�2/D
1

gab(p) + ✏

 
1

S02`
0

S`
0

�2

� �2

S`
0

✓
�

�S

◆�2/D
1

!
ta tb

where � is the van Vleck determinant corresponding to gab, and �s(�2) := �(S`
0

).

• The Ricci scalar for the above metric is given by a complicated expression, but has the

following interesting limit:

lim

`
0

!0

lim

�!0

g
Ric(p, p

0

) = ± (Dimension of spacetime)⇥ Rabtatb(p
0

)

The above limit is not equal to the Ricci scalar of gab, implying that existence of a minimal
length can leave a non-trivial relic even at low energies.

• The term quantity Rabtatb
is also precisely the entropy term that appears prominently in the

thermodynamic approaches to gravity - the so called emergent gravity paradigm.

Thermal Entropy and Spacetime curvature

Is there a deeper clue hidden in the connection between gravitational dynamics and

thermodynamics?

• This aspect of my research is based on several peculiar effects arising from statistical

mechanics of self-gravitating systems, such as negative specific heat, deriving mostly

from the fact that gravity couples to everything and operates unshielded with an infinite
range.

• A black hole horizon magnifies the quantum effects in it’s vicinity, revealing a gamut of

exotic features, the most famous being its thermal attributes. This gravity$ quantum$
thermodynamics connection has been gaining increasing attention in recent years due to

it’s potential relevance for our understanding of gravity, and perhaps spacetime itself, at a

fundamental level. I have investigated two very specific questions in this area:

What information about spacetime curvature can be obtained from thermal properties of
local acceleration horizons?

This part of my research largely focuses on exploring spacetime geometry in vicinity of an

accelerated observer. Specifically, I have tried to clarify the relation between area
variation and Einstein tensor

T �
?
A !

?
G(uR,uR)

by trying to answer each of the “?”s in the above expression. My work addresses and

clarifies some of the subtle issues that are important for progress in this area.

What are the effects of spacetime curvature on thermal properties of a freely falling

quantum system?

My work on this topic studies geodesic free fall of a thermal system across the local

horizon of such an observer. Motivated by results from a couple of examples, I conjecture

that the partition function and thermal entropy of any quantum system at high

temperatures T acquire a system independent correction term characterised by the

dimensional quantity R(uff,uff) (~c/kT )2 which contributes an (entropy)/(degree of

freedom) of

Entropy/(degree of freedom) = (const.) R(uff,uff) (~c/kT )2

What could be possible implications of this?

• Existence of a universal term that depends on the Ricci tensor, in expression for entropy

of systems at high temperatures, can lead to important insights into understanding the

interplay between thermal and quantum fluctuations in a curved spacetime.

• Such analyses can also add interesting (and non-trivial) physics to arguments given by

Bekenstein in support of the so called generalised second law (GSL)

�SBlack Hole +�Sexterior > 0

by clarifying the role of curvature corrections to thermodynamic attributes and hence

�Sexterior. This research work is currently under progress.
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construct a different coordinate system based on the new worldline. Rather, the idea
here is to see whether the differential equation governing the virtual displacement
of the horizon has any physical meaning. We shall therefore consider the parametric
dependence of the transverse area on z0 =�a�1, A (x,y;z0), and then consider the
variation,

z0 ! z0 + e
e = Dz0 (6)

Since we generally associate an entropy S µ A with a horizon surface, and a lo-
cal Unruh temperature TU = a/(2p) with an accelerated observer, we expect the
resultant equation for involving dA to have a thermodynamic interpretation.

We have,

dz0

p
s =

p
s |z0+e �

p
s |z0

= �1
3
⇥
RA3
A3z0 +RA3

AB xB
⇤

e +O(e2) (7)

where the subscript e reminds us that we are dealing with a very specific variation.
Now concentrate on a small patch of the horizon surface. It is then not unreasonable
to assume that, upon integration over the transverse coordinates, the second term in
the square brackets averages out to zero. (If it doesn’t, we would have a preferred
direction in the transverse horizon surface.) We shall nevertheless come back to this
point later.

The change in area of this surface under the virtual displacement of the horizon is
therefore given by

dz0A =
Z

H

�
dz0

p
s
�

d2x? (8)

where d2x? = dx1dx2, and H represents integration over the horizon surface t =
constant, x3 = z0. With TU =�1/(2pz0) for a > 0, we have

TU dz0

✓
1
4
A

◆
=

h
8p

Z

x3=z0

R3A
3A e d2x? (9)

where h = 1/3. If one assumes the standard Bekenstein-Hawking expression for
entropy of a horizon, S = A /4, then the left hand side above is just TU dS. To
simplify the right hand side, we use the general decomposition of the Einstein tensor
in terms of components of the curvature tensor. This is given by

G0
0 =�

�
R12

12 +R13
13 +R23

23
�

(10)

which implies
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2.2 Final Result and Discussion

If one employs the Einstein field equations G0
0 = 8pT 0

0 at this stage (where T 0
0 =

�rm is the local energy density of matter in the instantaneous rest frame of the
observer), Eq. (12) becomes

TU de S = �h

2

4

0

@
Z

H

T 0
0d2x?

1

A Dz0 +
ĉ
2

✓
Dz0

2

◆3

5

(14)

where the second equality is based on discussion of the previous section. This is
our main result, which forms the basis for thermodynamic interpretation of field
equations. For example, for static spacetimes, the above relation (apart from the
factor (�h)), can be shown to have the form [10]

T dS = F̄Dz0 +dEg (15)

where F̄ is the average normal force on the horizon surface (see Eq. (21) of [10]).

It is gratifying to see that the final expression is in a form which can be readily
expressed in any arbitrary coordinate system; it only depends upon the foliation
provided by the accelerated observer. Given uuu and aaa, one can identify the spacelike
two-surface acting as local horizon, and the corresponding “heat” flow then depends
only on Rk – the curvature scalar of the two surface, and G0

0 = �GGG(uuu,uuu) – which
is the projection of Einstein tensor along the observer’s time axis. This is as far as
one can get trying to explore the connection between intrinsic properties of local
Rindler horizons and gravitational dynamics.

To evaluate how rigorous the analysis is, let us take stock of the assumptions that
have gone into the derivation:

(i) The acceleration length scale be small compared to any of the curvature length
scales: This assumption is natural, given that the whole idea is to use solely the ac-
celeration of probe observes and find constraints on background geometry - a natural
physical setup to formulate the problem, sanctioned by the equivalence principle.

(ii) The assumption mentioned just below Eq. (7): This requires some consideration,
since it is possible that the term contributes in a sensible manner to some form
of energy associated with some geometric charactersitic of the horizon. It might
introduce additional stresses in the first law (similar to those resulting from, say,
angular momentum of the horizon patch).

The only technical issue is that, this derivation, while as general as it can be, yields
an extra factor of �h =�1/3 whose interpretation is unclear. Otherwise, the anal-
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What are the effects of spacetime curvature on thermal properties of a freely falling quantum system
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where again, the first term on RHS is the flat spacetime expression and the sec-
ond term the first order modification due to spacetime curvature; {{} symbolically
denotes all the system specific parameters, such as mass, physical dimensions etc.

Our key conjecture would be that:

lim
large T

DZ (b ,Rabcd ,{{}) (21)

generically contains a term independent of {{}, and has the form

lim
large T

DZ (b ,Rabcd ,{{}) = (const.)R00L 2 +{{} dependent terms (22)

Once again, such a result would imply that there is a universal, inherent, Ricci con-
tribution to thermodynamic quantities of a system in curved spacetime, which, for
obvious reasons, can have great implications when a system at finite temperature
disappears across a causal horizon of some observer.

Box of ideal gas

The calculation mentioned above was carried out in [13] for a box of ideal gas freely
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p
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ln
✓

Z
ZF

◆
= �1

4
NRb0b0L 2 + terms depending on curvature & box details (23)

where lnZF = ln(V Nl�3N/N!) is the flat space expression, and L = b h̄c – a length
scale independent of box dimensions Li and mass m.

We can now obtain corrections to various thermodynamic quantities: Ucorr =U �UF
and Scorr = S�SF, where UF = 3N/2b and SF = 3N/2+N ln

�
eV/Nl 3� are standard

flat space expressions. Using standard definitions U =�∂b lnZ and S= lnZ+bU to
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2Scorr/N =+(1/2)Rb0b0L 2

| {z }
2sD /N

bUcorr/N =+(1/2)Rb0b0L 2

| {z }
buD /N

CV corr/N =�(1/2)Rb0b0L 2

| {z }
cD /N

9
>>>>>>>>>>=

>>>>>>>>>>;

+ system dependent terms

Consider the following result for canonical partition function for a box of ideal gas and a collection of 
harmonic oscillators

DK, Phys. Lett. B 720, 410 (2013)
DK, Proceedings of this conference
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? The D contribution to specific heat is negative if the condition (Rb0b0 � 0) holds.
(This condition is, of course, tied to the strong-energy condition if Einstein equa-
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relations satisfied by a Schwarzschild black hole.
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which leads to the following conjecture for thermal entropy / (degree of freedom) 



Thermal entropy and spacetime curvature

Entropy / (degree of freedom)

A combined description of a freely falling thermal system and the thermodynamics associated with 
an accelerated observer can yield physically useful insights into interplay between quantum 

mechanics, thermodynamics, and spacetime curvature. 
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where � is the van Vleck determinant corresponding to gab, and �s(�2) := �(S`
0
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• The Ricci scalar for the above metric is given by a complicated expression, but has the

following interesting limit:

lim

`
0

!0

lim

�!0

g
Ric(p, p

0

) = ± (Dimension of spacetime)⇥ Rabtatb(p
0

)

The above limit is not equal to the Ricci scalar of gab, implying that existence of a minimal
length can leave a non-trivial relic even at low energies.

• The term quantity Rabtatb
is also precisely the entropy term that appears prominently in the

thermodynamic approaches to gravity - the so called emergent gravity paradigm.

Thermal Entropy and Spacetime curvature

Is there a deeper clue hidden in the connection between gravitational dynamics and

thermodynamics?

• This aspect of my research is based on several peculiar effects arising from statistical

mechanics of self-gravitating systems, such as negative specific heat, deriving mostly

from the fact that gravity couples to everything and operates unshielded with an infinite
range.

• A black hole horizon magnifies the quantum effects in it’s vicinity, revealing a gamut of

exotic features, the most famous being its thermal attributes. This gravity$ quantum$
thermodynamics connection has been gaining increasing attention in recent years due to

it’s potential relevance for our understanding of gravity, and perhaps spacetime itself, at a

fundamental level. I have investigated two very specific questions in this area:

What information about spacetime curvature can be obtained from thermal properties of
local acceleration horizons?

This part of my research largely focuses on exploring spacetime geometry in vicinity of an

accelerated observer. Specifically, I have tried to clarify the relation between area
variation and Einstein tensor

T �
?
A !

?
G(uR,uR)

by trying to answer each of the “?”s in the above expression. My work addresses and

clarifies some of the subtle issues that are important for progress in this area.

What are the effects of spacetime curvature on thermal properties of a freely falling

quantum system?

My work on this topic studies geodesic free fall of a thermal system across the local

horizon of such an observer. Motivated by results from a couple of examples, I conjecture

that the partition function and thermal entropy of any quantum system at high

temperatures T acquire a system independent correction term characterised by the

dimensional quantity R(uff,uff) (~c/kT )2 which contributes an (entropy)/(degree of

freedom) of

Entropy/(degree of freedom) = (const.) R(uff,uff) (~c/kT )2

What could be possible implications of this?

• Existence of a universal term that depends on the Ricci tensor, in expression for entropy

of systems at high temperatures, can lead to important insights into understanding the

interplay between thermal and quantum fluctuations in a curved spacetime.

• Such analyses can also add interesting (and non-trivial) physics to arguments given by

Bekenstein in support of the so called generalised second law (GSL)

�SBlack Hole +�Sexterior > 0

by clarifying the role of curvature corrections to thermodynamic attributes and hence

�Sexterior. This research work is currently under progress.
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mechanics of self-gravitating systems, such as negative specific heat, deriving mostly

from the fact that gravity couples to everything and operates unshielded with an infinite
range.

• A black hole horizon magnifies the quantum effects in it’s vicinity, revealing a gamut of

exotic features, the most famous being its thermal attributes. This gravity$ quantum$
thermodynamics connection has been gaining increasing attention in recent years due to

it’s potential relevance for our understanding of gravity, and perhaps spacetime itself, at a

fundamental level. I have investigated two very specific questions in this area:

What information about spacetime curvature can be obtained from thermal properties of
local acceleration horizons?

This part of my research largely focuses on exploring spacetime geometry in vicinity of an

accelerated observer. Specifically, I have tried to clarify the relation between area
variation and Einstein tensor
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by trying to answer each of the “?”s in the above expression. My work addresses and

clarifies some of the subtle issues that are important for progress in this area.

What are the effects of spacetime curvature on thermal properties of a freely falling

quantum system?

My work on this topic studies geodesic free fall of a thermal system across the local

horizon of such an observer. Motivated by results from a couple of examples, I conjecture

that the partition function and thermal entropy of any quantum system at high

temperatures T acquire a system independent correction term characterised by the

dimensional quantity R(uff,uff) (~c/kT )2 which contributes an (entropy)/(degree of

freedom) of

Entropy/(degree of freedom) = (const.) R(uff,uff) (~c/kT )2

What could be possible implications of this?

• Existence of a universal term that depends on the Ricci tensor, in expression for entropy

of systems at high temperatures, can lead to important insights into understanding the

interplay between thermal and quantum fluctuations in a curved spacetime.

• Such analyses can also add interesting (and non-trivial) physics to arguments given by

Bekenstein in support of the so called generalised second law (GSL)

�SBlack Hole +�Sexterior > 0

by clarifying the role of curvature corrections to thermodynamic attributes and hence

�Sexterior. This research work is currently under progress.
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freedom) of

Entropy/(degree of freedom) = (const.) R(uff,uff) (~c/kT )2

What could be possible implications of this?

• Existence of a universal term that depends on the Ricci tensor, in expression for entropy

of systems at high temperatures, can lead to important insights into understanding the

interplay between thermal and quantum fluctuations in a curved spacetime.

• Such analyses can also add interesting (and non-trivial) physics to arguments given by

Bekenstein in support of the so called generalised second law (GSL)
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by clarifying the role of curvature corrections to thermodynamic attributes and hence

�Sexterior. This research work is currently under progress.
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dimensional quantity R(uff,uff) (~c/kT )2 which contributes an (entropy)/(degree of

freedom) of

Entropy/(degree of freedom) = (const.) R(uff,uff) (~c/kT )2

What could be possible implications of this?

• Existence of a universal term that depends on the Ricci tensor, in expression for entropy

of systems at high temperatures, can lead to important insights into understanding the

interplay between thermal and quantum fluctuations in a curved spacetime.

• Such analyses can also add interesting (and non-trivial) physics to arguments given by

Bekenstein in support of the so called generalised second law (GSL)
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by clarifying the role of curvature corrections to thermodynamic attributes and hence
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dimensional quantity R(uff,uff) (~c/kT )2 which contributes an (entropy)/(degree of
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The Cosmological constant
as a relic of the small scale structure of spacetime

The atoms of spacetime and the cosmological constant 
T. Padmanabhan [arXiv:1702.06136]



Future Outlook

• implications for the cosmological constant problem

our approach seems to connect the notion of the cosmological constant being a non-local

relic of quantum gravity and it’s role in the emergent gravity paradigm

• implications of the non-locality for QFT in curved spacetime

• implications for spacetime singularities

• implications for the emergent gravity paradigm

for a first step in this direction, see:

T. Padmanabhan, Distribution function of the Atoms of Spacetime and the Nature of

Gravity (arXiv:1508.06286)
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