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PH5020 Electromagnetic Theory Assignment 3 13.02.2015 (due: 20.02.2015)

1. Consider a potential problem in the half-space defined by z > 0, with Dirichlet
boundary conditions on the plane z = 0 (and at infinity).
(a) Write down the appropriate Green function G(x,x’).

(b) If the potential on the plane z = 0 is specified to be ¢ = V inside a circle of
radius a centered at the origin, and ¢ = 0 outside that circle, find an integral
expression for the potential at the point P specified in terms of cylindrical
coordinates (p, ¢, z).

(c) Show that, along the axis of the circle (p = 0), the potential is given by
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(d) Show that at large distances (p* + 2% >> a?) the potential can be expanded in
a power series in (p? + 2%)7!, and that the leading terms are
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Verify that the results of parts ¢ and d are consistent with each other in their
common range of validity.

2. Start with the series solution
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for the two-dimensional potential problem with the potential specified on the surface
of a cylinder of radius b. Evaluate the coefficients formally, substitute them into the
series, and sum it to obtain the potential inside the cylinder in the form of Poisson’s
integral:
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What modification is necessary if the potential is desired in the region of space
bounded by the cylinder and infinity?




3.

(a)

Construct the free-space Green function G(z,;2’,1y’) for two-dimensional elec-
trostatics by integrating 1/R with respect to (2’ —z) between the limits Z, where
Z is taken to be very large. Show that apart from an inessential constant, the
Green function can be written alternately as
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Show explicitly by separation of variables in polar coordinates that the Green
function can be expressed as a Fourier series in the azimuthal coordinate,
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where the radial Green functions satisfy
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Complete the solution and show that the free-space Green function has the
expansion
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wherep(p~) is the smaller (larger) of p and p'.

Consider a two dimensional region bounded by the straight lines ¢ = 0 and
¢ = [, for some angle 5. Solve the Laplace’s equation in the above region,
subjected to the condition ¢(r) = V4 on the boundary. (Here Vj is a constant).

Show that the Green function in the region described in the above problem can
be expressed as:
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where g, (p, p') satisfies
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Show the the following expression for g, (p, p') is a solution to the above differ-
ential equation
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Use the above problem to find the Green function appropriate for the Dirichlet
boundary condition for the two dimensional region bounded by the lines ¢ =
0, =0 and p=a.



