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ABSTRACT

Magnetic fields are ubiquitous in the universe but we are still unsure about its origins. The
anisotropic stress associated with magnetic fields are known to enhance the amplitude of the grav-
itational waves generated in the early universe. The aim of the project is to study the generation of
magnetic fields during inflation (inflationary magnetogenesis) as well as to examine the imprints of
the magnetic field on the two-point function of the tensor perturbations. In this report we have re-
viewed two models of inflationary magnetogenesis – generation of helical and non-helical magnetic
fields by coupling the electromagnetic (EM) field to the inflaton, and the generation of non-helical
magnetic fields by coupling the EM field to the Riemann curvature tensor. We have also outlined
how to generate non-helical magnetic fields with the Riemann coupling, which we are currently
working on. We have found that in a perfectly de Sitter background during inflation, scale invariant
non-helical magnetic field (B0 ∼ 0.1nG) and helical magnetic field (B0 ∼ 0.1µG) can be generated
with inflaton coupling. However that is not found to be the case with the curvature coupling case
where the generated magnetic field is scale dependent. Finally we have studied the effect of the scale
invariant magnetic fields on the tensor power spectrum. We find that the effect of the non-helical
magnetic field is negligible while the helical magnetic field modifies the tensor power spectrum by
an additive factor O(100).
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Chapter 1

Introduction

Magnetic fields have been observed over a wide range of scales in the universe – from planets, stars
to galaxies, intergalactic medium (IGM) and galaxy clusters. It can be said that the universe is mag-
netized at all scales with strength of magnetic fields ranging between µG (in galaxies) and 1014G (in
magnetars – highly magnetized neutron stars) [1, 2]. The origin of the magnetic fields over astro-
physical scales is well understood but the same is not true over cosmological scales, say, galaxies
or clusters of galaxies. The presence of cosmological plasma suggests that the discussion should be
based in the language of magnetohydrodynamics (MHD). Some elaborate MHD mechanisms, known
as galactic dyanamo have been proposed to amplify a very weak seed magnetic field (∼ 10−21G to
10−11G [3]) to the micro Gauss level but the efficiency of such kind of mechanisms have been called
into question both by new observations and improved theoretical work [4]. This has lead us to
consider a primordial origin of the galactic and extragalactic magnetic fields. Magnetic fields may
have affected a number of processes (including structure formation [5]), involving electromagnetism,
MHD, etc., that took place in the universe. In this report we shall study its effects on primordial
gravitational waves. If primordial magnetic fields indeed affected structure formation, then they
probably must have left their imprints in the temperature and polarization anisotropies of the cosmic
microwave background [4].

1.1 Dynamo versus primordial

Let us start by discussing the dynamo mechanism which is based on the conversion of the kinetic
energy of the turbulent motion of the conductive interstellar medium into magnetic energy. In MHD,
the time evolution equation of the magnetic field is governed by the following equation [6] :

∂B

∂t
= ∇× (v ×B) +

1

σ
∇2B, (1.1)

where B is the magnetic field, v the plasma velocity and σ the electrical conductivity of plasma. But
magnetic fields cannot be generated within the MHD description as the plasma does not provide
source term for the magnetic fields : if B at t = 0 is zero then it is zero at all times.

Fortunately, that is not the case when we go beyond MHD, and source terms can be present [7].
The charges in standard astrophysical plasmas consists of electrons and protons, which have equal
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CHAPTER 1. INTRODUCTION

and opposite electric charge but the masses are vastly different, mp ≈ 1837me, which implies that
their Thomson interaction cross sections (σγ ∝ 1/m2) are also vastly different. Thus the prospect of
electric current generation opens up when astrophysical plasmas interact with photons. For exam-
ple, it has been suggested ( [8]) that owing to the difference in masses and scattering cross sections
of protons and electrons, a net electric current is produced which sources the magnetic fields, pro-
vided there is turbulence during cosmological recombination. This process invokes what is known
as a Biermann battery, i.e. nonparallel pressure and density gradients, powered by a non-zero vor-
ticity in the primordial fluctuation field [9]. A general prediction of the dynamo mechanism is that
amplification of the seed field ends when equipartition is reached between the magnetic energy den-
sity and the kinetic energy density of the turbulent fluid motion. Once equipartition is reached, the
amplification process stops before a coherent field may develop. This is one of the main arguments
raised against this kind of dynamo mechanism, which makes us look for primordial origins for the
magnetic fields. [4]

In this report we will be concerned with the possible origin of primordial magnetic fields in the
early universe via a mechanism in the inflationary scenario. Current observations suggest that we
live in an isotropic, homogeneous and spatially flat universe described by the FLRW metric,

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2), (1.2)

where a(t) is the scale factor. In such a background, the magnetic filed B varies as 1/a2 [10]. The uni-
verse is also believed to have gone through a period of accelerated called inflation, during which the
universe expanded by more than 60 e-folds. Since the magnetic flux a2B is a constant, the strength
of B decays at least by e120 at the end of inflation. This is due to the fact that the above metric is
conformally flat and the standard electromagnetic (EM) field action is conformally invariant (electro-
dynamics in curved spacetime is the subject of Appendix A and the conformal invariance of the EM
action is discussed in Chapter 3). Therefore in order to generate magnetic fields of sufficient strength,
the conformal invariance of the EM field action has to be broken.

Breaking the conformal invariance.
A number of ways have been considered for breaking the conformal invariance of the EM action
during inflation. Some of them are illustrated in the action below [10]:

S =

∫ √
−gd4x

[
−f2(φ,R)

(
FµνFµν

4

)
+ LR + gθFµνFµν −Dµψ(Dµψ)∗

]
, (1.3)

where Fµν is the electromagnetic (EM) field tensor, Fµν is its dual and Dµ denotes a gauge co-
variant derivative. They include coupling the EM action to scalar fields (φ) such as the infla-
ton [11, 12] or the dilaton [13], coupling to a pseudo-scalar field like the axion (θ) [14], coupling
to charged scalar fields (ψ) (see, for instance, [15]) and so on. The LR term is proportional to
(BRFµνFµν + CRµνF

µκF νκ +DRλκµνF
µνF λκ). [16]

The earliest effort involved including an inflation epoch coupling ∝ eαφFµνFµν , where φ is the
inflaton and α is a parameter [11]. Similar models have been considered since then, for instance, a
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1.2. OBSERVATIONS AND METHODS OF DETECTION

more general case was considered by coupling the EM field with the inflaton via a generic function
f2(φ) [12]. In order to generate helical magnetic field, some authors (for instance in Ref. [17]) added
a f(φ)FµνFµν/4 term to the standard EM Lagrangian and thus broke the conformal invariance. Foe
instance, in Ref. [18], the authors considered a hybrid of the inflaton coupling and the axion model
with the following action :

S =

∫ √
−gd4x I2(η)

[
−F

µνFµν
4

+
γ

8
εµνρσF

µνF ρσ
]
, (1.4)

where I is the coupling function, γ a parameter and η the conformal time coordinate, defined later.
Some of these, along with other methods of primordial magnetogenesis and observational methods
are discussed in the following reviews, Refs. [19], [20] and [21].

Other mechanisms for generation of magnetic fields in the early universe

Apart from inflation, other ideas include generation of magnetic fields at the electroweak phase tran-
sition (EWPT) [22, 23], at the QCD phase transition [23, 24] and before recombination [25]. These
have been summarized in Ref. [7].

1.2 Observations and methods of detection

Zeeman splitting of spectral lines (useful within our galaxy), intensity and polarization of synchotron
emisson from free relativistic electrons (for intermediate distances), and Faraday rotation measure-
ments of polarized EM radiation passing through a ionised medium (for far away galaxies) are the
main observational tracers of galactic and extra-galactic magnetic fields.

The Zeeman splitting between two neighbouring energy levels is given by ∆ = gµBB1, where g
is the Lande g-factor, B1 is the magnetic field along the line of sight and µB = e~/2me is the Bohr
Magneton, which can be used to estimate the strength of the magnetic field. Since Zeeman splitting
is a very weak effect and the line shift is small, this method is not very effective for high red-shift
galaxies.

A linearly polarized EM wave can be decomposed into a superposition of circularly polarized
components of equal amplitude but different phase. Due to this difference in phases between the
right and left circularly polarized light, the polarization direction of the linearly polarized light
changes upon passing through a region of magnetic field. The degree of rotation (θ) is related to
the wavelength (λ) of the radiation via the rotation measure as θ = (RM)λ2 + θ0. The rotation mea-
sure (RM) (in Minkowski space) is given by [7]

RM ≡ ∆(φ)

λ2
=

e3

2πm2
e

∫
dl ·Bne, (1.5)

where ne is the local electron density, ∆(φ) is the rotation angle of the linear polarization, λ is the
wavelength of the observed light and the integration is along the line of sight. We now briefly sum-
marize the observational situation.
Magnetic fields in galaxies : The interstellar magnetic field in the Milky Way has been determined
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CHAPTER 1. INTRODUCTION

using various techniques and the average field strength is found to be 3 − 4µG [1]. Such a strength
corresponds to an approximate energy equipartition between magnetic field (ρB), small scale turbu-
lent motion (ρturb), and the cosmic rays confined in the galaxy (ρcr) : ρB ≈ ρturb ≈ ρcr. Magnetic
fields of similar magnitudes have been observed in a number of other spiral galaxies but equiparti-
tion threshold has not been observed in all of them. For instance, it has been observed in M33 but not
in M82, where the field seems to be stronger than the equipartition threshold [4].
Magnetic fields in galaxy clusters : We have valuable information on fields in galaxy clusters, thanks
to the observations made on a large number of Abel clusters, some of which have a measured X-ray
emission. The magnetic field strength in the inter cluster medium has been found to be ranging
from 1 − 10µG [4]. Observations of radio sources embedded in galaxy clusters have provided us
with evidence of strong magnetic fields in the cluster central regions with the central field strength
∼ 10− 30µG and peak values a large as 75µG [26].
Magnetic fields in high redshift objects : Owing to high resolution RMs of very far quasars, we
have been able to probe magnetic fields in the distant past. RMs of the radio emission of the quasar
3C191, at z=1.954, are consistent with a field strength in the range of 0.4− 4µG [27].

1.3 Qualitative constraint plot

As the name suggests, a qualitative constraint plot maps out the regions in the λ − Bλ plane which
are either forbidden or suggested by observations (see figure 1.1). Although a constraint plot should
be used with caution [7], it can be very useful for quickly visualising the overall state of cosmological
magnetic fields. Cosmological magnetic fields with λ ∼ kpc and Bλ ∼ 10−10G may explain the
galactic magnetic field directly (with minimal dynamo amplification). This region is denoted by
the golden rectangle marked by "MW" (for MilkyWay). Big bang nucleosynthesis (BBN) constrains
Bλ ≤ 10−6G on all scales [28], while other observations roughly constrainBλ ≤ 10−9G on Mpc to Gpc
scales [7]. Blazar spectral measurements place a lower bound∼ 10−16G on the strength of inergalactic
magnetic fields for λ in the Mpc to Gpc range [29, 7]. Magnetic helicity measurements are uncertain,
but if confirmed, they would fall within the pink rectangle [7]. In some inflationary models, the
generated cosmological magnetic field is scale invariant. If such a magnetic field happens to pass
through the golden rectangle, then it would correpond to the dotted horizontal line and would be
subjected to several constraints (see figure 1.1). If the cosmological magnetic field has a blue k3 or k4

spectrum, as predicted by the EWPT, it may have a shape similar to the dashed curve [7].

1.4 Organization of the report

The report is organised as follows. In Chapter 2, we discuss inflation and the early universe. We
begin with the successes of and problems in the hot big bang model. Then we discuss their solutions
due to inflation before moving on to discuss how inflation is driven by scalar fields. We end the
chapter by studying power law and slow roll inflation. In Chapter 3, we study the generation of
magnetic fields by coupling the EM action to the inflaton. We discuss the generation of both helical
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1.4. ORGANIZATION OF THE REPORT

Figure 1.1: A schematic of the qualitative constraint plot.[Figure from Ref. [7]]

and non-helical magnetic fields. Chapter 4 is structured along the same line as Chapter 3. Here we
discuss the generation of both helical and non-helical magnetic fields by coupling the EM action to
the Riemann curvature tensor. In Chapter 5, we study the effects of the primordial magnetic fields
on primordial gravitational waves. We particularly focus on the effect of the anisotropic stress of
the EM field on the amplitude of the gravitational waves during inflation. Finally we conclude the
report with a brief summary of the work presented in the report in Chapter 6. We have also included a
couple of appendices. Appendix A deals with electrodynamics in curved space time and the subject
of Appendix B is the derivation of the tensor spectra in presence of anisotropic stress, and related
numerical integrations.

Notations and units

We use the metric with signature (- + + +). Greek indices going from 0 to 3 denote space-time coordi-
nates whereas Latin indices going from 1 to 3 represent spatial coordinates. We work in natural units
c = ~ = kB = 1 and have defined the Planck mass MPl = 1/

√
8πG .
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Chapter 2

Inflation and the early universe

According to the hot big bang model, the universe came into being about 15 billion years ago with
a homogeneous and isotropic distribution of matter at very high temperature and density, and has
been expanding and cooling ever since [30]. In this model, the early universe was radiation domi-
nated and remained so until the expansion caused the radiation density to fall sufficiently low such
that the photons ceased to interact with matter, thereby leading to a matter dominated universe.
Although successful to some extent, the hot big bang model has three significant drawbacks: the
flatness problem, the horizon problem, and the monopole problem. These problems can be summa-
rized by the following statements [31] : the universe is nearly flat today, and was even flatter in the
past; the universe is nearly isotropic and homogeneous today, and was more so in the past; and the
universe is apparently free of magnetic monopoles, respectively. Before delving into the details of
these problems and how inflation solves them, let us first have a look at the successes of the hot big
bang model in brief.

2.1 Successes of the hot big bang model

i) The expansion : That the universe is expanding according to the Hubble’s law has been well es-
tablished by observations (see, for instance, [32]). In an expanding, homogeneous and isotropic
universe, at nearby distances (d . 50MPc), it is well approximated by [33]

vH = H0d,

where H0 is the Hubble’s constant, vH is the local "Hubble flow" velocity of a source and d is the
distance to the source. From CMB anisotropy data, we get H0 = 67.4 ± 0.5 km s −1 MPc−1 [34]
, whereas the value from Infrared Surface Brightness Fluctuation (SBF) distances measurements is
H0 = 73.3 ± 0.7 ± 2.4 km s −1 MPc−1 [35], which tallies well with the value arrived at from Type Ia
supernovae data, H0 = 72.8± 1.6± 2.7 km s −1MPc−1 [36].
ii) The Cosmic Microwave Background (CMB) : The CMB is nothing but the relic radiation reaching
us from the epoch of decoupling - the epoch when photons ceased to interact with matter, during the
transition from a radiation dominated universe to a matter dominated one. The spectrum of the CMB
is consistent with that of a blackbody at a temperature of 2.725K [37]. The energy density of radiation
goes as ρrad ∝ 1/a4 or the temperature goes as T ∝ 1/a (using Stefan- Boltzmann law), implying the
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CHAPTER 2. INFLATION AND THE EARLY UNIVERSE

universe cools as it expands. This suggests that at earlier times, the universe must have been much
hotter, thus supporting the hot big bang model.
iii) Primordial nucleosynthesis : The hot big bang model has been quite successful in forecasting the
primordial abundances of the light elements using only one parameter, namely the baryon-to-proton
ratio, and the value required to fit these observations matches the value determined independently
from the CMB anisotropies data. [38].

2.2 How inflation resolves the three problems in the hot big bang model

The Friedmann-Lemaitre-Robertson-Walker (FLRW) universe is described by the following line ele-
ment

ds2 = −dt2 + a2(t)

[
dr2

1− κr2
+ r2dθ2 + r2 sin2 θdφ2

]
, (2.1)

where t denotes the cosmic time, and the parameter κ refers to the spatial curvature and it is normal-
ized so that κ = (0,±1). It takes on the simple form displayed in equation (1.2) for the spatially flat
universe corresponding to κ = 0. In the κ = 0 case, we can define the conformal time coordinate as

η =

∫
dt

a(t)
, (2.2)

in terms of which, the above FLRW line-element simplifies to be

ds2 = a(η)2 (−dη2 + dx2 + dy2 + dz2). (2.3)

The time evolution of such a universe is governed by the following Friedmann equations (with κ = 0

for the spatially flat universe) :

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− κ

a2
(2.4)

2
ä

a
+

(
ȧ

a

)2

+
κ

a2
= −8πGp, (2.5)

where the energy density ρ and the pressure p are related by the equation of state parameter w as
p = wρ. From equations (2.4) and (2.5), we get the acceleration equation,

ä

a
= −4πG

(
p+

ρ

3

)
, (2.6)

as well as the energy conservation equation

ρ̇ = −3H(ρ+ p). (2.7)

In the chapters that follow, we are going to restrict ourselves to the κ = 0 case and work with FLRW
metric expressed in terms of the conformal time coordinate η (see equation (2.3))
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2.2. HOW INFLATION RESOLVES THE THREE PROBLEMS IN THE HOT BIG BANG MODEL

Inflation

Inflation is the term used to describe a period of accelerated expansion of the early universe. Hence
equation (2.6) suggests that inflation corresponds to ä > 0 or 3p < −ρ. Thus inflation would have
taken place if the universe were temporarily dominated by a component with w < −1/3.

It is often assumed that inflation was started off at time ti and ended at some later time tf instan-
taneously and the universe reverted to its former state of radiation domination. So for simplicity, the
expansion factor a(t) can be taken to behave as follows [31]

a(t) =


ai
√
t/ti t < ti

ai exp[HI(t− ti)] ti < t < tf

ai exp[HI(tf − ti)]
√
t/tf t > tf

(2.8)

Thus in the time interval from ti to tf , the scale factor a(t) increased by N e-foldings where N is
defined as the natural logarithm of the ratio of a(tf ) to a(ti). Thus we see from the above equation
that N = HI(tf − ti).
Below we discuss the three problems mentioned earlier and their solutions due to inflation.

In non-inflationary cosmology, during the radiation dominated era, the Hubble radius dH = H−1

grows as a2 and the physical wavelengths λp grow as a ∝
√
t. But in the inflationary model, during

inflation, λp ∝ a ∝ eHI t while the Hubble radius remains constant. This gives rise to the possibility
that a given length scale can cross the Hubble radius twice in inflationary models. The situation has
been summarized in figure 2.1.

2.2.1 The flatness problem

For a spatially flat universe κ = 0 and ρ = ρc = 3H2/8πG, where ρc is the critical density. Now the
dimensionless density parameter Ω is defined by Ω = ρ/ρc, in terms of which we have the Friedmann
equation as follows

1− Ω(t) = − κ

a(t)2H(t)2
. (2.9)

Denoting Ω, a and H at the present time by Ω0, a0 and H0 respectively, we have

κ = a20H
2
0 (Ω0 − 1). (2.10)

Combining the previous two equations, we get

(1− Ω)H2a2 = (1− Ω0)H
2
0a

2
0. (2.11)

For a radiation dominated spatially flat universe, a(t) ∝ t1/2 or ȧ ∝ t−1/2 or H2a2 ∝ t−1, and for a
matter dominated flat universe, a(t) ∝ t2/3 or ȧ ∝ t−1/3 or H2a2 ∝ t−2/3. So we have |Ω − 1| ∝ t

for radiation domination and |Ω − 1| ∝ t2/3 for matter domination. Thus we see that in both cases,
as time increases, Ω is driven further and further away from unity. This problem is overcome by
inflation. Inflation reverses this state of affairs, because

ä > 0⇒ dȧ(t)

dt
> 0⇒ d(aH)

dt
> 0. (2.12)
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CHAPTER 2. INFLATION AND THE EARLY UNIVERSE

Figure 2.1: Figure illustrating the evolution of the physical wavelengths λ1, λ2 ∼ a and the Hubble
radius. In this figure, h−1 denotes the Hubble radius and it is equal to H−1 during inflation. (Figure
from Ref. [39].)

Thus, with H = HI , |Ω − 1| ∝ exp(−2HIt), or as time increases, the universe does indeed become
more flat, which is entirely consistent with the observational data |Ω0 − 1| ≤ 0.2 (this is borne out by
the results of the type Ia supernova observations and the measurements of CMB anisotropy).

An estimate of the amount of inflation needed to overcome the flatness problem can be obtained
by the following quantitative analysis. If κ/a2iH

2
i ∼ 1 at the beginning of inflation then κ/a2fH

2
f ∼

e−2N at the end of inflation, and equation (2.11) can be rewritten as

Ω0 = e−2N
(
afHf

a0H0

)2

. (2.13)

Thus the flatness problem is avoided if eN > afHf/a0H0. To evaluate this we assume, for simplicity,
that afHf ' arHr, subscript ’r’ denoting the beginning of the radiation dominated era. Over the
whole of the radiation and matter dominated era, the expansion rate was

H =
Heq√

2

√(aeq
a

)3
+
(aeq
a

)4
, (2.14)

10
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where aeq = a0Ωrad/Ωmat, Heq =
√

2ΩmatH0(a0/aeq)
3/2 and ’eq’ stands for radiation-matter equality,

’ma for matter and ’rad’ for radiation. Setting a = ar � aeq, we can obtain the following expression
for Hr [40]

Hr =
Heq√

2

(
aeq
ar

)2

. (2.15)

Using this we get the following condition for N to satisfy

eN > (Ωmataeq)
1/4
√
Hr/H0 =

(
Ωrad

ρr
ρ0,c

)1/4

=
ρ
1/4
r

0.037h eV
, (2.16)

where we have used ρ0,c = [3.00 × 10−3eV ]4h2, ρ0,c being the critical density of the universe today
and h = H0/100. It can be shown that ρr ∼ [2× 1016GeV ]4 [40], in which case eN for h = 0.72 would
have to be at least 8× 1026, so that N > 62.

2.2.2 The horizon problem

One of the most important properties of the CMB is that it is very nearly isotropic with radiation
coming from all directions of the sky having almost the same temperature of 2.73K. Being at the
same temperature indicates thermal equilibrium. But the radiation we see coming from one direc-
tion of the observable universe has been travelling towards us since the time of decoupling and has
just reached us. Thus there has not been time for different regions of the universe to have interacted
with each other, yet all regions are in thermal equilibrium. Also the CMB is not perfectly isotropic
– it exhibits small fluctuations (of the order of 1 in 105) as detected by the COBE satellite, and sub-
sequently by WMAP and Planck [41]. These irregularities act as seeds for structure formation in the
universe. For the same reason that separated regions cannot be thermalised, irregularities can also
not be created. Thus the hot big bang model does not allow the generation of seed perturbations –
they have to be there already within the big bang model.

Let us get quantitative about the horizon problem. In the spatially flat FLRW universe, the hori-
zon h(t), viz., the size of a causally connected region is defined as the physical radial distance trav-
elled by a light ray from the big bang singularity at t = 0 to some later time t. The horizon can be
expressed in terms of the scale factor a(t) as follows

h(t) = a(t)

∫ t

0

dt̃

a(t̃)
. (2.17)

If we assume that the universe was radiation dominated from the big bang to the time of decoupling
(tdec) and matter dominated since then until now, then the linear dimensions of the backward and
forward light cones denoted by lB and lF respectively are given by

lB(t0, tdec) = adec

∫ t0

tdec

dt

aMDt2/3
≈ 3

adec
aMD

t
1/3
0 , (2.18)

where we have used the observational fact that t0(≈ 1010 years)� tdec(≈ 105 years) [42], and

lF (tdec, 0) = adec

∫ tdec

0

dt

aRDt1/2
= 2

adec
aRD

t
1/2
dec . (2.19)

11
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The ratio R of the linear dimensions of the backward and the forward light cones is given by [42]

R ≡ lB
lF

=
3

2

(
t0
tdec

)1/3

≈ 70, (2.20)

where we have used adec = aRDt
1/2
dec = aMDt

2/3
dec (aRD and aMD are constants of appropriate dimen-

sions so that a(t) becomes dimensionless). Inspite of this, the CMB turns out to be extraordinarily
isotropic. So how does inflation solve the horizon problem?

If we consider the inflationary scenario, then the size of the horizon at the end of inflation was
(using equation (2.8))

dhor(tf ) = af

(∫ ti

0

dt

ai(t/ti)1/2
+

∫ tf

ti

dt

ai exp[HI(t− ti)]

)
.

If N is large, then at the end of inflation, the horizon size is (upon using af = aie
N )

dhor(tf ) = eN (2ti + 1/HI) ' 2tie
N , (2.21)

(where we have used ti ≈ 10−35s ∼ 10−11GeV −1 [39] and HI ∼ 1014GeV [43]) whereas at the
beginning of inflation, it was

dhor(ti) = ai

∫ ti

0

dt

ai
√
t/ti

= 2ti. (2.22)

Thus an epoch of exponential inflation causes the horizon size to grow exponentially by a factor∼ eN

over what it would have been without inflation. This indicates that a small area of the universe, small
enough to be in thermal equilibrium before inflation, can expand to considerably larger volumes af-
ter inflation [44].

Estimation of N
When we consider inflation, the dominant contribution to the forward light cone comes from the
exponential expansion of the universe during inflation [42]. In that case we have

lFI
(tdec, 0) = adec

∫ tdec

0

dt

a(t)
' adec

∫ tf

ti

dt

a(t)
=
adec
ai

1− e−N

HI
' 1

HI

√
tdec
tf
eN , (2.23)

where we have used adec/ai = eN
√
tdec/tf (see equation (2.8)), and hence we have (upon assuming

tf ≈ 10−33s [39])

RI ≡
(
lB
lFI

)
= 3t

1/3
0 t

1/6
dec t

1/2
f

HI

eN
'
(

1030

eN

)
. (2.24)

Thus for RI to be of the order of unity, we need af/ai = eN = 1030, which implies N ' 69. The num-
ber of inflationary e-foldings needed to solve the horizon problem essentially depends on the energy
scale of inflation, as is evident from equation (2.24). Following Ref. [39], if we take HI ∼ 1010GeV ,
then N = 60 suffices to solve the horizon problem. Similarly, inflation provides the opportunity to
generate irregularities in the universe. As we shall later see, the quantum fluctuations associated
with the inflation serve as the primordial seeds for the inhomogeneities.

12



2.3. DRIVING THE INFLATION WITH SCALAR FIELDS

2.2.3 The monopole problem

Inflation provides a resolution to the monopole problem as follows: If magnetic monopoles were
created before or during inflation, then their number density is so much diluted due to inflation that
the probability of detecting a monopole today turns out to be negligible.

At a very early time t in the hot big bang model, when the universe was radiation dominated,
we had H2 = 8πGρrad/3 =⇒ ȧ2/a2 ' 1/t2 ' GT 4. Hence the horizon size was of the order of
t ≈ (GT 4)−1/2(where G ≈ (1019GeV )−2 is the Newton’s gravitational constant, and T the tempera-
ture), so the number density of monopoles produced at the time the temperature dropped toM (M ≈
1016GeV is the energy scale at which local symmetry under some simple symmetry group is spon-
taneously broken in Grand Unified Theories [40]) would have been of the order of t−3 ≈ (GM4)3/2

which is smaller than the photon density ≈M3 by a factor of ∼ (GM2)3/2 = 10−9 [40].
However one monopole for every 109 photons is not observed today. Monopoles have been

searched for in meteorites, iron ores etc. but none has been found. In ref. [45], the authors have
concluded that the overall monopole/nucleon ratio in the samples is < 1.2× 10−29, and hence fewer
than 10−38 monopoles per photon [40]. Inflation resolves this paradox. As discussed in the previous
subsection, inflation increases the horizon size by a factor of eN . In order for inflation to have reduced
the monopole/photon ratio to 10−30 the horizon size must have increased at least by a factor of 1010

which translates to N being greater than 23.

2.3 Driving the inflation with scalar fields

Consider a canonical scalar field φ described by the potential V (φ) and governed by the action

S[φ] = −
∫
d4x
√
−g[1/2(∂λφ∂

λφ) + V (φ)]. (2.25)

The stress-energy tensor associated with such a scalar field is given by

Tµν = −∂µφ∂νφ− δµν [1/2(∂λφ∂
λφ) + V (φ)]. (2.26)

The isotropy and the homogeneity of the Friedmann universe implies that the stress-energy tensor
will be diagonal with the time-time and the space-space components given by

T 0
0 = −ρ = −[φ̇2/2 + V (φ)], (2.27)

T ij = pδij = [φ̇2/2− V (φ)]δij . (2.28)

So the energy conservation equation (equation (2.7)) takes the form

φ̈+ 3Hφ̇+ dV/dφ = 0, (2.29)

and the condition for inflation, viz. (ρ+ 3p) < 0, reduces to

φ̇2 < V (φ). (2.30)

13
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Therefore, for inflation to take place, the potential term should dominate the kinetic term.
Using equations (2.27) and (2.28) for ρ and p, the Friedmann equations, with κ = 0 become

H2 =

(
1

3M2
Pl

)
(φ̇2/2 + V (φ)), (2.31)

Ḣ = − φ̇2

2M2
Pl

, (2.32)

where MPl = 1/
√

8πG, as defined earlier. These two equations can be combined to express the scalar
field and the potential parametrically in terms of the cosmic time t,

φ(t) =
√

2MPl

∫
dt
√
−Ḣ, (2.33)

V (t) = M2
Pl(3H

2 + Ḣ). (2.34)

If we now know the scale factor a(t), then we can use these equations to reverse engineer the potential
from which such a scale factor can arise [42]. This point will be illustrated in the next subsection.

2.3.1 Power law inflation

This is a simple model of inflation with which we will concern ourselves in this report. Consider the
power law expansion (with q > 1 for inflation)

a(t) = a1t
q, (2.35)

a1 being an arbitrary constant. On substituting this expression in equation (2.31), we obtain,

φ(t)

MPl
=
√

2q ln

(
t

t̃0

)
, (2.36)

t̃0 being a constant of integration. Using equation (2.32) and denoting V (t̃0) by V0, the above equation
can be written in an alternate form as follows :

φ(t)

MPl
=
√

2q ln

[√
V0

3q(q − 1)

(
t

MPl

)]
, (2.37)

It is then easy to obtain the potential corresponding to the given scale factor :

φ

MPl
=

√
q

2
ln
V0
V
⇒ V (φ) = V0 exp

[
−
√

2

q

φ

MPl

]
. (2.38)

2.3.2 Slow roll inflation

In this approximation, the condition given by equation (2.30) is made stricter, thereby guaranteeing
inflation : φ̇2 � V (φ). Moreover, it can be ensured that the field is rolling sufficiently slowly for a
long time (so as to cover at least 60 e-folds of inflation), provided φ̈ � 3Hφ̇. This approximation is

14



2.3. DRIVING THE INFLATION WITH SCALAR FIELDS

usually described in terms of two slow roll parameters [42] :
i)The potential slow roll parameters(PSR), which are required to be smaller than unity, are

εV ≡
(
M2
Pl

2

)(
Vφ
V

)2

; ηV ≡M2
Pl

(
Vφφ
V

)
, (2.39)

where Vφ = dV/dφ and Vφφ = d2V/dφ2.
The fact that the PSR parameters are small does not guarantee that inflation will occur–it is a

necessary but not sufficient condition. This is due to the fact that these parameters only constrain
the form of the potential and not the dynamics of the solution. As a result, we also require the
additional condition that the scalar field moves slowly along the attractor solution determined by
the equation. [42] : 3Hφ̇ ' −Vφ. Despite this limitation, the PSR parameters often prove handy. For
example, consider the following potential :

V (φ) = V0φ
n, (2.40)

where V0 is a constant and n > 0 and we restrict ourselves in the region φ > 0 so that V (φ) is positive
for all n. For this potential, Vφ/V = n/φ and Vφφ/V = n(n− 1)/φ2. Therefore, the slow roll condi-
tions, i.e., εV = M2

Pln
2/2φ2 � 1 and ηV = M2

Pln(n − 1)/φ2 � 1 are satisfied when φ � MPl. Thus
these parameters allows us to determine the domain and parameter of the potential that can lead to
inflation.

ii)The Hubble Slow Roll parameters(HSR) turn out to be a better choice as they do not require
additional conditions. The HSR parameters are so called since they are defined in terms of the Hub-
ble parameter H which is treated as a function of φ.

εH ≡ 2M2
Pl

(
Hφ

H

)2

; δH ≡ 2M2
Pl

(
Hφφ

H

)
, (2.41)

where Hφ = dH/dφ and Hφφ = d2H/dφ2.
Equations (2.29), (2.31) and (2.32) can be used to rewrite the HSR parameters as follows:

εH =
3φ̇2

2ρ
=
−Ḣ
H2

; δH =
−φ̈
Hφ̇

= εH −
1

2H

(
ε̇H
εH

)
, (2.42)

where ρ is the energy density associated with the scalar field φ, which is often called the inflaton since
it drives inflation. The following points are clear from these expressions–
a) εH � 1 corresponds to neglecting the kinetic energy term,
b) δH � 1 corresponds to the situation wherein the acceleration term can be ignored, and
c) the inflationary condition ä > 0 exactly corresponds to εH < 1.
It should be noted that since smallness of the HSR parameters ensure that φ̇ is small, the HSR ap-
proximation implies the PSR approximation, but the converse is not necessarily true [42].
Solutions in the slow roll approximation
We first write the equation of motion of the inflaton (equation (2.29)) and the acceleration equation
in terms of the HSR parameters:

H2
(

1− εH
3

)
=

V

3M2
Pl

, (2.43)
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3Hφ̇[1− δH/3] = −Vφ. (2.44)

The slow roll approximation corresponds to the situation wherein the HSR parameters satisfy the
following conditions:

εH � 1, δH � 1 and O[ε2H , δ
2
H , εHδH ]� εH . (2.45)

At the leading order in slow roll approximation, equations (2.43) and (2.44) reduce to

H2 ' V/3M2
Pl and 3Hφ̇ ' −Vφ. (2.46)

Let us now try to solve these first order equations by considering the potential in equation (2.40).
Then equation (2.46) implies √

3

V0

1

nMPl
φ̇ = φn/2−1,

which can be solved to get

φ2−n/2(t) ' φ2−n/2i +

√
V0
3

[
n(n− 4)

2

]
MPl(t− ti) , n 6= 4 (2.47)

φ(t) ' φi(t) exp [−
√
V0/3× 4MPl(t− ti)] , n = 4 (2.48)

where φi = φ(ti) is a constant at some initial time ti. From the equations in (2.46), for all n, the scale
factor can be expressed in terms of these solutions as follows

a(t) ' ai exp
[
−(φ(t)2 − φ2i )/2nM2

Pl

]
, (2.49)

with a(ti) = ai.
We can also write the scalar field and Hubble parameter in terms of the number of e-folds from

t = ti to t = t by noting

N = ln
a

ai
=

∫ t

ti

dtH ' −
(

1

M2
Pl

)∫ φ

φi

dφ

(
V

Vφ

)
. (2.50)

Thus we have

φ2(N) ' φ2i − (2M2
Pln)N and H2(N) '

(
V0M

(n−2)
Pl

3

)[
(φi/MPl)

2 − 2nN
]n/2

. (2.51)

Inflationary attractor

Let us consider the following quadratic potential : V (φ) = 1
2m

2φ2. In this case equation (2.29) when
supplemented by the first Friedmann equation,equation (2.31), becomes

dφ̇

dφ
= −

√
12πG(φ̇2 +m2φ2)φ̇+m2φ

φ̇
,

which can be studied using the phase diagram method [30]. The behaviour of the solutions in the
φ− φ̇ plane is shown in figure 2.2, which shows the attractor solution, determined in this case by the
equation 3Hφ̇ = −m2φ =⇒ φ̇atr ≈ ± m√

12πG
= ±mMPl√

3/2
. (The upper sign corresponds to φ < 0, φ̇ > 0

and the lower sign corresponds to φ > 0, φ̇ < 0.)
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Figure 2.2: The phase space diagram for the potential V = 1
2m

2φ2 obtained by setting G = 1 and
m = 1. The phase space diagram shows the attractor solutions φ̇atr ≈ ±1/

√
12π =

√
2/3MPl.

Starobinsky model

Finally we examine a model due to Starobinsky, that, besides being historically the first inflation-
ary model proposed, is also the one that fits best the current cosmological data [46]. Consider the
potential

V (φ) =M4(1− e−
√

2/3φ/MPl)2, (2.52)

plotted in figure 2.3. The equation of motion without the slow roll approximation is

Figure 2.3: The Starobinsky potential (an example of plateau inflation)– it has a long, flat part at large
values of the field where the slow roll conditions can be realized.
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φ̈+

√
3

MPl

√
φ̇2/2 + V (φ)φ̇+

√
8

3

M4

MPl
(1− e−

√
2/3φ/MPl)e−

√
2/3φ/MPl = 0, (2.53)

and with the slow roll approximation, it becomes

√
3

√
V (φ)

MPl
φ̇ ' −Vφ = −

√
8

3

M4

MPl
(1− e−

√
2/3φ/MPl)e−

√
2/3φ/MPl ,

or

φ̇ ' −2
√

2

3
M2e−

√
2/3φ/MPl . (2.54)

If we define ϕ ≡
√

2/3φ/MPl, then the potential becomes V (ϕ) = M4(1 − e−ϕ)2 and the potential
slow roll parameters can be written as

εV (ϕ) =
4/3

(eϕ − 1)2
and ηV = −4

3

e−ϕ(1− 2e−ϕ)

(1− e−ϕ)2
, (2.55)

which in the large field limit behave as εV ' (4/3)e−2ϕ and ηV ' (−4/3)e−ϕ, so the slow roll param-
eters satisfy εV � |ηV | � 1. However for small fields, the condition |εV | < 1 is violated well before
ϕ ' 0.8 (see figure 2.4) and we can say that the slow roll ends at φ = φend 'MPl.

Figure 2.4: The potential slow roll parameters at small fields.

With φend at hand, we can estimate the number of e-folds to the end of inflation,

N = − 1

M2
Pl

∫ φend

φ

V

Vφ
dφ.

If we set x = exp[
√

2/3φ/MPl], then dx/dφ =

√
2/3

MPl
x and we will have the following expression for

N ,

N = −3

2

∫ xend

x

(1− 1/x)2

2(1− 1/x)/x2
dx

x2
= −3

4
(x− lnx)|e

√
2/3

x

= −3

4

[
e
√

2/3 −
√

2/3− e
√

2/3φ/MPl +

√
2/3φ

MPl

]
' 3

4
e
√

2/3φ/MPl ,

(2.56)
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Figure 2.5: Behaviour of the initial value of the inflaton as a function of N in the Starobinsky model.

where we have used the fact that the integral is dominated by the upper integration limit since
φ/MPl > 1.

4N/3 ' exp
√

2/3φ/MPl =⇒ φ(N)

MPl
'
√

3

2
ln (4N/3). (2.57)

From the above expression for φ(N), we findN(φPl) ' 1.69 and if we consider 60 inflationary e-folds,
then φi = φ(61.69) ' 5.40mPl. If Nact is the actual number of inflationary e-folds then the initial field
is given by

φi 'MPl [5.40 + 1.18 ln (Nact/60)] . (2.58)

This has been plotted in figure 2.5.

2.4 Reheating

We end this chapter by discussing in brief what happens after inflation ends. The radiation cools
down dramatically as a result of the rapid expansion during inflation. The energy density of the
universe (radiation) which remains locked in the scalar field (the inflaton) at the end of inflation
must be released and the universe rapidly reheated to its original temperature in order to preserve
the key features of the hot big bang model (such as nucleosynthesis which begins at T ∼ 1MeV [47]).
Reheating refers to this process of transferring energy from the inflaton to radiation, allowing the
universe to return to its pre-inflation temperature. [48]. In this report, we will only deal with inflation
and not concern ourselves with what happens in the post-inflationary epoch or during reheating.
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Chapter 3

Generation of magnetic fields I
— Coupling to the inflaton

The fact that the standard electromagnetic action is conformally invariant and the spatially flat FLRW
metric is conformally flat creates a serious problem when discussing magnetic field creation during
inflation. Consider the electromagnetic action (in Lorentz-Heaviside units)

SEM = −
∫ √

−gd4x1

4
FµνF

µν = −
∫ √
−gd4x1

4
gµαgνβFµνFαβ. (3.1)

Now suppose we make a conformal transformation of the metric :

g̃µν = Ω2(x)gµν . (3.2)

This implies √
−g̃ = Ω4√−g and g̃µν = Ω−2gµν . (3.3)

Then taking Ãµ = Aµ and x̃ν = xν implies

S̃EM = −
∫

Ω4√−gd4x1

4
(Ω−2gµα)(Ω−2gνβ)FµνFαβ = SEM . (3.4)

Thus the action of the free electromagnetic (EM) field is invariant under conformal transformations.
The FLRW metric is also conformally flat :

gFLRWµν = Ω2ηµν , (3.5)

ηµν being the flat space-time Minskowski metric. This implies that one can transform the electro-
magnetic wave equation into its Minkowskian flat space-time version. It turns out that one cannot
amplify the magnetic fields in such a FLRW universe and the field then always decreases with ex-
pansion as 1/a2(t). Therefore mechanisms for magnetic field generation should involve the breaking
of the conformal invariance which changes the behaviour to B ∼ 1/aε (ε � 1 for getting a strong
field) [10]. This chapter and the following chapter deal with a couple of different ways of doing the
same.
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3.1 Generating non-helical magnetic fields

Consider the following action [10] in which we assume that the inflaton φ is the only (scalar) field
that breaks conformal invariance,

S1 = − 1

16π

∫
d4x
√
−g[gµαgνβf2(φ)FµνFαβ]−

∫
d4x
√
−g
[

1

2
gµν∂µφ∂νφ+ V (φ)

]
. (3.6)

The Maxwell equations now become

[f2Fµν ];ν = 0 or
1√
−g

∂

∂xν
[
√
−ggµαgνβf2(φ)Fαβ] = 0, (3.7)

where [...];ν denotes covariant derivative with respect to xν . Assuming the electromagnetic field to be
a "test" field which does not affect either the scalar field evolution or the evolution of the background
FLRW universe, we take the spatially flat metric of equation (2.3). It is convenient to adopt the
Coulomb gauge :

Aη(η, x) = 0; ∇ ·A(η,x) = 0. (3.8)

In this case, setting µ = i in equation (3.7) yields

∂

∂η
[f2A′i] +

∂

∂xj
[f2(−∂jAi)] = f2A′′i + 2ff ′A′i − f2∂j∂jAi = 0,

where overprime denotes derivative with respect to conformal time η. Dividing throughout by f2

and using ∂j = gjk∂
k = a2∂j , we get

A′′i + 2
f ′

f
A′i − a2∂j∂jAi = 0. (3.9)

From the above equation we see that Ai satisfies the usual wave equation in η and x coordinates for a
constant f with plane wave solutions of constant amplitude. Then the amplitude of Bi scales as 1/a

and that of Bi scales as 1/a3 and so the amplitude of B̄a (defined in Appendix A) scales as 1/a2.

3.1.1 Quantizing the electromagnetic field

We would like to quantize the EM field in the FLRW background. To do so, we first calculate the
momentum Πi conjugate to the field Ai :

Πi =
δL1

δA′i
= f2a2gijA′j , (3.10)

where L1 = −f2FµνFµν/4, and then promote them to operators and impose the canonical quantiza-
tion condition

[Âi(η, x), Π̂j(η,y)] = i

∫
d3k

(2π)3
eik.(x−y)P ij (k) = iδi⊥j(x− y), (3.11)

where

P ij (k) = δij − δjm
kikm

k2
, (3.12)
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is introduced to ensure that the Coulomb gauge condition is satisfied and δ⊥ is the transverse delta
function.

Decomposing the vector potential in Fourier space, we have

Âi(η,x) =

∫
d3k

(2π)3

∑
λ=1,2

eiλ[b̂λ(k)A(k, η) exp ik · x + b̂†λ(k)A∗(k, η) exp−ik · x], (3.13)

where b̂†λ(k) and b̂λ(k) are the creation and annihilation operators, k is the comoving wave vector
and eiλ(k) represents the polarization vector which take care of the Coulomb gauge condition and
which form a part of an orthonormal set of basis four-vectors,

eµ0 = (1/a,0), eµλ = (0, êiλ/a), eµ3 = (0, k̂/a). (3.14)

The three-vectors êiλ are unit vectors orthogonal to k̂ and to each other. The creation and annihilation
operators satisfy the following commutation relations:

[b̂λ(k), b̂†λ′(k
′)] = (2π)3δ3(k− k′)δλλ′ ; [b̂λ(k), b̂λ′(k

′)] = [b̂†λ(k), b̂†λ′(k
′)] = 0, (3.15)

and the orthonormal set of basis four-vectors satisfy the completeness relation :∑
λ=1,2

eiλ(k)ejλ(k) = P ij (k). (3.16)

Thus if we substitute

Âi(η,x) =

∫
d3k

(2π)3

∑
λ=1,2

êiλ[b̂λ(k)Ā(k, η) exp ik · x + b̂†λ(k)Ā∗(k, η) exp−ik · x],

in equation (3.9), we get the following equation for the Fourier coefficients Ā = aA(k, η)

Ā′′ + 2
f ′

f
Ā′ + k2Ā = 0. (3.17)

The above equation can be recast to get rid of the first derivative term by defining A = afA:

A′′ +
(
k2 − f ′′

f

)
A = 0. (3.18)

Substituting the Fourier expansions of Âi and Π̂j in equation (3.11) and making use of equation
(3.15), we see

[Âi(η, x), Π̂j(η,y)] = i

∫
d3k

(2π)3
eik.(x−y)

∑
λ=1,2

eiλ(k)ejλ(k)W (k, η)f2a2, (3.19)

where we have defined the complex Wronskian W (k, η) = [AA′∗ − A∗A′]. We can also define
W̄ (k, η) = [ĀĀ∗

′ − Ā∗Ā′] = a2W and since Ā satisfies equation (3.17), we have W̄ ′ = −(2f ′/f)W̄ ,
which upon integration gives W̄ ∝ (1/f2). The quantization condition given by equation (3.11) is
satisfied provided we set the constant of proportionality to be i such that W = i/(f2a2).

23



CHAPTER 3. GENERATION OF MAGNETIC FIELDS I

Energy density of the EM field
The energy momentum tensor for the EM field is given by varying the Lagrangian density with re-
spect to the metric :

Tµν ≡ −
2√
−g

δ[
√
−gL1]

δgµν
= −2f2

δLEM

δgµν
− 2f2√
−g

LEM
δ
√
−g

δgµν
, (3.20)

where LEM is the standard EM Lagrangian. Now using

δ
√
−g =

−1

2
√
−g

δg =
−1

2
√
−g

ggµνδgµν ,

we get

Tµν = f2
[
gαβFµαFνβ − gµν

FαβF
αβ

4

]
. (3.21)

The EM energy densities in the ground state measured by the fundamental observers having four-
velocity uµ = (1/a,0) are given by

ρB = 〈0|TBµνuµuν |0〉 ; ρE = 〈0|TEµνuµuν |0〉 , (3.22)

where |0〉 denotes the vacuum state satisfying b̂λ |0〉 = 0 and

Tµνu
µuν = TBµνu

µuν + TEµνu
µuν = f2

BiBi
2

+ f2
EiEi

2
.

In arriving at the above equation, the following definitions have been used(see Appendix A):

Bi ≡
1

a
ηijkδ

jmδkn∂mAn ; Ei ≡ −
1

a
A′i.

Thus

ρB =
f2

2a2
〈0| (∂iAm − ∂mAi)(∂jAl − ∂lAj)gijgml |0〉

=
f2

2a2

∫
d3k

(2π)3
gijgml

∑
λ=1,2

(êλm(k)ki − êλi(k)km)(êλl(k)kj − êλj(k)kl)|Ā(η, k)|2

=
f2

2

∫
d3k

(2π)3
k2

a4

∑
λ=1,2

êlλ(k)êlλ(k)− klkj
k2

∑
λ=1,2

êjλ(k)êλl(k)

 |Ā(η, k)|2

=
1

(2π)2

∫
dk
k4

a4

[
2− klkj

k2

(
δjl −

kjkl
k2

)]
|A(η, k)|2,

where the third line follows from equation (3.15) and the fourth from equation (3.16). Therefore we
finally arrive at the following

ρB =
1

2π2

∫
dk

(
k

a

)4

|A(η, k)|2. (3.23)

Similarly, we have

ρE =
f2

2a2
〈0|A′iA′jgij |0〉 =

f2

2

∫
d3k

(2π)3
1

a4

∑
λ=1,2

êiλ(k)êiλ(k)

 |Ā′(η, k)|2.
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3.1. GENERATING NON-HELICAL MAGNETIC FIELDS

Therefore,

ρE =
f2

2π2

∫
dk
k2

a4

∣∣∣∣[A(η, k)

f

]′∣∣∣∣2 . (3.24)

Now
ρB ≡

∫
dk

k

dρB
d ln k

and ρE ≡
∫
dk

k

dρE
d ln k

implies

magnetic field spectral energy density :
dρB
d ln k

=
1

2π2

(
k

a

)4

k|A(k, η)|2, (3.25)

electric field spectral energy density :
dρE
d ln k

=
f2

2π2

(
k

a

)4 1

k

∣∣∣∣[A(k, η)

f

]′∣∣∣∣2 . (3.26)

Thus one needs to calculate the evolution of the mode function in order to calculate the evolution of
the energy densities.

3.1.2 Evolution of normal modes

Let us consider again the power law expansion given by equation (2.35), but this time replacing a1
by a0/t

q
0 : a(t) = a0(t/t0)

q with q > 1. Integrating dt = adη, we get

η = − t0
a0(q − 1)

(
t

t0

)−1/(q−1)
or a(η) = a0

[
−a0(q − 1)η

t0

]−q/(q−1)
.

Therefore, defining −q/(q − 1) = 1 + β, we have1

a(η) = a0

∣∣∣∣ ηη0
∣∣∣∣1+β , (3.27)

where η0 = (2+β)(t0/a0). During inflation, the conformal time lies in the range η ∈ (−∞, 0) and after
the end of inflation, it lies in the range η ∈ (0,∞). Also during inflation, β ≤ −2 and the quantity
η0 is negative. However during matter or radiation domination β = −1 or β = 0 respectively and
η0 > 0.

Let us also take the gauge coupling function f to evolve as a power law : f(η) ∝ aα. In that case,
we have, with γ = α(1 + β)

f ′′

f
=
γ(γ − 1)

η2
.

Using equation (3.18), the evolution of the mode function is then given by

A′′ +
(
k2 − γ(γ − 1)

η2

)
A = 0, (3.28)

whose solution can be written in terms of Bessel functions,

A = (−kη)1/2[C1(k)Jγ−1/2(−kη) + C2(k)J−γ+1/2(−kη)], (3.29)

where the coefficients are to be set by initial conditions. Equation (3.18) of which equation (3.28) is
a special case, can in general be solved in two regions – region I corresponding to k2 � f ′′/f and

1The case β = −2 or equivalently q � 1 corresponds to the de Sitter space-time wherein we have a(t) ∝ expHt.
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CHAPTER 3. GENERATION OF MAGNETIC FIELDS I

region II corresponding to k2 � f ′′/f . For the particular case of power law evolution of f we are
considering, region I corresponds to what is called the sub-Hubble limit and region II corresponds to
the super-Hubble limit which is discussed below.

The initial conditions are specified for each mode (or wavenumber k) when it is deep within
the Hubble radius, given by RH = 1/H , that is, when the proper length scale associated with the
mode, (a/k) is much smaller than RH , i.e. (k/aH) � 1. For such small scales, one assumes that the
effects of space-time curvature are negligible. Now H = ȧ/a = a′/a2 = −q(q − 1)/η, and for q � 1,
aH → −1/η. Thus k/aH = −kη. A given mode is therefore within the Hubble radius for −kη > 1

and outside RH for −kη < 1. In the asymptotic limit(|kη| → ∞), equation (3.28) admits plane wave
solutions A ∝ exp±ikη. But the assumption that the gauge field for these modes is closest to the
Minkowski space vacuum state that we can have in a curved space-time leads us to pick the solution
A = c0 exp−ikη where the constant is set to c0 = 1/

√
2k by using the Wronskian condition that

W = i/(f2a2). Thus we assume the initial condition to be A → exp (−ikη)/
√

2k as (−kη →∞). This
fixes C1(k) and C2(k) to be

C1(k) =

√
π

4k

exp (−iπγ/2)

cosπγ
; C2(k) =

√
π

4k

exp (iπ(γ + 1)/2)

cosπγ
, (3.30)

where we have used the asymptotic expansion

Jν(x)→
√

2

πx
cos [x− (ν + 1/2)π/2] as x→∞.

In the opposite limit (−kη → 0), we get from equation (3.29)

A → k−1/2[C̃1(γ)(−kη)γ + C̃2(γ)(−kη)(1−γ)], (3.31)

with

C̃1(γ) =

√
π

2γ+1/2

exp−iπγ/2
Γ(γ + 1/2) cos (πγ)

; C̃2(γ) =

√
π

23/2−γ
exp (iπ(γ + 1)/2

Γ(3/2− γ) cos (πγ)
(3.32)

where we have used the property that

Jν(x)→ xν

2νΓ(ν + 1)
as x→ 0.

From equation (3.31) it is easy to see that C̃1 term dominates for γ ≤ 1/2 and C̃2 term dominates for
γ ≥ 1/2.

3.1.3 The spectra of the electric and magnetic fields

Let us substitute equation (3.31) into equation (3.25) to calculate the spectrum of ρB in the late time,
super Hubble limit.

dρB
d ln k

=
1

2π2

(
k

a

)4

|[C̃1(γ)(−kη)γ + C̃2(γ)(−kη)(1−γ)]|2.
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For γ ≤ 1/2 the C̃1(γ) dominates. Then ignoring the other term,

dρB
d ln k

≈ 1

2π2

(
k

a

)4

(−kη)4+2γ π

22γ+1Γ2(γ + 1/2) cos2 πγ
,

and for γ ≥ 1/2, considering only the contribution from dominating C̃2(γ) term, we have

dρB
d ln k

≈ 1

2π2

(
k

a

)4

(−kη)4+2γ π

22−2γΓ2(3/2− γ) cos2 πγ
.

Therefore, we have the magnetic spectrum as follows

dρB
d ln k

≈ F (n)

2π2
H4
I (−kη)4+2n, (3.33)

where n = γ for γ ≤ 1/2 and n = 1− γ for γ ≥ 1/2 and

F (n) =
π

22n+1Γ2(n+ 1/2) cos2 (nπ)
. (3.34)

During slow roll inflation, H is expected to vary very slowly and the effect of (−kη)4+2n is predomi-
nant. One can see that the property of scale invariance of the spectrum (with 4 + 2n = 0), and having
ρB ∼ a0 go together, and they require γ = 3 or γ = −2.

Similarly we can calculate the electric field spectrum. To do so, first we need to calculate [A/f ]′,
for which we substitute x = −kη, ν = γ − 1/2 and use the following properties,

J ′ν −
ν

x
Jν = −Jν+1 ; J ′ν +

ν

x
Jν = −Jν−1,

and then take the limit x→ 0. Finally substituting this into equation (3.26), we get

dρE
d ln k

≈ G (m)

2π2
H4
I (−kη)4+2m, (3.35)

where now m = γ + 1 for γ ≤ −1/2 and m = −γ for γ ≥ −1/2 and

G (m) =
π

22m+3Γ2(m+ 3/2) cos2 (mπ)
. (3.36)

Figure 3.1 shows the amplitude of the magnetic and electric field spectra. Now consider the case of
a scale invariant magnetic spectrum. If γ = 3 then (4 + 2m) = −2 and the electric field spectrum
is not scale invariant. In this case, at late times (−kη) → 0, the electric field increases rapidly with
ρE →∞. There is then the danger of its energy density exceeding that of the background during in-
flation, unless H4 is sufficiently small! Such a value of γ is strongly constrained by the back reaction
on the background expansion they imply. This problem is called the back reaction problem which,
for our case at hand, has been discussed in Ref. [49]. On the other hand, consider γ = −2. In this
case (4 + 2m) = 2 and ρE → 0 as (−kη) → 0. Thus such a value of γ is acceptable for magnetic field
generation without severe back reaction effects.

We also encounter another problem. Consider the case β = −2, which implies α = −γ = 2. In
this case, the coupling function f ∝ a2, which implies that f will be very large at the end of inflation,
but we need f → 1 in order to recover classical electromagnetism. If we assume f to have attained
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(a) F (n) vs. n (b) G (m) vs. m

Figure 3.1: Amplitude of the magnetic spectrum and the electric spectrum in terms of the index α
characterizing the form of the gauge coupling. We have assumed β ' −2, so that γ ' −α. The
divergences indicate the transition between the two branches of the spectrum.

a constant value f0 ∼ 1 at the end of inflation, then the effective electromagnetic charge ef = 1/f2.
If we demand that ef have the observed value at the end of inflation, then it will be very big at the
beginning of inflation, rendering our perturbative analysis of field theory invalid–this problem is
known as the strong coupling problem, which was first pointed out in Ref. [50].

Two different solutions to this problem have been suggested in Ref. [51] and Ref. [49]. In Ref. [51]
it has been assumed that f grows as a power law during de Sitter inflation, starting with a value of
one, and then decays back to its pre-inflationary value during a matter dominated phase that lasts
until reheating. An alternative is to consider coupling functions with one or two transitions during
inflation, with the condition f(ηi) = f(ηf ) = 1, where ηi and ηf denote the conformal times at the
beginning and end of inflation respectively [49].

Numerical estimate of the magnetic field in the scale invariant case
Using γ = −2 in equations (3.33) and (3.35), and upon using Γ(−3/2) = 4

√
π/3, gives

dρB
d ln k

≈ 9

4π2
H4
I . (3.37)

As mentioned earlier,HI ∼ 1014 GeV, andMPl ≈ 2.4×1018 GeV impliesHI/MPl ∼ 10−4. The present
day value of the magnetic energy density is given by ρB0 = ρB(af/a0)

4, where af is the scale factor at
the end of inflation and a0 is its present day value. Assuming that the universe transited to radiation
domination immediately after the end of inflation (instantaneous reheating), we have

3H2
IM

2
Pl =

π2gfT
4
R

30
or TR =

(
90H2

IMPl
2

π2gf

)1/4

.
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Using entropy conservation gT 3a3 =const., where g is the effective relativistic degrees of freedom
and T the temperature of the relativistic fluid, we get [52]

gfT
3
Ra

3
f = g0T

3
0 a

3
0 =⇒ a0

af
=
g
1/12
f

g
1/3
0

√
HIMPl

T0

(
90

π2

)1/4

=
g
1/12
f

g
1/12
0

√
HIMPl

(
3

ρ0

)1/4

, (3.38)

where we have used ρ0 = g0T
4
0 π

2/30. This implies

ρB0 =
6

π

(
g0
gf

)1/3( HI

MPl

)2

ρ0. (3.39)

Taking gf ' 106.75, g0 ' 3.36 and ρ0 ' 4.3× 10−13J/m3 [52] gives

ρB0 ' 2.625× 10−23
(
HI/MPl

10−4

)2

J/m3, (3.40)

which leads to an estimate of the present day value of magnetic field strength

B0 ' 6.59× 10−15 tesla(T)
(
HI/MPl

10−4

)
' 0.6× 10−10 gauss(G)

(
HI/MPl

10−4

)
. (3.41)

3.2 Generating helical magnetic fields

A helical magnetic field is characterized by by the quantity B · ∇ ×B and overall magnetic helicity
implies that the average value of B · ∇ ×B is non-vanishing, which in turn implies a violation of
parity (P) and charge+parity (CP) symmetries [7]. Magnetic helicity is defined as

h ≡
∫
d3xA ·B, (3.42)

where the integral is over all space. It has been suggested that the occurrence of non-zero helicity in
intergalactic magnetic fields (IGMF) is a convincing indicator for their primordial origin. The detec-
tion prospects of helical magnetic fields using TeV gamma ray blazars has been examined recently in
Ref. [53].

To generate helical magnetic fields in our model, we need to add a parity breaking term to the
action considered in the previous section: S2 = S1 − f2FµνFµν/4, where

Fµν =
1

2
εµναβFαβ,

and εµναβ is the 4D Levi-Civita symbol defined in Appendix A. Therefore the action is [54]

S2 = −1

4

∫
d4x
√
−gf2[FµνFµν + FµνFµν ]−

∫
d4x
√
−g
[

1

2
gµν∂µφ∂νφ+ V (φ)

]
. (3.43)

Varying the action with respect to Aµ gives

[f2(Fµν + Fµν)];ν = 0 or
1√
−g

∂

∂xν
[
√
−gf2(φ)gµαgνβ(Fαβ + εµναβFαβ)] = 0. (3.44)

Working again in the Coulomb gauge, for µ = i,the above equation is

A′′i + 2
f ′

f
(A′i + ηijk∂jAk)− a2∂j∂jAi = 0, (3.45)

where ηijk is the totally anti-symmetric tensor in 3 dimensions.
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3.2.1 Quantizing the EM field

The conjugate momentum is
Πi = f2a2gijA′j . (3.46)

The canonical quantization condition is the same as before

[Âi(η, x), Π̂j(η,y)] = i

∫
d3k

(2π)3
eik.(x−y)P ij (k) = iδi⊥j(x− y). (3.47)

The decomposition of Ai in terms of the normal modes using the momentum space creation and
annihilation operators is

Âi(η,x) =

∫
d3k

(2π)3

∑
λ=1,2

eiλ[b̂λ(k)A(k, η) exp ik · x + b̂†λ(k)A∗(k, η) exp−ik · x]. (3.48)

Defining Āλ = aAλ and substituting equation (3.48) in equation (3.45) gives∑
λ

b̂λ

[
êiλ

(
Ā′′λ + 2

f ′

f
Ā′λ + k2Ā2

λ

)
+ 2

f ′

f
ηijmêmλkjĀλ

]
= 0. (3.49)

To simplify the above equation, let us choose a different set of basis vectors defined as

ê+ =
(ê1 + iê2)√

2
and ê− =

(ê1 − iê2)√
2

(3.50)

This set of basis vectors is known as helicity basis and we have Ā = Ā1ê1 + Ā2ê2 = Ā+ê+ + Ā−ê−.
Then equation (3.45) reduces to

Ā′′σ + 2
f ′

f
(Ā′σ + σkĀσ) + k2Āσ = 0. (3.51)

Here σ = ±1 represents the helicity sign. The equation of motion in terms of Aσ = fĀσ is

A′′σ +

(
k2 − f ′′

f
+ 2σk

f ′

f

)
Aσ = 0. (3.52)

Energy density of the EM field
The energy momentum tensor of the EM field is

Tµν ≡ −
2√
−g

δ[
√
−gL2]

δgµν
= f2

[
gαβFµαFνβ − gµν

FαβF
αβ

4

]
, (3.53)

where L2 = (−f2/4)(FµνFµν + FµνFµν). The EM energy densities of the ground state measured by
the fundamental observer with four-velocity uµ = (1/a, 0, 0, 0) are given by,

ρB = 〈0|TBµνuµuν |0〉 =
f2

2
〈0|BiBi |0〉 ; ρE = 〈0|TEµνuµuν |0〉 =

f2

2
〈0|EiEi |0〉 , (3.54)

and the spectral energy densities are now given by

dρB
d ln k

=
1

2π2

(
k

a

)4

k(|A+(k, η)|2 + |A−(k, η)|2), (3.55)

dρE
d ln k

=
f2

2π2

(
k

a

)4 1

k

(∣∣∣∣[A+(k, η)

f

]′∣∣∣∣2 +

∣∣∣∣[A−(k, η)

f

]′∣∣∣∣2
)
. (3.56)
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3.2.2 Evolution of normal modes

We again choose the coupling function to be a simple power law f ∝ aα. We assume that during
inflation f(φ) has a form such that f evolves with a in this manner. Here we assume the background
to be purely de Sitter (a ∝ 1/η) and we arrive at the following

f ′

f
=
α

η
,

f ′′

f
=
α(α+ 1)

η2
.

Then equation (3.52) reduces to

A′′σ +

(
k2 − α(α+ 1)

η2
+ 2σk

α

η

)
Aσ = 0. (3.57)

To solve the above equation, we rewrite it by defining some new variables :

µ2 ≡ α(α+ 1) +
1

4
, κ ≡ iασ and z ≡ 2ikη.

Then the equation takes the form

∂2Aσ(k, η)

∂z2
+

[
(1/4− µ2)

z2
+
κ

z
− 1

4

]
Aσ(k, η) = 0. (3.58)

The above equation admits solutions which are linear combination of the Whittaker functions,

Ah = C3(k)Wκ,µ(z) + C4(k)W−κ,µ(−z), (3.59)

where the coefficients are set by initial conditions. We again take the initial condition to be Ah →
exp (−ikη)/

√
2k as |kη| → ∞. Now in the limit (z →∞), we have

Wκ,µ(z)→ e−z/2zκ as z →∞

Therefore setting C4(k) = 0, we have Ah → C3 exp (−ikη) exp (−iπκ/2) exp (κ ln 2kη). Therefore in
the limit, C3(k) = eiπκ/2/

√
2k and we have

Ah =
eiπκ/2√

2k
Wκ,µ(z) =

e−hπα/2√
2k

Wiαh,α+1/2(2ikη). (3.60)

At the end of the inflation, all the modes of cosmological interest will be outside the horizon. So
we consider the other limit (−kη) → 0, but before doing so, let us have a look at the form of the
Whittaker functions [55] :

Wκ,µ(z) =
Γ(2µ)

Γ(1/2 + µ− κ)
Mκ,−µ(z) +

Γ(−2µ)

Γ(1/2− µ− κ)
Mκ,µ(z) (3.61)

where

Mκ,µ(z) = zµ+1/2e−z/2Φ(µ− κ+ 1/2, 2µ+ 1; z),

Mκ,−µ(z) = z−µ+1/2e−z/2Φ(−µ− κ+ 1/2,−2µ+ 1; z),
(3.62)

where Φ(p, q; z) = 1 + pz/q +O(z2). Thus in the limit z → 0, we obtain,

Aσ =
cσ√
2k

[(−kη)−α + σ(−kη)1−α] +
dσ√
2k

[(−kη)1+α + (σα/(1 + α))(−kη)2+α]. (3.63)

Here

cσ = e−σπα/2
(−2i)−αΓ(1 + 2α)

Γ(1 + α− iσα)
; dσ = e−σπα/2

(−2i)1+αΓ(−1− 2α)

Γ(−α− iσα)
. (3.64)
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3.2.3 The spectra of the electric and magnetic fields

Substituting equation (3.63) into equations (3.55) and (3.56) gives (keeping only the dominant terms)

dρB
d ln k

≈
H4
I

8π2
[(|c+|2 + |c−|2)(−kη)−2α+4 + (|d+|2 + |d2−|)(−kη)2α+6], (3.65)

dρE
d ln k

≈
H4
I

8π2
[(|c+|2 + |c−|2)(−kη)−2α+4 + (|d+|2 + |d2−|)(1 + 2α)2(−kη)2α+4]. (3.66)

We see that there are two branches in the above expressions. In the magnetic spectrum, the first
branch dominates for α > −1/2 and the second branch dominates for α < −1/2, at late times. For
the electric field spectrum, the first branch dominates for α > 0 and the other branch dominates
for α < 0, at late times. As in the previous section, we find that for α = 2,−3, the magnetic field
spectrum is scale invariant. We reject the α = −3 candidate owing to the back reaction problem as
mentioned previously. For the case of α = 2, both the magnetic and electric field spectrum are scale
invariant. However, there is a problem with this value of α = −3; the strong coupling problem as
discussed in the previous section. This problem can be avoided by coupling the EM fields with the
Riemann tensor, which we discuss in the next chapter.

Numerical estimate of the magnetic field in the scale invariant case
Using α = 2 in equations (3.55) and (3.56) gives

dρB
d ln k

≈ 9e4π

320π3
H4
I (3.67)

To arrive at the above equation, we have used [55]

Γ(5) = 24 ; |Γ(3± 2i)|2 = |(2± 2i)(1± 2i)(±2i)|2|Γ(±2i)|2 = 40
π

2 sinh 2π
≈ 40πe−2π

Note that the value obtained from equation (3.67) is almost 1000 times greater than that from equation
(3.37) and hence the magnitude of the generated helical magnetic field is

B0 ' 7.52× 10−12 tesla(T)
(
HI/MPl

10−4

)
' 0.7× 10−7 gauss(G)

(
HI/MPl

10−4

)
. (3.68)
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Chapter 4

Generation of magnetic fields II
— Coupling to the Riemann curvature
tensor

In this chapter, we study the generation of magnetic fields by coupling the EM field to the Riemann
curvature tensor. The model we shall consider invokes Effective Field Theory (EFT), which lies at
the core of our modern understanding of the fundamental interactions in nature. But in this report
we will not get into the details of EFT. EFTs involve a mass term M that characterizes whatever
fundamental theory underlies the EFT, which we will treat as just a parameter in our model. For
our case of interest, namely magnetogenesis during slow roll inflation, the value of M depends on
the slow roll parameter ε = εH (see equation (2.41)); M cannot be much smaller than

√
2εMPl and

we tentatively assume M '
√

2εMPl [56]. According to current observations, the tensor-to-scalar
ratio r is determined to be r < 0.044 [57]. Using the relation ε ' r/16 (see equation (5.38)), we get
ε < 2.75× 10−3. Therefore M '

√
2εMPl ∼ 1017GeV .

4.1 Generating helical magnetic fields

We consider the following action [58] : S3 = SEH +Sφ+SEM +SCB . Here SEH is the Einstein-Hilbert
action :

SEH = −
M2
Pl

2

∫
d4x
√
−gR, (4.1)

Sφ is the action for the minimally coupled, self-interacting canonically scalar field :

Sφ = −
∫
d4x
√
−g
[

1

2
∂µφ∂

µφ+ V (φ)

]
, (4.2)

SEM is the electromagnetic action :

SEM = −1

4

∫
d4x
√
−gFµνFµν , (4.3)

and SCB is the conformal breaking part of the action :

SCB =
−1

M2

∫
d4x
√
−gRµναβFαβFµν =

−1

M2

∫
d4x
√
−gR̃µναβFαβFµν , (4.4)
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where Rµναβ is the Riemann tensor and R̃µναβ = (1/2)εµνρσRρσ
αβ is its dual and M is the energy

scale which sets the scale for the breaking of the conformal invariance [58]. Due to the Riemann
tensor, in FLRW background, M appears as a time-dependent coupling. This can be seen as follows
: Rµναβ ∼ a′2/a4 whcih implies the coupling function is time-dependent,

1

Meff
∼ 1

M

a′

a2
=
H

M
. (4.5)

During inflation, H ≈ HI ∼ 1014 GeV and since we are assuming M ∼ 1017 GeV, therefore, during
inflation 1/Meff ∼ 10−3. But at the current epoch, H = H0 ∼ 10−44 GeV [58], implying 1/Meff ∼
10−61, which is tiny. Thus the coupling will have significant contribution only in the early universe.

The variation of the action with respect to Aµ gives rise to the following equation of motion

∂µ

[√
−gFµν +

1

M2
ηαβρσRρσ

µνFαβ +
1

M2
ηµνρσRρσ

αβFαβ

]
= 0, (4.6)

where we have used εαβγδ = ηαβγδ/
√
−g and ηαβγδ is the fully anti-symmetric symbol in four dimen-

sions whose values are ±1 . For ν = i this reduces to

∂0

(
F0i −

2

M2
η0ijk

a′′

a3
Fjk

)
+ ∂l

(
−Fli +

4

M2
η0ilj

a′2

a4
F0j

)
= 0, (4.7)

where we have used the following components of the Riemann tensor :

Rij
kl =

a′2

a4
(δki δ

l
j − δliδkj ) ; R0i

0j = −
(
a′2 − aa′′

a4

)
δji .

Working again in the Coulomb gauge and using η0ijk = ηijk,(the 3-D Levi-Civita symbol) the above
equation becomes

A′′i +
4ηijk
M2

(
a′′′

a3
− 3a′a′′

a4

)
∂jAk − a2∂j∂jAi = 0. (4.8)

4.1.1 Quantizing the EM field

Decomposing the vector potential in Fourier space, we have the familiar equation :

Âi(η,x) =

∫
d3k

(2π)3

∑
λ=1,2

êiλ[b̂λ(k)Ā(k, η) exp ik · x + b̂†λ(k)Ā∗(k, η) exp−ik · x], (4.9)

with all the quantities as defined in the previous chapter. Substituting this in equation (4.8) yields

∑
λ=1,2

b̂λ

[
êiλĀ

′′
λ +

4i

M2
ηijkkj êkλĀλ

(
a′′′

a3
− 3a′a′′

a4

)
+ k2êiλĀλ

]
= 0. (4.10)

Working in the helicity basis and replacing ηijkkj êkλĀλb̂λ → k
∑

σ=±1 σAσ êσ b̂σ as before, we get

A′′σ +

(
k2 − 4kσ

M2
K(η)

)
Aσ = 0, (4.11)
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where we have defined K(η) = 3a′a′′/a4 − a′′′/a3. The EM energy densities of the ground state as
observed by the fundamental observer are

ρB(k, η) ≡ −1

2
〈0|BiBi |0〉 ≡

∫
dk

k

dρB
d ln k

=

∫
dk

k

[
1

2π2

(
k

a

)4

k(|A+(k, η)|2 + |A−(k, η)|2)

]
, (4.12)

ρE(k, η) ≡ −1

2
〈0|EiEi |0〉 ≡

∫
dk

k

dρE
d ln k

=

∫
dk

k

[
1

2π2

(
k

a

)4 1

k
(|A′+(k, η)|2 + |A′−(k, η)|2)

]
, (4.13)

and the ground state helicity density is

ρh(k, η) ≡ −1

2
〈0|BiAi |0〉 ≡

∫
dk

k

dρh
d ln k

=

∫
dk

k

[
1

2π2

(
k

a

)4

a(|A+(k, η)|2 − |A−(k, η)|2)

]
. (4.14)

This helicity density is the difference between the two helicity modes and hence it is possible to
maximize it by enhancing one helicity mode at the cost of the other.

4.1.2 Evolution of normal modes

We consider the power law inflation given by equation (3.27). Then we have

K(η) =
2β(β + 1)(β + 2)

a20η
3
0

,

which upon substitution in equation (4.11) leads to :

A′′σ +

[
k2 − 8kσ

M2

β(β + 1)(β + 2)

a20η
3
0

(
η0
η

)2β+5
]
Aσ = 0. (4.15)

From this equation we see that helical magnetic fields in this model cannot be produced if the back-
ground evolution is purely de Sitter (β = −2). We will be particularly interested in the slow roll
inflation with β = −2− ε.

As in the previous chapter, we consider two scenarios–the sub-Hubble limit and the super-Hubble
limit. In the sub-Hubble limit(|kη| � 1), equation (4.15) simplifies to

A′′σ + k2Aσ ≈ 0 (4.16)

which, upon using the Bunch-Davies vacuum initial condition, admits solutions

Aσ =
1√
2k
e−ikη. (4.17)

In the super-Hubble limit(|kη| � 1),

A′′σ + σk

(
ζ

η

)2

τ2Aσ = 0, (4.18)

where we have defined
ζ2 ≡ (2α− 3)(2α− 1)(2α+ 1)

M2a20η0
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with α = β + 3/2 and τ ≡ |η0/η|α (0 < τ <∞). Note that α = −1/2 corresponds to de Sitter.
Rewriting the above equation in terms of τ , we have

α2τ2

η2
d2Aσ
dτ2

+
α(α+ 1)

η2
τ
dAσ
dτ

+ σkζ2
τ2

η2
Aσ = 0

⇒ τ2
d2Aσ
dτ2

+ (1/α+ 1)τ
dAσ
dτ

+ σkζ2α2τ2Aσ = 0, (4.19)

which is a transformed version of the Bessel equation whose solutions are

A+(k, τ) = τ−1/2α

[
P+J1/2α

(
ζ
√
k

α
τ

)
+Q+Y1/2α

(
ζ
√
k

α
τ

)]
, (4.20)

A−(k, τ) = τ−1/2α

[
P−J1/2α

(
−iζ
√
k

α
τ

)
+Q−Y1/2α

(
−iζ
√
k

α
τ

)]
, (4.21)

where P+, Q+, P−, Q− are arbitrary constants which are fixed by matching Aσ and A′σ at k∗ ∼ −1/η∗

where ∗ refers to quantities evaluated at horizon exit. Before proceeding further, we would like to set
α = −1. This choice is motivated by the fact that in this case τ ∝ |η|, hence the super-Hubble modes
can be written in terms of η using a linear relation. Also the constants have a weak dependence
on α and hence finding the values for a given α will be accurate within an order [58]. In this case,
equations (4.20) and (4.21) reduce to

A+(k, τ) = τ1/2
[
P+J−1/2(−ζ

√
kτ) +Q+Y−1/2(−ζ

√
kτ)
]
, (4.22)

A−(k, τ) = τ1/2
[
P−J−1/2(iζ

√
kτ) +Q−Y−1/2(iζ

√
kτ)
]
. (4.23)

Now let us look at a few properties of the Bessel functions

J−1/2(x) =

√
2

x
cosx , J1/2(x) =

√
2

x
sinx ; Yν(x) =

Jν(x) cos νπ − J−ν(x)

sin νπ
.

Using the above equations, equations (4.22) and (4.23) can be further reduced to

A+(k, τ) =

√
2

−ζ
√
k

[
P+ cos (ζ

√
kτ)−Q+ sin (ζ

√
kτ)
]
, (4.24)

A−(k, τ) =

√
2

iζ
√
k

[
P− cosh (ζ

√
kτ) + iQ− sinh (ζ

√
kτ)
]
, (4.25)

and it is easy to find their derivatives,

dA+

dτ
=

√
−2ζ
√
k[−P+ sin (ζ

√
kτ)−Q+ cos (ζ

√
kτ)], (4.26)

dA−
dτ

=

√
−2iζ

√
k[P− sinh (ζ

√
kτ) + iQ− cosh (ζ

√
kτ)]. (4.27)

Thus matching the solutions and their derivatives at horizon exit, we find

P+ =

√
−η0e−i

2

(
sin Φ√

Φ
+ i
√

Φ cos Φ

)
, Q+ =

√
−η0e−i

2

(
cos Φ√

Φ
− i
√

Φ sin Φ

)
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Figure 4.1: This figure shows the behaviour of |Aσ| with τ . This graph, which has been plotted for
α = −1, shows that the negative helicity mode is decaying in conformal time. In this graph |Ap|
stands for |A+|, |Am| stands for |A−| and τ1 = 10−10τ .

P− =

√
−η0e−i

2

(
sinh Φ√
iΦ

+
√
iΦ cosh Φ

)
, Q− =

√
−η0e−i

2

(
sinh Φ√
iΦ

+
√
iΦ cosh Φ

)
where Φ =

√
15η∗/M2η30 is a dimensionless constant.

To obtain the dominating helicity mode, we need to obtain the numerical values of these coef-
ficients. To obtain these values, we take H ∼ −η−10 ∼ 1014GeV [59] and M ∼ 1017GeV . Since at
horizon exit, k∗ ∼ H and −k∗η∗ ≈ 1, η∗ is also of the same order as η0. This gives Φ ∼ 10−3 which is
a small value. Approximating trigonometric functions in the above equations, we get

|P+| ≈ |P−| ≈
√

10−17 GeV1/2 , |Q+| ≈ |Q−| ≈
√

10−11 GeV1/2. (4.28)

Using these values in equations (4.24) and (4.25), we see that |A+| is an exponentially growing solu-
tion while |A−| is a decaying one (see figure 4.1). Henceforth we set |A−(k, η)| = 0.

Series expansion of the Bessel functions
Let us define F (τ) = exp

[
iπ
α

⌊
π−arg(τ)−arg(

√
kζ/α)

2π

⌋]
where b...c is the floor function. Upto leading

order, the series expansion of the Bessel functions are [58] :

J1/2α(ζ
√
kτ/α) =

F (τ)

Γ(1 + 1/2α)

(
ζ
√
k

2α

)1/2α

τ1/2α

(
1− (ζ

√
kτ)2

2α(1 + 2α)
+O(τ3)

)
, (4.29)
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Y1/2α(ζ
√
kτ/α) =

F (τ)

π

(
ζ
√
k

2α

)1/2α

τ1/2αΓ(−1/2α) cos (π/2α)

(
−1 +

kζ2τ2

2α(1 + 2α)
+O(τ3)

)
+

+
F (τ)−1

π

(
2α

ζ
√
k

)1/2α

τ−1/2αΓ(1/2α)

(
−1 +

kζ2τ2

2α(−1 + 2α)
+O(τ3)

)
,

(4.30)

J1/2α(−iζ
√
kτ/α) =

F̃ (τ)

Γ(1 + 1/2α)

(
−iζ
√
k

2α

)1/2α

τ1/2α

(
1 +

(ζ
√
kτ)2

2α(1 + 2α)
+O(τ3)

)
, (4.31)

Y1/2α(−iζ
√
kτ/α) = − F̃ (τ)

π

(
−iζ
√
k

2α

)1/2α

τ1/2αΓ(−1/2α) cos (π/2α)

(
+1 +

kζ2τ2

2α(1 + 2α)
+O(τ3)

)

− F̃ (τ)−1

π

(
− 2iα

ζ
√
k

)1/2α

τ−1/2αΓ(1/2α)

(
−1 +

kζ2τ2

2α(−1 + 2α)
+O(τ3)

)
.

(4.32)

At leading order, the helicity modes are then (cf. equations (4.22) and (4.23))

A+(k, τ) = F (τ)

(
ζ
√
k

2α

)1/2α [
P+

Γ(1 + 1/2α)
− Q+

π
Γ(−1/2α) cos (π/2α)

]

−Q+
F̃ (τ)−1

π

(
2α

ζ
√
k

)1/2α

Γ(1/2α)τ−1/α

(4.33)

A−(k, τ) = F̃ (τ)

(
− iζ
√
k

2α

)1/2α [
P−

Γ(1 + 1/2α)
− Q−

π
Γ(−1/2α) cos (π/2α)

]
,

+Q−
F̃ (τ)−1

π

(
− 2α

iζ
√
k

)1/2α

Γ(1/2α)τ−1/α.

(4.34)

If we further define the following quantities :

F (τ) = F (τ)(ζ/2α)1/2α , F̃ (τ) = F̃ (τ)(−iζ/2α)1/2α,

C(τ) = F (τ)(ζ/2α)1/2α
[

P+

Γ(1 + 1/2α)
− Q+

π
Γ(−1/2α) cos (π/2α)

]
,

C̃(τ) = F̃ (τ)(−iζ/2α)1/2α
[

P−
Γ(1 + 1/2α)

− Q−
π

Γ(−1/2α) cos (π/2α)

]
,

then we can write the positive helicity mode as follows :

A+(k, τ) = Ck1/4α −Q+
F−1

π
Γ(1/2α)k−1/4ατ−1/α, (4.35)

where |C| ∼ 10−5/α−11/2 GeV−1/4α−1/2 and |F | ∼ 10−5/α GeV−1/4α. The time dependence in these
has been suppressed since it has been shown in Ref. [58] that ζ ≈ 10−10 GeV−1/2 =⇒ F (τ) = 1.
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4.1.3 The spectra of the electric and magnetic fields

Substituting equation (4.35) in expression for dρB/d ln k, we obtain

dρB
d ln k

=
1

2π2
k5

a4

(
|C|2k1/2α +

∣∣∣∣Q+
F−1

π
Γ(1/2α)

∣∣∣∣2 (kτ4)−1/2α

)
. (4.36)

At horizon exit, k = k∗ ∼ H and the expression for τ is τ∗ =
(
2η0k∗
2α−1

)α
. Therefore, at horizon exit, we

have
dρB
d ln k

∣∣∣∣
k∗∼H

=
H4
I

2π2

(
|C|2k1+1/2α

∗ +

∣∣∣∣Q+
F−1

π
Γ(1/2α)

∣∣∣∣2 (2α− 1)2

4η20
k
−1−1/2α
∗

)
. (4.37)

Just like the expression obtained for dρB/d ln k in the previous chapter for the helical magnetic field,
the above expression also has two branches : The first branch (setting Q+ = 0) has a scale invariant
spectrum for α = −1/2 and the second branch (setting C = 0) also has a scale invariant spectrum
for α = −1/2. Thus both the branches has scale invariant power spectrum for the exact de Sitter
case(α = −1/2). However for the slow roll inflation (α = −1/2−ε), the two branches scale differently
: the first branch goes as k−2ε∗ and the second branch goes as k−6ε∗ . Since ε > 0, for slow roll inflation,
this model predicts a red magnetic spectrum.

Let us look at the electric field spectrum. Using the fact that at super-Hubble scales ∂η ∼ H [17],
we obtain, at horizon exit

dρE
d ln k

∣∣∣∣
k∗∼H

≈
H4
I

2π2

(
|C|2k1+1/2α

∗ +

∣∣∣∣Q+
F−1

π
Γ(1/2α)

∣∣∣∣2 (2α− 1)2

4η20
k
−1−1/2α
∗

)
. (4.38)

Thus the behaviour of the electric spectrum is similar to that of the magnetic spectrum.

The back reaction problem : The magnetic energy density is

ρB =

∫ H
H/100

dk

k

dρB
d ln k

=
1

2π2a4

[
|C|2 H

5+1/2α

5 + 1/2α
+

∣∣∣∣Q+
F−1

π
Γ(1/2α)

∣∣∣∣2 τ−2/α H5−1/2α

5− 1/2α

]

⇒ ρB|k∗∼H =
H4
I

2π2

(
|C|2 k

1+1/2α
∗

5 + 1/2α
+

∣∣∣∣Q+
F−1

π
Γ(1/2α)

∣∣∣∣2 (2α− 1)2

4η20

k
−1−1/2α
∗

5− 1/2α

)
,

(4.39)

where we have usedH5+1/2α−(H/100)5+1/2α ≈ H5+1/2α. Similarly we have the following expression
for the electric energy density at horizon exit :

ρE |k∗∼H =
H4
I

2π2

(
|C|2 k

1+1/2α
∗

3 + 1/2α
+

∣∣∣∣Q+
F−1

π
Γ(1/2α)

∣∣∣∣2 (2α− 1)2

4η20

k
−1−1/2α
∗

3− 1/2α

)
. (4.40)

Thus using the above two expressions, the total energy density at the end of horizon exit is given by

(ρB + ρE)|k∗∼H = ρ
(1)
T + ρ

(2)
T , (4.41)

where

ρ
(1)
T =

H4
I

2π2
|C|2 4α(8α+ 1)

(10α+ 1)(6α+ 1)
k
1+1/2α
∗ , (4.42)
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ρ
(2)
T =

H4
I

2π2

∣∣∣∣Q+
F−1

π
Γ(1/2α)

∣∣∣∣2 4α(8α− 1)(2α− 1)2

(10α− 1)(6α− 1)
k
−1−1/2α
∗ . (4.43)

To identify whether these modes backreact on the metric, we define R as the ratio of the total energy
density of the fluctuations to the background energy density during inflation :

R =
(ρB + ρE)|k∗∼H

3M2
PlHI

2 . (4.44)

Using MPl ∼ 1018GeV and HI ∼ 1014GeV , the denominator is found to be ∼ 1065GeV 4. In order to
estimate the numerator, we take H ∼ |η0|−1 ∼ 1014GeV ∼ 1052Mpc−1 [59] and M ∼ 1017GeV . Then
using various values of α it can be seen that R � 1(for instance, it is 10−3 for α = −3/4 and 10−4

for α = −1), implying that the back reaction of the helical modes on the background metric during
inflation is negligible.

Numerical estimate of the generated helical magnetic field
In equation (3.40) if we use gf ∼ 106.75, g0 ' 3.36 and

ρ0 ' 4.3× 10−13J/m3 =
4.3× 1.6× 10−19(10−13)

125003
eV 4 ' 3.52× 10−80GeV 4,

we obtain

a0
af

= 0.985× 1.22× 1019 × 4.29× 1019−10
√

(HI/MPl)

10−5
∼ 1029

√
(HI/MPl)

10−5
. (4.45)

For slow roll type inflation, α = −1/2 − ε(ε ∼ 10−3), and ρB ∼ ρ
(1)
T + ρ

(2)
T = 1064GeV 4 since (using

|C| ∼ 10−5/α−11/2 and |F | ∼ 10−5/αGeV −1/4α)

ρ
(1)
T ≈

(1014)4

2π2
× 109 × 6

8
× 0.937 ∼ 1064GeV 4;

ρ
(2)
T ≈

(1014)6

8π2
× 10−25 × 40

24
× 0.824 ∼ 1057GeV 4.

(4.46)

Therefore using the fact that the relevant modes left the Hubble radius with energy density ρB ≈
1064 GeV4, it can be shown that the helical magnetic fields at GPc scales is [58]

B0 ' 10−40
(
HI/MPl

10−4

)−1
GeV2 ∼ 10−20 G

(
HI/MPl

10−4

)−1
, (4.47)

where we have used 1 GeV2 = 1.95× 10−20 G.

4.2 Generating non-helical magnetic fields

We consider an action similar to the action S3 in the previous section but with SCB now given by

SCB =
−1

M2

∫
d4x
√
−gRµναβFαβFµν .
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(Terms of this form do actually occur in one-loop vacuum polarization calculations on a general
curved background manifold, where the typical mass scale is the electron mass,M ∼ me [60]). There-
fore the action in this case is

S4 = −
M2
Pl

2

∫
d4x
√
−gR+

∫
d4x
√
−g
[

1

2
∂µφ∂

µφ+ V (φ)

]
−1

4

∫
d4x
√
−gFµνFµν +

−1

M2

∫
d4x
√
−gRµναβFαβFµν

(4.48)

Varying the above action with respect to Aρ we arrive at the following equation of motion :

∂σ

[√
−g
(
F ρσ +

4RαβρσFαβ
M2

)]
= 0 ⇒ ∂σ

[√
−g
(
F ρσ +

8R0kρσF0k

M2
+

4RijρσFij
M2

)]
= 0 (4.49)

Before we can proceed further, we need the components of the Riemann tensor, which are as follows
:

Rµνρσ = gµαgνβRαβ
ρσ = gµαgνβgρλgστRαβλτ

Rijkl = gimgjnRmn
kl =

a′2

a8
(δikδjl − δilδjk) , R0ijk = 0 , R0i0j = −

(
aa′′ − a′2

a8

)
δij

Then for ρ = k, we have

∂0

[
F0k +

8

M2

aa′′ − a′2

a4
F0k

]
+ ∂l

[
Fkl +

4

M2

2a′2

a4
Fkl

]
= 0 (4.50)

Working in the Coulomb gauge, we arrive at the following from the above equation :(
1 +

8

M2

aa′′ − a′2

a4

)
A′′k +

8

M2

(
a′′′

a3
− 5

a′a′′

a4
+ 4

a′3

a5

)
A′k −

(
1 +

8

M2

a′2

a4

)
a2∂l∂

lAk = 0 (4.51)

When we take a(η) = a0(η/η0)
1+β (power law inflation), equation (4.49) takes the following form [61]

F1(η)A′′k + F2(η)A′k − F3(η)a2∂l∂
lAk = 0, (4.52)

where

F1(η) = 1− 8

M2

(β + 1)

a20η
2
0

(
η

η0

)−2β−4
= 1 +

µ1
M2η20

(
η

η0

)−2β−4
;

F2(η) =
8

M2

2(β + 1)(β + 2)

η30a
2
0

(
η

η0

)−2β−5
=

µ2
M2η30

(
η

η0

)−2β−5
;

F3(η) = 1 +
8

M2

(β + 1)2

a20η
2
0

(
η

η0

)−2β−4
= 1 +

µ3
M2η20

(
η

η0

)−2β−4
.

For a purely de Sitter background (β = −2), F2 vanishes and F1 and F3 become independent of η.
Using equation (3.13), equation (4.52) can be written in terms of the modes Ā = aA as

F1(η)Ā′′ + F2(η)Ā′ + k2F3(η)Ā = 0. (4.53)
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CHAPTER 4. GENERATION OF MAGNETIC FIELDS II

The standard quantization procedure requires the corresponding action of the field of be diagonal
(recall that we definedA = fĀ in going from equation (3.17) to (3.18)). One way this can be achieved
by defining A = F (η)Ā, which satisfies the mode equation

A ′′ +

(
χ2(η)− F ′′

F

)
A , (4.54)

where F (η) and χ(η) are given by

2
F ′

F
=
F2(η)

F1(η)
and χ2(η) = k2

F3(η)

F1(η)
. (4.55)

Although equation (4.54) looks similar to equation(3.18), solving this is not trivial due to the compli-
cated forms of the functions F1(η), F2(η) and F3(η) and the dependence of χ on η . We need to use
the Bunch Davies initial condition to get the sub Hubble mode and then the super Hubble mode can
be obtained by matching A and A ′ at horizon exit, as done in the previous section.

With the solution of equation (4.54) at hand we can find the electric and magnetic field spectra.
Taking cue from the previous section, we do not expect them to be scale invariant in the slow roll
approximation we are using (β = −2− ε). From the magnetic energy density spectrum, the strength
of the generated magnetic field can be found. We are currently working on this problem.
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Chapter 5

Effects of the magnetic fields on
gravitational waves

In this chapter, we study the effects of the helical and non-helical magnetic fields on the primordial
gravitational waves. The anisotropic stress associated with the magnetic fields is known to enhance
the amplitudes of the primordial gravitational waves. In what follows, we will examine the imprints
of such effects on the two-point function of the tensor perturbations. But before that, in the following
section, we will discuss cosmological perturbation theory with particular focus on tensor perturba-
tions.

5.1 Cosmological perturbation theory–tensor perturbations

According to the CMB observations, the anisotropies at the end of decoupling are tiny, implying
that the amplitude of deviations from homogeneity would have been considerably lower at earlier
epochs [42]. This allows us to use linear perturbation theory to study the generation and evolution
of the perturbations (until structures begin to form late in the matter dominated epoch).

The metric perturbations can be decomposed in the FLRW background based on their behaviour
under local rotation of the spatial coordinates on hypersurfaces of constant time. The classification
of the perturbations as scalars, vectors and tensors is based on this property. Here we will only be
interested in the tensor perturbations, which describe gravitational waves. Note that they can exist
even in the absence of sources.

5.1.1 Tensor perturbations

Upon the inclusion of the tensor perturbations, the Friedmann metric can be described by the line
element

ds2 = a2[−dη2 + (δij + hTTij )dxidxj ] (5.1)

where hTTij is a symmetric, transverse and traceless tensor. The last two conditions reduce the num-
ber of independent degrees of freedom of hTTij is 2. Upon inclusion of the transverse and traceless
conditions, the components of the perturbed Einstein tensor corresponding to the above line element

43
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simplify to [62]
δG0

0 = δG0
i = 0, (5.2)

δGij = − 1

2a2
[(hTTij )′′ + 2H(hTTij )′ −∇2hTTij ]. (5.3)

In the absence of anisotropic stresses we obtain the following differential equation describing the
amplitude h of gravitational waves :

h′′ + 2Hh′ −∇2h = 0 (5.4)

where prime denotes derivative with respect to the conforml time coordinate η andH = aH .

5.1.2 Quantizing the tensor perturbations

We can expand the Fourier transform of hTTij in the basis of linear and circular polarization tensors
respectively :

h̃TTij (η,k) =
∑

P=T,×
ePij(k)h̃P (η,k) =

∑
P=+,−

ePij(k)h̃P (η,k), (5.5)

where the polarization tensors follow the normalization conditions

e
(T,×)
ij (k̂)e(T,×),ij(k̂) = 1 , e

(±)
ij (k̂)e(∓),ij(k̂) = 2 (5.6)

For instance, in the frame where k̂ is along the ẑ direction, we have the polarization tensors as follows
:

eTab =
1√
2

(
1 0

0 −1

)
ab

, e×ab =
1√
2

(
0 1

1 0

)
ab

; e+ab =

(
1/
√

2 i/
√

2

i/
√

2 −1/
√

2

)
ab

, e−ab =

(
1/
√

2 −i/
√

2

−i/
√

2 −1/
√

2

)
ab

with a, b = 1, 2 spanning the (x, y) plane. Then equation (5.4) becomes

h̃′′P + 2Hh̃′P + k2h̃P = 0 ⇒ u′′P +

(
k2 − a′′

a

)
uP = 0 (5.7)

where we have introduced uP (η,k) = a(η)h̃P (η,k) for convenience.
Note the similarity of equation (5.6) with the Mukhanov-Sasaki equation for scalar perturba-

tions [42] :

v′′k +

(
k2 − z′′

z

)
vk = 0, (5.8)

where z = (aφ̇/H) = (aφ′/H), v = Rz andR is the curvature perturbation.
Analytic solution for de Sitter : In power law inflation, a′′/a = 2/η2 and equation (5.7) becomes

u′′ +

(
k2 − 2

η2

)
u = 0. (5.9)

This has solutions

u1(k, η) =
cos (kη)

kη
+ sin (kη) , u2(k, η) =

sin (kη)

kη
− cos (kη), (5.10)

and the general solution is a linear combination of u1 and u2 which satisfies the Bunch-Davies initial
condition (see later).
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5.1.3 The tensor power spectrum

The primordial tensor power spectrum is defined by [46]

〈h̃P (k)h̃∗P ′(k
′)〉 = (2π)3δ(k− k′)δPP ′

PT (k)

2
, (5.11)

where 〈...〉 denotes the vacuum state expectation value, PT is the primordial tensor power spectrum,
and the factor of 2 comes due to the following choice of normalization of the polarization tensors :

eTij =
(ê1i ê

1
j − ê2i ê2j )√

2
, e×ij =

(ê1i ê
2
j + ê2i ê

1
j )√

2
. (5.12)

This factor will be 4 when (P, P ′ = ±) as we have defined

eij± =
√

2êi±ê
j
±, (5.13)

see equation (3.50) for definitions of êi±. Substituting equation (5.5) in equation (5.11) and using the
normalization condition in equation (5.6) gives

〈h̃TTij (k)h̃TT∗ij (k′)〉 = (2π)3δ(k− k′)
2π2

k3
PT (k), (5.14)

where we have defined

PT (k) ≡ k3

2π2
PT (k). (5.15)

In coordinate space, we get

〈hTTij (,x)hTTij (,x′)〉 =

∫
d3k

4πk3
eik.(x−x

′)PT (k) =

∫ ∞
0

dk

k
PT (k) (5.16)

The primordial tensor power spectrum is parametrized as (in a range of values of k around a refer-
ence value kref called the "pivot scale") [46]

PT (k) = AT (kref )(k/kref )nT , (5.17)

where AT is the amplitude and nT is the tilt of the tensor spectrum. The tensor power spectrum can
be expressed in terms of uP as follows [42]

PT (k) = 2
k3

2π2

(
|uP |
a

)2

, (5.18)

where the expressions on the right hand side are to be evaluated in the super-Hubble limit (the factor
of 2 in this expression takes care of the two states of polarization of the gravitational waves).

The tensor power spectrum in slow roll inflation

In this subsection, we will arrive at the tensor power spectrum in slow roll inflation. But first, we’ll
compute the perturbation spectra in the situation of power law inflation, which will help us under-
stand how to calculate the slow roll spectra [42].
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Power law inflation
From equations (2.35) and (2.37), we have

z =
aφ̇

H
=

√
2

q
MPla. (5.19)

Upon using the scale factor a(η) = (−H η)β+1, with H = [(q−1)a
1/q
1 ], the solution of the Mukhanov-

Sasaki equation that satisfies the Bunch-Davies initial condition

lim
(k/H→∞)

(vk(η), uP (η))→ e−ikη√
2k

, (5.20)

is found to be [63]

vk(η) =

√
−πη

4
exp [i(ν + 1/2)π/2]H(1)

ν (−kη), (5.21)

where ν = −(β + 1/2), and H
(1)
ν is the Hankel function of the first kind of order ν. Since in such a

power law case, z′′/z = a′′/a, uP will have the same form as vk. Writing−kη = x the Hankel function
can be expanded in the super-Hubble limit as

H(1)
ν (x) = −(i/π)Γ(ν)(x/2)−ν as x→ 0,

and we obtain

|vk|2 ∝ |H(1)
ν (x)|2 → |Γ(ν)|2

π2

(x
2

)−2ν
or

|Γ(−β − 1/2)|2

π2

(
−kη

2

)2β+1

. (5.22)

Thus the tensor power spectrum evaluated at super-Hubble scales can be written as

PT (k) = ATH 2(k/H)2β+4, (5.23)

with the quantity AT given by (4/M2
Pl has been put in by hand, as is the convention. [42])

AT =

(
4

π3M2
Pl

)
|Γ(−β − 1/2)|2

2(2β+3)
. (5.24)

Clearly the spectral index is constant and is given by

nT = [2(β + 2)] = −
(

2

q − 1

)
. (5.25)

The scalar power spectrum has also been calculated in Ref. [42] and it is given by ns = nT + 1, hence
is also a constant. Therefore the resulting tensor-to-scalar ratio is given by

r = 16
(β + 2)

(β + 1)
=

16

q
, (5.26)

a constant. These results suggest that the scalar and tensor spectra turn more and more scale invari-
ant as q →∞ (exponential inflation).
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Slow roll inflation
We now turn to the evaluation of the tensor power spectrum in slow roll inflation. The quantity z
can be written in terms of the first Hubble slow roll parameter εH as follows

z =
√

2MPl(a
√
εH). (5.27)

Also note that equations (2.42) can be rewritten as

εH = 1− H
′

H2
; δH = εH −

ε′H
2HεH

. (5.28)

Using these expressions, a′′/a term appearing in equation (5.7) can be written as [64]

a′′

a
= H2(2− εH). (5.29)

Let us rewrite equation (5.28a) above as follows:

η = −
∫
d(1/H)

1− εH
=

−1

(1− εH)
−
∫ [

2εH(εH − δH)

(1− εH)3

]
d(1/H). (5.30)

The second term can be ignored at leading order in the slow roll approximation, then we have

H ' −1

(1− εH)η
. (5.31)

When we use the above expression for H in equation (5.29), we obtain, at leading order in slow roll
approximation,

a′′

a
' 3 + 2εH

η2
, (5.32)

with the slow roll parameters now treated as constants. The solutions to the variable uP will again
be given in terms of Hankel functions with ν being replaced by [42, 64]

νT ' [3/2 + εH ]. (5.33)

In this case the tensor power spectrum assumes the form [64]

PT (k) =

(
1

2π2M2
Pl

)(
|Γ(νT )|
Γ(3/2)

)2(k
a

)2(−kη
2

)−2νT+1

(5.34)

=

(
|Γ(νT )|
Γ(3/2)

)2( H√
2πMPl

)2

[2(1− εH)]2νT−1, (5.35)

where the second equality expresses the asymptotic values in terms of the quantities at Hubble exit
(when −kη = (1 − εH)−1). The amplitude of the tensor power spectrum can be easily read off from
the above equation [42] :

AT (k) ' 4

M2
Pl

(
H√
2π

)2

(k∗=H)

, (5.36)

with the subscripts indicating that the quantities have to be evaluated at horizon crossing, i.e. −k∗η =

k∗/H = 1. From equation (5.35), we can obtain the tensor spectral index as follows :

nT = −2νT + 3 = −2εH . (5.37)
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This suggests that the tensor power spectra arising in slow roll inflation will be almost scale invariant.
An analysis similar to this has been done in Ref. [42] for the scalar power spectrum and the tensor-
to-scalar ratio in the slow roll limit has been found to be

r ' 16εH = −8nT . (5.38)

5.2 Stochastic gravitational waves

We begin this section by defining the energy density of gravitational waves in the Fourier space :

ρGW ≡
∫
dk

k

dρGW
d ln k

=
1

16πGa2

∫
d3k

(2π)3

∫
d3k′

(2π)3
〈h̃′ij(η,k)h̃′∗ij(η,k− q)〉eiq.x. (5.39)

Here we have dropped the ”TT” for convenience. We rewrite the equation for evolution of h̃ij with
time, now in the presence of anisotropic stresses, i.e. with δGµν = 8πGδTµν 6= 0 :

h̃′′ij + 2Hh̃′ij + k2h̃ij = 16πGτ̃ij , (5.40)

where τ̃ij is the transverse traceless part of the energy momentum tensor Tµν of the source. Expanding
h̃ij in accordance with equation (5.5), we are led to

h̃′′P + 2Hh̃′P + k2h̃P = 16πGτ̃P , (P = T,× or +,−). (5.41)

We will solve the inhomogeneous equation in the de Sitter background. For doing so, we first need
to find out the respective Green’s function, which we do in the following subsection.

5.2.1 Green’s Function for de Sitter expansion

Equation (5.7a) is the homogeneous analogue of equation (5.41), which in this case becomes equation
(5.9) having two independent solutions given in equation (5.10). In general, the Green’s function
satisfies

G′′(η, η′) +

(
k2 − a′′

a

)
G(η, η′) = δ(η, η′). (5.42)

With the two independent solutions u1 and u2, one can construct the Wronskian

W (η) = u1(η)u′2(η)− u′1(η)u2(η), (5.43)

so that
W ′ = u1u

′′
2 + u′1u

′
2 − u′′1u2 − u′1u′2 = 0, (5.44)

i. e. the Wronskian is a constant. In that case, we can write the (retarded) Green’s function as

G(η, η′) =
−Θ(η − η′)
W (η)

[u1(η)u2(η
′)− u1(η′)u2(η)], (5.45)

where Θ is the Heaviside function, and it can be easily checked that it satisfies equation (5.3). There-
fore, the Green’s function for the operator d2/dη2 − (2/η)d/dη + k2 is as follows [18]:

Gk(η, η
′) =

Θ(η − η′)
k3η′2

[(1 + k2ηη′) sin k(η − η′) + k(η′ − η) cos k(η − η′)]. (5.46)
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5.3 Energy momentum tensor of the source

The energy-momentum tensor of the electromagnetic field, obtained from the standard EM action, is
given by

Tµν = gαβFµαFµβ −
gµν
4
FαβFαβ, (5.47)

whose spatial part is given by

Tij(x, η) = BiBj + EiEj −
gij
2

(BmB
m + EmE

m), (5.48)

where we have used
Bi ≡

1

a
ηijkδ

jlδkm∂lAm ; Ei ≡ −
1

a
A′i. (5.49)

After taking the Fourier transformation of the above equation, we obtain

T̃ij(k, η) =

∫
d3q

(2π)3
Bi(q, η)B∗j (q− k, η) +

∫
d3q

(2π)3
Ei(q, η)E∗j (q− k, η)

−gij
2

[∫
d3q

(2π)3
Bm(q, η)B∗m(q− k, η) +

∫
d3q

(2π)3
Em(q, η)E∗m(q− k, η)

]
.

(5.50)

The anisotropic stress tensor is given by the transverse-traceless projection of the spatial part of the
energy-momentum tensor :

τ̃ij(k, η) =

∫
d3q

(2π)3
Πmn
ij [Em(q, η)E∗n(q− k, η) +Bm(q, η)B∗n(q− k, η)] = τ̃

(E)
ij + τ̃

(B)
ij , (5.51)

where
Πmn
ij = Pmi P

n
j −

PijP
mn

2
, (5.52)

is called a tensor projector and Pij(k) = δij − k̂ik̂j is the usual transverse plane projector satisfying

PijPjk = Pik and Pij k̂j = Pij k̂j = 0, (5.53)

which we encountered in Chapter ?? The second term has not been included since it does not con-
tribute to the transverse, traceless part because

Πmn
ij gij = a2

(
Pmi P

n
j −

PijP
mn

2

)
δij = 0. (5.54)

In this report we will only focus on the contribution from the magnetic part. From now on, we will
remove the tilde over functions to denote the quantities in Fourier space and allow the arguments
(x, η) or (k, η) to solely do the job.

Neglecting the solutions of the homogeneous part of equation (5.40) for the time being, we have
the following expression for hij(k) :

hij(k) =
2

M2
Pl

∫
dη′Gk(η, η

′)τ
(B)
ij (k, η′)

=⇒ hij(k) =
2

M2
Pl

∫
dη′Gk(η, η

′)

∫
d3q

(2π)3
Πmn
ij (k)[Bm(q, η′)B∗n(q− k, η′)]

(5.55)
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Therefore the two-point function of hij(k) is

〈hij(k)h∗ij(k
′〉) =

4

M4
Pl

[∫
dη′Gk(η, η

′)

∫
dη′′Gk′(η, η

′′)

]
〈τ (B)
ij (k, η′)τ

∗(B)
ij (k′, η′′)〉 (5.56)

where

〈τ (B)
ij (k, η′)τ

∗(B)
ij (k′, η′′)〉 =

∫
d3q

(2π)3a2(η′)

∫
d3q′

(2π)3a2(η′′)
Πmn
ij (k)Πab

ij (k′)

× 〈Bm(q; η′)B∗n(q− k; η′)Ba(q
′; η′′)B∗b (q′ − k′; η′′)〉

(5.57)

For the standard EM Lagrangian without inflaton coupling, Bi(q, η) = Bi(q)/a(η) and Bi(q, η) =

Bi(q)/a3(η). But with the inflaton coupling, Tij → f2(η)Tij or Bi(q, η) = Bi(q)f(η)/a(η) =

Bi(q; η)/a(η) and Bi(q, η) = Bi(q)f(η)/a3(η) = Bi(q; η)/a3(η).
Using Wick’s theorem, We can express the four point correlation functions, which occur in the

preceding statement, in terms of the two point correlation functions as follows, since the magnetic
field generated in our model is gaussian [65]:

〈Bm(q; η′)B∗n(q− k; η′)Ba(q
′; η′′)B∗b (q′ − k′; η′′)〉 = 〈Bm(q; η′)B∗n(q− k; η′)〉〈Ba(q′; η′′)B∗b (q′ − k′; η′′)〉

+ 〈Bm(q; η′)B∗a(q′; η′′)〉〈B∗n(q− k; η′)Bb(q
′ − k′; η′′)〉

+ 〈Bm(q; η′)Bb(q
′ − k′; η′′)〉〈B∗n(q− k; η′)B∗a(q′; η′′)〉.

(5.58)

In the above equation, we require unequal time correlation of the magnetic fields, which we write
as a product of the equal time correlation, 〈Ba(k; η′)Bb(k

′; η′′)〉 and a two-time correlation function
CB(k, η′, η′′) [65]:

〈Ba(k; η′)Bb(k
′; η′′)〉 = 〈Ba(k; η′)Bb(k

′; η′′)〉CB(k, η′, η′′), (5.59)

with this being evident that CB(k, η, η) = 1. To proceed further, we need to know the equal time
correlation function of the electric and magnetic field. We will examine the cases of helical and non-
helical magnetic fields separately.

5.3.1 Non-helical magnetic field

The two point functions of the non-helical magnetic field can be written in terms of the power spectra
as follows [65] :

〈Bi(k; η)B∗j (k′; η)〉 = (2π)3δ(k− k′)PijPSB(k; η), (5.60)

In writing this expression we have assumed that the generated magnetic field is homogeneous and
isotropic. The delta function δ(k− k′) arises because of the isotropy and the dependence of PSB on
k arises because of the homogeneity. Therefore

〈τ (B)
ij (k, η′)τ

∗(B)
ij (k′, η′′)〉 = (2π)3δ(k− k′)fB(k, η′, η′′)/a2(η′)a2(η′′), (5.61)

where (see Appendix B for a derivation)

fB(k, η′, η′′) =
1

(2π)3

∫
d3q[PSB(q; η′)PSB(|k− q|; η′)

×(1 + γ2 + β2 + β2γ2)]CB(q, η′, η′′)CB(|k− q|, η′, η′′),
(5.62)
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with γ = k̂ · q̂ and β = k̂ · (k− q)/|k− q|. To get the individual mode contribution, we express
τ
(B)
ij (k, η) in terms of the linear polarization basis :

τ
(B)
ij (k, η) = τ

(B)
T (k, η)eTij + τ

(B)
× (k, η)e×ij . (5.63)

Using this, we get

〈τ (B)
ij (k, η′)τ (B)∗ij(k′, η′′)〉 = (2π)3δ(k− k′)[|τ (B)

T |2(k, η′, η′′, ) + |τ (B)
× |2(k, η′, η′′, )]. (5.64)

In this case, the source is such that the contribution to both the modes are equal. Therefore using
equation (5.64) and equation (5.61), we get

|τ (B)
T |2(k, η′, η′′) = |τ (B)

× |2(k, η′, η′′) = fB(k, η′, η′′)/2a2(η′)a2(η′′). (5.65)

Therefore

〈hP (k)hP (k′〉) =
4

M4
Pl

[∫
dη′Gk(η, η

′)

∫
dη′′Gk(η, η

′′)

]
× (2π)3δ(k− k′)

(
|τ (B)
P |2(k, η′, η′′)

)
= (2π)3δ(k− k′)

4

M4
Pl

[∫
dη′

Gk(η, η
′)

a2(η′)

∫
dη′′

Gk(η, η
′′)

a2(η′′)

]
fB(k, η′, η′′)

2
.

(5.66)

We need to calculate fB for which we need PSB and CB(k, η, η′). We define PSB(k; η) as

PSB(k; η) =
2π2

k3
dρ̃B(k; η)

d ln k
, (5.67)

where dρ̃B(k; η)/d ln k = a4(η)dρB(k, η)/d ln k. Using some definitions given in Chapter 3, this can
be easily obtained as follows :

〈Bi(q; η′)B∗j (p; η′)〉 = ηiabηjcdqapc〈Ab(q, η′)A∗d(p, η′)〉

= qpA(q, η′)A∗(p, η′)〈b̂1(q)ê1ib̂
†
1(p)ê1j + b̂2(q)ê2ib̂

†
2(p)ê2j〉

= qpA(q, η′)A∗(p, η′)× Pij × 〈b̂λ(q)b̂†λ(p)〉

=⇒ 〈Bi(q; η′)B∗j (p; η′)〉 = (2π)3δ(q− p)Pij × q2|A(q, η′)|2 = (2π)3δ(q− p)PijPSB(q; η).

(5.68)

Comparing with the expression for dρB/d ln k in equation (3.25), we obtain equation (5.67).
Now the expression for dρB(k, η)/d ln k in this case is

dρB
d ln k

≈ F (n)

2π2
H4
I

(
k

aHI

)4+2n

=⇒ dρ̃B
d ln k

=
F (n)

2π2
k4 (−kη)2n (5.69)

For a scale invariant magnetic spectrum, n = −2 (this choice also takes care of the back-reaction
problem), therefore

dρ̃B
d ln k

=
1

η4
1

2π2
8π

16π/9
=⇒ PSB(k; η) =

9

2k3η4
(5.70)

Therefore

fB(k, η′, η′′) =
81

4(2π)3

∫
d3q

[
1

q3η′4
1

|k− q|3η′4

]
×(1 + γ2 + β2 + β2γ2)CB(q, η′, η′′)CB(|k− q|, η′, η′′),

(5.71)
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We can obtain the unequal time correlator as follows : dρ̃B/d ln k ∝ η2n =⇒ B ∝ ηn. Therefore
CB(η1, η2) = (η2/η1)

n,(η1, η2 < 0) which will be equal to (η1/η2)
2 in the scale invariant case we are

considering.1 Therefore equation (5.71) can be written as

fB(k, η′, η′′) =
81

4(2π)3

∫
d3q

[
1

q3η′4
1

|k− q|3η′′4

]
× (1 + γ2 + β2 + β2γ2), (5.72)

Therefore at the end of inflation (η ' 0), equation (5.66) becomes (with a(η) = −1/HIη)

〈hP (k)hP (k′))〉 =
H4
I

2M4
Pl

(∫
dη′

Gk(0, η
′)

η′2

)2

× (2π)3δ(k− k′)
81

(2π)3

∫
d3q

(1 + γ2 + β2 + β2γ2)

q3(k2 + q2 − 2kqγ)3/2
,

(5.73)

where

Gk(0, η
′) =

Θ(−η′)
k3η′2

[− sin kη′ + kη′ cos kη′],

and

1 + γ2 + β2 + γ2β2 =

(
1 +

[
k − q cos θ

|k− q|

]2)
(1 + cos2 θ).

Therefore the q integral becomes (with k directed along the z-axis, k = kẑ)∫
d3q

(1 + γ2 + β2 + β2γ2)

q3(k2 + q2 − 2kqγ)3/2
= 2π

∫
dqdγ

(1 + γ2)(2k2 + q2(1 + γ2)− 4kqγ)

q(k2 + q2 − 2kqγ)5/2

Now, following [66] ,we re-scale the integration variable q by a factor k (q → kq), and obtain∫
d3q

(1 + γ2 + β2 + β2γ2)

q3(k2 + q2 − 2kqγ)3/2
=

2π

k3

∫
dpdγ

(1 + γ2)(2 + p2(1 + γ2)− 4pγ)

p(1 + p2 − 2pγ)5/2
(5.74)

In the super Hubble limit, Gk(0, η′) ' η′/3 and the η′ integral then becomes
∫
dη′/3η′, which we shall

compute in the next section.

5.3.2 Helical magnetic field

The two-point function of the helical magnetic field can be written in terms of the power spectra as
follows [67] :

〈Bi(k; η)B∗j (k′; η)〉 = (2π)3δ(k− k′)(PijPSB(k; η) + iηijlk̂lPAB(k; η)), (5.75)

with PSB/AB given by [68] :

PSB/AB(k, η) = k2(|A+(k, η)|2 ± |A−(k, η)|2). (5.76)

Note the additional anti-symmetric contribution to the two-point correlation function in equation
(5.75). An analysis similar to that carried out in the previous subsection can be done in this case.

1This form of the function also makes sense, since it renders fB(k, η1, η2) symmetric in the two conformal time argu-
ments, as it should be.
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However we directly use the expression for the two-point function of the hP graviton (P = ±) ob-
tained in [18] or recently in [69] :

〈hP (k)hP (k′)〉 = (2π)3δ(k− k′)
H4
I

2M4
Pl

∑
ρ,σ=±

∫
d3q

(2π)3
q2|k− q|2(1− ρ(P )γ)2(1− σ(P )β)2

×
∣∣∣∣∫ dη′η′2Gk(η, η

′)Aρ(q, η′)Aσ(|k− q|, η′)
∣∣∣∣2

(5.77)

How this can be derived has been discussed in Appendix B. In the super Hubble limit (−kη � 1),
from equation (3.63), viz.

Aσ =
cσ√
2k

[(−kη)−α + h(−kη)1−α] +
dσ√
2k

[(−kη)1+α + (hα/(1 + α))(−kη)2+α],

with cσ and dσ being given by equation (3.64), viz.

cσ = e−σπα/2
(−2i)−αΓ(1 + 2α)

Γ(1 + α− iσα)
; dσ = e−σπα/2

(−2i)1+αΓ(−1− 2α)

Γ(−α− iσα)
,

we see that for the scale invariant case we are interested in, i.e. α = 2, we have (keeping only the
dominant terms)

Aσ ≈
cσ√
2k

[(−kη)−2] =
cσ√

2

1

k5/2η2
, (5.78)

and
c+ = e−π

(−0.25)24

Γ(3− 2i)
, c− = eπ

(−0.25)24

Γ(3 + 2i)
.

Thus we see that the negative helicity mode is amplified by a factor e2π compared to the positive he-
licity mode. So we take ρ, σ = −. As negative helicity gravitons are produced much less abundantly,
we take P = +, in which case equation (5.77) becomes

〈h+(k)h+(k′)〉 = (2π)3δ(k− k′)
H4
I

2M4
Pl

∫
d3q

(2π)3
q2|k− q|2(1 + γ)2(1 + β)2

×
∣∣∣∣∫ dη′η′2Gk(η, η

′)A−(q, η′)A−(|k− q|, η′)
∣∣∣∣2 ,

(5.79)

with∣∣∣∣∫ dη′η′2Gk(η, η
′)A−(q, η′)A−(|k− q|, η′)

∣∣∣∣2 =

(
|c−|2

2

)2
1

q5
1

|k− q|5

(∫
dη′

Gk(η, η
′)

η′4

)2

=

(
e2π18

80πe−2π

)2
1

q5
1

|k− q|5

(∫
dη′

Gk(η, η
′)

η′2

)2

.

Therefore, at the end of inflation (η ' 0), equation (5.79) becomes

〈h+(k)h+(k′)〉 = (2π)3δ(k− k′)
H4
I

2M4
Pl

∫
d3q

(2π)3
(1 + γ)2(1 + β)2

q3|k− q|3
× 81e8π

1600π2

(∫
dη′

Gk(0, η
′)

η′2

)2

(5.80)

The q integral is∫
d3q

(1 + γ)2(1 + β)2

q3|k− q|3
=

2π

k3

∫
dpdγ

(1 + γ)2(
√

1 + p2 − 2pγ + 1− pγ)2

p(p2 + 1− 2pγ)5/2
, (5.81)

and in the super Hubble limit we are considering, the η′ integral is
∫
dη′/3η′, same as in the non-

helical case.
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5.4 Correction to the tensor power spectrum

With εH = 0, equation (5.35) becomes

P0
T (k) =

(
HI√

2πMPl

)2

× 4 ' 2

π2
10−8 ≈ 2.026× 10−9, (5.82)

with the superscript ′0′ indicating "no anisotropic stress" and we have used HI/MPl ' 10−4 as men-
tioned earlier. We will now compare this with the tensor power spectra in the presence of anisotropic
stress due to the magnetic field. We will denote the power spectra in the non-helical and helical case
by PnhT (k) and PhT (k) respectively.

Non-helical magnetic field

We evaluate the dη′ integral between the limits ηmin and ηmax which we obtain as follows. Since
in approximating the Green’s function we had assumed |kη′| � 1 (super Hubble limit), let us set
|kη′| = δ′ � 1. Then ηmin corresponds to δ′/kmax and ηmax corresponds to δ′/kmin. If we consider
CMB scales then kmin = 10−5 MPc−1 and kmax = 1 MPc−1. Therefore∫

dη′

3η′
=

1

3
ln

(
kmin
kmax

)
= −3.83. (5.83)

The integral in equation (5.74) has been computed numerically using Mathematica (see Appendix B).
The integral diverges at 0 and 1, so the integral was broken into two parts : one from (0 + δ) to (1− δ)
and another from (1 + δ) to infinity. δ was chosen to be of ∼ 10−6 and it was found that the first part
yields a value O(100) and the second part yields a value O(10), and consequently the contribution
from the second part was ignored. Therefore equation (5.73) becomes

〈hT (k)hT (k′))〉 = 〈h×(k)h×(k′))〉 ' (2π)3δ(k− k′)
H4
I

2M4
Pl

(14.67)× 81

(2π)3
2π

k3
(108)

≈ (2π)3δ(k− k′)
2π2

k3
(8.23× 10−15).

(5.84)

We therefore get the following correction to the power spectrum : PnhT (k) ∼ 10−14, which implies
PnhT /P0

T ≈ 10−5.

Helical magnetic field

The dη′ integral is the same. The integral in equation (5.81) is again calculated numerically, but now
with δ ∼ 10−4. Therefore equation (5.80) becomes

〈h+(k)h+(k′)〉 ' (2π)3δ(k− k′)
2π2

k3

[
H4
I

2M4
Pl

81e8π

8 · 1600π6
(14.67× 194)

]
≈ (2π)3δ(k− k′)

2π2

k3
(7.7× 10−8).

(5.85)

We therefore get the following correction to the power spectrum : PhT (k) ∼ 10−7, which implies
PhT /P0

T ≈ 38. We can compare our result with that obtained in Ref. [66], where the author has studied
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the effect on the tensor power spectrum using a different model (involving a parameter ξ & 3) of
generating helical magnetic fields. Using the expression obtained for PhT (k) in the paper, it can be
shown that PhT (k)/P0

T (k) is atleast 0.278 (corresponding to ξ = 3) and increases considerably with
increase in ξ. For instance, it is of the order of 109 for ξ = 5.

Therefore when we consider the anisotropic stress due scale invariant magnetic field generated
in the inflaton coupling model discussed in Chapter 3, we find that the modification to the tensor
power spectrum is negligible for non-helical fields and it is modified by an additive factorO(100) for
helical fields.
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Chapter 6

Conclusions

In this chapter we will present a summary of the work done in the report and mention future
prospects of work. The work presented here is largely a review of inflation, particularly in the slow
roll approximation, and inflationary magnetogeneis and re-derivation of the results. We shall sum-
marize our work in the following paragraphs.

We have introduced the topic of inflationary magnetogenesis in the first chapter. There we en-
countered the problem related to inflationary magnetogenesis,viz. the standard EM action is con-
formally invariant and the spatially flat FLRW metric is conformally flat. We saw that this led us to
break the conformal invariance of the EM action in order to generate magnetic fields during inflation
and a few ways in which it is done has been illustrated in equation (1.3). Then we discussed in brief
about observations and methods of detection of magnetic fields in the universe. We ended the chap-
ter with a discussion on the qualitative constraint plot from Ref. [7].

In the second chapter we discussed in brief the successes of the hot big bang model before go-
ing on to discuss three major problems with the model and their solutions due to inflation. We then
discussed how inflation can be driven with scalar fields, with particular focus on the slow roll approx-
imation of inflation. We ended the chapter by studying the Starobinsky model of inflation followed
by a brief discussion on reheating.

The third and fourth chapters deal with two specific models of generating magnetic fields during
inflation. In the third chapter, we studied the inflaton coupling model. It was found that for a
power law form of the coupling function and in a perfectly de Sitter background during inflation,
the generated helical and non-helical magnetic fields are scale invariant. The values of the magnetic
field are given in the following table.

Type of magnetic field Strength of magnetic field

Non-helical B0 ∼ 0.1nG

Helical B0 ∼ 0.1µG

In the fourth chapter we studied the Riemann curvature coupling model. It was found that the gen-
erated magnetic field is not scale invariant and it is of the order of 10−20G at GPc scales. We have also
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presented an overview of how to perform a similar analysis for non-helical magnetic fields, which
has not yet been done, to the best of our knowledge. We are working on this at present.

Finally, in the fifth chapter we studied the effects of the anisotropic stress due to the generated
magnetic fields on the two-point function of the tensor perturbations. This in turn allowed us to study
the effects of the magnetic fields on the tensor power spectra. The results obtained are summarized
in the following table.

Type of magnetic field Effect on PT (k)

Non-helical Pnh
T (k)

P0
T (k)

≈ 10−5 (negligible)

Helical Ph
T (k)

P0
T (k)
≈ 38

Apart from the generation of non-helical magnetic fields from our model of curvature coupling,
which we are currently working on, possibilities of future work include studying the effects of the
magnetic fields generated via the curvature coupling on the tensor power spectrum and also studying
the imprints of the primordial magnetic fields on the three-point function of the tensor perturbations.
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Appendix A

Electrodynamics in curved spacetime

Consider the action for the electromagnetic fields interacting with charged particles :

SEM = −
∫ √
−gd4x

[
FµνFµν

16π
−AµJµ

]
. (A.1)

Here Aµ is the four-vector potential, Jµ the four-vector current and Fµν = Aν;µ −Aµ;ν = Aν,µ −Aµ,ν .
Upon variation with respect to Aµ, this action yields the Maxwell’s equations

Fµν ;ν = Jµ and Fµν ;ν = 0, (A.2)

where Fµν = (1/2)εµναβFαβ and εµναβ is the 4-dimensional Levi-Civita tensor in curved space-time
which is given by 1/

√
−g for even permutation of indices, (−1/

√
−g) for odd permutation of indices

and 0 for repeated indices. We would like to define the corresponding electric and magnetic fields
from the tensor Fµν . For this one needs to isolate a time direction which can be done using a family
of observers with 4-velocities described by the four-vector [10]

uµ =
dxµ

ds
; uµuν = −1.

We can also define the projection tensor as

hµν = gµν + uµuν ,

and then the line element can be rewritten as

ds2 = gµνdx
µdxν = −(uµdx

µ)2 + hµνdx
µdxν . (A.3)

The electric and magnetic field four-vectors can then be written as

Eµ = Fµνu
ν ; Bµ =

1

2
εµναβu

νFαβ = Fµνuν . (A.4)

From these above definitions and remembering that Fµν is antisymmetric, we see that these four-
vectors have purely spatial components and are effectively three-vectors in the space orthogonal to
uµ : Eµuµ = Bµu

µ = 0.
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We now invert equations (A.4) to write the EM field tensor and its dual in terms of the magnetic
and electric field four-vectors :

Fµν = uµEν − uνEµ + εµναβB
αuβ, (A.5)

Fαβ = εαβµνuµEν + uαBβ − uβBα. (A.6)

Now consider the projection of the source-free Maxwell’s equation from equation (A.2) on uα. We
have

uα(Fαβ ;β) = 0 = (uαFαβ);β − uα;βF
αβ. (A.7)

Substituting equation (A.6) into equation (A.7) and using uαεαβµνuµ = 0, uαB
α = 0 and uα;βu

α = 0,
and defining the four-acceleration aβ = uαuβ;α we get

Bβ
;β −Bβaβ + uα;βε

αβµνuµE
ν = 0. (A.8)

The uα;β appearing in the above equation can be decomposed into shear, expansion, vorticity and
acceleration parts as follows [10] :

uα;β = hµαh
ν
βuµ;ν − aαuβ = Θαβ + ωαβ − aαuβ. (A.9)

In the above equation, Θµν and ωµν are purely spatial, symmetric expansion tensor and antisymmet-
ric vorticity tensor respectively. Now Θµν can be further decomposed into a shear tensor(trace-free
part) and its trace : Θµν = τµν + (1/3)Θhµν . Thus we have

uα;β = σαβ + (1/3)Θhαβ + ωαβ − aαuβ. (A.10)

Defining the spatial projection of the covariant derivative as

DβB
α = hµβh

α
νB

ν
;µ,

we have
DβB

β = Bµ
;µ − uµuν;µBν , (A.11)

and equation (A.8) reduces to (with ων = −(1/2)ωαβε
αβµνuµ)

DβB
β = 2ωβEβ, (A.12)

which is a generalization of the flat space equation ∇ ·B = 0 to a general curved spacetime. The
vorticity of the relative motion of the observers measuring the EM field causes the right hand side of
the above equation to act as an effective magnetic charge.

The projection of the source-free Maxwell’s equations on hκα gives the generalization of the Fara-
day law in curved spacetime [10] :

hκα(Fαβ ;β) = (δκα + uκuα)(εαβµνuµEν + uαBβ − uβBα
;β) = 0,

⇒ hκαḂ
α = [uκ;βB

β − uβ;βB
κ] + hκαε̄

αµνaµEν − ε̄κβνEν;β.
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Therefore
hκαḂ

α = [σκβ + ωκβ − (2/3)Θδκβ ]Bβ − ε̄κµνaµEν − Curl(Eκ), (A.13)

where ε̄αβν ≡ εαβνµuµ, Curl(Eκ) ≡ ε̄κβνEν;β and [uκ;βB
β − uβ;βB

κ] = [uκ;β − Θδκβ ]Bβ = [σκβ + ωκβ −
(2/3)Θδκβ ]Bβ have been used.
The other two Maxwell equations, involving the source terms, can be obtained by the following
transformations : E→ −B, B→ E and Jµ → −Jµ. Therefore we get the remaining two equations,

DβE
β = 4πρq − 2ωβBβ, (A.14)

hκαĖ
α = [σκβ + ωκβ − (2/3)Θδκβ ]Eβ + ε̄κµνaµBν + Curl(Bκ)− 4πjκ, (A.15)

where we have defined ρq ≡ −Jνuν and jκ ≡ Jµhκµ.

The expanding universe
Consider the spatially flat FLRW metric : ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2). In this case, we have

aα = 0, ωαβ = 0, σαβ = 0, Θ = 3ȧ/a,

and the Maxwell equations reduce to

Bβ
;β = 0, Eβ;β = 4πρq, uαBβ

;α + (2/3)Bβ = −Curl(Eβ), uαEβ;α + (2/3)Eβ = Curl(Bβ)− 4πjβ,

(A.16)
which can be further reduced to (with ηilm being the 3D Levi-Civita symbol)

Bi
,i = 0, Ei,i = 4πρq,

1

a3
∂t[a

3Bi] = −1

a
ηilm∂mE

l,
1

a3
∂t[a

3Ei] =
1

a
ηilm∂mB

l − 4πji, (A.17)

upon using the Christoffel connections for the spatially flat FLRW metric :

Γ0
00 = Γ0

0i = Γijk = 0; Γ0
ij = δijaȧ; Γi0j = δij ȧ/a.

The electric and magnetic field components used above are referred to a coordinate basis, where the
space-time metric is of the FLRW form. Now consider, for example, the case when the plasma in
the universe has no peculiar velocity and is also highly conducting, σ → ∞. Then Eν = 0 and The
Faraday’s law in equation (A.17), we have Bi ∝ 1/a3. However, there is a simple result that can be
deduced in flat space-time: in a highly conducting fluid, magnetic flux through a surface that moves
in tandem with the fluid is constant (flux freezing). Given that all proper surfaces in the expanding
universe increase as a2, the strength of the "proper" magnetic field is expected to decrease as 1/a2.
This naively seems to be at conflict with Bi ∝ 1/a3 and hence Bi ∝ 1/a. This can be addressed as
follows [10].

Let us refer all tensor quantities to a set of orthonormal basis vectors, known as tetrads. Any
observer can be thought of carrying along his/her worldline a set of 4 orthonormal vectors e(a), where
a = 0, 1, 2, 3 such that gµνe

µ
(a)e

ν
(b) = γab and γabeµ(a)e

ν
(b) = gµν . Here γab has the form of a flat space

metric. For the present case, we have the components of the tetrads as eµ(0) = δµ0 (= uµ) and eµ(i) =

δµi /a. Note that fundamental observers move along geodesics and such observers parallel transport
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their tetrads along their trajectories,i.e., uµeν(a);µ = 0. The magnetic and electric field components can
be represented as its projection along the four orthonormal tetrads using

B̄a = gµνB
µeν(a), Ēa = gµνE

µeν(a), (A.18)

which gives
B̄0 = 0, Ē0 = 0 ; B̄i = a(t)Bi, Ēi = a(t)Ei. (A.19)

If we define B̄a = γabB̄
b, then numerically B̄i = B̄i and B̄0 = −B̄0, etc. In the FLRW universe, Bi ∝

1/a3, Bi ∝ 1/a, but we see that B̄i = B̄i ∝ 1/a2. This suggests that the magnetic field components
defined within this tetrad formalism seem to be the natural quantities to be used as the physical
components of the magnetic field. The Maxwell’s equations then become

B̄i
,i = 0, (a2Ēi),i = 4πρqa

2, ∂t(a
2B̄i) = −ηilm∂m(a2Ēl), ∂t(a

2Ēi) = ηilm∂m(a2Ēl)− 4πj̄ia2,

(A.20)
with j̄i = ρqv

i + σ[Ēi + ηilmvlB̄m] (in the limit of non relativistic fluid velocity). This concludes our
discussion of electrodynamics in curved space-time.
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Appendix B

Tensor power spectra in the presence of
anisotropic stress

In this appendix we will give the derivation of equation (5.71) for non-helical magnetic field and
equation (5.77) for helical magnetic field. We will also attach the Mathematica notebooks for the nu-
merical integrals used in section 5.4.

B.1 Non-helical magnetic field

We have seen that the calculation of the tensor power spectra involves the computation of the four
point correlation function of the magnetic field, which has been written in terms of the two point (un-
equal time)correlation functions in equation (5.67). In equation (5.68), we have written the unequal
time correlation function of the magnetic fields as a product of equal time correlation functions and
a two-time correlator CB(k, η′, η′′). Using equation (5.69), viz.

〈Bi(k; η)B∗j (k′; η)〉 = (2π)3δ(k− k′)PijPSB(k; η),

we can write the four point correlation function as follows :

〈Bm(q; η′)B∗n(q− k; η′)Ba(q
′; η′′)B∗b (q′ − k′; η′′)〉 = 〈Bm(q; η′)B∗n(q− k; η′)〉〈Ba(q′; η′′)B∗b (q′ − k′; η′′)〉

+〈Bm(q; η′)B∗a(q′; η′′)〉〈B∗n(q− k; η′)Bb(q
′ − k′; η′′)〉

+〈Bm(q; η′)Bb(q
′ − k′; η′′)〉〈B∗n(q− k; η′)B∗a(q′; η′′)〉

=⇒ 〈Bm(q; η′)B∗n(q− k; η′)Ba(q
′; η′′)B∗b (q′ − k′; η′′)〉 = (2π)6([δ(k)PmnPSB(q, η′)δ(k′)PabPSB(q′, η′′)]

+ [δ(q− q′)PmaPSB(q, η′)CB(q′, η′, η′′)δ((q− k)− (q′ − k′))PnbPSB(|q− k|, η′′)CB(|q− k|, η′, η′′)]

+ [δ(q− q′ + k′)PmbPSB(q, η′)CB(q′, η′, η′′)δ(q− k− q′)PnaPSB(|q− k|, η′′)CB(|q− k|, η′, η′′)])
(B.1)

In order to calculate the transverse traceless part, we take the tensor projection and integrate the
above equation with respect to q′ to get [65]∫

d3q′

(2π)3
Πmn
ij (k)Πab

ij (k′)〈Bm(q; η′)B∗n(q− k; η′)Ba(q
′; η′′)B∗b (q′ − k′; η′′)〉

= (2π)3Πmn
ij (k)Πab

ij (k′)(Pma(q)Pnb(q− k) + Pmb(q)Pna(q− k))

× PSB(q; η′)PSB(|q− k|; η′)CB(q, η′η′′)CB(|q− k|, η′, η′′)δ(k− k′).

(B.2)
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Let p = q− k. Then

(Pma(q)Pnb(q− k) + Pmb(q)Pna(q− k)) = (Pma(q)Pnb(p) + Pmb(q)Pna(p))

= [(δma − q̂mq̂a)(δnb − p̂np̂b) + (δmb − q̂mq̂b)(δna − p̂np̂a)].
(B.3)

Also Πmn
ij (k)Πab

ij (k′)δ(k− k′) = Πmn
ij (k)Πab

ij (k)δ(k− k′) and we have

Πmn
ij (k)Πab

ij (k) =

[
Pmi P

n
j −

PmnPij
2

] [
P ai P

b
j −

P abPij
2

]
= Pma(k)Pnb(k)− Pmn(k)P ab(k)

2

= (δma − k̂mk̂a)(δnb − k̂nk̂b)− 1

2
(δmn − k̂mk̂n)(δab − k̂ak̂b).

(B.4)

Then the product of equations (B.3) and (B.4) gives (1 + γ2)(1 + β2), where k̂ · q̂ = γ and k̂ · p̂ = β

and we are finally led to∫
d3q′

(2π)3
Πmn
ij (k)Πab

ij (k′)〈Bm(q; η′)B∗n(q− k; η′)Ba(q
′; η′′)B∗b (q′ − k′; η′′)〉

= (2π)3δ(k− k′)(1 + γ2)(1 + β2)PSB(q; η′)PSB(|q− k|; η′)CB(q, η′η′′)CB(|q− k|, η′, η′′).
(B.5)

Therefore,

fB(k, η′, η′′) =
1

(2π)3

∫
d3q[PSB(q; η′)PSB(|k− q|; η′)

×(1 + γ2 + β2 + β2γ2)]CB(q, η′, η′′)CB(|k− q|, η′, η′′),
(B.6)

B.2 Helical magnetic field

We start from equation (5.55), viz.

hij(k) =
2

M2
Pl

∫
dη′Gk(η, η

′)

∫
d3q

(2π)3
Πmn
ij (k)[Bm(q, η′)B∗n(q− k, η′)].

Using Ba(k, η) = iηabckbAc(k, η)/a and p = q− k, we get

hij(k) =
−2H2

I

M2
Pl

∫
dη′Gk(η, η

′)η′2
∫

d3q

(2π)3
Πmn
ij (k)ηmabηncdqapcAb(q, η′)A∗d(p, η′) (B.7)

Now we introduce polarization tensors Πij
±(k), so that h±(k) = Πij

±(k)hij(k) [66]. Comparing with
the second equality in equation (5.5), we obtain

h±(k) =
1

2
eij∓hij(k) =⇒ Πij

±(k) =
eij∓(k)

2
=
êi∓(k)êj∓(k)
√

2
. (B.8)

Thus the expression for the helicity-P (P = ±1) garviton is given by

hP (k) =
−H2

I

M2
Pl

∫
dη′Gk(η, η

′)η′2
∫

d3q

(2π)3
êmnP (k)ηmabηncdqapcAb(q, η′)A∗d(p, η′) (B.9)

Using the following property of the helicity basis vectors,

iηabckbê
±
c = ±kê±a ,
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we get

hP (k) =
H2
I

M2
Pl

∫
dη′Gk(η, η

′)η′2
∫

d3q

(2π)3
emnP (k)

∑
ρ,σ=±

qpêρmê
σ
nAρ(q, η′)Aσ(p, η′). (B.10)

Similarly

hP (k′) =
H2
I

M2
Pl

∫
dη′′Gk′(η, η

′′)η′′2
∫

d3q′

(2π)3
eabP (k′)

∑
ρ,σ=±

q′p′êρaê
σ
bAρ(q′, η′′)Aσ(p′, η′′) (B.11)

Therefore

〈hP (k)hP (k′)〉 =
H4
I

M4
Pl

∫
dη′Gk(η, η

′)η′2
∫
dη′′Gk′(η, η

′′)η′′2×

×
∫

d3q

(2π)3

∫
d3q′

(2π)3
emnP (k)eabP (k′)

∑
ρ,σ=±

qpq′p′êρm(q)êσn(p)êρa(q
′)êσb (p′)×

×〈Aρ(q′, η′′)Aσ(p′, η′′)Aρ(q, η′)Aσ(p, η′)〉.

(B.12)

This equation can be simplified using Wick’s theorem and then upon using the following property of
the helicity projectors [18]

|êiP (p1)êiP ′(p2)|2 =
1

4

(
1− (PP ′)

p·p2

p1p2

)2

, (B.13)

we are led to equation (5.77) viz.,

〈hP (k)hP (k′)〉 = δ(k− k′)
H4
I

2M4
Pl

∣∣∣∣∫ dη′Gk(η, η
′)η′2

∣∣∣∣2 ∑
ρ,σ=±

∫
d3q(1− ρ(P )γ)2(1− σ(P )β)2

×q2p2|Aρ(q, η′)Aσ(p, η′)|2.

The following pages contain the Mathematica notebooks pertaining to the numerical computation of
the integrals in equations (5.74) and (5.81).
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Non-helical Magnetic Field
In[1]:= ClearAll;

In[2]:= g[q_, γ_] =

1 + γ^2 * 2 * k^2 + q^2 + q^2 * γ^2 - 4 * k * q * γ  q * k^2 + q^2 - 2 * k * q * γ^5  2

Out[2]=

1 + γ2 2 k2 + q2 - 4 k q γ + q2 γ2

q k2 + q2 - 2 k q γ
5/2

In[3]:= k = 1;

In[4]:= g1[q_, γ_] = Integrate[g[q, γ], γ]

Out[4]= -
1

15 q4 1 + q2 - 2 q γ
3/2

-12 + 8 q8 + 36 q γ - 24 q7 γ + 4 q5 γ -3 + γ2 +

12 q6 1 + γ2 - 4 q3 γ -27 + 4 γ2 - 2 q2 29 + 9 γ2 + q4 -37 - 6 γ2 + 3 γ4

In[5]:= g2[q_] = FullSimplify[g1[q, 1] - g1[q, -1]]

Out[5]=

12+4 q -3+2 q 5+q3-q4

(-1+q)2
+

4 -3+q -3+2 q -5+q3+q4

(1+q)2

15 q4

In[6]:= NIntegrate[g2[q], {q, 0.000001, 0.999999}, AccuracyGoal → 3]

Out[6]= 107.619

In[7]:= NIntegrate[g2[q], {q, 1.000001, Infinity}, AccuracyGoal → 2]

Out[7]= 32.8231

Printed by Wolfram Mathematica Student Edition



Helical Magnetic Field
In[1]:= ClearAll;

In[2]:= f[q_, γ_] = 1 + γ^2 *

Sqrt[k^2 + q^2 - 2 * k * q * γ] + k - q * γ^2  q * k^2 + q^2 - 2 * k * q * γ^5  2

Out[2]=

1 + γ
2 k - q γ + k2 + q2 - 2 k q γ

2

q k2 + q2 - 2 k q γ
5/2

In[3]:= k = 1;

In[4]:= f1[q_, γ_] = Integrate[f[q, γ], γ]

Out[4]= -
1

16 q4
4 q 1 + q 1 + 3 q γ -

-1 + q2 1 + q6

3 1 + q2 - 2 q γ
3/2

+
2 -1 + q 1 + q5

1 + q2 - 2 q γ

+
4 1 + q4 -1 - q + q2

1 + q2 - 2 q γ

+

2 1 + q2 -5 + 3 q2 1 + q2 - 2 q γ -
4

3
-1 + q + q2 1 + q2 - 2 q γ

3/2
+

1 + q2 - 2 q γ
2
+
1

5
1 + q2 - 2 q γ

5/2
+ 2 1 + q3 -1 + 3 q Log1 + q2 - 2 q γ

In[5]:= f1[q, 1]

Out[5]= -
1

16 q4
4 q 1 + q 1 + 3 q -

-1 + q2 1 + q6

3 1 - 2 q + q23/2
+
2 -1 + q 1 + q5

1 - 2 q + q2
+ 1 - 2 q + q2

2
+

1

5
1 - 2 q + q2

5/2
+
4 1 + q4 -1 - q + q2

1 - 2 q + q2
-
4

3
1 - 2 q + q2

3/2
-1 + q + q2 +

2 1 + q2 1 - 2 q + q2 -5 + 3 q2 + 2 1 + q3 -1 + 3 q Log1 - 2 q + q2

In[6]:= f1[q, -1]

Out[6]= -
1

16 q4
-4 q 1 + q 1 + 3 q -

-1 + q2 1 + q6

3 1 + 2 q + q23/2
+
2 -1 + q 1 + q5

1 + 2 q + q2
+

4 1 + q4 -1 - q + q2

1 + 2 q + q2
-
4

3
-1 + q + q2 1 + 2 q + q2

3/2
+ 1 + 2 q + q2

2
+
1

5
1 + 2 q + q2

5/2
+

2 1 + q2 1 + 2 q + q2 -5 + 3 q2 + 2 1 + q3 -1 + 3 q Log1 + 2 q + q2

Printed by Wolfram Mathematica Student Edition



In[7]:= f2[q_] = %5 - %6

Out[7]= -
1

16 q4
4 q 1 + q 1 + 3 q -

-1 + q2 1 + q6

3 1 - 2 q + q23/2
+
2 -1 + q 1 + q5

1 - 2 q + q2
+ 1 - 2 q + q2

2
+

1

5
1 - 2 q + q2

5/2
+
4 1 + q4 -1 - q + q2

1 - 2 q + q2
-
4

3
1 - 2 q + q2

3/2
-1 + q + q2 +

2 1 + q2 1 - 2 q + q2 -5 + 3 q2 + 2 1 + q3 -1 + 3 q Log1 - 2 q + q2 +
1

16 q4

-4 q 1 + q 1 + 3 q -
-1 + q2 1 + q6

3 1 + 2 q + q23/2
+
2 -1 + q 1 + q5

1 + 2 q + q2
+
4 1 + q4 -1 - q + q2

1 + 2 q + q2
-

4

3
-1 + q + q2 1 + 2 q + q2

3/2
+ 1 + 2 q + q2

2
+
1

5
1 + 2 q + q2

5/2
+

2 1 + q2 1 + 2 q + q2 -5 + 3 q2 + 2 1 + q3 -1 + 3 q Log1 + 2 q + q2

In[8]:= Simplify[%7]

Out[8]=
1

16 q4
--1 + q4 -

1

5
-1 + q2

5/2
+ 2 -1 + q 1 + q3 + 1 + q4 -

2 1 + q5

-1 + q
+

1 + q6

3 -1 + q2
-
-1 + q2 1 + q4

3 1 + q2
+
1

5
1 + q2

5/2
- 8 q 1 + q 1 + 3 q -

4 1 + q4 -1 - q + q2

-1 + q2
+
4 1 + q4 -1 - q + q2

1 + q2
+
4

3
-1 + q2

3/2
-1 + q + q2 -

4

3
1 + q2

3/2
-1 + q + q2 - 2 -1 + q2 1 + q2 -5 + 3 q2 + 2 1 + q2

3/2
-5 + 3 q2 -

2 1 + q3 -1 + 3 q Log-1 + q2 + 2 1 + q3 -1 + 3 q Log1 + q2

In[9]:= NIntegrate[f2[q], {q, 0.0001, 0.9999}, AccuracyGoal → 3]

Out[9]= 194.188

In[10]:= NIntegrate[f2[q], {q, 1.0001, Infinity}, AccuracyGoal → 2]

Out[10]= 11.2699

2     helical_1.nb
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