Introduction to PID control

Prof. S. Kasiviswanathan Physics Department **IIT Madras**

Few commercial PID controllers

SIM960 - 100 kHz analog PID controller

Control: The necessity and examples

Cycle pedaling Driving a two/four wheeler Common experience

Home Pressure in a pressure cooker Room temperature and air conditioner

Industry Temperature of a furnace Speed of a motor Mass flow rate (gas/liquid)

Read/write head of CD player or a hard disk A gadget

Temperature Control - Illustration

Aim: To control the temperature of a body

The body - A bucket of water

Eg. A simple 220V, 1000W immersion water heater A heater at our disposal to supply heat to the body

Understanding Control

No control Switch on the power to the heater and forget Let the temperature reach its "own value"

Water temperature does not increase as soon as the heater power is on. Temperature does not follow the input Reason?

Left unattended for a while:

Water temperature will reach a value, decided by the heat lost to the *surrounding and the heat input from the heater*

If left unattended indefinitely, the result will be disastrous.

Eventually water will evaporate,… heater will start burning the bucket,… and…

Understanding Control

Manual intervention

Switch on the power to the heater and switch off the power after some time

No control over temperature

Water temperature will not increase as soon as the heater power is on nor it will fall as soon as the heater power is off. Reason: Thermal inertia.

Simple On-Off control

Switch off the power once the temperature of the body exceeds the set temp. *Switch on when the temperature goes below set temp. Switch on power to the heater and monitor the temperature Repeat this process*

Commonly used in: it will swing about the set value (*goes above and below*) *Useful, when precise control is not needed. Water temperature will not follow the heater, but Iron press (box), refrigerator, air conditioner, kitchen oven, water heater...*

Proportional Control

Sense/Measure the temperature of the body continuously Find, $\Delta T(t)$ *the difference between the set and the actual temperature Temperatures are measured in terms of voltages:* $\Delta T(t) \propto e_R(t)$ $e_R(t)$ *is the error voltage and* $e_R(t)$ *will be zero, when* $\Delta T(t)$ *is zero. Proportional control:* (Temperature sensors: *Thermocouple, Diode thermometer,…*)

A voltage, $V_p(t)$ *proportional to* $e_p(t)$ *is sent to the heater*

Kp is the proportional constant (*gain*) $V_P(t) = K_P e_R(t)$ $e_R(t) = \Delta T \left(= T_{set} - T_{measured} \right)$

Proportional Control

 $V_P(t) = K_P e_R(t)$

 $e_R(t) \propto \Delta T(t)$

Reason: Temperature rise will not be the same as that in on-off control Power delivered to the heater is not a step, but $\propto \Delta T(t)$

Temperature will never reach the set value, but will settle at a lower value.

Reason: When $\Delta T = 0$, $e_R(t) = 0$. $\overline{V}_P = 0$, no power is given to the heater

Proportional + Integral control

With proportional control, the body temperature will never reach the set value

0

t

Send an additional voltage, $V_I(t)$ *to meet the difference How to determine* $V_I(t)$ *needed to compensate the difference? Integrate the error voltage* $e_R(t)$ *from the start:* $V_{out}(t) = V_P(t) + V_I(t) = K_P e_R(t) + K_I e_R(\tau)$ *t* $V_{out}(t) = V_P(t) + V_I(t) = K_P e_R(t) + K_I \int e_R(\tau) d\tau$ $\overline{0}$ $(t) = K_I | e_R(\tau)$ *t* $V_I(t) = K_I \int e_R(\tau) d\tau$ *t*

 K_I *is the integral gain. Choice of* K_I *is critical* ($K_I < K_P$) *After a long time, which term will dominate and why?*

Proportional + Integral control

Inclusion of a signal proportional to the integral of $e_R(t)$ *results in controlling the temperature of the body at any desired value.*

Supposing there is a sudden deviation from the set value, Which terms will act and why?

Proportional + Integral + Differential control

Proportional + Integral parts will achieve control

A sudden change in system conditions may lead to sudden change in its temperature

 K_{P} and K_{I} both will act and the system temperature may overshoot

Term proportional to derivative of $e_R(t)$ *will counter sudden changes Term proportional to the rate of change in temperature is required* $V_D(t) = K_D \frac{de_R}{\mu}$ =

 K_D *is the differential gain*

The PID control output:

dt

$$
V_{out}(t) = V_P(t) + V_I(t) + V_D(t) = K_P e_R(t) + K_I \int_{t_0}^t e_R(\tau) d\tau + K_D \frac{de_R}{dt}
$$

$$
\Delta T = T_{set} - T_{measured} \quad and \quad e_R(t) \propto \Delta T(t)
$$

 $e_R(t)$ *is the difference between the set voltage (temperature) and the measured voltage (temperature) at any instant of time.*

 de_R/dt *is derivative of the difference voltage (error voltage,* $e_R(t)$ *).* $\Delta e_R / \Delta t = [e_R(t + \Delta t) - e_R(t)] / \Delta t$

Near t₁, de_R/dt is +ve, differential term will reinforce the other terms Near t_2 *,* de_R/dt *is -ve differential term will oppose the other terms Near t₃, de_R/dt is zero, differential term will have no contribution*

System with PID control

A closed loop system, with feedback provided by the sensor

The heater should attain the set temperature as fast as possible and should continue to remain at the set temperature.

System analysis: *Time domain Vs s-domain*

Aim:

Find the response (temp), when the input, $V_R(t)$ *is set at a given value*

Analysis in time domain

Find the impulse response function, h(*t*) *of individual blocks Find the impulse response function of the whole system Convolute the impulse response function with input to get the output*

Analysis in s-domain (*complex domain*)

Find the Laplace transform of individual blocks – s-domain Find the transfer function, H(*s*) (*ratio of output to input in s-domain*) *of the individual blocks*

Find the transfer function of the whole system

Multiply the transfer function of the whole system by the input (*s-domain*) *to get the output in d-domain*

Take inverse Laplace transform to get the output in time domain

Integral/differential equations become algebraic equations in Which procedure is simpler and why?

The Transfer Function: $H_{PID}(s) = \mathcal{V}_{PID}(s)/E_R(s) = K_P + K_I/s + sK_D$

2. The Heater

$$
V_{\text{HTR}}(t) \qquad T(t) \qquad (V_{\text{HTR}}(t) = input \, voltage)
$$

For a short duration voltage (input) applied at $t = 0$, the heater temperature *rises to a finite value and for t* > 0 decreases exponentially. $T(t) \propto e^{-at}$

The Transfer function: $H_{HTR}(s) = \mathcal{V}_{HTR}(s) / \mathcal{T}(s) =$ *1 1 + s* $(assuming \ a = 1)$

s-Domain representation

3. Temperature sensor (*Thermocouple*) *Temperature, T(s) Voltage, V_{Th}(s)*

Transfer function: $H_{Th}(s) = V_{Th}(s) / T(s)$

If the sensor gives 1V for 1K(after signal conditioning), $H_{Th}(s) = 1$

4. Reference voltage source $V_R(t)$ *Voltage,* $V_R(s)$

A constant voltage source, calibrated to set temperature

 $V_R(t)$ **proportional to the difference between them** $V_R(t) - V_{R}(t) - V_{R}(t) = e_R(t)$, the error signal $V_{Th}(t)$

5. Differential amplifier Compares the temperature sensor voltage and the reference voltage and gives a voltage

> $V_R(t) - V_{Th}(t) = e_R(t)$, the error signal $\mathcal{V}_R(s) - \mathcal{V}_{Th}(s) = \mathcal{E}_R(s)$

PID control – Analysis in s-domain \bigoplus *P I D HTh*(*s*) *+-* $\mathcal{E}_{R}(\overline{s})$ $\mathcal{T}(s)$ $=$ $\mathcal{V}_{HTR}(s)$ *HHTR*(*s*) *HPID*(*s*) $\mathcal{V}_{PID}(s)$ $V_{Th}(s)$ $\nu_R(s)$ $\overline{\mathcal{V}_{Th}\left(s\right)}$ *Refer.* $\mathcal{T}(s)$

Aim: *To find the transfer function of the whole system that is to find the ratio of output* $(\mathcal{T}(s))$ *to input* $(V_R(s))$

 $\mathcal{T}(s) = \mathcal{V}_{HTR}(s) H_{HTR}(s) = \mathcal{V}_{PID}(s) H_{HTR}(s)$ $\left[\mathcal{V}_{Th}(s) = H_{Th}(s) \mathcal{I}(s)\right]$ $[\mathcal{V}_{HTR}(s) = \mathcal{V}_{PID}(s)]$ $\mathcal{T}(s) = \mathcal{E}_R(s) H_{PID}(s) H_{HTR}(s)$ [$\mathcal{V}_{PID}(s) = H_{PID}(s) \mathcal{E}_R(s)$] $\mathcal{L}_R(s) = \mathcal{V}_R(s) - \mathcal{V}_{Th}(s) = \mathcal{V}_R(s) - H_{Th}(s) \mathcal{I}(s)$ $\mathcal{T}(s) = \left[\mathcal{V}_R(s) - H_{Th}(s) \mathcal{I}(s) \right] H_{PID}(s) H_{HTR}(s)$ $\mathcal{T}(s)$ $[I + H_{Th}(s) H_{PID}(s) H_{HTR}(s)] = \mathcal{V}_R(s) H_{PID}(s) H_{HTR}(s)$

PID control – Analysis in s-domain

The transfer function for the whole system is:

$$
H(s) = \frac{\mathcal{T}(s)}{\mathcal{V}_R(s)} = \frac{H_{PID}(s) H_{HTR}(s)}{[1 + H_{Th}(s) H_{PID}(s) H_{HTR}(s)]}
$$

 $H_{Th}(s) = 1$ *Where the individual transfer functions are*:

$$
H_{PID}(s) = K_P + K_I/s + sK_D = \frac{(s^2K_D + sK_P + K_I)}{s} \qquad H_{HTR}(s) = \frac{1}{1+s}
$$

$$
H(s) = \frac{s^2 K_D + sK_P + K_I}{[s^2 (1 + K_D) + s(1 + K_P) + K_I]}
$$

Output can be found for any input, as H(*s*) *is known If the input* $V_R(t) = \delta(t)$ *, then output* $\mathcal{T}(s) = H(s)$; $L\{\delta(t)\} = 1$ *If the input* $V_R(t) = u(t)$ *, then output* $\mathcal{T}(s) = H(s)/s$; $L\{u(t)\} = 1/s$

Transfer Function analysis of PID control

Let $V_R(t) = u(t)$; $u(t)$ *is unit step,* $K_P = 1$, $K_I = 5$ & $K_D = 0$

$$
H(s) = \frac{s^2 K_D + sK_P + K_I}{[s^2 (1 + K_D) + s(1 + K_P) + K_I]} = \frac{s + 5}{s^2 + 2s + 5}
$$

$$
\mathcal{V}_R(s) = 1/s
$$

\n $\mathcal{T}(s) = H(s) \mathcal{V}_R(s) = \frac{s+5}{s^2+2s+5} \frac{1}{s} = \frac{1}{s} - \frac{s+1}{(s+1)^2+4}$

$$
T(t) = L^{-1}\{\mathcal{T}(s)\} = I - e^{-t} \cos 2t
$$

PID Control – MATLAB simulation

A quick analogy

The PID controller output is: Rewrite the equation as $K_{P}e_{R}(t) + K_{I} \int e_{R}(\tau)$ *t* $\int e_R(\tau)d\tau + K_D$ *deR dt*

$$
K_D \frac{d^2 e_R}{dt^2} + K_P \frac{de_R}{dt} + K_I e_R = f(t)
$$

Let
$$
e_R = x
$$
; $K_D = m$; $K_P = b$ and $K_I = k$
\n
$$
m \frac{d^2x}{dt^2} + b \frac{dx}{dt} + kx = g(t)
$$

Let
$$
e_R = I
$$
; $K_D = L$; $K_P = R$ and $K_I = 1/C$

$$
L \frac{d^2I}{dt^2} + b \frac{dI}{dt} + (1/C)I = h(t)
$$

Bound electron in alkali halide under EM radiation $m_e \ddot{\vec{r}} + b \dot{\vec{r}} + k \vec{r} = -e \vec{E_L} e^{i\omega t}$

Damped SHM: spring-mass system on rough surface

Current in an LCR circuit L ^R ^C [~]

 $\mathcal{L}(\mathcal{C})$ $\mathcal{L}(\mathcal{C})$ $\mathcal{L}(\mathcal{C})$ $\mathcal{L}(\mathcal{C})$ $\mathcal{L}(\mathcal{C})$ $\mathcal{L}(\mathcal{C})$ $\mathbb{R}(\mathbb{C} \cap \mathbb{C})$ \mathbb{R} $\mathbb{C} \cap \mathbb{C}$ \mathbb{C} $\overline{(Cl^{2})(\vec{k})}$ $\overline{(Cl^{2})}$ (Cl^{2}) (R^{3}) (Cl^{2}) (R^{3}) (Cl^{2}) $\overline{(\overrightarrow{k})}$ $\overline{(\overrightarrow{k})}$ $\overline{(\overrightarrow{k})}$ $\overline{(\overrightarrow{k})}$ $\overline{\text{(cl)}(\text{k})(\text{cl})(\text{k})(\text{cl})}$ $\mathcal{R}(\mathsf{Cl}^{\bullet}(\mathbb{R}^d)(\mathsf{Cl}^{\bullet}(\mathbb{R}^d)(\mathsf{Cl}^{\bullet}(\mathbb{R}^d)(\mathsf{Cl}^{\bullet}(\mathbb{R}^d))$

Quick summary

The meaning of PID control Necessity for control s-domain analysis of Heater with PID control Modeling using Transfer function Example of PID control of a Heater Simulation and effect of PID constants