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1. Using Dirac delta functions in the appropriate coordinates, express the
following charge distributions as three-dimensional charge densities ρ(x).

(a) In spherical polar coordinates, a charge Q uniformly distributed over
a spherical shell of radius R.

(b) In cylindrical polar coordinates, a charge λ per unit length uniformly
distributed over a cylindrical surface of radius b.

(c) In spherical polar coordinates, a charge Q spread uniformly over a flat
circular disc of negligible thickness and radius R.

(d) In cylindrical polar coordinates, a charge Q spread uniformly over a
flat circular disc of negligible thickness and radius R.

2. Each of three charged spheres of radius a, one conducting, one having a
uniform charge density within its volume, and one having a spherically
symmetric charge density that varies radially as rn(n > −3), has a total
charge Q. Use Gauss’s theorem to obtain the electric fields both inside and
outside each sphere. Sketch the behavior of the fields as a function of radius
for the first two spheres, and for the third with n = −2,+2.

3. The time-averaged potential of a neutral hydrogen atom is given by
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where q is the magnitude of the electronic charge, and α−1 = a0/2, a0
being the Bohr radius. Find the distribution of charge (both continuous and
discrete) that will give this potential and interpret your result physically.

4. A spherically symmetric charge distribution of radius R has a charge density
given by
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Find the electric field as a function of r.



5. Verify Gauss law by explicitly evaluating the expression for the electric field
E, due to a point charge Q at the origin, over the ellipsoid
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6. Derive the two dimensional form of Green’s boundary value theorem: if
φ(x, y) is the two dimensional potential, show that
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where S is the area bounded by the contour C and n̂ is the outward normal
unit vector.


