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ABSTRACT

It is perhaps the greatest triumph of modern cosmology to present a verifiable story of our

universe. This project is an attempt to fathom the thermal history of the universe. To reach

our destination, we journey through background cosmology, statistical physics and particle

physics. We introduce the idea of thermal decoupling and discuss it’s significance in the

context of the history of our universe. We study decoupling for a few selected cases, starting

from first principles. We also motivate the need for non-baryonic dark matter in the universe

and study the decoupling of one of the most plausible dark matter candidate called WIMP

(Weakly Interacting Massive Particle).
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Chapter 1

Introduction

It is to find answers to some of the most profound and fundamental questions about us and

our universe, that I dwell into cosmology. The broad range of physics that cosmology draws

from makes me think of it as a beautifully constructed playground with all my favorite toys.

Like many others, cosmology has left me humbled and restless. This report is an attempt to

make the reader feel the same. I will begin by briefly describing what modern cosmology is

all about. We will then discuss about the FLRW model and thermodynamics of our universe.

We then move on to the main topic of this project : thermal history of the universe. I will not

be doing full justice to this topic, I will only be touching upon some of the many important

events in the history of our universe, however I will try to to give a feel for what lays beyond

the topics covered here.

What makes modern cosmology all the more alluring is that we have developed a con-

sistent theoretical framework that agrees quantitatively with the vast amount of data we

have gathered about our universe. To top it off, this theory makes predictions that can be

tested by observations. The cornerstone of modern cosmology is the belief that the place

we occupy in the universe is in no way special, it is known as the cosmological principle

which forms the basis of big bang cosmology. It implies that that the universe looks the

same wherever we are. It is important to realize that this is not an exact principle, rather

it is an approximation that holds better and better the larger the length scales we consider,

breaking down when we look at local phenomenon. Only once we get to scales of hundreds

of megaparsec or more does the universe appear to be smooth, as revealed by the extremely
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large galaxy surveys, like the 2dF galaxy redshift survey and the Sloan Digital Sky Survey.

Observation using visible light provides us with a good picture of what’s going on in the

present day universe. However many other wavebands like microwave, infrared, X-rays

and radio waves make vital contributions to our present understanding of the universe.

For cosmology microwave is perhaps the most important waveband. The fact that earth is

bathed in uniform microwave radiation, with a blackbody distribution, at a temperature of

approximately 3K, from all directions, is one of the most powerful piece of information in

support of big bang cosmology. This is now known as the Cosmic Microwave Background

(CMB), we will be discussing it in more details in the section on recombination. Obser-

vations by the COBE (Cosmic Background Explorer) satellite as shown in figure. 1.1, has

confirmed this observation to an extremely good accuracy.

Figure 1.1: CMB spectrum as measured by the COBE satellite, the best fit is a blackbody
distribution with a temperature of 2.725 K.2

A key piece of observational evidence in cosmology is that everything is moving away

from us, and the farther away something is the more rapid it’s recession seems to be. These
2Source : [1].
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velocities are measured using the redshift of emission and absorption lines in the spectrum

of galaxies, which are well known to us. Distances on the other hand are measured by study-

ing the luminosity of standard candles. This technique was used by Hubble who realized

that the velocity of recession was proportional to the distance of the galaxy from us -

~v = H0~r (1.1)

This is known as Hubble’s law and the constant of proportionality H0 is known as Hub-

ble’s constant. Figure. 1.2 shows a plot of velocity against distance for a sample of 1355

galaxies.

Figure 1.2: Hubble diagram - a plot of velocity vs. estimated distance for a sample of 1355
galaxies, a straight line relation implies Hubble’s law. 4

The cosmological principle together with Hubble’s law describes an expanding universe

that remains isotropic and homogeneous at all times. We can try to visualize it in two di-

mensions by imagining a grid that is expanding with time, and the galaxies are fixed in

the coordinate system defined by the grids, while the actual physical distance changes with

time. This is depicted in figure. 1.3, and will be accounted for in the next chapter.
4Source : [1].
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Figure 1.3: The comoving coordinate system carried along with the expansion.5

Everything in the universe is made of fundamental particles, and the behavior of the

universe as a whole depends on the properties of these particles. All the ordinary matter we

see around us is termed as baryons. Of all the possible baryons only the protons and neu-

trons are stable, so these are thought to be the only types of baryonic particles significantly

present in the universe. Our visual perception of the universe comes from electromagnetic

radiation, a quantum mechanical description of which introduces the idea of photons. Pho-

tons can interact with matter via scattering processes. Neutrinos on the other hand are

extremely weakly interacting with matter and comes in three flavors, which together with

photons makes up the relativistic material in our present day universe. There is also con-

siderable support for the existence of non-baryonic dark matter, it will be discussed in more

details in chapter 4. The simplest evidence comes from galaxy rotation curves, which shows

the velocity of matter rotating in a spiral as a function of the radius from the center. If a

galaxy has mass M(R) within a radius R, then the balance between the centrifugal force and

gravitational pull demands that -

v2

R
=
GM(R)

R2
(1.2)

which implies that -

v =

√
GM(R)

R
(1.3)

5Source : [1]
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The mass outside R does not contribute to the gravitational pull. At large distances,

enclosing most of the visible part of the galaxy, we expect the total mass to remain constant

and hence the velocity should fall of as square root of R. Instead it is found to remain more

or less constant as shown in figure. 1.4.

Figure 1.4: M33 rotation curve (points) compared with the best fit model (continuous line).
Also shown is the halo contribution (dot-dashed line), the stellar disk (short dashed line)
and the gas contribution (long dashed line).7

The typical velocities at large distances can be three times higher than that predicted by

luminous matter alone, implying ten times more matter than can be directly seen. It is just

about possible given present observations that this matter is completely baryonic. However

many models based on low mass stars and/or brown dwarfs have been excluded and it is

probably difficult to make up all of the halo with them. The popular alternative is to suggest

that this additional density is some new form of non-baryonic dark matter that interacts

extremely weakly with ordinary matter. This is reinforced by higher estimates for matter

density on larger scales.

7Source : [2].
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Chapter 2

The FLRW Universe

2.1 Arriving at the metric

We construct the simplest model of our universe by imposing homogeneity and isotropy.

The geometrical properties of space are determined by the distribution of matter through

Einstein equations. Shouldn’t that imply that the matter distribution should also be homo-

geneous and isotropic? It’s clearly not the case. But on very large scales (of the order 100

Mpc) matter distribution may be described by a smoothed out average density.

The assumption of homogeneity and isotropy singles out a special class of observers,

let’s call them the fundamental observers. Any observer moving with respect to them will

find the universe to be anisotropic. The most general spacetime interval will have the form

ds2 = gijdx
idxj = g00dt

2 + 2g0αdx
αdt− σαβdxαdxβ (2.1)

where σαβ is a positive definite matrix. Isotropy demands that g0α is zero and using the

proper time of clocks carried by the observers, we set g00 to 1. The spacetime interval thus

takes the form

ds2 = dt2 − σαβdxαdxβ = dt2 − dl2 (2.2)
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2.2. ANALYSIS OF THE GEOMETRY

Isotropy implies spherical symmetry, hence the line element may written as -

dl2 = a(t)2[λ(r)2dr2 + r2(dθ2 + sin2θdφ2)] (2.3)

Computing the scalar curvature for this three dimensional space gives us -

3R =
3

2a2r3
d

dr

[
r2
(

1− 1

λ2

)]
(2.4)

Now homogeneity dictates that 3R is a constant, hence equating eq. 2.4 to a constant and

integrating, we get -

r2
(

1− 1

λ2

)
= c1r

4 + c2 (2.5)

where, c1 and c2 are constants. To avoid a singularity at r = 0 we choose c2 = 0. Thus the

full spacetime metric is read off from

ds2 = dt2 − a(t)2
[

dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

]
(2.6)

where a(t) is an overall scale known as the expansion factor. This metric know as the Fried-

mann− Lemaitre− Robertson−Walker (FLRW) metric describes a universe that is spatially

homogeneous and isotropic at each instant of time. This particular coordinate system goes

by the name - comoving coordinates.

2.2 Analysis of the geometry

The spatial hypersurfaces of the Friedmann universe have positive, negative and zero spatial

curvature for k = +1,−1 and 0 respectively. The magnitude of the curvature is 6
a2

as obtained

from eq. 2.4. It is convenient to study the geometry of these spaces by introducing the

coordinate -

χ =

∫
dr√

1− kr2
(2.7)
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2.2. ANALYSIS OF THE GEOMETRY

In terms of (χ, θ, φ) the metric becomes -

ds2 = a2[dχ2 + S2
k(χ)(dθ2 + sin2θdφ2)] (2.8)

where,

Sk(χ) =


sin χ , if k = +1

χ, if k = 0

sinh χ, if k = −1

For k = 0 we obtain the familiar flat Euclidean 3-space.

k = 1 describes a 3-sphere embedded in a 4-dimensional flat Euclidean space described

by -

x21 + x22 + x23 + x24 = a2 (2.9)

where (x1, x2, x3, x4) are the Cartesian coordinates of some abstract 4-dimensional space. The

angular coordinates (χ, θ, φ) on the 3-sphere can be defined as follows -

x1 = a cosχ sinθ sinφ

x2 = a cosχ sinθ cosφ

x3 = a cosχ cosθ

x4 = a sinχ

(2.10)

The entire space of the k = 1 model is covered by the range of angles - [0 ≤ χ ≤ π; 0 ≤
θ ≤ π; 0 ≤ φ ≤ 2π] and has a finite volume of 2π2a3.

k = −1 represents the geometry of a hyperboloid embedded in a 4-dimensional space

with a Lorentzian signature and is described by -

x24 − x21 − x22 − x23 = a2 (2.11)

8



2.3. PARTICLE KINEMATICS

The 3-dimensional hyperboloid may be parametrized by the angular coordinates (χ, θ, φ)

as follows -

x1 = a sinhχ sinθ sinφ

x2 = a sinhχ sinθ cosφ

x3 = a snhχ cosθ

x4 = a coshχ

(2.12)

The entire space of the k = −1 model is covered by the range of angles - [0 ≤ χ ≤ ∞; 0 ≤
θ ≤ π; 0 ≤ φ ≤ 2π] and has infinite volume. Friedmann universes with k = -1, 0 and +1 are

called open, flat and closed respectively.

2.3 Particle kinematics

To study the geodesics in the Friedmann universe we consider a particle of mass m with

4-velocity uµ. Parametrizing by the proper length ds, the zeroth component of the geodesic

equation becomes -

du0

ds
= Γ0

µνu
µuν (2.13)

For the FLRW metric the only non-vanishing component of Γ0
µν is Γ0

ij = (ȧ/a)hij , where

hij is the spatial part of the metric. Using the fact that hijuiuj = |~u|2, the geodesic equation

becomes -

du0

ds
=
ȧ

a
|~u|2 (2.14)

Since (u0)2 − |~u|2 = 1, the geodesic equation may be written as -

1

u0
d|~u|
ds

+
ȧ

a
|~u| = 0 (2.15)

Which implies that |~u| ∝ a−1. In other words the three momentum of the particle red-

shifts as a−1. Further, the above analysis also holds for massless particles, since the factor
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2.4. DYNAMICS OF THE FLRW UNIVERSE

of ds cancels in eq. 2.15. In the quantum mechanical description of light the wavelength is

inversely proportional to the momentum. Thus, as the universe expands, the wavelength of

a freely moving photon increases in proportion to the scale factor. Astronomers talk in terms

of the redshift (z), which is defined as the ratio of the detected wavelength to the emitted

wavelength -

1 + z =
λ0
λ1

=
a(t0)

a(t1)
(2.16)

2.4 Dynamics of the FLRW universe

The dynamics of the expanding universe only appeared implicitly in the scale factor a(t).

To make the time dependence explicit one must solve for the scale factor using the Einstein

equations -

Rµν −
1

2
Rgµν = Gµν = 8πGTµν + Λδµν (2.17)

where Gµν is the Einstein tensor, Tµν is the stress-energy tensor for all the fields present and

Λ is the cosmological constant. To be consistent with the symmetries of the metric the stress-

energy tensor must be diagonal. Further, isotropy dictates that the spatial components must

be equal. The simplest realization of such a stress tensor is that of an ideal fluid, with a time

dependent energy density ρ(t) and pressure p(t) -

T µν = (ρ,−p,−p,−p) (2.18)

The µ = 0 component of the conservation of the stress tensor gives the first law of ther-

modynamics in the familiar form -

d(ρa3) = −pd(a3) (2.19)

For the simplest case of an equation of state given by p = wρ, where w is a constant

10



2.4. DYNAMICS OF THE FLRW UNIVERSE

independent of time, ρ ∝ a−3(1+w). Examples of interest include -

Radiation (p =
ρ

3
) =⇒ ρ ∝ a−4

Matter (p = 0) =⇒ ρ ∝ a−3

Vacuum energy (p = −ρ) =⇒ ρ = constant

(2.20)

The dynamical equations describing the evolution of the scale factor follows from the

Einstein field equations. The non-zero components of the Ricci tensor for the FLRW metric

are as follows -

R00 = −3ä

a

Rij = −
[
ä

a
+

2(ȧ)2

a2
+

2k

a2

]
gij

(2.21)

The Ricci scalar is given by -

R = −6

[
ä

a
+

(ȧ)2

a2
+
k

a2

]
(2.22)

The 0-0 component of the Einstein equation gives the Friedmann equation -

(ȧ)2

a2
+
k

a2
=

8πG

3
ρ (2.23)

while the i-i component gives -

[
2
ä

a
+

(ȧ)2

a2
+
k

a2

]
= −8πGp (2.24)

Of the three field equations, eq. 2.19, eq. 2.23 and eq. 2.24 only two are independent, as

they are related by the Bianchi identities. The difference of eq. 2.24 and eq. 2.23 gives the

equation for the acceleration ä -

ä

a
=
−4πG

3
(ρ+ 3p) (2.25)

11



2.4. DYNAMICS OF THE FLRW UNIVERSE

The expansion rate of the universe is determined by the Hubble parameterH = ȧ/a. H−1

sets the time scale of the universe and is known as the Hubble time/radius. The Hubble

constant (H0), defined in chapter 1, is the present day value of the expansion rate. In terms

of H the Friedmann equation may be recast as -

k

H2a2
= Ω− 1 (2.26)

where Ω = ρ/ρc, and ρc = 3H2/8πG is know as the critical density. Since H2a2 ≥ 0, there

exists a correspondence between the sign of k and Ω− 1 -

k = +1 =⇒ Ω > 1 (Closed)

k = 0 =⇒ Ω = 1 (Flat)

k = −1 =⇒ Ω < 1 (Open)

(2.27)

At early times when the curvature term was negligible, H2 ∝ ρ ∝ a−3 for a matter

dominated universe. While H2 ∝ a−4 for a radiation dominated universe. Since |Ω− 1| is of

the order of unity today, at earlier times -

|Ω− 1| ∝ (a/a0) = (1 + z)−1 (Matter Dominated)

|Ω− 1| ∝ (aEQ/a0)(a/aEQ)2 = 104(1 + z)−2 (Radiation Dominated)
(2.28)

where REQ = 104R0 is the value of R at the transition between matter domination and radi-

ation domination.

If we ignore spatial curvature (k = 0) and take the RHS of the Friedmann equation to be

dominated by a fluid with pressure p = wρ, then we get -

ρ ∝ a−3(1+w)

a ∝ t
2

3(1+w)

(2.29)

which can be suitably adjusted for matter dominated, radiation dominated and vacuum

dominated universe by suitably choosing the value of w.

12



Chapter 3

Thermodynamics of the Universe

Before we begin our study of the early universe let us recapitulate some basic thermody-

namics.

3.1 Equilibrium thermodynamics

The number density (n), energy density (ρ) and pressure (p) of a dilute weakly interacting

gas with g internal degrees of freedom is obtained using the phase space distribution f(~p) -

n =
g

(2π)3

∫
f(~p)d3p (3.1)

ρ =
g

(2π)3

∫
E(~p)f(~p)d3p (3.2)

p =
g

(2π)3

∫
| ~p |2

3E
f(~p)d3p (3.3)

where E = |~p|2 +m2. For a species in kinetic equilibrium f(~p) is given by the Fermi-Dirac or

Bose-Einstein distribution -

f(~p) =
1

exp

(
E−µ
T

)
± 1

(3.4)

13



3.1. EQUILIBRIUM THERMODYNAMICS

where µ is the chemical potential of the species. One can evaluate equations 3.1, 3.2, 3.3

using the equilibrium distribution 3.4 for different cases. In the relativistic limit (T >> m)

and T >> µ -

ρ =
π2

30
gT 4 (BOSE)

=
7

8

π2

30
gT 4 (FERMI)

n =
ζ(3)

π2
gT 3 (BOSE)

=
3

4

ζ(3)

π2
gT 3 (FERMI)

p =
ρ

3

(3.5)

where ζ is the Riemann zeta function. For relativistic bosons or fermions with µ < 0 and

|µ| < T -

ρ = exp

(
µ

T

)
3g

π2
T 4

n = exp

(
µ

T

)
g

π2
T 3

p = exp

(
µ

T

)
g

π2
T 4

(3.6)

14



3.1. EQUILIBRIUM THERMODYNAMICS

In the nonrelativistic limit (m >> T ) p, n and ρ are the same for Bose and Fermi species -

ρ = mn

n = g

(
mT

2π

)3/2

exp[−(m− µ)/T ]

p = nT << ρ

(3.7)

Since energy density and pressure of nonrelativistic species is exponentially smaller that

of the relativistic ones, it is a good approximation to include the contribution of only the

relativistic species in calculating the total energy density -

ρR = g∗

(
π2

30

)
T 4

pR = g∗

(
π2

90

)
T 4

(3.8)

where g∗ gives the total number of effectively massless degrees of freedom -

g∗ =
∑

i=bosons

gi

(
Ti
T

)4

+
7

8

∑
i=fermions

gi

(
Ti
T

)4

(3.9)

For T << MeV the only relativistic particles are the three neutrinos and the photon. As

will be shown in the next chapter, Tν = ( 4
11

)1/3Tγ , thus g∗(<< MeV ) = 3.86. For 1MeV /

T / 100MeV , electrons and positrons are additional degrees of freedom and Tν = Tγ , giving

g∗ = 10.75. For T ' 300MeV , all species in the standard model - 8 gluons, 3 generations

of quarks and leptons, W±, Z0 and one complex Higgs doublet should be relativistic, thus

yielding g∗ = 106.75. The temperature dependence of g∗ and g∗S (defined in the next section)

is shown in figure. 3.1.
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3.2. A BRIEF DISCUSSION ON ENTROPY

Figure 3.1: Evolution of relativistic degrees of freedom assuming standard model.1

3.2 A brief discussion on entropy

During most of the history of the universe , the particle interaction rates were much larger

than the expansion factor, implying that local thermal equilibrium must have existed. This

in turn implies that the entropy per unit comoving volume must have remained constant.

In an expanding universe, the second law of thermodynamics applied to a unit comoving

volume, with physical volume V = a3 gives

TdS = d(ρV ) + pdV (3.10)

where p and ρ are the equilibrium pressure and energy density. Now the integrability con-

1Source [3]
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3.2. A BRIEF DISCUSSION ON ENTROPY

dition reads -

∂2S

∂T∂V
=

∂2S

∂V ∂T
(3.11)

appplying to eq. 3.10, we get -

dp =
ρ+ p

T
dT (3.12)

Substituting eq. 3.12 in eq. 3.10, it follows that -

dS = d

[
(p+ ρ)V

T
+ const.

]
(3.13)

i.e, upto an additive constant the entropy S = a3(ρ+ p)/T . Now the first law can be written

as -

d(ρ+ p)V = V dp (3.14)

Substituting eq. 3.14 in eq. 3.12 , we get -

d

[
(ρ+ p)V

T

]
= 0 (3.15)

which implies that entropy per comoving volume is conserved. It is useful to define the

entropy density s as -

s =
(ρ+ p)

T
(3.16)

The entropy density is dominated by relativistic species, so that to a very good approxi-

mation -

s =
2π2

45
g∗sT

3 (3.17)

17



3.3. THE IDEA OF DECOUPLING

where,

g∗s =
∑

i=bosons

gi

(
Ti
T

)3

+
7

8

∑
i=fermions

gi

(
Ti
T

)3

(3.18)

Conservation of S implies s ∝ a−3 and g∗sa
3T 3 is constant. Since N = na3 -

N ∝ n

s
(3.19)

And hence for a species in thermal equilibrium -

N =
45ζ(3)g

2π4g∗s
(T >> m, µ)

=
45g

4
√

2π5g∗s
(m/T )3/2exp(−m/T + µ/T ) (T << m)

(3.20)

Although the baryon to photon ratio η = nB/nγ = 1.8g∗S(nB/s) does not remain constant

as g∗S is a function of time, after the era of electron positron annihilation, it is a constant. So

η ≈ 7(nB/s) and (nB/s) can be used interchangeably.

The second fact , that S = g∗sa
3T 3 = const. implies that -

T ∝ g−1/3∗s a−1 (3.21)

When g∗S is a constant, the familiar result T ∝ a−1 follows.

3.3 The idea of decoupling

Consider a massless species initially in local thermal equilibrium that decouples at t = tD

when the temperature was TD and the expansion factor aD. After decoupling the energy

of each of the masssless species is redshifted because of the expansion of the universe :

E(t) = E(tD)a(tD)/a(t). In addition the number density of the species falls off as : n ∝ a−3.

18



3.3. THE IDEA OF DECOUPLING

As a result the phase space distribution function will be precisely that of the species in local

thermal equilibrium with a temperature T (t) = T (tD)aD/a(t) -

f(~p, t) = f

(
~p
a

aD
, tD

)
=

1

exp

(
E a
aDTD

)
± 1

(3.22)

Thus the distribution function for decoupled massless particle remains self similar while

the temperature redshifts as a−1.

A similar argument for a massive nonrelativistic species (T << m), for which the

momentum redshifts as : |~p(t)| = |~p(tD)|(a(tD)/a(t)), the kinetic energy as :EK(t) =

EK(tD)a2(tD)/a2(t) and the number density falls off as n ∝ a−3, would imply that that

the decoupled species would have an equilibrium distribution described by -

T = TD
a2D
a2

µ = m+ (µD −m)
T (t)

TD

(3.23)

Ignoring the temperature variation of g∗ , T ∝ a−1, and thus the expansion rate H =

−Ṫ /T . So long as the interactions needed for the distribution function to adjust to the chang-

ing temperature are rapid compared to the expansion, the universe will evolve through a

series of near thermal equilibrium states. The usual rule of thumb is that the reaction is oc-

curring rapidly enough to maintain thermal equilibrium when Γ ' H , where Γ = nσ|~v| is

the interaction rate per particle. Here n is the number density of the target particles, σ is the

interaction cross-section and |~v| the relative velocity appropriately averaged.

Γ < H is not a sufficient condition for departure from equilibrium. The rate of some

reaction that is essential for maintaining thermal equilibrium must be less than H . The

correct way to evolve particle distributions is to integrate the Boltzmann equation as will be
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3.3. THE IDEA OF DECOUPLING

discussed in the next section. For the moment Γ < H (Γ > H) is used as the condition for

the species to be decoupled (coupled) from (to) the thermal plasma of the universe.

Figure 3.2: Rates as a function of the scale factor.2

To demonstrate the above discussion we consider the following two cases : (i) inter-

actions mediated by a massless gauge boson, e.g. the photon and (ii) those mediated by

massive gauge bosons, e.g. W± and Z0, below the scale of electroweak symmetry breaking

(T / 300 GeV ). The rates of these interactions as a function of the scale factor is shown

in figure. 3.2. In the first case, for a 2 ↔ 2 scattering of relativistic particles with sig-

nificant momentum transfer, σ ∼ α2/T 2 ( g =
√

4πα is the gauge coupling strength). In

the second case for T / mX , σ ∼ G2
XT

2, where mX is the mass of the gauge boson and

GX ∼ α/m2
X . For T >> mX the cross section is same as that for massless gauge bosons.

Thus for the first case Γ ∼ α2T and during the radiation dominated epoch H ∼ T 2/m2
pl,

so that Γ/H ∼ α2mpl/T . Therefore for T / α2mpl ∼ 1016GeV such reactions are occurring

rapidly while for T ' α2mpl ∼ 1016GeV such reactions have essentially frozen out. For in-

2Source [4]
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3.4. THE BOLTZMANN EQUATION

teractions mediated by the massive gauge bosons Γ ∼ G2
XT

5 and Γ/H ∼ G2
XmplT

3. Thus

for mX >> T >> G
2/3
X m

−1/3
pl ∼ (mX/100 GeV )4/3 MeV such reactions are occurring

rapidly, while for T / (mX/100 GeV )4/3 MeV such reactions have effectively frozen out.

For T ' α2mpl ∼ 1016GeV , which corresponds to times earlier than 10−38s all perturba-

tive interactions are frozen out and thus ineffective in maintaining or establishing thermal

equilibrium. Perhaps there are other unknown interactions that thermalize the universe at

such early epochs or maybe the universe was not in thermal equilibrium during it’s earliest

epoch.

3.4 The Boltzmann equation

For most of the history of the universe, it’s constituents have been in thermal equilibrium,

making the equilibrium description a good approximation. However there have been a

number of notable departures from equilibrium, resulting in some important relics. We

have already given a simplistic description of decoupling in the previous section, however

the evolution of particle distributions near the epoch of decoupling is challenging.

In order to properly treat decoupling one must follow the particles microscopic phase

space distribution f(xµ , pν), which is governed by the Boltzmann equation -

L̂[f ] = Ĉ[f ] (3.24)

where C is the collision operator and L̂ the liouville operator, whose covariant relativistic

generalization is given by -

L̂ = pα
∂

∂xα
− Γαβγ p

βpγ
∂

∂pα
(3.25)

For the FRW model, space is homogeneous and isotropic which implies f = f(E, t), so

the Liouville operator becomes -

L̂[f(E, t)] = E
∂f

∂t
− ȧ

a
|~p|2 ∂f

∂E
(3.26)
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3.4. THE BOLTZMANN EQUATION

Using the definition of number density eq. 3.1 and integrating by parts, the Boltzmann

equation may be written as -

dn

dt
+ 3

ȧ

a
n =

g

2π3

∫
C[f ]

d3p

E
(3.27)

The collision term for the process ψ + a+ b+ ...↔ i+ j + ... is given by -

g

2π3

∫
C[fψ]

d3pψ
Eψ

= −
∫
d
∏
ψ

d
∏
a

d
∏
b

... d
∏
i

d
∏
j

... × (2π)4δ4(pψ + pa + ...− pi − pj...)

× [|M |2ψ+a+b+...→i+j+...fψfafb...(1± fi)(1± fj)...

− |M |2i+j+...→ψ+a+b+...i+j+...fifjfk...(1± fψ)(1± fa)...]
(3.28)

where f’s are the phase space distributions for the different species. Here "+" applies to

bosons and "−" to fermions; and -

d
∏

=
g

(2π)3
d3p

E
(3.29)

where g counts the internal degrees of freedom, the delta function imposes energy momen-

tum conservation and the matrix element squared |M |2 is averaged over all initial and final

spins.

The Boltzmann equation gives a set of integral partial differential equations. There are

two well motivated approximations that greatly simplify eq. 3.28. The first is the assumption

of T or CP invariance which implies -

|M |2ψ+a+b+...→i+j+... = |M |2i+j+...→ψ+a+b+...i+j+... (3.30)

The second assumption is the use of Maxwell-Boltzmann statistics instead of FD or BE

statistics. In the absence of Bose condensate and Fermi degeneracy, the blocking and stim-
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3.4. THE BOLTZMANN EQUATION

ulated emission factors may be ignored (1 ± f ≈ 1). And f(Ei) = exp(−(Ei − µ)/T ). With

these two assumptions the Boltzmann equation can be recast in the form -

ṅψ + 3 H nψ = −
∫
d
∏
ψ

d
∏
a

d
∏
b

... d
∏
i

d
∏
j

... × (2π)4δ4(pψ + pa + ...− pi − pj...)

× |M |2[fψfafb...− fifj...]
(3.31)

It is useful to scale out the expansion of the universe by using the entropy density s and

defining the dependent variable Y = nψ/s. Using the conservation of entropy (sa3 = const.),

we get -

ṅψ + 3 H nψ = sẎ (3.32)

Furthermore, since the interaction term will depend explicitly on the temperature rather

than time, it is useful to define as the independent variable (x = m/T ). During the radiation

dominated epoch x and t are related by -

t = .301g−1/2∗
mpl

T 2
= .301g−1/2∗

mpl

m2
x2 (3.33)

So the Boltzmann equation may be written as -

dY

dx
= − x

H(m) s

∫
d
∏
ψ

d
∏
a

d
∏
b

... d
∏
i

d
∏
j

... × (2π)4δ4(pψ + pa + ...− pi − pj...)

× |M |2[fψfafb...− fifj...]
(3.34)

where H(m) = 1.67g
1/2
∗

m2

mpl
and H(x) = H(m)x−2.
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Chapter 4

Thermal History and Decoupling

4.1 Summary of the thermal history of the universe

The thermal history of the universe is based upon extrapolating our present knowledge of

the universe and particle physics back to the planck epoch (t ≈ 10−43 or T ≈ 1019GeV ), the

point at which quantum corrections to general relativity sets in. At the earliest times the

universe was a plasma of relativistic particles, including quarks, leptons, gauge bosons and

Higgs bosons. A number of spontaneous symmetry breaking (SSB) phase transitions must

have taken place in the early universe. Theses include grand unification phase transitions

at a temperature of 1014 GeV to 1016 GeV and electroweak SSB phase transition at about 300

GeV. During these transitions some particles and gauge bosons acquire mass via the Higgs

mechanism and the full symmetry of the theory is broken down to a lower symmetry. Subse-

quent to these phase transitions, interactions mediated by theX bosons which acquire mass,

are now characterized by a coupling strength GX as discussed earlier. Particles interacting

only via these X bosons will thus decouple from the thermal plasma at T ≈ G
−2/3
X m

−1/3
pl .

At a temperature of about 100 MeV to 300 Mev the universe should undergo a transition

associated with chiral symmetry breaking and colour confinement, after which strongly in-

teracting particles form colour - singlet - quark - triplet states (baryons) and colour - singlet

- quark - antiquark states (mesons). The epoch of nucleosynthesis follows when t ≈ 10−2s

to 102s and T ≈ 10MeV to 0.1MeV . At a time of about t ≈ 1011s the matter density becomes

equal to that of radiation, which marks the beginning of the current matter dominated epoch

and the start of structure formation. Finally at a time of about 1013s, the ions and electrons

combine to form atoms, matter and radiation decouples, ending the epoch of near thermal
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4.2. NEUTRINO DECOUPLING

equilibrium that existed in the early universe. The surface of last scattering of the cosmic

microwave background radiation is the universe itself at decoupling. We will now discuss

some of these events in more details.

Figure 4.1: The complete history of the universe.1

4.2 Neutrino decoupling

In the early universe three species of left handed neutrinos and their CP conjugated states are

excited in the primeval plasma. They are maintained in kinetic and chemical equilibrium by

leptons, baryons and photons via weak interactions. In this regime the neutrino distribution

is the Fermi-Dirac type, with negligible contribution of mass to the energy. The temperature

is that of the photons which falls off as a−1, because of entropy conservation, except near the
1Source : [3]
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4.2. NEUTRINO DECOUPLING

times when particles disappear from the thermal bath releasing their energy to the lighter

particles. For the time being we will neglect the chemical potential for the neutrinos.

From our discussion in section 3.3, we can get a quick estimate of the neutrino decou-

pling temperature. The leading process responsible for keeping the neutrinos in thermal

equilibrium with the plasma is e+e− ↔ νν̄. Recalling the case when the temperature T is

smaller than the masses of the Z±, W bosons and that H ≈ √g∗T 2/mpl for the radiation

dominated epoch, the decoupling temperature is given by -

G2
XT

5
νD =

√
g∗T

2
νD/mpl =⇒ TνD ≈ g1/6∗ MeV (4.1)

We see that this temperature is of the order of MeV. Only photons, electrons / positrons

and the neutrinos themselves contribute to g∗ at this temperature, and thus -

g∗ = 2 +
7

8
× 4 +

7

8
× 6 =

43

4
= 10.75 (4.2)

A more refined calculation of the decoupling temperature can be done by soving the

Boltzmann equations in terms of the x = ma and y = pa, with m some suitable mass scale -

Hx
∂fνe
∂x

= −80G2
X(g̃l2R + gl2R )m9

3π3x5
yfe

Hx
∂fνµ,τ
∂x

= −80G2
X(gl2R + gl2R )m9

3π3x5
yfµ,τ

(4.3)

To obtain these expressions one uses neutrino interaction rate amplitudes [5], and ap-

proximates the particle distributions as Boltzmann functions. Because during radiation

domination H ∝ a−2, the solutions are functions of the combination x/y3 or yT 3. In particu-

lar the decoupling temperatures are found to be TνD = 2.7y−1/3 MeV and TµD,τD = 4.5y−1/3

MeV. Taking the average value of momenta y ≈ 3, we get TνD = 1.87 MeV and TµD = 3.12

MeV. The slightly lower value for νe is because they can interact with the electrons and
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4.2. NEUTRINO DECOUPLING

positrons via charged current processes in addition to neutral currents, so they remain in

equilibrium slightly later. The limit in which we consider the decoupling as an instanta-

neous event happening at TνD , is known as the instantaneous decoupling limit. However,

decoupling actually happen over a finite time interval, as the interaction cross-sections are

energy dependent and not all neutrinos have the same momentum. Implying that high en-

ergy neutrinos will be kept at thermal equilibrium longer than the ones with lower energy.

After decoupling, they propagate freely, their distribution remains unchanged except for

the redshift of momentum. They are an example of hot relics (decouples when relativistic).

In the instantaneous decoupling limit the, the distribution of the neutrinos after decoupling

is given by eq. 3.22 with a + sign (F-D statistics).

The neutrino to photon temperature ratio after neutrino decoupling can be determined

from entropy conservation of the electromagnetic plasma. When the temperature drops be-

low a Tann comparable to the electron mass, e± pair annihilation’s cannot be sufficiently

compensated for by inverse pair productions. Subsequently all electrons and positrons dis-

appear except for a tiny relic electron density constrained by electric neutrality. As a result

photons are heated, and their temperature in this phase is not decreasing as a−1. In the in-

stantaneous decoupling limit, neutrinos are left undisturbed by e± pair annihilation. For

T >> me, electrons and positrons are still relativistic, implying -

g∗s = 2 +
7

8
(2 + 2) =

11

2
(4.4)

In the opposite limit, electrons and positrons are no longer relativistic, hence -

g∗s = 2 (4.5)

Since entropy per comoving volume is conserved and Tν ∝ a−1 -

g∗s(T )
T 3

T 3
ν

= constant (4.6)
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4.3. RECOMBINATION

At neutrino decoupling, T = Tν . And after the e± annihilation phase (T << me), the

value of g∗s drops, giving -

11

2
= 2

T 3

T 3
ν

=⇒ Tν
T

=

(
4

11

)1/3

(4.7)

Using the know value of CMB today, T0 = 2.725 K, we see that the neutrinos are as cold

as Tν,0 = 1.945 K.

4.3 Recombination

When the temperature drops to about 1 eV, photons are still tightly coupled to electrons and

electrons to protons. Even though energetics favor otherwise, there is very little Hydrogen,

due to the large photon to baryon ratio. As long as the reaction e− + p ↔ H + γ is in

equilibrium, it follows from the Boltzmann equation that (Saha approximation)

npne
nH

=
n0
pn

0
e

n0
H

(4.8)

where n is the number density as discussed earlier, the subscripts e, p and H, corresponds

to free electrons, protons and Hydrogen atom respectively. n0
i is given by -

n0
i = gi

∫
d3p

2π3
exp

(
−Ei
T

)
= gi

(
miT

2π

)3/2

exp

(
−mi

T

)
(mi >> T )

= gi
T 3

π2
(mi << T )

(4.9)

We define the free electron fraction

Xe =
ne

ne + nH
(4.10)

further, electric neutrality demands ne = np. Evaluating the integrals on the RHS of eq. 4.8,

we get -

X2
e

1−Xe

=
1

ne + nH

[(
meT

2π

)3/2

e−[me+mp−mH ]/T

]
(4.11)
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4.3. RECOMBINATION

where we have neglected the mass difference of H and p in the prefactor. The exponential

can be written as (−ε0/T ), where ε0 = me+mp−mH . Neglecting the relatively small number

of Helium atoms, the denominator is approximately equal to the baryon number density

(≈ 10−9T 3). So when the temperature is of the order of ε0, the RHS is of the order ≈ 1015.

In that case the above equation is satisfied only when Xe ≈ 1 : all Hydrogen is ionized. In

order to follow the free electron fraction accurately, we need to solve the Boltzmann equation

explicitly. After simplification we get -

dXe

dt
= [(1−Xe)β −X2

enbα
(2)] (4.12)

where the ionization rate is given by -

β = 〈σv〉
(
meT

2π

)3/2

eε0/T (4.13)

and the recombination rate -

α(2) = 〈σv〉 (4.14)

The only way for recombination to proceed is via the capture of an electron to some

excited state of Hydrogen, then to a good approximation -

α(2) = 9.78
α2

m2
e

(ε0/T )1/2ln(ε0/T ) (4.15)

The Saha approximation does a good job at predicting the redshift of recombination,

however for a detailed evolution of Xe, one needs to use eq. 4.12, the numerical integration

results of which are shown in figure. 4.2. Recombination at z ≈ 1000 is directly tied to

decoupling of photons from matter, it occurs roughly when the rate of photons to Compton

scatter off electrons becomes smaller than the expansion rate. The scattering rate is given by

-

neσT = XenbσT (4.16)
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where σT = 0.665 × 10−24cm2 is the Thomson scattering cross - section. nb can be elimi-

nated for Ωbh
2, where h is a parameter that sets the uncertainty in the measured value of the

expansion rate. So we get -

neσT = 7.477× 10−30cm−1XeΩbh
2a−3 (4.17)

Dividing by the expansion rate, gives us -

neσT
H

= 0.0692 XeΩbha
−3H0

H
(4.18)

Further analysis of the above equation indicates that photons decouple when the free

electron fraction drops below 10−2. From figure. 4.2, we see that Xe drops very quickly from

unity to 10−3 around z ≈ 1000. Thus decoupling takes place during recombination.

Figure 4.2: Free electron fraction as a function of redshift.2

2Source : [4]
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4.4 WIMP decoupling and dark matter

There is strong evidence for non-baryonic dark matter in the universe with Ωdm ≈ 0.3, the

most accurate value comes from the Planck collaboration. Standard candles that can be seen

at largest distance are type Ia supernova. Figure. 4.3 shows a Hubble diagram for something

known as the luminosity distance as a function of redshift. The three curves depicts three

different possibilities : flat matter dominated, open and flat with cosmological constant.

The current best fit is a universe with about 70% of the energy in the form of cosmological

constant or some other form of dark energy.

Figure 4.3: Hubble diagram for distant type Ia supernova - apparent magnitude (indicator
of distance) as a function of redshift.4

Figure. 4.4 shows the predictions of big bang nucleosynthesis for light element abun-

dances. The boxes and arrows show the current estimates, which happen to be consistent

with the predicted values. Since we know how densities scale as the universe evolves, we

can turn the measurement of light element abundance to a measure of baryon density to-

4Source : [4]
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day. In particular the abundance of primordial deuterium pins down the baryon density

extremely accurately to only a few percent of the critical density. Baryons contribute atmost

5% of the critical density. Since the total matter density today is almost certainly larger than

this, nucleosynthesis provides a compelling evidence for non-baryonic dark matter.

Figure 4.4: Constraints on baryon density from big bang nucleosynthesis5

The most plausible candidate for dark matter is a weakly interacting massive particle

(WIMP), which was in close contact with the rest of the cosmic plasma at high tempera-

tures, but they experienced freeze-out as the temperature dropped below their mass, and

annihilations were no longer capable of maintaining equilibrium. We will try to solve the

5Source : [4]
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Boltzmann equation for such a particle and determine the epoch of freeze - out and their

relic abundance. By fixing the relic abundance to Ωdm, we can learn about their mass and

cross-section. We can then use this knowledge to detect such particles in the laboratory.

In the generic scenario two WIMP’s (X) can annihilate into two light particles l. The light

particles are assumed to be tightly coupled to the cosmic plasma, thus, nl = n0
l . Using the

Boltzmann equation, one can thus write -

a−3
dnX
dt

= 〈σv〉
[
(n0

X)2 − n2
X

]
(4.19)

Using the fact that the temperature scales as a−1 and defining -

Y =
nX
T 3

(4.20)

eq. 4.19 can be written as -

dY

dt
= T 3〈σv〉

[
Y 2
EQ − Y 2

]
(4.21)

with YEQ = n0
X/T

3. As before, we introduce the new time variable -

x =
m

T
(4.22)

where m is the mass of the WIMP. Dark matter production typically occurs deep in the

radiation era, thus using the results of section 3.4, eq. 4.21 can be written as -

dY

dx
= − λ

x2

[
Y 2
EQ − Y 2

]
(4.23)

where the ratio of annihilation rate to expansion rate is parametrized by -

λ =
m3〈σv〉
H(m)

(4.24)
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which we will assume to be a constant.

Figure 4.5: Abundance of heavy stable particle, as temperature drops below it’s mass.6

Well after freeze-out, Y will be much larger than YEQ : the X particles will not be able to

annihilate fast enough to maintain equilibrium. Thus at late times -

dY

dx
≈ − λ

x2
Y 2 (x >> 1) (4.25)

Integrating from the epoch of freeze-out (xf ) until very late times (x =∞), we get -

1

Y∞
− 1

Yf
=

λ

xf
(4.26)

6Source : [4]
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Typically Yf is much greater than Y∞, so a simple analytic approximation is -

Y∞ ≈
xf
λ

(4.27)

A simple order of magnitude estimate for the dark matter problem is xf ≈ 10. Figure.

4.5 shows the numerical solution to eq. 4.23, for different values of λ. The rough estimate

Y∞ ≈ 10/λ, is seen to be a good approximation for the relic abundance. One should also note

from figure. 4.5, that the distinction between Bose-Einstein, Fermi-Dirac and Boltzmann

statistics is relevant only for temperatures above the mass of the WIMP. For temperatures

relevant to freeze-out, Boltzmann distribution is a good approximation. After freeze-out the

heavy particle density simply falls off as a−3. So it’s energy density today is m(a31/a
3
0) times

the number density. Here a1 corresponds to times when Y has reached it’s asymptotic value

Y∞. The number density at that time is Y∞T 3
1 . So -

ρX = mY∞T
3
0

(
a1T1
a0T0

)3

≈ mY∞T
3
0

30
(4.28)

where (a1T1/a0T0)
3 ≈ 1/30, follows from an analysis for g∗s , similar to that of section. 4.2.

To find the fraction of the critical density contributed by X today, we insert the expressions

for Y∞ and ρc -

ΩX =
xf
λ

mT 3
0

30ρc
=

H(m)xfT
3
0

30m2ρc〈σv〉
(4.29)

So to find the present density of these heavy particles, we need to know the Hubble rate

when the temperature was equal to X mass (H(m)), for which we need the energy density

when the temperature was equal to m. The energy density in the radiation era is given by

eq. 3.8. Therefore -

ΩX =

[
4π2Gg∗(m)

45

]1/2
xfT

3
0

30m2ρc〈σv〉
(4.30)

which implies that it is the cross-section that determines the relic abundance rather than

the mass, which is still there but implicitly. At the temperatures of interest for dark matter
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production (T ≈ 100GeV ), g∗(m) includes all particles of the standard model and is of the

order 100. Normalizing g∗ and xf by their nominal values, we get -

ΩX = 0.3h−1
(
xf
10

)(
g∗s(m)

100

)1/2
10−39cm2

〈σv〉
(4.31)

The fact that this estimate is of order unity for cross-section of order 10−39cm2 is a good

sign : there are several theories that predict particles with cross-sections this small. It is easy

to see that the standard model of particles contains no suitable candidates. The Z0 and H0

are neutral and massive, but have lifetimes of only a fraction of a second and hence are not

viable candidates for structure formation. The only known stable baryon is the proton which

is not invisible. The neutron if free decays within 10 minutes and if bound to the nucleus it

counts as visible matter. The three known neutrinos have masses below 1 eV, which makes

them hot at the time of structure formation, something that is disfavored by observations

The most notable of the theories for dark matter is supersymmetry, the theory predicts

that every particle has a partner with opposite statistics. Also, supersymmetry is broken and

these partners are massive with masses greater than 10 - 100 GeV. Now these particles must

be neutral and stable. The first condition requires it to be a partner of a neutral particle like

the Higgs or photon. The second condition requires them to be the lightest (LSP for Lightest

Supersymmetric Particle).

Among alternate models can be mentioned those with universal extra dimensions

Kaluza-Klein (KK) models. The lightest electrically neutral particle in this model is a U(1)

boson. An analysis of the present LHC limit gives a limit > 600 -700 GeV , for the mass scale

of these models. One may even construct a minimilastic model of dark matter by extend-

ing the Standard Model with one extra singlet or doublet Higgs. Although this model is

still viable, the currently allowed parameter space is on the verge of being greatly reduced

with the next generation of experiments. All the discussed models fall under the category

of WIMP. Of course, there are candidates that have other motivations from particle physics,

we will not be discussing them here.

36



4.4. WIMP DECOUPLING AND DARK MATTER

Experimentally there are atleast three ways to decipher the mystery of dark matter. These

are direct detection, indirect detection and production at colliders. Direct detection’s are

commonly carried out in underground laboratories, they rely on signals from interaction of

dark matter with ordinary matter. Indirect detection is often carried out in outer space where

one searches for relic signatures from dark matter annihilations during thermal freeze-out

in the early universe. Collider searches such as that at LHC, looks for production of dark

matter from standard model particles. Figure. 4.6 shows the constraints on the available

parameter space of existing WIMP dark matter models, from various experiments. For a

detailed discussion see [6].

Figure 4.6: Experimental upper limits for the WIMP nucleon cross-section as a function of
WIMP mass.8

8Source : [6]
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Chapter 5

Summary

So we are at the end of the thesis, lets take a final look back and ask, how far have we come

from where we began? We started out by highlighting some of the cornerstones of modern

cosmology, thus motivating what lay ahead. We then tried to describe the simplest model

of the universe in an even simpler way. Our cherished concepts from statistical mechanics

were adopted to apply to our universe at large. We stood witness to the marriage between

particle physics and the ideas we developed in cosmology. This in turn led to the idea of

decoupling and thermal relics, which stands as one of the strongest evidence in support of

big bang cosmology. Decouplings are perhaps the most important events in the thermal

history of our universe. To develop a better understanding of these events, we explored

some of them from first principles. Along the way, we motivated the need for non-baryonic

dark matter in the universe, and discussed the decoupling of one of the most plausible dark

matter candidate called WIMP. We have definitely come a long way ∼ 379,000 years upto

the time of recombination. But we have certainly not done justice to it, trying to capture it

in some 40 pages. There is still a long road in spacetime to cover and a lot more to explore,

but let’s leave that for another thesis.
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