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Introduction
Tracking is concerned with the reconstruction 
of charged particles trajectory ( tracks ) in 
experimental particle physics
the aim is to measure ( not a full list )

momentum (magnetic field)

the sign of the charge

particle ID (mass), not necessarily 
with the same detector

p = mo γ β
secondary vertex

primary vertex

lifetime tag

q= ×F v B

v

B
p = 0.3·B·R

impact parameter
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Motion in Magnetic Field
In a magnetic field the motion of a char-
ged particle is determined by the Lorentz 
Force

Since magnetic forces do not change the 
energy of the particle

using the path length s along the track 
instead of the time t

we have

and finally

In case of inhomogeneus magnetic field, 
B(s) varies along the track and to find 
the trajectory r(s) one has to solve a 
differential equation
In case of homogeneus magnetic field the 
trajectory is given by an helix

d e
dt
= ×p v B

o
dm e
dt

γ = ×v v B

2

2o
d dm e

dtdt
γ = ×r r B

ds vdt=

2

2o
d dm v e

dsds
γ = ×r r B

2

2
d e d

p dsds
= ×r r B

B

vz

vs v
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Magnetic Spectrometers
Almost all High Energy experiments done 
at accelerators have a magnetic spectro-
meter to measure the momentum of 
charged particles
2 main configurations:

solenoidal magnetic field
dipole field

Solenoidal field

cylindrical symmetry
deflection in x - y ( ρ - φ ) plane

tracking detectors arranged in 
cylindrical shells
measurement of curved trajectories
in ρ - φ planes at fixed ρ

Dipole field

rectangular symmetry
deflection in y - z plane

tracking detectors arranged in 
parallel planes
measurement of curved trajectories 
in y - z planes at fixed z 

z

x

y

B
z

y

x
B
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Tracking Systems: ATLAS
Pixel Detector

3 barrels, 3+3 disks: 80×106 pixels
barrel radii: 4.7, 10.5, 13.5 cm
pixel size 50×400 µm
σrφ= 6-10 µm σz = 66 µm 

SCT
4 barrels, disks: 6.3×106 strips
barrel radii:30, 37, 44 ,51 cm
strip pitch 80 µm 
stereo angle ~40 mr 
σrφ= 16 µm σz = 580µm

TRT
barrel: 55 cm < R < 105 cm
36 layers of straw tubes
σrφ= 170  µm
400.000 channels
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Tracking Systems: CMS

5.4 

m

Outer
Barrel –TOB-Inner Barrel 

–TIB-

End cap –
TEC-

Pixel

2,
4 

m
volume 24.4 m3

Inner Disks 
–TID-

93 cm93 cm

30 
30 cmcm

Pixel Detector
2 barrels, 2 disks: 40×106 pixels
barrel radii: 4.1, ~10. cm
pixel size 100×150 µm
σrφ= 10 µm σz = 10 µm

Internal Silicon Strip Tracker
4 barrels, many disks: 2×106 strips
barrel radii:
strip pitch 80,120 µm
σrφ= 20 µm σz = 20 µm

External Silicon Strip Tracker
6 barrels, many disks: 7×106 strips
barrel radii: max 110 cm
strip pitch 80, 120 µm
σrφ= 30 µm σz = 30 µm
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Tracking Systems: ATLAS & CMS

ATLAS

CMS
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Momentum Measurement
The momentum of the particle is 
projected along two directions

in ρ - φ plane we measure the 
transverse momentum

in the ρ - z plane we measure the 
dip angle λ

orders of magnitude

the sagitta s

assume a track length of 1 m

⊥P

cos 0.3P P BRλ⊥ = = 2α

R

s

2 L
R

α =

( )1 coss R α= −
2 2

2 8
Ls R
R

α≈ =

1 2 1.67

10 2 16.7

P GeV B T R m

P GeV B T R m
⊥

⊥

= = =

= = =

ρ

φ

1 7.4

10 0.74

P GeV s cm

P GeV s cm
⊥

⊥

= =

= =
λ

ρ

z

λ

P
G

⊥P

LPρ

z
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Momentum Measurement
Once we have measured the transverse
momentum and the dip angle the total
momentum is

the error on the momentum is easely 
calculated

We need to study
the error on the radius measured in 
the bending plane ρ - φ

the error on the dip angle in the
ρ - z plane

We need to study also
contrubution of multiple scattering to 
momentum resolution

Comment:
in an hadronic collider the main 
emphasis is on transverse momentum
elementary processes among partons 
that are not at rest in the 
laboratory frame
use of momentum conservation only in 
the transverse plane

0.3
cos cos
P BRP

λ λ
⊥= =

PP
R R

⊥∂ =
∂

tanP P λ
λ ⊥

∂ = −
∂

( )
2 2

2tanP R
P R

λ λ∆ ∆     = + ∆       
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The Helix Equation
The helix is described in parametric form

λ is the dip angle
h =±1 is the sense of rotation on the helix
The projection on th x-y plane is a circle

xo and yo the coordinates at s = 0

Φo is also related to the slope of the 
tangent to the circle at s = 0

( ) ( )coscos coso o o
hsx s x R
R

λ = + Φ + − Φ 
 

( ) ( )cossin sino o o
hsy s y R
R

λ = + Φ + − Φ 
 

( ) sinoz s z s λ= +

( ) ( )2 2 2cos sino o o ox x R y y R R− + Φ + − + Φ =

cos oR Φ

( ),o ox y

oΦ

sin oR Φ

( )
( )
( )0.3

p GeV
R m

B T
⊥=

B

λ

P
G

⊥P

LP
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The Helix Equation
To reconstruct the trajectory we put position
measuring planes along the particle path
We will consider the track fit separately in 
the the 2 planes

perpendicular to B (x,y): circle

containing B (x,z), (y,z) or (ρ,z)

In the plane containing B (for example y - z plane) 
the trajectory is a periodic function of z

however, for large momenta, i.e. R tanλ >> ( z-zo ), 
assuming for simplicity h = 1, Φo = 0

sin
oz zs
λ

−=

( )
( )( )sin sin

tan
o

o o o
h z zy z y R
R λ

− = + Φ + − Φ   

( ) ( )
1

tano oy z y z z
λ

≈ + −

( ) ( )cossin sino o o
hsy s y R
R

λ = + Φ + − Φ 
 

( )1 1 1, ,x y z
( )2 2 2, ,x y z

( ) ( )ctano oy z y z zλ= + −

straight line

straight line
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The Helix Equation
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Straight Line Fit
This is a well known problem

a reference frame
N+1 measuring detetectors at z0,…, zn, …,zN

a particle crossing the detectors
N+1 coordinate measurements y0,…, yn, …,yN

each measurement affected by uncorrelated
errors σ0,…, σn, …,σN

Find the best line y = a + b z that fit the track

The solution is found by minimizing the χ2

the covariance matrix (at z = 0) is

oz nz Nz
Nyoy ny

( )22
2

0

N
n n

nn

y a bzχ
σ=

− −= ∑
( )
( )1

/

/

y zz z zy

zy z y

a S S S S D

b S S S S D

= −

= −

2

2
1

1a zz zab

zab b

c S S

D S Sc

σ

σ

  −   =   −     

1 2 2
0 0

2 2
0 0

2

12
0

1N N
n

y
n nn n

N N
n n n

z yz
n nn n

N
n

zz zz z z
nn

yS S

z y zS S

zS D S S S S

σ σ

σ σ

σ

= =

= =

=

= =

= =

= = −

∑ ∑

∑ ∑

∑

a

θ b = tgθ = ctgλ

depends only
on σ, zn and N
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Straight Line Fit: Matrix Formalism
It is useful to restate the problem using 
a matrix formalism [4:Avery 1991]
This is useful because:

it is more compact
it is easely extensible to other linear
problems
it is more useful to formulate an 
iterative procedure

With the same assumption as before
the linear model is given by f = Ap

measurements and errors are 

The χ2 can be written as

The minimum χ2 is obtained by

The covariance matrix of the parameters 
is obtained from the measurements 
covariance matrix V

please notice (N+1 measurements, M
parameters)

dimensions A = (N+1) × M
dimensions V = (N+1) × (N+1)
dimensions ATWA = M × M
dimensions ATW = M × (N+1)
dimensions Vp = M × M

0 0

...

N N

f a bz

f a bz

    +        = =         +       

f

0

...

N

y

y

    =     

Y

( ) ( )2 1Tχ −= − − =Y Ap W Y Ap W V

( ) 1T T−=p A WA A WY�

( ) 11T −−=PV A V A
01

1 ...

1 N

z a

b
z

        = =        

Ap

( ) ( )( )ij i i j jy y y y= − −V

( ) 2
ij i ijσ δ=V if uncorrelated
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Straight Line Fit
Let’s consider the case of equal spacing
between zo and zN with equal errors on 
coordinates σn = σ

The S are easily computed in finite form

The errors on the intercept and the 
slope are

important features:
both errors are linearly dependent 
on the measurement error σ

both errors decrease as 
the error on the slope decrease as 
the inverse of the lever arm L

the error on the intercept increases
if zc increase

oz Nz

( )

( )

( ) ( )

1 2 2

2
2

2

22

4

1 1

1 2
12

1 2
12

c
z

zz c

N zS S N

N N LS z
N

L N ND
N

σ σ

σ

σ

+= = +

 + + = +  
+ +=

2
oN

o cN
z z

L z z z
+

= − =

L

zc

2 2
2

21 12
2 1
c

a
N z
N NL

σσ
 
 = + + + 

( ) ( )

2
2

2
12

21b
N

NN L
σσ =

++

1/ + 1N

S and errors: all computed at z = 0

a
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Errors At The Center Of The Track
We can choose the origin at the center
of the track: z = zc

It is easely seen that for uniform
spacing and equal errors

S1 and D do  not change

Sz and Szz change

The errors are now

The intercept is  different from the 
previous case (origin at z = 0)
Obviously, taking properly into account 
error propagation ve get the same result
for the impact parameter ip

( )

( ) ( )

2

1 2 2

22

4

1 1 20
12

1 2
12

z zz
N N N LS S S

N

L N ND
N

σ σ

σ

 + + + = = =   
+ +=

2
2

1a N
σσ =
+

( ) ( )

2
2

2
12

21b
N

NN L
σσ =

++

changed

unchanged

( )c cip f z a bz= − = −

L

zc

oz Nz

ip

2 2 2 2
a cip bzσ σ σ= +

2 2 2
2

2
12

1 1 2
c

ip
N z

N N N L
σ σσ = +
+ + +

σa and σb uncorrela-
ted if origin at zc
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Vertex Detectors
The previous result shows clearly the need 
for vertex detectors to achieve a precise
measurements of the impact parameter

The “amplitude” of the error is determined
by the error on the slope
by the distance of the point to which 
we extrapolate
by the size of the measurement error

We should have
small measurement errors σ

large lever arm L

place first plane as near as possible 
to the production point: small zc

Increasing the number of points also 
improves but only as
The technology used is silicon detectors 
with resolution of the order of σ ~ 10 µm

expensive
small N
small L

oz Nzcz

L

zc

σ/L

zc/L

+ 1N

2 2 2
2

2
12

1 1 2
c

ip
N z

N N N L
σ σσ = +
+ + +
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Vertex Detectors
Summarizing:the error on the impact 
parameter is

for the ATLAS pixel detector
N+1 = 3, σ = 10 µm

z0 = 4.1 cm, z2 = 13.5 cm

L = 9.4, zc=6.8, r = 0.72

σip = 12 µm

oz Nz

L

zc

ip
( ),

1ip Z r N
N
σσ =
+

( ) 2, 1 12
2

NZ r N r
N

= +
+

czr
L

=

 5.0 3.0 2.0 1.5 1.0 0.75 0.60 0.50
1 10.1 6.08 4.12 3.16 2.24 1.80 1.56 1.41
2 12.3 7.42 5.00 3.81 2.65 2.09 1.78 1.58
5 14.7 8.84 5.94 4.50 3.09 2.41 2.02 1.77
9 15.7 9.45 6.35 4.81 3.29 2.55 2.13 1.86

19 16.5 9.94 6.67 5.04 3.44 2.67 2.22 1.93
∞ 17.3 10.4 7.00 5.29 3.61 2.78 2.31 2.00

 

N r
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Vertex Detector + Central Detector
We have seen that the error on the 
impact parameter is

The first term:
depend only on the precision of the 
vertex detector
it is equivalent to a very precise
measurement (σa ~ 5 µm) very near
to the primary vertex (zc)

The second term depends on the error on 
the slope and is limited by the small 
lever arm L typical of vertex detectors 
(~ 10 cm)
It is usually very expensive to increase 
this lever arm
A solution is a bigger detector (Central 
Detector) less precise (usually less 
expensive) but with a much bigger lever 
arm L

The error on the slope then become 
smaller
The error on the extrapolation
become smaller

This is the arrangement usually adopted
by experiments who want to measure the 
impact parameter

2 2 2 2
a cip bzσ σ σ= +

L

zc

oz Nz

ip
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Momentum Measurement: Sagitta
To introduce the problem of momentum
measurement let’s go back to the sagitta
a particle moving in a plane perpendicular 
to a uniform magnetic field B

the trajectory of the particle is an arc of 
radius R of length L

assume we have 3 measurements: y1, y2, y3

the error on the radius is related to the 
sagitta error by

important features
the percentage error on the momentum 
is proportional to the momentum itself
the error on the momentum is inverse-
ly proportional to B

the error on the momentum is inverse-
ly proportional to 1/L2

the error on the momentum is propor-
tional to coordinate measurement error

2α

R

s

2 L
R

α =
( )1 coss R α= −

2 2

2 8
Ls R
R

α≈ =

sagitta

y1 y2

y3

0.3
p p RR
B p R

δ δ= =

1 2
3 2
y y

s y
+

= −
3
2

s y yδ δ δ= ∼

2

8
L Rs y
R R
δδ δ= ∼

2

8
L p y
R p
δ δ=

2
8p R y

p L
δ δ= 2

8
0.3

p p y
p BL
δ δ=

2 2
8

0.3
p y
p BL
δ δ=
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Tracking In Magnetic Field
The previous example showed the basic 
features of momentum measurement
Let’s now turn to a more complete trea-
tement of the measurement of the char-
ged particle trajectory
We have already seen that for an homo-
geneus magnetic field the trajectory 
projected on a plane perpendicular to the 
magnetic field is a circle

for not too low momenta we can use a 
linear approximation

we are led to the parabolic approximation
of the trajectory

let’s stress that as far as the track pa-
rameters is concerned the dependence is 
linear
The parameters a,b,c are

intercept at the origin
slope at the origin
radius of curvature (momentum)

( ) ( )2 2 2
o oy y x x R− + − =

( )0a y=

0x

dyb
dx =

=

1
2

c
R

= −

( )22
o oy y R x x= + − −

( )2
21

2
o

o
x xy y R
R

 − ≈ + −   

( ) 2
2

1
22

o o
o

x xy y R x x
R RR

= + − + −

2y a bx cx= + +

( )22 >> - oR x x
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Quadratic Fit
Assume N detectors measuring the y
coordinate [Gluckstern 63]

The detectors are placed at positions
xo, …, xn, …, xN

A track crossing the detectors
gives the measurements y0, …,yn, …, yN

Each measurement has an error σn

Using the parabola approximation, the track 
parameters are found by minimizing the χ2

However we can use the matrix formalism
developed for the straight line:

let’s recall the solution

( )22
2

2
0

N
n n n

nn

y a bx cx
χ

σ=

− − −
= ∑

ox nx Nx

Nyoy ny

2
0 0

2

1
... ... ...

1 N N

x x

x x

     =      

A

2
0

2

1
0 0

0 ... ..0

10 0
N

σ

σ

       =          

W

a

b
c

    =     

p...
o

N

y

y

    =     

Y

( ) 1T T−=p A WA A WY�

( )

1
0 1 2

1
1 2 3

2 3 4

T

F F F

F F F

F F F

−

−

     =      

A WA 2
0

N k
n

k
nn

xF
σ=

= ∑

0

1

2

T

M

M

M

     =      

A WY 2
0

N k
n n

k
nn

y xM
σ=

= ∑
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Quadratic Fit
The result is [4: Avery 1991, Blum-
Rolandi 1993 p.204, Gluckstern 63]

The quantities Fij are the determinants
of the 2x2 matrices obtained from the 
3x3 matrix F by removing row i, column j

The covariance matrix

The result can be found in [Blum-Rolandi, 
p. 206]
To get some idea of the covariance 
matrix let’s first compute it by setting 
the origin at the center of the track

with this choice one can “easely” find

2
n n n n n n

n n n n n

y G y G y G
a b c

G x G x G
= = =∑ ∑ ∑

∑ ∑ ∑
11 21 2 31

n n nG F x F x F= − +

12 22 2 32
n n nP F x F x F= − + −

13 23 2 33
n n nQ F x F x F= − +

( )

1
0 1 2

1
1 2 3

2 3 4

T

F F F

F F F

F F F

−

−

     = =      

pV A WA

0 1

N
n

c
n

xx
N=

=
+∑

( )( )

( )( )( )

( )( ) ( )( )

1 3

0 2

2

2 2

24

4 2 3

24
2

0 4 2 4 3

0

1

1 2
12
1 2 3 6 4

240
1 1 2 3

180

F F

NF

L N N
F

N
N N N NLF

N
L N N N NS F F F

N

σ

σ

σ

σ

= =

+=

+ +=

+ + + −
=

− + + += − =
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Momentum Resolution
The covariance matrix is 

we are mostly interested on the error on 
the curvature

it can be shown that the error on the 
curvature do not depend on the position of 
the origin along the track

Let’s recall from the discussion on the 
sagitta

also recall that

and finally the momentum error

the formula shows the same basic features
we noticed in the sagitta discussion
we have also found the dependence on the 
number of measurements (weak)

4 2

0 4 2 2

0 4 2 2 2

02

0

1 0 0

0

F F

F F F F
F F F F F

F F

 −     −  =  −    −   

pV

2
2 0

4
0 4 2 2

c N
F

C
F F F F L

σσ = =
−

( )( )( )( )

3180
1 1 2 3N

NC
N N N N

=
− + + +

0.3
p p RR
B p R

δ δ= =

1
2

c
R

= 2
1

2c R
R

σ δ=

2 2 4
0.3 N

p C
p BL
δ σ=
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Momentum Resolution
We stress again that a good momentum 
resolution call for a long track

any trick that can extend the track length
can produce significant improvements on  
the momentum resolution
the use of the vertex can also improve
momentum resolution:

the common vertex from which all the 
tracks originate can be fitted
the point found can be added to every 
track to extend the track length at 
Rmin → 0

the position of the beam spot can also be 
used as constraint
Extending Rmax can be very expensive

2 2
1p

p L
δ ∼
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Momentum Resolution
We can now give a rough estimate of the 
momentum resolution of the ATLAS 
tracking systems
There are different systems: some 
simplifying guess

TRT: 36 point with σ = 170 µm
from 55 cm to 105 cm: as a single 
point with σ = 28 µm at Rmax = 80 
cm

Rmin = 4.7 cm, L = 75 cm

N+1= 3 + 4 + 1 = 8

σ = 12, 16, 28 ~ 20 µm

At 500 GeV

12 4 7N NC C≈ ≈

η

( )p %
p
δ

p = 500 GeV⊥

4 1
2 4 10p GeV
p
δ − −×∼

220 10p
p
δ −= ×
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Momentum Resolution
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Slope And Intercept Resolution
For completeness we give also the errors 
on the slope and intercept
The error on the slope is given by

We find the same qualitative behaviour 
we had for the straight line fit
The error on the intercept is

The only off diagonal element of the 
covariance matrix different from 0 is 
between intercept and curvature and we 
have

2
2

2
2

1
b NBF L

σ
σ = =

2 4 2

0 4 2 2
a N

F
A

F F F F
σ σ= =

−

( )( )( )

215
1 1 3N

ND
N N N

= −
− + +

( )( )
12
1 2N
NB

N N
=

+ +

( )
( )( )( )

23 3 6 4
4 1 1 3N

N N
A

N N N
+ −

=
− + +

2
2

2
0 4 2 2

ac N
F

D
F F F F L

σσ = − = −
−
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Extrapolation To Vertex
We want now compute the extrapolation
to vertex and compare the behaviour of 
the results of the fit:

inside magnetic field
no magnetic field

having measured the parameters a,b,c at 
the center of the track, the intercept is

Propagation of the errors gives

The calculation gives [Blum-Rolandi 1993]

where Baa(r,N) is analogous to Z(r,N)
defined for the straight line fit (see 
next slide for a table of values)

let’s compare the error assuming the 
geometry of the ATLAS pixel detector:

Rmin = 4.7, Rmax = 13.5, N+1 = 3

we have r = 1 and from the 2 tables we get
Baa(1,2) = 7.63
Z(1,2) = 2.65

We see that the error is degraded by a 
factor ~ 2.9

The reason is that the error on momentum
cause an additional contribution to the error 
in the extrapolation

2
v vipy a bx cx= + +

2 2 2 2 4 2 22a v v c v acip bx x xσ σ σ σ σ= + + +

vx cx

L

xc

( ),
1 aaip B r N

N
σσ =
+

a central tracking detector is needed

L = 8.8 cm
xc = 9.1 cm
r = xc/L ~ 1
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Extrapolation To Vertex

( ),
1 aaip B r N

N
σσ =
+

( ),aaB r N

 5.0 3.0 2.0 1.5 1.0 0.75 0.60 0.50
2 211 75/3 32.9 18.1 7.63 4.10 2.65 2.05
3 224 80.2 35.2 19.5 8.29 4.48 2.84 2.07
5 250 89.5 39.4 21.9 9.39 5.10 3.20 2.26

10 282 101 44.6 24.8 10.7 5.84 3.65 2.54
19 304 109 48.1 26.8 11.6 6.32 3.95 2.72
∞ 335 120 53.0 29.5 12.8 7.00 4.37 3.00

 

N r
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Parameters Propagation
We have seen that changing the origin of 
the reference frame

the track parameters change
the covariance matrix changes

It is often useful to propagate the 
parameters describing the track from one 
“origin” (point 0) to “another” (point 1)
For linear models this is very easely 
expressed in matrix form

To better understand the above formulas 
let’s apply them to the straight line and 
to the parabola

Using the matrix D we can also propagate 
the covariance matrix of the parameters
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Multiple Scattering
Particles moving through the detector 
material suffer innumerable EM collisions
which alter the trajectory in a random
fashion (stochastic process)

Few examples:
Argon Xo = 110 m

Silicon Xo = 9.4 cm
consider a 10 GeV pion

The effect goes as 1/p: for a pion of 
1 GeV the effect is 10 times larger

The lateral displacement is proportional 
to the thickness of the detector: usually 
can be neglected for thin detectors
In what follow we will consider only thin 
detectors
For thick detectors ( for example large 
volume gas detectors) see [Gluckstern 63 
Blum-Rolandi 93, Block et al. 90]

X
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0.87p p
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Multiple Scattering
The scattering angle has a distribution that is almost gaussian

At large angles deviations from gaussian distributions appear 
that manifest as a long tail going as sin-4θ/2
In thick detectors the distribution of the lateral 
displacement should also be considered
The joint distribution of the scattering angle 
and the lateral displacement is

( )
2

2
2 2 2 2

3 33 2, exp p p p
p p p

p p
P

XX X
ε θ ε

ε θ θ
π θ θ

   = − − +     

( ) 2
22

1 1exp
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pp

P θ θ
θπ θ

 
 = −  
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sin 2
θp

2
2 0.0136K z
pβ

 =   
2

0
p

XK
X
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Multiple Scattering
Multiple scattering is a cumulative effect 
and introduces correlation among the 
coordinate measurements
The treatment of multiple scattering is 
different for:

discrete detectors
continous detectors

Here we consider only the simplest case 
of discrete and thin detectors
For continous detectors see for example 
[5: Avery 1991]
Let’s consider 3 thin detectors

A track cross the 3 planes at positions

The 3 coordinate have measurement 
errors σi, σj, σk due to the detector 
resolution
They also have mean value

on plane i
Because of multiple scattering on plane i 
the actual trajectory cross plane j at

Because of multiple scattering on planes 
i,j the actual trajectory cross plane k at

Since

( )j j j i iy y z z δθ= + −�

( ) ( )i i j jk k k ky y z z z zδθ δθ= + − + −�

i j ky y y� � �

i i j j k ky y y y y y= = =� � � � � �

i iy y= �

0δθ =

j jy y= � k ky y= �i iy y= �

�iy
�jy �ky

iz jz kz

iy
jy

ky

iδθ

jδθ
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Multiple Scattering
we can now compute the covariance matrix of the coordinate 
measurements including multiple scattering

First the diagonal elements

it easy to verify that

( )( )nm m m n nV y y y y= − −

( )2ii i iV y y= −

( ) ( )222 2 2
i i j jkk k k kV z z z zσ δθ δθ= + − + −

( )2i iy y= − �

2
ii iV σ=

( )2jj j jV y y= − ( )( )2j j j i iy y z z δθ= − + −�

( )2j jy y= − � ( )2 2
j i iz z δθ+ − ( ) ( )2 j i j j iz z y y δθ+ − − �

( )22 2
jj j j i iV z zσ δθ= + −

�iy
�jy �ky

iz jz kz

iy
jy

ky

iδθ

jδθ
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Multiple Scattering

The off-diagonal elements are

( )( )nm m m n nV y y y y= − −

( )( )ij i i j jV y y y y= − − ( ) ( )( )i i j j j i iy y y y z z δθ= − − + −� � 0ijV =

( )( )i iik k kV y y y y= − −

( ) ( ) ( )( )i i i i j jk k k ky y y y z z z zδθ δθ= − − + − + −� � 0ikV =

( )( )j jjk k kV y y y y= − −

( )( ) ( ) ( )( )j j j i i i i j jk k k ky y z z y y z z z zδθ δθ δθ= − + − − + − + −� �

( ) ( )j i i i ikz z z zδθ δθ= − −

( )( ) 2
j i i ijk kV z z z z δθ= − −

�iy
�jy �ky

iz jz kz

iy
jy

ky

iδθ

jδθ

uncorrelated: <>=0

uncorrelated: <>=0
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Multiple Scattering
Summarizing, the covariance matrix is

The second matrix has
diagonal elements due to any previous material affecting
the trajectory impact point at the given plane
off diagonal elements: only presents if a previous material layer
affects at the same time the trajectory impact points for the 2 planes

the same scattering at plane i
affects the trajectory at plane j and plane k

( ) ( )( )
( )( ) ( ) ( )

2

22 2 2

2 222 2 2

0 0 00 0

0 0 0

0 0 0

i

j j i i i j i ik

k i j i i i i j i jk k

V z z z z z z

z z z z z z z z

σ

σ δθ δθ

σ δθ δθ δθ

            = + − − −            − − − + −     

�iy
�jy �ky

iz jz kz

iy
jy

ky

iδθ

jδθ
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Track Fit With Multiple Scattering
The methods developed to fit a track to 
the measured points can be used to 
perform a fit taking into account M.S.

the covariance matrix is computed
the same fit procedure is applied

Let’s now try to understand qualitatively
the effect of multiple scattering on the 
determination of tracks parameters:

the size of the effect goes as 1/p
then the effect is important for low 
momentum track

Assume we are dominated by multiple 
scattering

the momentum resolution is given by

the coordinate error due to M.S. is 

we have then

We conclude:
for low momentum the percentage 
momentum resolution reach a almost 
constant value (still dependent on β)

The momentum resolution only 
improves as 1/L

The additional factor 1/N can help 
but in this case uniform spacing is 
essential2 2 4

0.3 N
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Momentum Resolution with M.S.

solenoidal field
no beam constraint

solenoidal field
with beam constraint

uniform field
no beam constraint
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Track Fit With Multiple Scattering
Same kind of considerations for the 
error on the slope and on the intercept
the multiple scattering error is

the error on the slope is 

we cannot improve anymore the error on 
the slope (direction) by increasing the 
lever arm

the limit is set by the multiple 
scattering angle itself

As far as the impact parameter
resolution

large lever arm degrade the impact 
parameter resolution

for a given error on the slope set by 
the multiple scattering angle the 
error on the extrapolation goes as 
the lever arm

Unfortunately both ATLAS and CMS have 
a lot of material

silicon detectors for high precision
silicon for radiation hardness
silicon for rate capabilities

( ),
1 aaip B r N

N
σσ =
+

b NB L
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Material in ATLAS
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Tracker Resolutions With M.S.
We have seen that for low momentum
track the momentum resolution and the 
impact parameter resolution are domi-
nated by multiple scattering

the momentum resolution tend to

the impact parameter resolution tend 
to

The amount of material actually traversed 
by the particles depend on the polar angle

Since the multiple scattering error and 
the measurement error are independent
to total error is sum in quadrature of the 
2 term
For the ATLAS detector montecarlo
studies have shown that the resolutions 
can be parametrised as
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Sign Of The Charge
The sign of the charge is defined by the 
sign of 1/R

This measurement becomes more and 
more difficult as the momentum increases
Let’s find up to which momentum the 
ATLAS tracker will be able to measure 
the sign of a charged particle
We recall taht the error on the radius
as determined from the parabola fit is

We remember that in our exemple we 
had

CN = 12, L = 75 cm, s = 20 µm

if we require a 3 σ identification

inserting numerical values we find 

11 0Q
R

= + > 11 0Q
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= − <

2
2

4c NCL
σσ =

1 2
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c N
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Systematic Effects
Recall the formulas we found for the 
parabola fit

Using those formulas it is easy to eva-
luate systematic effects on the track
parameters due to systematic errors on 
the position measurements
Examples:

displacement of vertex detector with 
respect to the central detector

Inserting, for example, in the formula 
for the curvature

a more sofistcated effect could be 
the rotation of the vertex detector

2
n n n n n n

n n n n n
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Systematic Effects: Misalignment
Let’s assume that one measurement is 
systematically displaced: misalignment or 
distortion (systematic error)

Recall the formula for the radius from the 
parabola fit

introducing the coordinate with error

the second term is the systematic effect
on the radius due to the systematic 
error on the measurement
Since the coefficients Gk are know the 
effect can be precisely estimated
Please notice

the sign of the systematic error on 
1/R is fixed by the sign of δ

k ky y δ→ +
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Systematic Effects: Misalignment
As an example consider a systematic 
effect as seen in the ALEPH TPC
The resolution was studied using muon 
pairs produced in e+ e- annihilation at the 
Z0 peak

The muon are produced back to back and 
have exactly half the c.m. energy each
The plot show the momentum reconstruc-
ted separately for positive and negative
muons

As the plot clearly show the error is 
quite large
To account for this error δ ~ 1 mm !
Magnetic field distortion
A correction procedure is the essential
The following plot shows the same 
distribution after proper magnetic 
distortion corrections are applied

Ebeam/ptrack Ebeam/ptrack
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Problems With The Fit Procedure
We have learned how to use linear 
models to fit the projection of the 
charged particle track
The method could be extendend to non 
linear problems (inhomogeneous magnetic 
field) by linearization and iteration
The solution of the problem is given by

to solve the problem the matrix V
has to be inverted
easy if V diagonal ( time O(n) )

We have seen that multiple scattering
introduces correlation among measure-
ments and makes V non diagonal

For large detectors the dimension of V
can be prohibitively large (time O(n3))
The fit is normally used to rank track 
candidates during pattern recognition

The fit procedure gives the track 
parameters at a given surface or plane

Often prediction of the track crossing 
point at a different plane is needed

impact parameter
match with calorimeters
match with particle ID (RICH)

The fit procedure described is not 
optimal for this problem:

multiple scattering makes prediction
(extrapolation) non optimal

( ) 1T T−= = -1p A WA A WY W V�
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Kalman Filter

to start the Kalman Filter we need a seed
the position on the next plane is predicted
the measurement is considered
prediction and measurement are merged 
(filtered)
then new   prediction …

The filtered trajectory
The smoothed trajectory

measurement …
filtering … prediction … measurement …

filtering … prediction … measurement …

smoothed

filtered

predicted

measured

smoothed trajectory

filtered trajectory

predicted trajectory
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Kalman Filter
The filtering is nothing but a weighted
average of the

new measurement yn

the prediction yp

Clearly if the new measurement has a 
very large error

If the prediction has a large error (for 
example large multiple scattering)

The effect of multiple scattering, or any 
other stochastic effect, can be handled 
in the prediction
The advantages of this procedure are

is an iterative procedure
not necessary to invert large 
matrices
is a local procedure: at any step the 
estimate at the given plane is the 
best that make use of the prevoius
measurements

2 2

2 2

1 1

1 1

p n
p n

f

p n

y y
y

σ σ

σ σ

+
=

+

22

2 2 2 2
pn

p nf
p n p n

y y y
σσ

σ σ σ σ
= +

+ +

n pfy yσ → ∞ →

p nfy yσ → ∞ →

measurement ignored

prediction ignored



An Introduction to Charged Particles Tracking – Francesco Ragusa 50

Kalman Filter
The consequence is that if you want the 
optimal measurement at the origin you 
have to start the filter from the end of 
the track

After all the measurements have been 
used (filtered) it is possible possible to 
build a procedure that

uses the (stored) intermediate
results of the filter 
gives the best parameter estimation
at any point

This is the smoother

production vertex

direction of flight 

direction of filter

production vertex
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Kalman Filter
Applications of Kalman Filter:

navigation
radar tracking
sonar ranging
satellite orbit computation
stock prize prediction

It is used in all sort of fields
Eagle landed on the moon using KF
Gyroscopes in airplanes use KF

Usually the problem is to estimate a 
state of some sort and its uncertainty

location and velocity of airplane
track parameters of charged 
particles in HEP experiments

However we do not observe the state 
directly

We only observe some measurements
from sensors which are noisy:

radar tracking
charged particle tracking detectors

As an additional complication the state 
evolve in time with is own uncertainties: 
process stochastic noise

deviation from trajectory due to 
random wind
multiple scattering

In case of tracking in HEP instead of 
time we can consider the evolution of the 
track parameter at the discrete layers
where the detectors perform the 
measurement
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Kalman Filter
We give here the basics equations of the 
Kalman Filter
Detailed discussion can be found in [2: 
Bock et al 1990], [6: Avery 1992], [7: 
Frühwirth 1987], [8: Billoir 1985]
Consider 2 planes of our system

The measurements up to plane k - 1
allowed us to get an estimate of the 
track parameters pk-1

We then propagate pk-1 to plane k

1k − k

1k−p
kp�

1

k
k

k
F

−

∂
=

∂
f

p1k k k−=p F p�

1 msk k k k−= +TC F C F M

k k k=y H p

kp�

( ) ( )2 1T
k k k kχ −= − −y m V y m

( ) ( )2 1T
k k k k k kχ −= − −H p m V H p m

kq�

The covariance matrix of pk-1 is Ck-1

The covariance matrix Ck of     is

The matrix Mms accounts for the effect 
of multiple scattering on the parameters 
covariance matrix
On plane k we have some measurements
mk with a covariance matrix V

Using the track model (k means: origin at 
plane k ! )

we can obtain a second estimate of the 
track parameter at plane k:

minimizing χ2 gives the second estimate kq�
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Kalman Filter
Summarising we have

the estimate propagated

with its covariance matrix
The second estimate from the 
measurement at plane k

with its covariance matrix
We can obtain a proper weigthed average
of those 2 estimate
This is the filtered value at plane k
Details and formulas can be found in the 
cited references

The advantage of this method are
it is clearly iterative
at each step the problem has low 
dimensionality and no large matrix
has to be inverted
the computation time increases only
linearly with the number of 
detectors
The estimated track parameters 
closely follows the real path of the 
particle
the linear approximation of the track 
does not need to be valid over the 
whole track length but only from one 
detector to the next

kp�

kq�
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Conclusions
We have seen the basic aspects of tracking with and without magnetic fields
In both cases we have shown the use of powerful and easy linear models
We have discussed optimization of

momentum resulution: track length
impact parameter resolution: vertex detector + central detector

We have discussed the importance of multiple scattering at low momentum
We have introduced the Kalman Filter

a powerful iterative technique to optimally solve the tracking problem

I Hope It Is Rather A Beginning

I hope you found tracking interesting and

that soon some of you will work on the tracking 

detector of his/her experiment
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thank you for reading this lecture note: 
I hope you found it useful.
If you find errors I will be grateful if 
you send me an email at
francesco.ragusa@mi.infn.it




