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Abstract

The main goal of this report is to study the theory of inflation in a general framework

and to understand the origin of inhomogeneities in the universe in the inflationary

paradigm. We briefly review the hot big bang model and its shortcomes, and discuss

how the idea of inflation solves these problems. The formalism and some simple

inflationary models are also explored. We then review the linear, cosmological per-

turbation theory. How inflation transforms microscopic quantum fluctuations into

macroscopic seeds for the anisotropy in CMB is discussed and the primordial spectra

of scalar and tensor fluctuations are calculated. We also test the results of various

inflationary models with the available data.
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Chapter 1

Introduction

1.1 The hot big bang model

The big bang model is a broadly accepted theory for the structure and evolution of

our universe. It postulates that the early universe, which was once very hot and

dense, expanded and cooled to its present state. This theory is based on two key

ideas: general relativity and the cosmological principle. The cosmological principle

is the assumption that the universe is homogeneous and isotropic when averaged

over very large scales. This has been confirmed by observations such as the Sloan

Digital Sky Survey (SDSS) [1]. The idea of an expanding universe is based on the

observations by Edwin Hubble. He observed that the spectra of the galaxies around

us appear to be shifted towards longer wavelengths. The farther away they are, the

larger is the redshift. This proved that the galaxies are moving away from each other.

According to general relativity, this is understood as the expansion of space itself,

not a motion of galaxies in space. Moreover, this model predicts the presence of a

relic Cosmic Microwave Background (CMB) radiation with a temperature of around

2.7 Kelvin. The CMB has been found to be highly isotropic and perfectly thermal

by observations such as those made by the Wilkinson Microwave Anisotropy Probe

(WMAP) [2] and the Planck missions [3]. The discovery of the cosmic microwave

background radiation together with the observed Hubble expansion of the universe

has established hot big bang cosmology as a viable model of the universe.

1



Chapter 1. Introduction 2

1.2 Inflation

The hot big bang model, though rather successful, has some drawbacks such as the

horizon problem and the flatness problem. These drawbacks are usually overcome by

introducing an epoch of inflation - which refers to a brief period of accelerated expan-

sion during the very early stages of the radiation-dominated epoch [4]. Even though

the inflationary paradigm solves the puzzles of the big bang model in a simple way,

the most attractive part of this scenario is its ability to provide a causal mechanism

to explain the primordial perturbations.

1.3 Anisotropies and linear perturbation theory

Though fairly isotropic, the background contains small anisotropies of about 10 parts

per million [5]. The small quantum fluctuations that had originated at the beginning

of the inflationary epoch were amplified to form classical perturbations, which grew

via gravitational instability into the large-scale structures (LSS). The primordial

perturbations are detected today as anisotropies in the CMB and these observations

help us to understand their characteristics.

Since the deviations from homogeneity are small, linear perturbation theory can

be used to study these perturbations. We can split all quantities into a spatially

independent homogeneous background and a spatially dependent perturbative part.

At the linear order, we can classify the perturbations as scalars, vectors and tensors.

The evolution of the perturbations is governed by the first-order Einstein’s equations.

Scalar perturbations are mainly responsible for the anisotropies in the CMB and

consequently the large scale structures in the universe. The tensor perturbations

generate gravitational waves, which can exist even when no sources are present.

The report is organized as follows: We will briefly discuss the Friedmann-

Lemâıtre-Robertson-Walker (FLRW) model of cosmology in chapter 2. The major

drawbacks of this model are also discussed in that chapter. Solving these drawbacks

using the idea of inflation is discussed in the chapter 3. We will also discuss the

formalism and as an illustration we will discuss some inflationary models in that

chapter. In chapter 4 the linear perturbation is theory is described. We will work

in a particular gauge for this treatment. The generation of primordial perturbations

and their evolution during the inflationary period is described in chapter 5. We will
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also discuss the calculation of power spectrum in this chapter. The power spectrum,

the spectral index and the tensor-to-scalar ratio can be compared with the observa-

tions of CMB which is described in chapter 6. We will summarize the report in the

chapter 7.

The discussions in chapters 3, 4 and 5 are mainly based on the review article ‘An

introduction to inflation and cosmological perturbation theory’ by L. Sriramkumar

[6] unless otherwise cited. We follow the relations, calculations and notations as used

in this article. All the relations taken from the article are verified. In addition,

following the methods given in the article we discuss the small field models and some

of the derivations of relevant expressions in section 3.4.2. In the section 5.3.2, the

Starobinsky model is discussed and the derived expressions are independently verified

and confirmed with the literature.

Notations: Throughout we will use the natural units

c = ~ = 1. (1.1)

We use the reduced Planck mass

MP = (8πG)−1/2. (1.2)

Our metric signature is (+,−,−,−). Greek indices will take the values µ, ν = 0, 1, 2, 3

and Latin indices stand for i, j = 1, 2, 3. Derivatives with respect to physical time

(t) are denoted by overdots (.), while derivatives with respect to conformal time (η)

are indicated by primes (′).



Chapter 2

Friedmann-Lemâıtre-Robertson-

Walker (FLRW)

model

In this chapter we apply the general theory of relativity to the study of cosmology

and the evolution of the universe. Incorporating the assumptions of homogeneity

and isotropy of the space lead to the Friedmann-Lemâıtre-Robertson-Walker (FLRW)

cosmological model. We shall briefly discuss this model and its drawbacks.

2.1 The FLRW metric

As discussed in the introduction, observations suggest that our universe is homoge-

neous and isotropic on large scales; that is, the geometrical properties of the three-

dimensional space are the same at all spatial locations and do not single out any

special direction in space. The most general metric satisfying these symmetries is

the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric, which can be put in the

following form [7]:

ds2 = dt2 − a(t)2
[

dr2

1− κr2
+ r2

(

dθ2 + sin2 θdφ2
)

]

, (2.1)

where κ can be chosen to be +1, −1, or 0 for spaces of constant positive (closed),

negative (open), or zero (flat) spatial curvature respectively and a is the scale factor,

4
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which, in general, can be a function of time. We will refer to this metric as Friedmann

metric throughout this thesis. However, these geometrical considerations will not

allow us to find the curvature and the scale factor. They have to be determined from

the Einstein’s equations once the matter distribution is specified. It is useful to define

the conformal time, which is

η =

∫

dt

a(t)
. (2.2)

In terms of conformal time, the metric becomes

ds2 = a2(η)

[

dη2 −
(

dr2

1− κr2
+ r2

(

dθ2 + sin2 θdφ2
)

)]

. (2.3)

2.2 Dynamics of the Friedmann model

The unknown scale factor a(t) and the curvature constant κ contained in the Fried-

mann metric can be determined via Einstein’s equations

Gµ
ν = Rµ

ν −
1

2
δµ νR = 8πGT µ

ν (2.4)

where Rµ
ν and R are the Ricci tensor and Ricci scalar, which are determined from

the metric and T µ
ν is the energy-momentum tensor for the source. The assumption

of isotropy and homogeneity implies that T µ
ν is diagonal and the spatial components

are equal. It is conventional to write it as the T µ
ν for perfect fluid, which is

T µ
ν = diag [ρ(t),−p(t),−p(t),−p(t)] , (2.5)

where ρ is energy density and p is pressure. Thus, from Eq. (2.4), we find:

H2 +
κ

a2
=

8πG

3
ρ, (2.6a)

ä

a
= −4πG

3
(ρ+ 3p), (2.6b)

where H is the Hubble parameter and is defined as H = (ȧ/a). These are called the

Friedmann equations.
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The evolution of the scale factor can be determined from the Einstein’s equations if

the equation of state is specified. From equations (2.6a) and (2.6b) we get

d(ρa3)

da
= −3a2p, (2.7)

which can also be determined from the law of conservation of energy. Given the

equation of state p = p(ρ), we can integrate Eq. (2.7) to obtain ρ = ρ(a). Substituting

this relation into Eq. (2.6a) we can determine a(t).

Consider an equation of state of the form p = wρ with a constant w. For the different

values of w = 0, 1/3 and − 1 we get the equations of state of matter, radiation and

vacuum energy respectively. Generally Eq. (2.7) gives ρ ∝ a−3(1+w); in particular, for

non-relativistic matter and radiation we get ρm ∝ a−3 and ρR ∝ a−4. For w = −1,

ρ remains constant with time. For κ = 0, we can integrate the Friedmann equation

and get

a(t) ∝ t
2

3(1+w) (for w 6= −1)

∝ exp(λt) (for w = −1) (2.8)

where λ is a constant. For non-relativistic matter, a ∝ t(2/3); for radiation, a ∝ t(1/2);

and for vacuum energy, a ∝ exp(λt).

It is useful to define critical density ρc and a density parameter Ω(t) by

ρc ≡
3H2(t)

8πG
, Ω =

ρ

ρc
. (2.9)

Then Eq.(2.6a) becomes

κ

a(t)2H(t)2
= Ω(t)− 1 ≡ Ωκ (2.10)

According to the standard big bang model, the universe has evolved through various

epochs. It started as a hot primordial soup of relativistic particles and radiation,

which is called the radiation-dominated epoch. As we have seen above, the radiation

density falls faster than the matter density. So there was a time when these densities

became equal, and after that the universe became matter-dominated. As the universe

cools due to the expansion, the matter ceased to interact with radiation and hence

radiation decoupled from the matter and started free streaming. This radiation
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cooled down as universe expanded, and today we receive this as the cosmic microwave

background (CMB) radiation at a temperature of around 2.7K. The Fig. 2.1 shows

the various epochs of the universe according to the standard model along with the

theory of inflation which will be discussed later.

Figure 2.1: A schematic diagram depicting the evolution of the universe [3].
Source: http://www.esa.int/spaceinimages/Images/2013/03/Planck history of
Universe zoom

2.3 Problems of hot big bang model

2.3.1 Flatness problem

For a universe dominated by a fluid with equation of state p = wρ, the term (aH)−1

(this term is sometimes called ‘comoving Hubble radius’) evolves as

(aH)−1 ∝ a
1
2
(1+3w). (2.11)
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This means that as we go back in time, this term decreases for matter which has the

constraint 1 + 3w > 0. Interestingly, Ωκ is now observed to be smaller than 10−2.

Then from Eq.(2.10), we see that at much earlier times the density parameter must

have been extremely close to 1.

Why was Ωκ so small? One possibility is that the universe started with Ω = 1. But

there is no point to have a firm believe that the universe should choose such a precise

state initially, but it is nevertheless a possibility. Another possibility is that at an

earlier epoch, the universe was dominated by some unknown matter, so that aH was

an increasing function of time. The inflation paradigm provides this possibility in a

very natural way.

Since our universe is found to be extremely flat, here onwards I will use the spatially

flat metric

ds2 = dt2 − a2(t)dx2 = a2(η)(dη2 − dx2). (2.12)

2.3.2 Horizon problem

Due to the finite speed of light, there exists a horizon beyond which we cannot see.

We are able to see only a finite part of the universe from which light can reach us

within time t0. We can define such a horizon for any time t. Quantitatively, the

horizon is [6]

h(t) = a(t)

t
∫

0

dt̃

a(t̃)
. (2.13)

The hot big bang model suggests that the universe was dominated by non-relativistic

matter from the time of decoupling td until now t0, and before that it was radiation-

dominated. From observations it is found that td ≃ 105 years and t0 ≃ 1010 years.

For a matter-dominated universe, the physical size of the universe at the time of

decoupling is

ℓb(t0, td) = ad

t0
∫

td

dt̃

a(t̃)
, (2.14)

where ad is the scale factor at decoupling and subscript b denotes backward light

cone. Using the relation (2.8) and the fact that t0 ≫ td, we get

ℓb ≃ 3(t2d t0)
1/3. (2.15)
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Similarly using Eq. (2.13), the physical size of the horizon for the radiation-dominated

universe at decoupling is calculated to be

ℓf ≃ 2td, (2.16)

where f denotes forward light cone. If we calculate the ratio of the physical distances

of the forward and backward light cones at decoupling, in this model we get the ratio

to be 70 [6]. This implies that most of the regions in the last scattering surface are

not causally connected. Therefore, these regions have never been able to exchange

information, for example, about their temperature. But observations of the CMB

tells us that the universe is extremely homogeneous at the last scattering surface

with relative fluctuations of only (∆T/T ) ∼ 10−5. This is the horizon problem.

2.3.3 Inhomogeneities

In the Friedmann model, we have assumed that at large scales the universe is homo-

geneous. But at small scales we see stars, galaxies, star clusters etc. Moreover in the

CMB, a small temperature variation of the order of (∆T/T ) ∼ 10−5 is found. The

hot big bang model cannot explain the origin and evolution of these inhomogeneities

in the universe.

Figure 2.2: The anisotropies of the Cosmic microwave background (CMB) as ob-
served by Planck. Blue spots represent directions on the sky where the CMB tem-
perature is ∼ 105 below the mean, T0 = 2.7K. Yellow and red indicate hot regions
[3]. Source: http://www.esa.int/spaceinimages/Images/2013/04/Planck CMB

black background



Chapter 3

Inflation

As we have discussed in the previous chapter, the major drawbacks of standard big

bang theory are the horizon problem and the flatness problem. In this chapter we

will discuss how inflation can solve these issues. The formalism and some simple

inflationary models are also described in this chapter.

3.1 Why do we need inflation?

In order to solve the flatness problem, we need an epoch of the universe in which

(aH)−1 decreases with time. That is,

d

dt
(aH)−1 < 0. (3.1)

This implies that the universe must be accelerating during that epoch, i.e ä > 0.

From Friedmann equation (2.6b), we get

ä > 0 ⇒ ρ+ 3p < 0 ⇒ 1 + 3w < 0 ⇒ w < −1/3 if ρ > 0 (3.2)

in that epoch. Let us consider the physical distance λp between two points in the

CMB which are causally connected now. But in standard cosmology, using Eq. (2.8)

and Eq.(2.2), the scale factor goes as

a ∼ η2/(1+3w). (3.3)

10
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Figure 3.1: How inflation solves the horizon problem: the forward lightcone (ℓf )
and the backward lightcone (ℓb) can be made equal by extending the conformal
time to negative values.

This implies that there exists a singularity at η = 0. This is the source of the horizon

problem. But if we have a phase of w < −1/3, then the singularity can be pushed

further back and more region can be included inside the backward light cone at the

time of decoupling. In general η can be extended to negative times so that the horizon

can be made much larger than that of standard cosmology. In this way, as we go

back in time, an epoch can be reached so that the λp comes inside the horizon.

In order to solve the horizon problem it is useful to know the behavior of the horizon

and the Hubble radius dH ≡ 1/H . Consider a scale factor of the form

a = a0t
n, (3.4)

with n > 0. Using Eq. (2.13), the horizon size can be calculated to be

h(t) = lim
t′→0

tn

1− n

(

t1−n − t′1−n
)

. (3.5)

The behavior of the scale factor is different during the period of inflation and that

during radiation or matter domination. During inflation, the condition ä > 0 implies
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Figure 3.2: All scales that are relevant to cosmological observations today were
larger than Hubble radius. During inflation, these lengths were brought inside the
Hubble radius so that they could be causally connected.

that n > 1 and during both radiation domination and matter domination, n < 1. For

n > 1 when t′ becomes very small and the horizon size blows up. Then the horizon

size is always larger than the Hubble radius dH . For n < 1, the horizon becomes

h =
t

1− n
∼ dH (n < 1). (3.6)

So during matter domination and radiation domination the Hubble radius and the

horizon are often used interchangeably.

Let us consider λp to be the physical distance between two points in the CMB which

have the same temperature. According to standard cosmology this length enters the

horizon (≈ dH in big bang model) either during the radiation or the matter dominated

epochs, and are outside the Hubble radius at earlier times. Since the points are at

the same temperature, the physical length λp should be brought inside the horizon in

the very early stages of the universe so that they are causally connected. This means

that λp < h, which is always satisfied when λp < dH . To achieve that we need an

epoch in the early universe during which Hubble radius increases faster than the λp
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as we go back in time. This condition is satisfied when

d

dt

dH
λp

< 0. (3.7)

The λp ∝ a and dH = a/ȧ implies that ä > 0, i.e., it must be accelerated expansion.

Thus, a period of adequate inflation, the horizon problem is solved.

We have discussed so far about how we resolve the horizon problem using the idea

of inflation. But how much inflation do we need to resolve this problem? At least we

have to make the backward light cone and the forward light cone equal at the time

of decoupling (td). For simplicity, let us consider, during inflation an exponential

expansion of scale factor which starts from ai at ti and ends at af at tf ,

a = aiexp [H(t− ti)] . (3.8)

Denote A = af/ai and assume that A ≫ 1, then using Eq.(2.13), the horizon is

evaluated to be

ℓI(td, 0) ≈
A

H

(

td
tf

)(1/2)

. (3.9)

Most of the contribution to the forward light cone is from inflation. Then using Eq.

(2.15), the ratio of light cones becomes

RI =
ℓI
ℓb

≃ A

1026
, (3.10)

where we have used H ≃ 1013 GeV [6]. This number tells us that we need at least

A = 1026 to overcome the horizon problem. Usually, the extent of inflation from ai

to some a is expressed in terms of number of e-folds,which is defined as

N = ln

(

a(t)

ai

)

. (3.11)

In terms of N , we need around 60 e-folds of inflation to solve the horizon problem.

3.2 How do we achieve inflation?

We have seen that for an accelerated expansion we need a phase of ‘matter’ with

w < −(1/3). Usually this can be achieved using scalar fields. The simplest model



Chapter 3. Inflation 14

involves a single scalar field φ (the quanta of scalar fields that drives inflation is called

inflaton). The action of this canonical scalar field with self- interaction V (φ) can be

written as

S[φ] =

∫

dx4
√−g

[(

1

2

)

(∂µφ ∂
µφ)− V (φ)

]

. (3.12)

The energy-momentum tensor for the scalar field is

T µ
ν = ∂µφ ∂νφ− δµν

[(

1

2

)

(∂αφ ∂
αφ)− V (φ)

]

. (3.13)

The homogeneity and isotropy of the background universe restricts φ to be only

time-dependent and hence the energy-momentum tensor becomes diagonal

T 0
0 = ρ =

[

φ̇2

2
+ V (φ)

]

, (3.14a)

T i
j = −p δij = −

[

φ̇2

2
− V (φ)

]

δij . (3.14b)

The resulting equation of state is

w =
p

ρ
=

(

φ̇2

2
− V (φ)

)

/

(

φ̇2

2
+ V (φ)

)

, (3.15)

which shows that w of the scalar field can be made as w = −1 < −1/3 if the potential

energy dominates over the kinetic energy, i.e we can achieve inflation using a scalar

field if

φ̇2 ≪ V (φ) (3.16)

By varying the action, Eq. (3.12) we get the equation of motion of the scalar field as

φ̈+ 3Hφ̇+ Vφ = 0. (3.17)

The background geometry is determined by the Friedmann equations (2.6a and 2.6b)

which for scalar field can be written as

H2 =

(

1

3M2
p

)

[

φ̇2

2
+ V (φ)

]

, (3.18a)

Ḣ = −
(

1

2M2
p

)

φ̇2, (3.18b)
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where MP =
√

1/(8πG) is the Planck mass.

3.3 Slow roll approximation

We have seen that inflation is guaranteed if we have the condition (3.16). Moreover,

the equation of motion (3.17) is the same as one of a particle rolling down a potential

subjected to a friction through the term Hφ̇. Suppose we have a condition

φ̈≪
(

3Hφ̇
)

. (3.19)

This ensures that the field is slowly rolling for a sufficiently long time. These two

conditions can be expressed in terms of dimensionless parameters, called slow roll

parameters which are described below.

The Friedmann equation (2.6b) can be rewritten as

ä

a
= − 1

6M2
P

(ρ+ 3p) = H2(1− ǫH), (3.20)

where

ǫH ≡ 3

2
(w + 1) = −

(

Ḣ

H2

)

=
1

2M2
P

(

φ̇

H

)2

, (3.21)

is the first Hubble slow roll parameter. It is clear from Eq. (3.20) that the accelerated

expansion occurs if ǫH < 1. Moreover from Eq.(3.21), ǫH → 0 corresponds to w → −1

which is the condition for inflation, i.e., Eq (3.16).

Define second slow roll parameter as

δH ≡ −
(

φ̈

Hφ̇

)

= ǫH −
(

ǫ̇H
2HǫH

)

, (3.22)

then the condition (3.19) corresponds to δH → 0. So we have two Hubble slow roll

parameters:

ǫH = −
(

Ḣ

H2

)

≪ 1, (3.23a)

δH = −
(

φ̈

Hφ̇

)

≪ 1. (3.23b)
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The equations (3.17) and (3.18a) can be rewritten in terms of slow roll parameters

as

H2
[

1−
(ǫH
3

)]

=
V

3M2
P

(3.24a)

(

3Hφ̇
)

[

1−
(

δH
3

)]

= −Vφ. (3.24b)

In the slow roll approximation, we have the solutions

H2 ≃
(

V

3M2
P

)

and
(

3Hφ̇
)

≃ −Vφ. (3.24c)

Once the slow roll conditions are satisfied, using Eq. (3.24c) we can rewrite the set of

slow roll parameters in terms of potentials, so called potential slow roll parameters,

as

ǫH ≈
(

M2
P

2

)(

Vφ
V

)2

≡ ǫV (3.25a)

δH ≈ M2
P

(

Vφφ
V

)

−
(

M2
P

2

)(

Vφ
V

)2

≡ ηV − ǫV . (3.25b)

where Vφφ = (d2V/dφ2). In the slow roll limit, using Eq. (3.24c) we can express the

number of e-folds from φi(ti) to φ(t)as

N = ln

(

a

ai

)

=

∫ t

ti

dtH ≃ −
(

1

M2
P

)
∫ φ

φi

dφ

(

V

Vφ

)

. (3.26)

Inflation ends when the condition (3.16) is violated, i.e., ǫH = 1. In slow roll approx-

imation this condition is equivalent to ǫV ≈ 1.

3.4 Simple models

3.4.1 Power law inflation

If the form of the potential V (φ) is given, from Friedmann equations (3.18a and

3.18b) and from equation of motion of the scalar field (3.17), one can solve for scale
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factor a and scalar field φ. Consider a scale factor of the form:

a(t) = a1t
q. (3.27)

with q > 1 and a1 being an arbitrary constant. This scenario in which scale factor

has a power law dependence on time is referred to as power law inflation. Given the

functional form of a(t), from equations (3.18b) and (3.18a) the potential governing

scalar field can be found as follows

V (t) =M2
p

(

3H2 + Ḣ
)

, (3.28a)

φ(t) =
√
2Mp

∫

dt
√

−Ḣ. (3.28b)

Now we can substitute a(t) in Eq. (3.28a) to find out the potential, then we get

V (φ) = V0 exp −
[
√

2

q

(

φ

Mp

)]

. (3.29)

Similarly substituting a(t) in the Eq. (3.28b) we get

(

φ(t)

Mp

)

=
√

2q ln

[
√

(

V0
(3q − 1)q

)(

t

Mp

)

]

(3.30)

3.4.2 Large and small field models

We have seen how to solve the inflationary models exactly in the case of power law

inflation. In this section we will consider two types of inflationary models and its

properties in the slow roll regime. (i) Consider the potential of the form

V (φ) = V0φ
n (3.31)

where V0 is a constant and n > 0. The potential slow roll parameter can be calculated

as

ǫV =
n2

2

(

MP

φ

)2

, (3.32)

which implies that when ǫV ≪ 1, φ≫ MP. Thus inflation takes place at large values

of fields. This category of potentials are called large field models. In the slow roll
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limit, using Eq. (3.24c), the scalar field can be calculated to be

φ[(4−n)/2](t) ≃ φ
[(4−n)/2]
i +

√

V0
3

[

n(n− 4)

2

]

MP(t− ti) for n 6= 4, (3.33a)

φ(t) ≃ φiexp−
[

√

(V0/3)(4MP)(t− ti)
]

for n = 4. (3.33b)

where φi is the scalar field at some initial time ti. The scale factor in terms of scalar

field is found to be

a(t) ≃ ai exp−
[(

1

2nM2
P

)

(

φ2(t)− φ2
i

)

]

(3.34)

where ai is the value of the scale factor at ti. Using the Eq.(3.26), we can express

the scalar field and the Hubble parameter in terms of e-folds as

φ2 ≃
[

φ2
i −

(

2M2
Pn
)

N
]

, (3.35a)

H2(N) ≃
(

V0M
(n−2)
P

3

)[

(

φi

Mp

)2

− (2nN)

](n/2)

. (3.35b)

(ii) Consider another kind of potential

V (φ) = Λ [1 + cos(φ/f)] , (3.36)

where Λ and f are constants. With certain values of Λ and f this potential naturally

leads to inflation for small field values (i.e., φ ≪ MP) [8]. So this type of potentials

are called small field models. As we have done for the case of large field model, the

scalar field and the Hubble parameter are found to be

(φ/f) ≃ arccos

[

1− 2exp

(

NM2
P

f 2

)

sin2 (φi/2f)

]

, (3.37a)

H2 ≃ 2Λ

3M2
P

[

1− exp

(

NM2
P

f 2

)

sin2 (φi/2f)

]

. (3.37b)



Chapter 4

Linear, cosmological perturbation

theory

So far we have discussed the universe which is homogeneous and isotropic. As I

mentioned in the introduction, we see that the large scale structures are distributed

inhomogeneously in the universe which are evolved from the tiny fluctuations of the

CMB. Cosmological perturbation theory studies the evolution of the gravitational

perturbations at the cosmological scales. In this thesis we are only interested in the

fluctuations of the CMB which are observed to be very small. Hence we will work with

linear, cosmological perturbation theory. In this chapter we will describe the general

idea of this theory such as classification of perturbations, the equations governing

these perturbations and the generation of these perturbations during inflation. In

this discussion, we only consider spatially flat backgrounds.

4.1 Linear, cosmological perturbation theory

Since the inhomogeneities in the CMB are observed to be very small, those at earlier

times must have been even smaller. Then expanding the Einstein’s equations at

linear order in perturbations approximates the full non-linear solution to very high

accuracy. So we will work with linear perturbation theory. This means that we can

write all quantities as a sum of background value and linear order term. We can drop

all terms which are higher order in the perturbation. Then the perturbed Einstein’s

19
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equations can be written as [9]

δGµν = 8πGδTµν , (4.1)

which is the linear differential equation of the perturbed metric δgµν in the linear

theory.

4.1.1 Classifications of perturbations

4.1.1.1 Scalar-vector-tensor decomposition

Consider the perturbed metric δgµν in the flat Friedmann universe which can be split

as

δgµν = (δg00, δg0i, δgij). (4.2)

These three components are scalar (δg00, say A), vector (δg0i) and tensor (δgij) which

are defined according to rotations in the flat Friedmann background. As we know,

we can split any 3-vector into the gradient of a scalar and a divergence free vector.

Hence we can write δg0i as

δg0i = ∇iB + Si, (4.3)

where B is a scalar and∇iSi = 0. Similarly, any symmetric tensor can be decomposed

as[6]

δgij = ψδij +

[(

1

2

)

(∇i∇j +∇j∇i)−
(

1

3

)

δij∇2

]

E + (∇iFj +∇jFi) +Hij, (4.4)

where ψ and E are scalars, ∇iF i = 0 and Hij is a symmetric traceless tensor which

satisfies ∇iHij = 0. For the metric perturbation, δgµν has 10 components. So there

would appear to be ten degrees of freedom (dof). These degrees of freedom are

distributed as

• scalars: A, B, E and ψ ⇒ 4 dof,

• vectors: F i, Si + divergence free ⇒ 4 dof,

• tensors: Hij + transverse + symmetry + traceless ⇒ 2 dof,

in metric decomposition. However, four of them are not physical degrees of freedom,

they just correspond to the freedom of choosing the four coordinates (x, t). So there
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are 6 physical degrees of freedom. This decomposition is very useful because in the

perturbed Einstein’s equations for scalars, vectors and tensors do not couple to each

other at linear order and can therefore be treated separately.

4.1.1.2 Gauge fixing

The homogeneity and isotropy of the background Friedmann universe specifies a par-

ticular observer called comoving observer. This means that the symmetry properties

of the background universe fix its coordinate system. But in the case of perturbed

spacetime there are no such specific coordinate system. On the other hand, for a

given coordinate system in the background, there are many possible coordinate sys-

tems (called gauge) in the perturbed spacetime that we could use. There are two

ways of dealing with this issue. One way to do this is to define perturbations in such

a way that they do not change under a change of gauges (gauge invariant approach)

[10]. The second one, which will be our approach, is to choose a particular gauge and

do all calculations there.

4.1.2 Scalar perturbations

There are different gauges such as comoving gauge, syncronous gauge etc. are used

to study the perturbations. Different gauges are good for different purposes. A

convenient gauge which we will use, is known as the longitudinal gauge (also called the

conformal Newtonian gauge). Fixing this gauge corresponds to choosing B = E = 0.

In this gauge the Friedmann metric will be

ds2 = (1 + 2Φ) dt2 − a2(t) (1− 2Ψ) dx2, (4.5)

where Φ(∝ A) and Ψ(∝ ψ) are the two independent functions which are called

Bardeen potentials. This metric is similar to the weak limit of the general theory,

hence the name conformal Newtonian gauge. For the above metric, the perturbed
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Einstein tensor δGµ
ν can be calculated to be

δG0
0 = −6H

(

Ψ̇ +HΦ
)

+

(

2

a2

)

∇2Ψ (4.6a)

δG0
i = 2∇i

(

Ψ̇ +HΦ
)

, (4.6b)

δGj
i = −2

[

Ψ̈ +H
(

3Ψ + Φ̇
)

+
(

2Ḣ + 3H2
)

Φ +

(

1

2a2

)

∇2D
]

δij +

(

1

a2

)

∇i∇jD .

(4.6c)

where D = (Φ−Ψ).

4.1.2.1 Equations of perturbations

The equations of motion of perturbations can be derived from the perturbed Einsteins

equations, δGµν = 8πGδTµν . Let us consider a perfect fluid which does not contain

any anisotropic stress. We shall see that the scalar field, which we use as a source of

inflation, does not contain any anisotropic stress. In this assumption, the perturbed

stress-energy tensor can be expressed as

δT 0
0 = δρ, δT 0

i = ∇iδσ and δT i
j = −δp δij (4.7)

where the quantities δρ, δσ and δp are the perturbed energy density, momentum flux

and pressure respectively. Since δT i
j = 0 for i 6= j, Eq. (4.6c) becomes

∇i∇j(Φ−Ψ) = 0 (i 6= j), (4.8)

which implies that Φ = Ψ. Substituting Eq. (4.7) into Eq. (4.6) we get the equations

for the scalar perturbations:

−3H
(

Φ̇ +HΦ
)

+

(

1

a2

)

∇2Φ = (4πG) δρ , (4.9a)

∇i

(

Φ̇ +HΦ
)

= (4πG)∇i δσ, (4.9b)

Φ̈ + 4HΦ̇ +
(

2Ḣ + 3H2
)

Φ = (4πG) δp. (4.9c)

Note the similarity of Eq.(4.9a) with the Poisson equation. In a non-expanding uni-

verse this equation exactly coincides with the Poisson equation. Now let us define
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the adiabatic speed of perturbations, c2A ≡ (p′/ρ′) and non-adiabatic pressure pertur-

bation, δpNA. Then we can write

δp = c2A δρ+ δpNA. (4.10)

Using the above equation, Eq. (4.9a) and Eq. (4.9c) can be combined to write:

Φ′′ + 3H
(

1 + c2A
)

Φ′ − c2A∇2Φ +
[

2H′ +
(

1 + 3c2A
)

H2
]

Φ =
(

4πGa2
)

δpNA, (4.11)

where H = (a′/a) is the conformal Hubble parameter.

4.1.2.2 Curvature perturbation

We can construct a quantity using the Bardeen potential and its time derivative

which is conserved at the super Hubble scales for adiabatic perturbations. Such a

quantity is defined as

R ≡ Φ+

(

2ρ

3H

)(

Φ′ +HΦ

ρ+ p

)

, (4.12)

and is called curvature perturbation. Curvature perturbation is very important be-

cause, as we shall see, this provides the essential link between the fluctuations created

by inflation and the fluctuations that we observe in the CMB. In Fourier space, using

Eq. (4.12), Eq. (2.6) and Eq. (4.11), the derivative of the curvature perturbation is

calculated to be

R′
k =

( H
H2 −H′

)

[

(4πGa2)δpNA
k − c2Ak

2Φk

]

(4.13)

where k denotes the comoving wave number of Fourier modes of perturbations. In

the super Hubble scales, the physical wave length λ = a/k is much larger than the

Hubble radius, i.e. (k/aH) = (k/H) ≪ 1. Then the second term in the square

bracket can be neglected. If we assume that there is no non-adiabatic pressure, then

we can say that the curvature perturbation is conserved at super-Hubble scales.

4.1.2.3 Evolution of Bardeen potential

We cannot solve Eq. (4.11) exactly but we can find out the asymptotic solutions for

the long wavelength and short wavelength perturbations. It is convenient to introduce
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a new variable U as

Φ =

( H
a2θ

)

U , (4.14)

where

θ =

[ H2

(H2 −H′) a2

]1/2

, (4.15)

to eliminate the ‘friction term’ that is proportional to Φ′. Then in Fourier space, Eq.

(4.11) can be written as

U ′′
k +

[

c2Ak
2 −

(

θ′′

θ

)]

Uk =

(

4πGa4θ

H

)

δpNA
k (4.16)

In the absence of non-adiabatic pressure perturbations, the above equation becomes

U ′′
k +

[

c2Ak
2 −

(

θ′′

θ

)]

Uk = 0. (4.17)

This equation can be viewed either as the equation of a parametric oscillator, with

the time-dependent frequency given by w2(k2, η) = k2c2A − (θ′′/θ), or as Schrödinger

equation with potential (θ′′/θ) [12]. For the long wavelength modes, i.e., (k/H) ≪ 1,

we can neglect the term c2Ak
2. Obviously one of the solutions of Eq. (4.17) is U ∝ θ.

Using that solution one can get a second solution also and the complete solution for

long wavelength modes can be written as [11]

Uk(η) ≃ CG(k)θ(η)

η
∫

dη̄

θ2(η̄)
+ CD(k)θ(η), (4.18)

where the constants of integrations, CG and CD are functions of k that are determined

by the initial conditions. Then the Bardeen potential is

Φk(η) ≃ CG(k)

( H
a2(η)

)

η
∫

dη̄

θ2(η̄)
+ CD(k)

( H
a2(η)

)

. (4.19)

In the case of short wavelength modes, Eq. (4.17) becomes

U ′′
k + c2Ak

2Uk = 0, (4.20)

and the solution is Uk ∝ exp(ikη).
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Using the equation of state ρ = wp we can rewrite Eq. (4.12) as

2

3
H−1Φ′ +

5 + 3w

3
Φ = −(1 + w)R. (4.21)

If w is a constant for a period in the history of the universe, and we know that R is

constant for adiabatic perturbations at super Hubble scales, then the above equation

is a differential equation for Φ. The general solution to this equation is[9, 11]

Φ =
3 + 3w

5 + 3w
R+ Ca−

5+3w
2 , (4.22)

where C is the constant of integration. The second part of this solution is a decaying

term, hence after a sufficient time it becomes negligible. Then we have

Rk ≃
[

3w + 5

3(w + 1)

]

Φk = const. (4.23)

Assuming k ≪ H the whole time, the Bardeen potentials at the entry of modes in

the radiation and matter domination epochs are

ΦR
k =

(

2

3

)

Rk (w = 1/3), (4.24a)

ΦM
k =

(

3

5

)

Rk (w = 0), (4.24b)

which implies that while the universe goes from radiation domination to matter

domination, Φk changes by a factor 9/10.

4.1.3 Vector perturbations

As in the case of scalar perturbations and here also we are going to choose a particular

gauge to describe the vector perturbations. A convenient choice is that of Si = 0. In

this gauge the Friedmann metric can be written as

ds2 = dt2 − a2(t) [δij + (∇iFi +∇jFi)] dx
idxj (4.25)
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where Fi ∝ Fi. Using the above metric, the perturbed Einstein tensor is calculated

to be

δG0
0 = 0, δG0

i =
1

2
(∇2Ḟi) (4.26a)

δGi
j = −

(

1

2

)

3H(∇iḞj +∇jḞi) + (∇iF̈j +∇jF̈i) (4.26b)

From these relations it is evident that in the absence of vector sources, the metric

perturbations Fi vanish identically. This implies that no vector perturbations are

generated in the absence of vector sources. For this reason we ignore vector pertur-

bations in this thesis.

4.1.4 Tensor perturbations

Tensor perturbations are important because they are responsible for generation of

the primordial gravitational waves. From the decomposition of the the Friedmann

metric Eq. (4.4), the tensor part can be written as

ds2 = dt2 − a2(t)(δij + hij)dx
idxj . (4.27)

where hij ∝ Hij . The hij is a symmetric, traceless and transverse tensor that contains

two degrees of freedom. These degrees of freedom correspond to the two polarizations

of the gravitational waves. Using the above metric the perturbed Einstein tensor can

be calculated to be

δG0
0 = δG0

i = 0, (4.28a)

δGi
j = −

(

1

2

)[

ḧij + 3Hḣij −
(

1

a2

)

∇2hij

]

. (4.28b)

In the absence of anisotropic stresses, δT i
j = 0, the above equation reduces to

h′′ + 2Hh′ −∇2h = 0 (4.29)

where h is the amplitude of the gravitational wave. It should be mentioned that the

gravitational waves can be generated even in the absence of sources.



Chapter 5

Generation of primordial

fluctuations

In the previous chapter we have described the perturbations of metric and their

evolution. As I mentioned earlier inflation provides a natural way of explaining the

generation of these perturbations. According to the theory of inflation, the primordial

fluctuations can be generated due to the quantum fluctuations. These fluctuations

get stretched to the cosmic scale during the inflation without changing its amplitudes.

The scalar fluctuations produced and evolve in this way is the cause of the inhomo-

geneities in the CMB and the large scale structure we see. The tensor perturbation

which produce gravitational wave was predicted to be seen in CMB and appears to

have been observed recently by BICEP2 experiment [13].

In this chapter we study the behavior of perturbations during inflation and calculate

their resulting power spectrum. We will calculate the power spectrum for some simple

models also.

5.1 Equation of motion for the curvature pertur-

bation

As we discussed in the earlier sections the inflation is achieved by the scalar field φ.

Let us consider it is perturbed by a factor of δφ from its average value. From Eq.

27
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(3.14) and using the metric (4.5), the perturbed stress-energy tensor will be

δT 0
0 = φ̇δ̇φ− φ̇2Φ + Vφδφ = δρ, (5.1a)

δT 0
i = ∇i(φ̇δφ) = ∇i(δσ), (5.1b)

δT i
j = −(φ̇φ̇− φ̇2Φ− Vφδφ)δ

i
j = −δpδij . (5.1c)

As we mentioned earlier, we are interested in the evolution of a particular quantity

called curvature perturbation. In the Eq. (4.13) the field perturbation is contained

in the δpNA. From above equations one can calculate δpNA and can substitute in Eq.

(4.13). The δpNA is calculated to be

δpNA =

(

1− c2A
4πGa2

)

∇2Φ, (5.2)

then Eq. (4.13) reduces to

R′
k = −

( H
H2 −H′

)

k2Φk (5.3)

Now we have curvature perturbation Eq (4.12) and its derivatives in terms of Bardeen

potential so we can rewrite the equation of motion of Bardeen potential (4.11) in terms

of curvature perturbation as

R′′
k + 2

(

z′

z

)

R′
k + k2Rk = 0 (5.4)

where z is

z =
aφ̇

H
=
aφ′

H (5.5)

which contains the background dynamics. If we introduce another variable

v = Rz (5.6)

calledMukhanov-Sasaki variable, we get an equation similar to the equation of motion

of Bardeen potential Eq. (4.17) in the absence of non-adiabatic pressure. In Fourier

space we get

v′′k +

[

k2 −
(

z′′

z

)]

vk = 0 (5.7)

which is called Mukhanov-Sasaki equation. The Mukhanov-Sasaki equation is hard

to solve most of the time in full generality for a given inflationary model. We will
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work out this for the power law inflation and in the slow roll approximation.

In the case of tensor perturbation, if we write h = u/a then the Eq. (4.29) can be

written as

u′′k +

[

k2 −
(

a′′

a

)]

uk = 0 (5.8)

which is Mukhanov-Sasaki equation for the tensor perturbation and it is similar to

Eq. (5.7) with the quantity z is replaced by a.

5.2 Quantization and power spectra

In inflation, the background field is treated classically, and only the perturbations

around the mean value of the field are quantized. In quantum field theory the variable

R and its conjugate momentum π become operators R̂ and π̂, which satisfy equal

time commutation relations [15]

[

R̂(η,x), R̂(η,y)
]

= [π̂(η,x), π̂(η,y)] = 0;
[

R̂(η,x), π̂(η,y)
]

= iδ(x− y). (5.9)

where we have set ~ = 1. The curvature operator can be expanded in Fourier modes

as

R̂(η,x) =

∫

d3k

(2π)3/2

[

âkRk(η)e
ik.x + â†kR⋆

k(η)e
−ik.x

]

, (5.10)

where âk and â†k are the creation and annihilation operators which satisfy

[âk, âk′] =
[

â†
k
, â†

k
′

]

= 0,
[

âk, â
†

k
′

]

= δ(k− k′), (5.11)

and the temporal R(η) satisfies Eq. (5.4). We define the vacuum state |0〉 as

âk |0〉 = 0. (5.12)

Since we are dealing with the linear perturbations theory the perturbation will be

Gaussian. For a Gaussian perturbation, the complete statistical information can be

calculated from the two point correlation function. In cosmology, this two point

correlation function is expressed by a quantity called power spectrum. The scalar

and the tensor power spectra are defined to be

〈0| R̂k(η)R̂k
′(η) |0〉 = (2π)2

2k3
PS(k)δ

(3)(k+ k′) (5.13)
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Using Eq. (5.10) one can calculate relation between the power spectrum and the

curvature perturbation as

PS(k) =

(

k3

2π2

)

|Rk|2 =
(

k3

2π2

)( |vk|
z

)2

. (5.14)

In a similar way we can calculate the power spectrum of the tensor perturbation in

terms of hk and uk as

PT (k) = 4

(

k3

2π2

)

|hk|2 = 4

(

k3

2π2

)( |uk|2
a

)

. (5.15)

The power spectrum is calculated in the super Hubble limit where the curvature

perturbation becomes constant.

We introduce a new quantity, spectral index which contain the information of rate of

change of spectrum with respect to the comoving wavelength. Conventionally it is

written as

nS = 1 +

(

d lnPS

d lnk

)

and nT =

(

d lnPT

d lnk

)

(5.16)

If the the spectrum remains constant at super Hubble scale we say that spectrum is

scale invariant and that corresponds to nS = 1 and nT = 0. Another quantity we are

interested in is tensor-to-scalar ratio which is defined as

r(k) ≡ PT (k)

PS(k)
(5.17)

These two quantities are very important inflationary parameters that can be con-

strained by the observations.

5.2.1 The Bunch-Davies initial conditions

The initial conditions have to be chosen in the far past, when all comoving scales

were well inside the Hubble radius, η → −∞ or k ≫ aH . If we consider distance

and time scales much smaller than the Hubble scale, spacetime curvature does not

matter and things should behave like in Minkowski space. In this limit the Eq. (5.7)

becomes

v′′k + k2vk = 0. (5.18)
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This is the equation of simple harmonic oscillator with time-independent frequency.

Then the positive-frequency solutions to these modes behave in the following form

lim
k

H
→∞

(vk(η), uk(η)) →
(

1√
2k

)

e−ikη (5.19)

hence we can impose above initial condition in the limit k ≫ aH . The corresponding

vacuum of this mode function is referred to as Bunch-Davies vacuum.

5.3 Power spectra in power law and slow roll in-

flation

As an illustration we will calculate the power spectra for the power law inflation and

for the slow roll inflation. The discussion of power law inflation is instructive because

we can solve the Mukhanov-Sasaki equation exactly and it is very easy to find out

the power spectrum in super Hubble limit. Once we have done this, it is not difficult

to calculate the power spectra for slow roll approximation. So first we will discuss

the spectrum of power law inflation.

5.3.0.1 Power law inflation

In the case of power law inflation from the relation (3.30) and (3.27) we get

z =

(

aφ̇

H

)

=
√

2/qMP a. (5.20)

The scale factor can be expressed in terms of conformal time coordinate as

a(η) = (−H̄η)(γ+1), (5.21)

where γ and H̄ are constants given by

γ = −
(

2q − 1

q − 1

)

and H̄ =
[

(q − 1) a
1/q
1

]

. (5.22)

The term (z′′/z) becomes
z′′

z
=

(γ + 1)γ

η2
. (5.23)
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Then the Mukhanov-Sasaki equation becomes

v′′k +

[

k2 − (γ + 1)γ

η2

]

vk = 0 (5.24)

and the solution with the initial condition (5.19) is found to be [14]

vk(η) =

(−πη
4

)1/2

ei[ν+(1/2)](π/2)H(1)
ν (−kη) (5.25)

where ν = −[γ + (1/2)] and H
(1)
ν is the Hankel function of the first kind of order ν.

For tensor perturbation we see that

(

a′′

a

)

=

(

z′′

z

)

, (5.26)

hence the solution uk will be the same form as the one for vk. As we mentioned earlier

the spectrum is calculated to be at the super Hubble limit. In this limit (kη → 0),

the Hankel function becomes [14]

lim
−kη→0

iH(1)
ν (−kη) = 1

π
Γ(ν)

[

1

2
(−kη)

]−ν

. (5.27)

Using above limit and the Eq. (5.25) one can show that the curvature perturbation

Rk = (z/a) and similarly hk becomes constant in the super Hubble limit as we

expected. The scalar and tensor spectrum in the super Hubble scale is calculated to

be

PS(T )(k) = AS(T )H̄2

(

k

H̄

)2(γ+2)

, (5.28)

where

AS =
γ + 1

16π3(γ + 2)M2
P

( |Γ(ν)|2
22γ+1

)

(5.29a)

AT =
1

π3M2
P

( |Γ(ν)|2
22γ+1

)

(5.29b)

by convention we have multiplied AS by a factor of (4/M2
P ) [6]. Using Eq. (5.16)

spectral indices nS and nT are calculated to be

nS − 1 = nT = 2(γ + 2) = −
(

2

q − 1

)

(5.30)
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The tensor-to-scalar ration is found to be

r =
16(γ + 2)

γ + 1
=

16

q
. (5.31)

It should be noted that the spectral indices and the tensor-to-scalar are constants in

the power inflation. The power spectrum becomes scale invariant when q → 0.

5.3.1 Slow roll inflation

Now let us turn over our attention to the power spectra in slow roll inflation. Using

Eq. (3.21), z can be calculated in terms of first Hubble slow roll parameter as

z =
√
2MP (a

√
ǫH). (5.32)

Next we have to calculate the term in the Mukhanov-Sasaki equation z′′/z in terms

of slow roll parameters, for that we can use the relations

ǫH = 1− H′

H2
and δH = ǫH − ǫ′H

2HǫH
(5.33)

Then (z′′/z) is calculated to be

z′′

z
= H2

[

2− ǫH + (ǫH − δH) (3− δH) +

(

ǫ′H − δ′H
H

)]

(5.34)

For the case of tensor perturbation we can find out

a′′

a
= H2(2− ǫH). (5.35)

It should be emphasized that so far we have not done any approximations. To take

out the η dependance of the term (z′′/z) from the Eq, (5.34), let us rewrite the Eq.

(5.33) as

η = −
∫
(

1

1− ǫH

)

d

(

1

H

)

(5.36)

Integrating the above expression by parts we get

η = − 1

(1 − ǫH)H
−
∫
(

2ǫH(ǫH − δH)

(1− ǫH)3

)

d

(

1

H

)

(5.37)
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The second term can be neglected at the leading order in slow roll parameters, then

we get

H ≃ − 1

(1− ǫH)η
(5.38)

Now we can write the term (z′′/z) and (a′′/a) in terms of slow roll parameters and η

in the leading order approximation as

z′′

z
≃ 2 + 6ǫH − 3δH

η2
(5.39a)

a′′

a
≃ 2 + 3ǫH

η2
(5.39b)

The above relations show that the Mukhanov-Sasaki will be similar as we have cal-

culated in the case of power law inflation, Eq. (5.24). Then the similar way, solution

can be given in terms of the Hankel functions with different ν values,

νS ≃
[(

3

2

)

+ 2ǫH − δH

]

and νT ≃
[(

3

2

)

+ ǫH

]

. (5.40)

As we have done in the case of power law inflation the next task is to calculate the

power spectra in the super Hubble scale. In the limit −kη → 0, the scalar and tensor

perturbation can be found to be

PS(k) =
1

32π2M2
P ǫH

[ |Γ(νS)|
Γ(3/2)

]2(
k

a

)2(−kη
2

)1−2νS

(5.41a)

PT (k) =
1

2π2M2
P

[ |Γ(νT )|
Γ(3/2)

]2(
k

a

)2(−kη
2

)1−2νT

(5.41b)

Then using the Eq. (5.38) above relations can be written as

PS(k) =

(

H2

2πφ̇

)

k=aH

[ |Γ(νS)|
Γ(3/2)

]2

22νS−3(1− ǫH)
2νS−1, (5.42a)

PT (k) =

(

H2

2π2M2
P

)

k=aH

[ |Γ(νT )|
Γ(3/2)

]2

22νT−3(1− ǫH)
2νT−1. (5.42b)
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At the leading order in the slow roll parameters the scalar and tensor spectrum reduce

to

PS(k) ≃
(

H2

2πφ̇

)

k=aH

(5.43a)

PT ≃ 8

M2
P

(

H

2π

)2

k=aH

(5.43b)

where the subscript notation signifies that the value of H for each k is to be taken

at horizon exit of that particular scale The problem has now been completely re-

duced to the evolution of the background scalar field and the background Hubble

parameter. We just need to specify the inflation potential and calculate how the

background evolves, and plug it in Eq. (5.43) to get complete information about the

perturbations.

The next task is to find out the spectral indices in terms of slow roll parameters in

linear order. The scalar spectral index nS is

nS − 1 =

(

d lnPS

d lnk

)

k=aH

=

(

d lnPS

dt

)(

dt

d lna

)(

d lna

d lnk

)

k=aH

. (5.44)

The Hubble constant is almost constant in slow roll inflation then we can approxi-

mate,
(

d lna

d lnk

)

k=aH

≃ 1 (5.45)

then the scalar spectrum becomes

nS = 1 +

(

d lnPS

d lnk

)

k=aH

≃ 1 +
ṖS

PSH
, (5.46)

which can be written in terms of slow roll parameters as

nS ≃ 1− 4ǫH + 2δH and nT ≃ −2ǫH . (5.47)

When these slow roll parameters are close to zero we get a scale invariant power

spectrum in slow roll inflation. In slow roll inflation the power spectrum is predicted

to be nearly scale invariant. The tensor-to-scalar ratio in slow rill limit is found to

be

r ≃ 16ǫH = −8nT (5.48)

which is often referred to as the consistency relation. In the slow roll approximation
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the power spectra can be expressed in terms of the potential also. Using the slow roll

equations (3.24c) Eq. (5.43) can be re written as

PS(k) ≃
1

12π2M6
P

(

V 3

V 2
φ

)

k=aH

(5.49a)

PT (k) ≃
2

3π2

(

V

M4
P

)

k=aH

. (5.49b)

which are very useful in comparing different inflationary models with datas.

5.3.2 nS and r for some simple models

Now let us calculate nS and r for two simple inflationary models in the slow roll

approximation. First, consider the large field model that has the relation (3.31). As

I mentioned earlier in the slow roll regime we have ǫH ≃ ǫV and δH = (ηV − ǫV ). If

we have the form of potential we can calculate ǫV and ηV from the definition of these

quantities (3.25b). Then by using the relations (5.47) and (5.48) we can calculate nS

and r. Following these we get

nS ≃ 1−
[

2(n+ 2)

4N + n

]

and r ≃ 16n

4N + n
, (5.50)

where N is the number of e-folds counted from the end of inflation.

Next consider the potential of the from

V (φ) =
3M2

PM
2

4

[

1− exp

(

−
√

2

3

φ

MP

)]2

, (5.51)

which is called R2 inflation (or Starobinsky model) [16]. From the definitions of slow

roll parameters we calculate

ǫV =
4

3

[

1

(φ̄− 1)2

]

and ηV =
4

3

[

2− φ̄

(φ̄− 1)2

]

, (5.52)

where φ̄ = exp
(√

2
3

φ
MP

)

. Then nS and r are found to be

nS ≃ 1−
[

8(4N + 9)

(4N + 3)2

]

and r ≃ 192

4N + 3
. (5.53)
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These calculations are very important since, observations can constrain these values.

Then the theoretical values of these quantities can be used to test different inflationary

models. The detailed discussion of this method is discussed in the next chapter.



Chapter 6

Comparison with observations

As I have mentioned in earlier chapters, inflation can solve many difficult problems

of standard big bang cosmology. But it is not just that, this theory has made several

predictions which can be tested by observations.

6.1 CMB power spectrum

The major test of inflation can be done by measuring the anisotropies in the CMB

radiation. Since the fluctuations are on the sky, it is useful to do angular decompo-

sition of the fluctuations in multipole space l rather than Fourier space k. In terms

of spherical harmonics the fluctuations in the CMB is described as [18]

∆T (n̂)

T0
=
∑

lm

almYlm(n̂). (6.1)

where n̂ denotes the direction in the sky, T0 = 2.7K is the background temperature

and

alm =

∫

dΩY ⋆
lm(n̂)

∆T (n̂)

T0
. (6.2)

Here Ylm are the standard spherical harmonics on a 2-sphere with l = 0, 1.. and mag-

netic quantum number m = −l, ...+ l. The temperature correlation function between

two positions on the sky depends only on angular separation and not orientation.

38
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i.e., all ms are equivalent. Thus, what is observed is a quantity averaged over m:

Cobs
l ≡ 1

2l + 1

∑

m

a⋆lmalm. (6.3)

The anisotropies in the CMB at higher multipoles (ℓ > 2) are interpreted as being

mostly the result of perturbations in the density of the early universe. As we have

seen, inflation provides the mechanism of calculating these primordial perturbations.

The interesting fact about inflation is that the curvature perturbations are conserved

on the super Hubble scale. Early on, all of the modes are outside the Hubble radius

and then the perturbations cross the Hubble radius and the universe changes from

radiation domination to matter domination. The primordial Bardeen potential at

the time of inflation and the Bardeen potential today can be related through so

called tranfer function. This tranfer fuction contains the evolution of the Bardeen

potential which depends on the background cosmological model. Since the power

spectrum can be calculated from the the Bardeen potential, one can express it in

terms of the primordial power spectrum generated during inflation and the transfer

function. Moreover, we have to convert this power spectrum to Cℓs to compare with

the observations. There is a mathematical formalism to do this conversion which I

will not discuss here. The packages such as Code for Anisotropies in the Microwave

Background (CAMB) calculate Cℓs from primordial power spectra set by inflation

[19].

The anisotropies are described by an angular distribution as shown in the Fig. 6.1.

Figure shows the observed spectra and the best fit curve made by theory. This is the

result from Planck and it seems that the theoretical scalar power spectrum calculated

by slow roll inflation is in good agreement with these observations. As we mentioned,

the theoretical curve depends both on the background cosmological parameters and

on the spectrum of initial fluctuations.

6.2 Constraints on nS and r

In the last chapter we have calculated the scalar spectral index nS and the tensor-to-

scalar ratio r for power law, large-field and the R2 model of inflation. Here we will

discuss how these quantities are constrained by the observations. When comparing
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Figure 6.1: The temperature fluctuations in Cosmic microwave background
(CMB) as observed by Planck. The red dots are measurements made by Planck.
The green curve represents the best fit of the spatially flat, ΛCDM model with a
power law primordial spectrum [3]. Source: http://www.esa.int/spaceinimages
/Images/2013/03/Planck Power Spectrum

the observations the scalar and tensor spectra are often expressed as [20]

PS(k) = AS

(

k

k⋆

)nS−1

PT (k) = AT

(

k

k⋆

)nT

(6.4)

where AS and AT are the scalar and tensor spectral amplitudes and k⋆ is a pivot

scale at which the amplitudes are quoted. As we have discussed, the theoretical curve

fit to the CMB anisotropy depends on the cosmological parameters. The primordial

spectra set by inflation Eq. (6.4) contain the values of nS and r. By knowing the rest

of the cosmological parameters one can constrain the values of nS and r by fitting

the theoretical spectrum with observed spectrum. The Fig. (6.2) shows constraints

on nS and r of power law, large-field, R2 inflation and other inflationary models. The

observed spectrum is nearly scale-invariant, ns ≃ 1, just as inflation predicts. The

contours indicate the 68% and 95% CLs derived from the data. Figure shows that

n = 3 large-field model is excluded at more than 98% for N < 60. The n = 2 lies

inside 98% region for N = 60. Interestingly, the R2 model lies inside of 68% region
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Figure 6.2: Constraints on nS and r according to Planck with other data sets
and compared to theoretical predictions [3].

for both N = 50 and 60. According to the Planck result, R2 model is considered to

be a better model of inflation compared to the others.

Recent data from BICEP2 shows that the 68% r is lifted up and concentrated around

0.1 < r < 0.3. The previous results show that r can be close to zero but according to

this result it should not be so. The BICEP2 results exclude R2 model at more than

98% for both N = 50 and 60, in contradiction to the Planck result.

The BICEP2 result is very important in that it claims the detection of gravitational

waves from the B-mode polarizations of the CMB spectrum. We are not interested

in the details of the polarizations of the CMB. So we will not discuss about this

result. But it is very important because the amplitude of the tensor perturbations

also depends directly on the Hubble parameter during inflation, so it will provide a

measurement of the energy scale of inflation.
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Figure 6.3: Constraints on nS and r according to BICEP2 2014 [21].

6.3 Energy scale of inflation

In the slow-roll approximation, for a scale-invariant spectrum nS = 1, using equations

(6.4)and (5.49b), the tensor-to-scalar ratio can be approximated as

r ≃ 2V

3π2M4
P

1

AS
, (6.5)

where AS is the amplitude of the scalar perturbations. The cosmic microwave back-

ground anisotropies seen by COBE gives the amplitude of the initial power spectrum

as AS ≃ 2.14× 10−9, which is often referred to as the COBE normalization [6]. This

implies

V (1/4) ≃ 3.2× 1016r1/4. (6.6)
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From BICEP2 result, r ≃ 0.2. Using this, we get V (1/4) ≃ 2.1 × 1016GeV. This is a

remarkably large energy scale, the energy scale of GUT! This is very interesting since

inflation is found to connect classical energy scale to GUT energy scale.
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Summary

At large scales, our universe can be approximated to be homogeneous and isotropic.

In this approximation, the geometry of the universe is expressed in terms of the FRW

metric. The standard big bang model suggests that the universe started its expansion

as a hot primordial soup with relativistic particles and radiation. At that epoch, the

universe was radiation-dominated. Since the density of radiation falls faster than that

of non-relativistic matter, as the universe cooled down, the normal matter ceased to

interact with radiation. The radiation decoupled from matter at this stage and the

photons started to propagate freely. That is what we see today as the CMB radiation.

After decoupling, the universe became matter-dominated. At present, the universe is

known to be dominated by vacuum energy. Even though the big bang model predicts

expansion of the universe, formation of various elements, CMB spectrum etc., it has

some drawbacks such as the flatness problem and the horizon problem.

Inflation solves the puzzles of the standard big bang model in an elegant and simple

way by introducing an epoch of the universe which was dominated by particles with

negative pressure. We have shown that such an epoch can be achieved by using scalar

fields whose potential energy dominates over their kinetic energy. Moreover, to get

sufficient inflation, we have introduced the idea of slow-roll inflation and slow-roll

parameters.

The idea of inflation was first postulated to resolve the puzzles of big bang model.

Soon after it was realized that inflation can also be the mechanism for the generation

of primordial perturbations, which lead to the inhomogeneities in the CMB and

the large scale structures of the universe. At the linear order, we have shown that

44
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the perturbed Einstein’s equations can be separated into scalar, vector and tensor

perturbations. Fixing a gauge is an important part of calculating the perturbations;

so we have chosen a particular gauge rather than working in a gauge-invariant way.

The scalar perturbation is mainly responsible for the inhomogeneities in the CMB

and the large scale structures in the universe, and the tensor perturbation gives the

primordial gravitational waves. We have shown that the curvature perturbation R
does not evolve at super-Hubble scales k ≪ aH , unless non-adiabatic pressure is

significant. This fact is crucial for relating the initial conditions from inflation to

late-time observables.

According to the theory of inflation, the source of the perturbations is the quantum

fluctuations which were present in the initial stages of inflation. As a result of in-

flation, these were stretched to the cosmological scale with nearly same amplitude.

We have calculated the power spectrum in the super Hubble scale for power law and

slow-roll inflation. In the case of slow-roll inflation, we got nearly scale-invariant

power spectrum.

The power spectrum calculated theoretically can be compared directly with the ob-

servations of CMB. From Planck data, it is shown that the power spectrum calculated

using the slow-roll approximation fits well with the observations. Inflation predicts

a nearly scale-invariant power spectrum, which has actually been seen in the Planck

and BICEP2 results. The BICEP2 observations are more important because they

observed the primordial gravitational waves, the existence of which is a major pre-

diction of the theory of inflation. For the scale-invariant power spectrum the COBE

normalization gives the energy scale of the inflation, which is found to be the energy

scale of GUT.

Inflation is really a beautiful idea. Not only could it explain the origin of large

scale structures of the universe, but also these are generated by physics at very

high energy scales. These are energy scales that we would really like to be able

to explore, but unfortunately that will probably never be possible in the particle

accelerators. We expect very interesting new physics to lie there; new particles,

possibly GUT theories, and maybe even string theory. We can now explore them with

cosmological observations. Current observations are in beautiful agreement with the

basic inflationary predictions, that the universe is flat with a scale-invariant spectrum,

the existence of primordial gravitational waves, and Gaussian and adiabatic density
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fluctuations. We are now looking forward to future experiments that can provide

further tests of cosmic inflation.
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