
Statistical methods
Jim Libby IITM
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Contents and resources

1. Probability distributions

2. Statistical and systematic uncertainties

3. Estimators - fitting

4. Probability and confidence intervals

5. Multivariate techniques – will not be covered – instead a tutorial

• Statistics – R. J. Barlow  (John Wiley & Sons)

• A Practical Guide to Data Analysis for Physical Science Students – L. 
Lyons (Cambridge University Press)

• Leo  - chapter 4

• Data analysis techniques for HEP, Fruhwirth et al (Cambridge University 
Press)

• Particle Data Group, Review of Particle Properties, Sections 35 and 36

• SLUO lectures on statistics (Frank Porter and Roger Barlow) http://www-
group.slac.stanford.edu/sluo/lectures/Stat_Lectures.html

• RooFit: http://roofit.sourceforge.net/

• RooStats: https://twiki.cern.ch/twiki/bin/view/RooStats/
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Lies, damn lies and statistics
Benjamin Disraeli (British politician, 1804-1881) 
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http://en.wikipedia.org/wiki/Flying_Spaghetti_Monster



Why you need to know some 

statistics?
• Most of you will be measuring some parameter during your 

graduate studies

• branching fraction

• mass 

• coupling

• differential cross section

• ..... 

• In reality you never measure a single value but an interval 

expressed as  

2[1.98 0.62 0.24] 10
DK

R
−= ± ± ×

Central 

value

Statistical 

uncertainty

Systematic 

uncertainty

[M. Nayak et al., 

(Belle Collaboration), 

PRD 88, 091104] 

Which is the most

important number?
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You will need
1. A method of estimating the central value and its related statistical 

uncertainty in a consistent, unbiased and efficient way

2. To identify sources and estimate the magnitude of the systematic 
uncertainty

3. Combine measurements and uncertainties, even if they are 
correlated

4. Interpret your result degree of belief/confidence in your result

• all intervals correspond to some probability 

• ± one standard deviation should indicate that if you repeat your 
measurement many times your result will lie in that range 68% of the 
time

• Interpret your result 

Will try to give a flavour of how to go about the above

• But statistical methods are tools, which you must learn to use 
practically 

• ‘A bad workman blames his tools’
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PROBABILITY DISTRIBUTIONS 

Part 1
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Assumed knowledge/revision I

• Classical definition of probability

• If I toss an unbiased coin many times the no. of heads divided by 

number of tosses →1/2 ≡ Probability of a coin toss giving heads

• Definition of mean and standard deviation for a sample and  

distributions (discrete and continuous)

• A probability density function
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Assumed knowledge/revision II

• Covariance and correlations

• Uncorrelated: pp vertex position and jet energy

• Partially correlated: electron energy and momentum 

• why only partially?

• Fully correlated: number of pp collisions and luminosity
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where 1,1  is the correlation coefficient  
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Law of large numbers

• Something we all know but it is worth emphasizing 

• We are always trying to measure some true parameter or 

distribution

• However, a few pieces of data are unlikely to give you a good 

estimate of that parameter/distribution due to the fluctuations

• Example: tossing a coin four times

• Now do the experiment and estimate the probability after

• 10 tosses

• 1000 tosses

• 100000 tosses 
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No. of Heads 0 1 2 3 4

Probability 1/16 4/16 6/16 4/16 1/16



Law of large numbers: example
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Probability distributions

• We are now going to review four important ones which often 
describe physical processes of interest

• Binomial

• Poisson

• Gaussian

• Uniform

• Not exhaustive

• Multinomial

• Exponential – lifetimes

• Breit-Wigner/Cauchy – resonances 

• Landau – dE/dx in a thin piece of material

• Polynomials – particularly orthogonal sets - Legendre, Hermite, 
Chebyshev

• χ2
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Binomial distribution

• Applies to pass-fail situations

• Coin toss

• Event selection

• Forward-backward asymmetries (or similar)

• From n attempts there 2n ways to put together the successes  

and failures

• The number of ways that contain r successes is

• Therefore, probability of r successes from n trials is  

where p is the individual probability of success at each trial 
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Binomial coefficient = 
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Binomial distribution II

• Check of the total probability

• Mean and standard deviation

• Example distributions
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Binomial example: efficiencies

• Often you need to estimate a selection efficiency from a 

sample of simulated events: 

• Efficiency = ε = no. selected (m)/no. in sample (n)

• No. selected follows a binomial distribution

• Therefore,  uncertainty is

• Common mistake is to say error is sqrt(m)/n

• 98% from a sample of 1000 events ⇒

• (98.0±3.1)%  (efficiency greater than 100% !)

• (98.0±±±±0.4)% correct binomial error

•
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Poisson

• Describes the a case where there are still particular outcomes 

like the binomial but you don’t know the number of trials 

• Sharp events in a continuum of nothing happening

• Radioactive decay

• Flashes of lightening

• Signal produced in a collision

• One knows the average number of events over some period 

• Want to know the probability of observing a given number in a 

certain period

• Analysis of binomial distribution, in which the number of trials 

n becomes large while the probability p becomes small but 

their product is constant

• On board
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Poisson distribution
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Poisson example

No. νννν 0 1 2 3 4 5 6 7 8 9

Intervals 1042 860 307 78 15 3 0 0 0 1

Predict. 1064 823 318 82 16 2 0.3 0.03 0.003 0.0003
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Credit: X-ray: NASA/CXC/PSU/S.Park & D.Burrows.; 

Optical: NASA/STScI/CfA/P.Challis

Phys. Rev. Lett. 58, 1494–1496 (1987) 

and Barlow

Data collected in 10 second intervals on 23rd February 1987 around the time of 

the first observation of SN1987A

Ignoring the interval with nine neutrinos the average is 0.77

The Poisson prediction for λ=0.77 is given which is in excellent agreement with

the observed counts 

Therefore, probability that the interval with nine events is a fluctuation of the 

background rate is tiny



Gaussian

• The most common distribution – there is a reason which we 

will discuss in the next class

• Unlike binomial or Poisson it describes a continuous distribution

• Appropriately normalised

• Will show in problem set that as n→∞ the Poisson distribution 

tends toward Gaussian distribution

• Will assume you have used this distribution
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Uniform distribution: 
parameterizing ignorance?

• Use this if you don’t know a 

value but only the range in 

which may have fallen with 

equal probability

• Binned data

• A hit on Si strip

• Some parameter which is 

bounded i.e. a phase 0-2π

• Self evident that 

<x>=(a+b)/2

• Standard deviation is (proof  

on board)
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LIVING WITH ERRORS

Part 2
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Uncertainties/errors

• Are everywhere

• Personally I prefer uncertainty/resolution 
to error, some of your collaborators maybe 
be religious about this

• Error suggest you are doing something 
wrong

• But by carefully considering your 
uncertainties you are being righteous

• What we need to know are the different 
types, how to evaluate them and to 
combine them 

• Otherwise you result can lead to a lot of 
mischief
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Why are uncertainties Gaussian?

• The Central Limit Theorem is the answer 

• If you take the sum X of N independent variables xi , each taken 
from a distribution of mean µi and variance Vi the distribution for 
X

1. has an expectation value <X> = Σ µi 

2. has a variance V(X) = Σ Vi and 

3. becomes a Gaussian as N→∞→∞→∞→∞

• I will prove 1 and 2 on the board now 

• But the most startling of these 3 requires a more formal 
definition which I frankly do not have time to do:

• Appendix 2 Barlow contains a proof

• However, I recommend Chapter 30 of the 3rd Edition of Riley, 
Hobson and Bence ‘Mathematical Methods for Physics and 
Engineering’ to understand moments and hence the proof of the 
CLT 
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Central limit theorem: example
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Uncertainty on the mean: do more!

• If we make many independent measurements of the same 

quantity with a true mean µ

• <X> = Σ µ = Nµ (from CLT)

• Therefore, your estimate of the mean is X/N

• V(X) = Σ σ2 = Nσ2 (from CLT)

• Therefore, 

• Taking more measurements is good for you

• But to halve an uncertainty four times more measurements!

• Only systematic uncertainties can mess this up
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Combining measurements

• There are two measurements of the top mass with different 

resolutions one with (175±2) GeV/c2 and the other 

(176±1) GeV/c2

• How do we combine them?

• I would need four more of the first measurement to get the same 

precision as the second

• Switch it: second measurement is equivalent to four of the 

first so should be weighted by a factor 4

• Therefore

• In general   
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Caveats

• CLT

• Works well in the central part of a distribution

• Core – 2 or 3 sigma from the mean

• But the events outside this – outliers, tails or wings – do not tend 
to Gaussian as fast

• As N never really tends to ∞ beware outliers

• When averaging we assume measurements are uncorrelated 

• Must modify combination to include correlations (more in a 
moment)

• Also, averaging measurements that are incompatible with one 
another makes no sense

• Two other top mass measurements (175±2) GeV/c2 and the other 
with (186±1) GeV/c2

• One (or both) are very likely to be wrong
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Error propagation

• On board variance of f=ax+b where a and b are exact 

constants

• σf=|a| σx

• Now in general

• For ‘small errors’ – when df/dx approximately constant for a 

few standard deviations about the point.

• If this is not true you have to use a Monte Carlo or a higher 

order expansion 

• Example next slide: f=exp(-t/τ) with τ=(2 ± 0.5) sec and 

τ=(2 ± 0.1) with t = 2 sec 
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Error propagation: example
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More than one variable and 

function
• Now we have m different functions fk of n different variables xi

for which there are means and variances µi and σ 2
i 

respectively

• Note the functions will be correlated even if the variables are not

• The variance of f is given by � �� = ��
	
− ��

	

• Expanding as a Taylor series
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All you need to know about 

error propagation
• The new covariance can be neatly defined in terms of a matrix 

multiplication defining m × n matrix G as

• Then

• Where  the covariance matrices are n × n for the variables and 

m × m for the functions.

• Example: f(x,y,z) with x, y, z uncorrelated on board
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Systematic uncertainties
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[M. Nayak et al., (Belle Collaboration),  PRD 88, 091104] 

Those of you doing analysis will one day have to produce a table like this



This analysis is essentially

Area under red curve in this 

plot…

…divided by the area under the 

red curve in this plot
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Ratios are often cool for reducing systematics (why?)



Systematic uncertainties: 

definition
• Take a calorimeter with an energy resolution of 5%

• measurements are sometimes too high sometimes too low 

• however repeated measurements of the same thing (i.e. mass of π0) 
still leads to a reduced uncertainty

• If it always gives 5% too high it doesn’t matter how often you repeat 
the measurement it will always be off by 5%

• In reality you have to calibrate this away

• These are systematic uncertainties which are essentially ones that 
do not scale with 1/sqrt(N)

• Another problem is non-independence at different points

• For example measuring a differential cross section the luminosity 
uncertainty moves all points up or down by the same relative 
amount

• If you ignore these everything looks consistent but your answer is 
wrong
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Things are not so bad

• Many systematics are easy to deal with:

• Calibrations, efficiency, luminosities etc which will come with some 
associated uncertainty which you can propagate

• More problematic are unknowns where some intelligent 
guesswork is required:

• Often saved by Gaussian quadrature sum of uncertainties 
• If error is poorly known but small, larger better controlled systematics or 

your statistical uncertainty will dominate 

• so don’t sweat the small stuff just be conservative 

• Example of a systematically limited measurement on board

• Barlow’s advice is be paranoid about everything and perform 
checks

• Fitters on MC samples 

• Divide the data into different periods of data taking

• Vary analysis procedure

• Note: these checks do not necessarily lead to systematic 
uncertainties – only if they throw up a discrepancy
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Systematic uncertainties: 

look again at our local example
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[M. Nayak et al., (Belle Collaboration),  PRD 88, 091104] 



Dealing with systematics 

• The hard part is the estimation of the systematic uncertainties

• Once you have the errors you can use the covariance matrix in 

the usual way

• For two measurements x1,2 with common correlated 

systematic uncertainties S and independent statistical 

uncertainties σ1,2 – proof on board

• For a common fractional error f it is
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ESTIMATION

Part 3
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Properties of estimators

• An estimator is:

• a procedure applied to the data sample which gives a numerical 

value for a property of a parent population or, as appropriate a 

parameter of the parent distribution function

• Yields, masses, lifetimes, mixing angles or whatever

• Three things we want from an estimator

• Consistency: the difference between the estimator and the true 

values vanishes for large samples

• It is unbiased: the expectation value of the estimator gives the 

true value

• Example of mean to show the difference between these statements 

on the board

• Efficiency: gives a small variance
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The likelihood function
• Consider some PDF P(x,a) which depends on parameter a 

which you wish to estimate

• The probability you get a particular set of data xi drawn from 

P(x,a) is

• This is the likelihood function

• If we have an estimator of �
(�) of our parameter a its 

expectation value is

• We will now use this to prove that there is a limit to the 

efficiency of an estimator

• The Minimum Variance Bound
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Estimating the variance: 

Bessel’s correction
• Some of you may have seen differing versions of the definition 

of the standard deviation

• Rather than this

• I will now explain the difference – on board  
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Maximum log likelihood

• This is one of the two commonest methods of estimation

• Simply put you vary the parameter(s) in the likelihood until you 
find the global maximum

• In practice one normally solves 

• Really you use MINUIT 
• http://seal.web.cern.ch/seal/snapshot/work-packages/mathlibs/minuit/

and minimize −2 ln L

• I will explain the factor 2 in a bit

• But sometimes it can be solved analytically – example of the 
Gaussian weighted mean.
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Max. likelihood is biased…

• On board will show that ML estimate of V is

which we know is biased

• The reason we use the likelihood is because it is invariant

under transformations of a – i.e. if we differentiate the 

Gaussian likelihood we just used with respect to σ2 we get 

�	� = �
		- try it yourselves

• In general 
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…but efficient
• We don’t worry too much because in the limit of large N a 

consistent estimator becomes unbiased

• Further the variance of a maximum likelihood estimate lies on the 
minimum variance bound as N becomes large –

• proof in Barlow 5.3.3

• Hence, the dominance of L

• it squeezes the maximum information out of your data

• The pull plot is a useful tool if you are worried about bias in a 
likelihood fit 

• Recipe: make many simulation experiments (toys)
1. varying sample size generated with some value of your parameter of 

interest 
• Sample size of toy should be taken from a Poisson distribution with a mean 

equal to your observed sample size

2. Run your maximum likelihood fit on each of these samples 

3. Plot difference between generated and fitted value of parameter 
divided by the uncertainty on the parameter

4. If distribution is normal (µ=0,σ=1) even your grumpiest collaborators 
will be convinced that the fit gives an unbiased estimate with reliable 
uncertainties
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Uncertainties from the ML

• For large samples one can show 

(See Barlow Sec. 5.3.3) that L is 

Gaussian with σ = � �


• Therefore, ln L is a parabola which 

has fallen 

• 0.5  at ±±±±1 sigma from �


• 2     at ±±±±2 sigma from �


• 4.5  at ±±±±3 sigma from �


• For small N ln L not parabolic but 

invariance of L means

• For some alternate parameter 

a′(a) it is parabolic so still use 

ln L(max) – 0.5 to get ± 1σ

• Uncertainties in a are asymmetric
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Least squares
• Suppose you have a set of points {(xi,yi)}

• xi  are exact, but  yi have a resolution σi

• Suppose there is a hypothesis y=f(x;a) and we want to 

estimate parameter a

• CLT tells us measured y are Gaussian distributed about their 

true values so  
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Minimise this sum and you maximise ln L 

method of least squares or χχχχ2 

Can you explain 

your factor 2 in 

Minuit now? 
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χ2 fitting binned data

• When you do this

• myHisto->Fit(“gaus”);

• Out pops your estimate of the 
width and mean with an 
uncertainty

• However, there is an important 
subtlety here

• σ = �

• Should be the square root of the 
integral of the PDF over the bin ×
total number of events

• This is the mean of the Poisson 
distribution from which you 
assume your event sample is 
drawn    

• Large N no difference but if   
statistics are small  care needs to 
be taken
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χ2 per degree of freedom

• The χ2 follows a distribution: 

• proof on board if time allows

• Where n = number of degrees 

= number of data points − number of parameters

• Mean is k and variance 2k 

• Therefore, χ2/k∼1 indicates a good fit

• χ2/k << 1 overestimated the uncertainties 

• χ2/k >> 1 wrong function or some outlier
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Multi-dimensional Gaussian

• Let us consider a set of of variables x={x1,x2,…..,xn} with means 

µµµµ={µ1,µ2,…..,µn} which follow normal distributions with widths 

σσσσ={σ1,σ2,…..,σn}

• Where A is a n × n matrix which depends upon σσσσ

• If the variables are uncorrelated then A is diagonal 1/ σi
2

• If the variables are correlated then matrix is symmetric 

with 

• Section 3.4.6 of Barlow for proof
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χ2 – generalised 

• The multidimensional Gaussian motivates the generalised χ2  

function

where x=(x1,…..,xN) and f=(f(x1,a),……, f(x1,a)} and the covariance 

matrix is among the elements of x 

• If f is linear in a then f=Ca then you can show that (Barlow 6.6)

• If f non-linear in a then iterate linearly using the Taylor 

expansion
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PROBABILITY AND CONFIDENCE

Part 4
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Definition of probability

• Mathematical (Kolmogorov)

1. P>0

2. P(1 or 2) = P(1) + P(2) if 1 and 2 mutually exclusive

3. ΣP = 1

Uncontroversial but what is P

• Empirical/Classical (Von Mises) – limit of frequency as number of 
trials/experiments tends to infinity

• But depends on the ensemble from which all events are chosen 

• Probability of a D meson being produced at sqrt(s)=M(Y(4S)) is 
different to the probability it is produced in Y(4S) decays

• What about a single experiment – you cannot say anything 

• Objective probability (Popper) – it is a property of an object

• Does not depend upon ensemble: 

• quantum mechanical probability directly from wavefunction

• But what about a continuous distribution: P(∆θ) vs P(∆cosθ)? 
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Bayesian statistics

• First conditional probability:

• p(a|b) = probability of a given b

• Bayes theorem

• p(a|b)p(b) = p(a and b)=p(b|a)p(a)

• Example of threshold Cerenkov detector on board

• Now for subjective probability (the controversial piece)
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Example: spot fixing
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What are the chances Sachin or Sreesanth bowl three no-balls in an over?



Probability – the bottom line

• Subjective probability looks unscientific

• Therefore, we are likely to identify ourselves as frequentists

(classical probability) given the problems of objective probability

• But we should not move so fast

• Certainly in QM most of us think of probabilities as intrinsic objective 

numbers

• Interpreting results always leads us into a Bayesian approach: mass 

of the electron on board

• Philosophical wars rage on the frequentist vs Bayesian approach:

• My opinion: don’t worry about it just always explain clearly what you 

do when interpreting data and make sure it is consistent

• If someone wants to interpret your data in a different way it is up to 

them to explain clearly what they are doing

• If you do this you are just different not wrong
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Confidence levels
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• How often a something 

would be in a certain 

range if you were to 

sample many times from 

a given PDF

• Not controversial

• Choose your desired 

probability and whether 

you want a one or two 

sided 

• Then integrate

Fig from Till, 1974, 

Statistical Methods for 

the Earth Scientist: an 

introduction via the web



Confidence levels - asymmetric

• If the probability distribution is not symmetric there are three 

possible ways to make your interval

1. Demand a symmetric interval about the mean

2. Make it as small as possible

3. Central interval: have half the remaining probability in each tail

• Illustrated on board

• Barlow, I and others prefer the latter despite the asymmetry 

about the mean

• However, 1 and 2 are not wrong just make sure you have 

explained what you have done
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Confidence in estimation

• Now we want to say something about an unknown parameter 

X given our measurement - estimation 

• Naively for a measurement of Gaussian errors you measure x 

with a know σ so you say x−2σ < X < x+2σ at 95% CL

• As you will see this is often fine but 

• If you measure some branching fraction to be (1±1)% it means 

from the above approach 16% BF<0!

• Need to use a different approach and that is to build up a 
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Confidence belt
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X

X −

x For a Gaussian it is just two straight lines

and leads to the naïve result 



Constrained quantities I

• Now why have I bothered with this 

• What about the case of measuring a negative branching fraction

• True value 0.1% but you measure (− 0.80±0.41)% means the 

physical range (0,0.02%) has 95.4% probability if you treat this in 

a classical way - nonsense 

• Bayesian approach

• P(X|x)=P(x|X)P(X)/P(x)

• Assumed ignorance of X and the fact that P(x) disappears in the 

normalization (it is just a scalar number)

• P(X|x) = P(x|X) which justifies what we did earlier with the mass of 

the electron

• Also, frequentist and Gaussian limits are the same
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Constrained quantities II
• What about the case of measuring a negative branching fraction

• Bayesian approach

• P(X|x)=P(x|X)P(X)/P(x)

• Now for the physical limit P(X|x)=P(x|X) θ(X) /P(x) where θ(X) is a 

step function  which for a Gaussian distribution function gives

• Now for my example: BF<0.35% with 90% CL

• But I would of got a different answer if I worked with sqrt(BF) 

• – so beware
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Summary

• We have reviewed

1. Probability distributions

2. Error analysis: including systematics

3. Estimation

4. Setting of confidence intervals

• These lectures contain things which are pretty much the 
minimum set you should know to be able to critique your own 
or anyone else’s analysis

• One must go on to study things further that are relevant to 
your particular analysis

• Apologies to those interested in multivariate analysis: 

• I suggest the talks and tutorials from 

• http://tmva.sourceforge.net/
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