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Are First and Second Order Formulations of Gravity Equivalent?

Einstein-Hilbert Action

One way to describe theory of gravity is through Einstein-Hilbert
action functional (with Euclidean signature):

S = 1
2κ2

∫
d4x
√

g gµαgνβ Rµναβ(Γ)

where Riemann curvature tensor is:
R ρ
µνλ (Γ) = ∂µΓ ρ

νλ − ∂νΓ ρ
µλ + Γ ρ

µη Γ η
νλ − Γ ρ

νη Γ η
µλ ;

Rµναβ = gρβR ρ
µνα ; g ≡ det gµν

and Christoffel symbols are given in terms of the metric as:

Γ λ
µν ≡ 1

2gλσ
(
∂µgνσ + ∂νgµσ − ∂σgµν

)
We could add cosmological constant and also matter fields to this
action, but for the purpose of this talk, we do not need to do so.

This action functional for pure gravity on its own is of sufficient interest.
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Are First and Second Order Formulations of Gravity Equivalent?

Einstein-Hilbert Action

Here the metric gµν is the independent field in the action (Γ is not
an independent field).

Variation of the action functional with respect to the metric gµν
leads to the Euler-Lagrange equations of motion which are
identical with the Einstein field equations for pure gravity (vacuum
equations):

Gµν ≡ Rµν − 1
2 gµν R = 0

where the Ricci tensor, Rµα ≡ gνβ Rµναβ and the Rici scalar is:
R ≡ gµν Rµν

These equations have, besides others, the remarkable property that
they admit Schwarzschild black hole as a solution.
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Are First and Second Order Formulations of Gravity Equivalent?

Einstein-Hilbert Action

Solutions of Einstein equations for pure gravity (that is, in absence
of any matter like fermions), by construction, do not possess any
torsion.

The important point to register here is that, by construction, the
metric here is non-degenerate; it has no zero eigen values so that
its inverse and determinant are defined.

This formulation of gravity theory is also called second order
formulation in contrast to another framework which is known as
the first order formulation.
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Are First and Second Order Formulations of Gravity Equivalent?

Hilbert-Palatini Action

An alternate formulation of theory of gravity is the first order
formulation. It is described by the Hilbert-Palatini action functional
given in terms of tetrads e Iµ and connection fields ω IJ

µ as :

S = 1
8κ2

∫
d4x εµναβ εIJKL e IµeJν R KL

αβ (ω)

where now the curvature R IJ
µν (ω) is the field strength of the gauge

connections ω IJ
µ of the local Lorentz group SO(4) in the

Euclidean version of the theory:

R IJ
µν (ω) ≡ ∂[µω

IJ
ν] + ω IK

[µ ω KJ
ν]

The completely antisymmetric epsilon symbols have constant
values 0 and ±1 with εxyzτ = +1 and ε1234 = +1 .

The tetrad can be thought of to be square root of the metric as:

gµν ≡ e Iµ eJν ηIJ where ηIJ = ηIJ = δIJ
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Are First and Second Order Formulations of Gravity Equivalent?

Hilbert-Palatini Action

Both the tetrad e Iµ and connection fields ω IJ
µ in the action

functional are to be taken as independent.

Euler-Lagrange equations of motion are obtained by varying with
respect to both these fields independently.

Equations of motion:
δS
δe Iµ

: εµναβ εIJKL eJν R KL
αβ (ω) = 0 (16 eqns.)

δS
δω IJ
µ

: εµναβ εIJKL eKµ Dν(ω) eLα = 0 (24 eqns.)

where Dµ(ω) e Iν ≡ ∂µe Iν + ω IJ
µ eJν .

We need to solve these equations for the tetrads and connection
fields.
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Hilbert-Palatini Action

Consider the second set of equations of motion first.

e
[I
[µDν(ω) e

J]
α] = 0 (24 eqns.)

Assume tetrads are invertible, that is, det e Iµ 6= 0 .

Inverse of the tetrad, eµI , is defined by e IµeνI = δνµ and e IµeµJ = δIJ .

By multiplying by eµI sucessively, this set of 24 equations can be
easily solved to yield equivalent 24 equations:

D[µ(ω) e Iν] = 0 . That is, the torsion is zero.

These equations can further be solved for 24 connection fields :

ω IJ
µ = 1

2

(
eνI ∂[µeJν] − eνJ ∂[µe Iν] − eKµ eλI eρJ∂[λeKρ]

)
.

Thus, through this set of equations of motion, we find that the
connection fields are not independent but are given in terms of the
tetrads and their derivatives as above.
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easily solved to yield equivalent 24 equations:

D[µ(ω) e Iν] = 0 . That is, the torsion is zero.

These equations can further be solved for 24 connection fields :

ω IJ
µ = 1

2

(
eνI ∂[µeJν] − eνJ ∂[µe Iν] − eKµ eλI eρJ∂[λeKρ]

)
.

Thus, through this set of equations of motion, we find that the
connection fields are not independent but are given in terms of the
tetrads and their derivatives as above.
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Are First and Second Order Formulations of Gravity Equivalent?

Hilbert-Palatini Action: invertible Tetrads

Other set of Euler-Lagrange equations of motion, obtained by
varying the action with respect to tetrad fields, can be rewritten as:

e
[I
[µ R

JK ]
να] (ω) = 0 (16 eqns.)

Multiplying by the inverse tetrads eµI eνJ , these can be seen to yield
the following 16 equations:

R K
α − 1

2 eKα R = 0
where

R K
α ≡ eµI R IK

µα (ω) and R ≡ eαK R K
α

Important point to register is that, for invertible tetrads, the
solutions of the equations motion would all be torsion free.
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Are First and Second Order Formulations of Gravity Equivalent?

Hilbert-Palatini Action: invertible Tetrads

Further notice that the above equations are really Einstein equations,
which becomes transparent, by realizing that, for invertible tetrads, the
local Lorentz field strength and Reimann curvature are related:

R IJ
µν (ω) e IλeρJ = R ρ

µνλ (Γ)

Thus, for invertible tetrads, the first order and second order formalisms

are exactly equivalent.

In both these formulations, the configurations that satisfy vacuum
equations of motion, (for first order formalism, with invertible tetrads),
do not possess any torsion. This is both necessary and also
sufficient.

Torsion is introduced in both these frameworks by matter couplings, say
by coupling fermions to the theory.

Before we are tempted to assert the equivalence of two frameworks too
quickly, let us examine the action functional for the first order
formulation a bit more closely.
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Are First and Second Order Formulations of Gravity Equivalent?

Hilbert-Palatini Action:

Recall the Hilbert-Palatini action functional:

S = 1
8κ2

∫
d4x εµναβ εIJKL e IµeJν R KL

αβ (ω)

Notice that this action is defined both for the invertible as well as
non-invertible tetrads.

There are no det e Iµ nor inverse of the tetrad here.

It could admit configurations which involve degenerate
(non-invertible) tetrads.

Such configurations would be particularly important in the quatum theory
where we need to integrate over all possible configurations including
those with degenerate tetrads, in the fuctional integral, each with a
weight exp(−S) as dictated by Feynman path integral quantum theory.

Also, as we shall see in the following, such configurations could as well
possess torsion even without presence of any torsion inducing matter.
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Are First and Second Order Formulations of Gravity Equivalent?

Hilbert-Palatini Action: Degenerate Tetrads

Thus, even at the classical level, we could ask the following
questions:

(i) Are there any degenerate tetrad solutions of the Euler-Lagrange
equations of motion in the first order formulation?

(ii) Do such solutions possess torsion even without any matter?

(iii) Do these configurations have finite action?

If we do find such solutions of the equation of motion, then two
formulations of the gravity theory, based on Einstein-Hilbert and
Hilbert-Palatini action functionals, would not be equivalent even
classically.
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Are First and Second Order Formulations of Gravity Equivalent?

Hilbert-Palatini Action: Degenerate Tetrads

Let us start with degenerate tetrads with one zero eigen-value.

Ansatz : e I
µ =


e1
x e2

x e3
x 0

e1
y e2

y e3
y 0

e1
z e2

z e3
z 0

0 0 0 0

 =

(
e i
a 0

0 0

)
;

gµν ≡ e I
µ e I

ν =

(
gab 0
0 0

)
; gab = e i

a e i
b ; det e i

a ≡ e 6= 0

We denote the inverse of the triad fields as êai :

êai e ja = δij ; êai e ib = δab

Note that all the triad fields e i
a , in general, depend on all the four

coordinates, x , y , z , and τ .

Four dimensional length element is: ds2(4) = 0 + gabdxadxb

For this degenerate tetrad, we look for solutions of the eqns of motion.
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a ≡ e 6= 0

We denote the inverse of the triad fields as êai :

êai e ja = δij ; êai e ib = δab

Note that all the triad fields e i
a , in general, depend on all the four

coordinates, x , y , z , and τ .

Four dimensional length element is: ds2(4) = 0 + gabdxadxb

For this degenerate tetrad, we look for solutions of the eqns of motion.
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êai e ja = δij ; êai e ib = δab
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Are First and Second Order Formulations of Gravity Equivalent?

Hilbert-Palatini Action: Degenerate Tetrads

Recall the 24 connection eqns of motion: e
[I
[µ Dν(ω) e

J]
α] = 0

Unlike the case of invertible tetrads, these equations now can not
be solved for all the 24 connection fields ωIJ

µ .

It turns out that 12 of the connection fields are fixed other 12
connection fields stay undetermined.

After some bit of analysis, it can be shown that the most general
solutions of these equations are provided by configurations which
satisfy the following constraints:
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Dτ (ω) eka = 0 , where ωij
τ = êai ∂τ e ja = e ia ∂τ êaj

and ω4k
τ = 0 ; ω4k

a ≡ Mk
a ≡ Mkl e la with Mkl = M lk

and ωij
a = ω̄ij

a (e) + κija ,

where ω̄ij
a (e) = 1

2

(
êbi ∂[ae jb] − êbj ∂[ae ib] + e laêbi êcj ∂[be lc]

)
and contorsion κija ≡ εijkNk

a = εijkNkle la with N lk = Nkl

[Note that ω̄ij
a (e) are the torsionless connection fields: D[a(ω̄) e ib] = 0.]

We notice here, of 24 connection fields ωIJ
µ , only 12 get fixed, the

rest of the 12 components as represented by the symmetric
matrices M ij and N ij are not determined.
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and ω4k
τ = 0 ; ω4k

a ≡ Mk
a ≡ Mkl e la with Mkl = M lk

and ωij
a = ω̄ij

a (e) + κija ,

where ω̄ij
a (e) = 1

2

(
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Are First and Second Order Formulations of Gravity Equivalent?

Hilbert-Palatini Action: Degenerate Tetrads

For degenerate tetrads with one zero eigenvalue, this set of
equations are exactly equivalent to original 24 equations of motion
we had obtained by varying the action functional with respect to
the connection fields ωIJ

µ .

An important property to note here is: these equations imply that
such configurations would generically have non-zero contorsion
even for the case of pure gravity without any matter fields such as
fermions.

Next we analyse the rest of equations of motion; those obtained by
varying the action with respect to the tetrad fields e Iµ :

e
[I
[µR

JK ]
να] (ω) = 0 (16 eqns).
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Are First and Second Order Formulations of Gravity Equivalent?

Hilbert-Palatini Action: Degenerate Tetrads

After some bit of analysis, it can be shown that the most general
solutions of these equations are provided by configurations which
satisfy the following 16 constraints:

êai R ij
τa (ω) = 0,

R 4k
aτ (ω) = −Dτ (ω) Mk

a = 0 , ( ω4k
a ≡ Mk

a = Mkle la )

êak R 4k
ab (ω) =

(
e lb ê

a
i − δabδ

l
i

)
Da(ω̄) M il = 0 ,

êai êbj R ij
ab (ω) = êai êbj R̄ ij

ab (ω̄) +
(
M ijM ji −M iiM jj

)
+

(
N ijN ji − N iiN jj

)
= 0.

(Recall ωij
a = ω̄ij

a (e) + κij
a with contorsion κij

a ≡ εijkNk
a = εijkNkle la, N ij = N ji )

First equation is identically satisfied by configurations that satisfy the
earlier conditions on e i

a and ωIJ
µ . Thus, no new conditions here.

Next two equations are solved by: M i
a = λ e i

a with λ as a constant.

Thus for this solution, M ij = λδij and M ijM ji −M iiM jj = −6λ2 .
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êai R ij
τa (ω) = 0,

R 4k
aτ (ω) = −Dτ (ω) Mk

a = 0 , ( ω4k
a ≡ Mk

a = Mkle la )

êak R 4k
ab (ω) =

(
e lb ê
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êak R 4k
ab (ω) =

(
e lb ê
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µ . Thus, no new conditions here.

Next two equations are solved by: M i
a = λ e i

a with λ as a constant.

Thus for this solution, M ij = λδij and M ijM ji −M iiM jj = −6λ2 .
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Are First and Second Order Formulations of Gravity Equivalent?

Hilbert-Palatini Action: Degenerate Tetrads

This allows us to write the last condition on the curvatures as:

ξ ≡ N ijN ji − N iiN jj = 6λ2 − êai êbj R̄ ij
ab (ω̄)

All we need to do now is find a set of triads e ia which satisfy all
the earlier conditions. Evaluate the corresponding spatial (three-)
curvature scalar êa

i êb
j R̄ ij

ab (ω̄) to fix the above combination of the
contorsion matrices as represented by ξ.

This is what we shall do next. There are many possible solutions.

There are a set of solutions for homgeneous three-geometries
described by the triads e ia, which can be put in eight classes given
by Thurston’s model three-geometries.

These eight geometries are: E3, S3, H3, S2 ×R, H2 ×R, Sol , Nil , ˜SL(2,R).

This suggests a connection with some deep mathematics here.
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i êb
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Are First and Second Order Formulations of Gravity Equivalent?

Degenerate Tetrads: Explicit Solutions

Let us now present a few examples of such explicit degenerate tetrad
solutions based on some of these model three-geometries.

Example 1: (H3 geometry). The metric is given by:

ds2(4) = `2

z2

(
dx2 + dy2 + dz2

)
, z > 0.

The triads and associated Levi-Civita connection fields and field
strength fields are:

e1x = e2y = e3z = `
z , and all others zero

ω̄31
x (e) = 1

z = −ω̄23
y (e) and all others zero

R̄ 12
xy (ω̄) = R̄ 23

yz (ω̄) = R̄ 31
zx (ω̄) = − 1

z2
and all others zero

The scalar (spatial) three-curvature is: êai êbi R̄ ij
ab (ω̄) = − 6

`2

And the final constraint is: ξ ≡ N ijN ji −N iiN jj = 6λ2 + 6
`2
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And the final constraint is: ξ ≡ N ijN ji −N iiN jj = 6λ2 + 2
`2
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Are First and Second Order Formulations of Gravity Equivalent?

New solutions and Sen Gupta spacetimes

We have constructed a variety of solutions for the classical eqns of
motion in the first order formulation with degenerate tetrads.

These all generically contain torsion.

The torsion is parametrized through the symmetric 3× 3 matrix of
fields Nkl (where contorsion κija = εijkNkle l

a ) .

Components of Nkl depend on all the four coordinates, x , y , z , τ .

Six components Nkl(x , y , z , τ) are all independent except for one
constraint so that the combination ξ ≡

(
N ijN ji − N iiN jj

)
has

fixed values as dictated by the various solutions.

Unlike the usual framework where torsion enters through matter
couplings such as fermions, we have here solutions which exhibit torsion
in the pure gravity without any matter fields.

The first and second order formulations of gravity theory are not
equivalent even classically.
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Are First and Second Order Formulations of Gravity Equivalent?

New solutions and Sen Gupta spacetimes

We have constructed a variety of solutions for the classical eqns of
motion in the first order formulation with degenerate tetrads with one
zero eigenvalue.

Let us try to understand the nature of geometry these new
solutions represent.

These do not represent the usual geometry as seen in Einstein gravity.

To analyse this question, we shall go to the flat space-time limit.

In the flat space-time limit, square of the infinitesimal length
element is given by (with Lorentzian signature):

ds2(4) = dx2 + dy2 + dz2 − c2dt2

Degenerate tetrads correspond to the limit here where the metric
component gtt ≡ − c2 → 0.



Are First and Second Order Formulations of Gravity Equivalent?

New solutions and Sen Gupta spacetimes

We have constructed a variety of solutions for the classical eqns of
motion in the first order formulation with degenerate tetrads with one
zero eigenvalue.

Let us try to understand the nature of geometry these new
solutions represent.

These do not represent the usual geometry as seen in Einstein gravity.

To analyse this question, we shall go to the flat space-time limit.

In the flat space-time limit, square of the infinitesimal length
element is given by (with Lorentzian signature):

ds2(4) = dx2 + dy2 + dz2 − c2dt2

Degenerate tetrads correspond to the limit here where the metric
component gtt ≡ − c2 → 0.



Are First and Second Order Formulations of Gravity Equivalent?

New solutions and Sen Gupta spacetimes

We have constructed a variety of solutions for the classical eqns of
motion in the first order formulation with degenerate tetrads with one
zero eigenvalue.

Let us try to understand the nature of geometry these new
solutions represent.

These do not represent the usual geometry as seen in Einstein gravity.

To analyse this question, we shall go to the flat space-time limit.

In the flat space-time limit, square of the infinitesimal length
element is given by (with Lorentzian signature):

ds2(4) = dx2 + dy2 + dz2 − c2dt2

Degenerate tetrads correspond to the limit here where the metric
component gtt ≡ − c2 → 0.



Are First and Second Order Formulations of Gravity Equivalent?

New solutions and Sen Gupta spacetimes

We have constructed a variety of solutions for the classical eqns of
motion in the first order formulation with degenerate tetrads with one
zero eigenvalue.

Let us try to understand the nature of geometry these new
solutions represent.

These do not represent the usual geometry as seen in Einstein gravity.

To analyse this question, we shall go to the flat space-time limit.

In the flat space-time limit, square of the infinitesimal length
element is given by (with Lorentzian signature):

ds2(4) = dx2 + dy2 + dz2 − c2dt2

Degenerate tetrads correspond to the limit here where the metric
component gtt ≡ − c2 → 0.



Are First and Second Order Formulations of Gravity Equivalent?

New solutions and Sen Gupta spacetimes

We have constructed a variety of solutions for the classical eqns of
motion in the first order formulation with degenerate tetrads with one
zero eigenvalue.

Let us try to understand the nature of geometry these new
solutions represent.

These do not represent the usual geometry as seen in Einstein gravity.

To analyse this question, we shall go to the flat space-time limit.

In the flat space-time limit, square of the infinitesimal length
element is given by (with Lorentzian signature):

ds2(4) = dx2 + dy2 + dz2 − c2dt2

Degenerate tetrads correspond to the limit here where the metric
component gtt ≡ − c2 → 0.



Are First and Second Order Formulations of Gravity Equivalent?

New solutions and Sen Gupta spacetimes

We have constructed a variety of solutions for the classical eqns of
motion in the first order formulation with degenerate tetrads with one
zero eigenvalue.

Let us try to understand the nature of geometry these new
solutions represent.

These do not represent the usual geometry as seen in Einstein gravity.

To analyse this question, we shall go to the flat space-time limit.

In the flat space-time limit, square of the infinitesimal length
element is given by (with Lorentzian signature):

ds2(4) = dx2 + dy2 + dz2 − c2dt2

Degenerate tetrads correspond to the limit here where the metric
component gtt ≡ − c2 → 0.



Are First and Second Order Formulations of Gravity Equivalent?

New solutions and Sen Gupta spacetimes

This length element stays unaltered under change of frames:

ds2(4) = dx2 + dy 2 + dz2 − c2dt2 = dx ′2 + dy ′2 + dz ′2 − c2dt′2

(i) Lorentz transformation (LT) leaves this length element invariant:

dx ′ = dx−vdt√
1− v2

c2

, dy ′ = dy , dz ′ = dz , dt ′ =
dt− v

c2
dx√

1− v2

c2

, v2 < c2

where v = dx
dt (for ∆x ′ = 0) is the velocity of a fixed point in the dashed

frame as measured in the space-time of the undashed system.

(ii) (Not so well known), there is another way (dual to LT) of writing

transformations that leave ds2(4) unchanged (N.D. Sen Gupta, 1966):

dx ′ =
dx− c2

w dt√
1− c2

w2

, dy ′ = dy , dz ′ = dz , dt ′ =
dt− dx

w√
1− c2

w2

, w2 > c2

Here w , despite its dimensions, is not a velocity; it rather represents,
(w = dx

dt for ∆t ′ = 0), the rate of change of an event which occurs at a
fixed time in the dashed system as measured in the undashed system.
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Are First and Second Order Formulations of Gravity Equivalent?

New solutions and Sen Gupta spacetimes

It is of interest to study these two types of transformations in two
different limits, c →∞ and c → 0 respectively.

(i) Recall LT: dx ′ = dx−vdt√
1− v2

c2

, dy ′ = dy , dz ′ = dz , dt′ =
dt− v

c2
dx√

1− v2

c2

,

which in the limit c →∞ reduce to Galilean transformation (GT):

c →∞ : dx ′ = dx − vdt , dy ′ = dy , dz ′ = dz , dt ′ = dt

(ii) On the other hand, for c → 0, the second (dual) transformation

is appropriate: dx ′ =
dx− c2

w
dt√

1− c2

w2

, dy ′ = dy , dz ′ = dz , dt′ =
dt− dx

w√
1− c2

w2

.

This reduces, in this limit, to Sen Gupta transformation (dual to GT):

c → 0 : dx ′ = dx , dy ′ = dy , dz ′ = dz , dt ′ = dt − dx
w

(N.D. Sen Gupta, On an Analogue of the Galilei Group, Nuovo Cimento, XLIV, (1966)
4772-4777)
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In the first order formulation, whereas invertible tetrads correspond
to the usual Einsteinian curved space-time, the degenerate tetrads
(with one zero eigenvalue) lead us to another (dual) phase
described by the curved space-time generalizations of the Sen
Gupta space-time.
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Concluding Remarks

We have constructed a variety of solutions for the classical
equations of motion in the first order formulation with degenerate
tetrads with one zero eigenvalue.

These all generically contain torsion.

The torsion is parametrized through the symmetric 3× 3 matrix of
fields Nkl (where contorsion κija = εijkNkle l

a ) .

Components of Nkl depend on all the four coordinates, x , y , z , τ .

Six components Nkl(x , y , z , τ) are all independent except for one
constraint so that the combination ξ ≡

(
N ijN ji − N iiN jj

)
has

fixed values as dictated by the various solutions.
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Are First and Second Order Formulations of Gravity Equivalent?

Concluding Remarks

Thus the phase with degenerate tetrads leads to solutions of the
equation of motion which generically carry non-zero torsion even in
absence of any torsion inducing matter.

In contrast, in the second order formulation, we need matter fields
such as fermions to introduce torsion.

A specific class of these degenerate tetrad solutions with one zero
eigenvalue are associated with Thurston’s homogeneous model
eight three-geometries.

There is a profound connection with deep mathematics here.

Gravity theories in the second order formulation based on Einstein-
Hilbert action functional and the first order formulation based on
Hilbert-Palatini action are not equivalent even classically.
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Concluding Remarks

This analysis can also be extended to obtain additional degenerate
solutions of the equations of motion containing tetrads with two
zero eigenvalues.

These also exhibit non-zero torsion even without usual torsion
inducing matter.

A special class of such solutions (degenerate 4−geometries)
correspond to three fundamental geometries that closed two-
surfaces can accommodate, namely, two dimensional Euclidean
plane E 2, two-sphere S2 and two dimensional hyperbolic plane H2.

For details of solutions containing tetrads with two and more zero

eigenvalues see:

RKK and S. Senguta, New solutions in pure gravity with degenerate tetrads,
Phys. Rev. D 94, 104047 (2016).
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Thank you!


