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ABSTRACT

The behavior of open quantum systems has attracted considerable attention over the years

and these studies have revealed that the interaction between the system and environment

is key to unraveling how this classical world arises from the essentially non-intuitive prin-

ciples of quantum mechanics. Decoherence provides us answers about why we see clas-

sical particles in definite positions, for instance, instead of a superposition of them and it

seeks to explain how certain variables of the system are preferred over others in terms of

showing classical behavior at the system level even when the dynamics of the combined

environment-system is essentially quantum. In this piece of work, after providing the moti-

vation behind the search for a theory of open quantum systems and a brief introduction to

the theory, we try to apply it to simple open quantum systems to bring out the prime impli-

cations of the theory. We also rederive the results of a classic paper by Unruh and Zurek on

decoherence in a model of quantum Brownian motion.
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Chapter 1

Contrasting quantum and classical: a short
review of concepts and tools

1.1 Introduction

The view of the physical world as offered by classical mechanics was very intuitive, as it

corresponded to our direct experience. The advent of quantum mechanics altered this world

view drastically, and in many ways that are quite non-intuitive. But out of all the ways in

which quantum mechanics differs from classical mechanics, perhaps the most poignant one

is its departure from the latter in terms of the description, and possibilities, of a physical

system. Instead of describing a system in terms of individual position and momenta {xi, pi}

and their functions, quantum mechanics, in its most standard formulation, describes it by

a state vector in an abstract Hilbert space. The fact that a superposition of such states is

also a valid physical state lies at the heart of most of the surprising predictions of quantum

mechanics . In this chapter, we shall try to introduce the reader to some of these predictions

and ask why such effects are not so much visible at the macroscopic scale . Then we shall

try to convince the reader that the causes of the classical behavior of systems can be traced

back to interactions with the environment . After that, we shall introduce certain tools that

will enable us to study open quantum systems before delving into a formal study of open

quantum systems in the next chapter.
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1.2. THE SUPERPOSITION PRINCIPLE

1.2 The superposition principle

Let {|ψn〉} be a set of physical quantum states of a system . Then according to the superposi-

tion principle of quantum mechanics [2]

|Ψ〉 =
∑
n

cn |ψn〉 (1.1)

is also a valid physical quantum state for the system for arbitrary complex coefficients

cn. (Following the standard textbook formulation, one may impose the normalization∑
n |cn|2 = 1 to make it a normalized state.) For example, if |0〉 and |1〉 respectively rep-

resent the spin-up and spin-down states of a spin-1
2

particle, then

|ψ〉 =
1√
2

(|0〉+ |1〉) (1.2)

is also a valid spin state of the particle. We shall use the example of a superposition of

two position states to show the meaning and non-trivial implications of the superposition

principle.

1.2.1 The double-slit experiment

In the double-slit experiment, we permit a beam of electrons pass through two slits and

observe the pattern on a distant screen. Let us name the slits as, 1 and 2. First, we close

slit 2 and fire the electron beam at the slits. The electrons that come out on the other side,

disregarding for the time being the very interesting phenomenon of quantum tunneling,

must have gone then through slit 1. Let us denote by |ψ1〉 the state of the electron after

passing thus through slit 1. Analogously, we keep slit 2 open and close slit 1 to obtain the

electron in state |ψ2〉. Now if the electron is described by |ψi〉, i.e. it passed through the ith

slit , then the probability density distribution of the electron at the screen, ρ(x) will be given

by

ρ(x) =
∣∣〈x|ψi〉∣∣2 =

∣∣ψi(x)
∣∣2 . (1.3)

If we assume that each electron passed through either one of the slits, then the density dis-

tribution should have been given by

ρ(x) =
∣∣〈x|ψ1〉

∣∣2 +
∣∣〈x|ψ2〉

∣∣2 =
∣∣ψ1(x)

∣∣2 +
∣∣ψ2(x)

∣∣2 , (1.4)
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1.2. THE SUPERPOSITION PRINCIPLE

where we are just adding the density distributions of the electrons coming through each slit.

But we observe that the density distribution is found to be

ρ(x) =
1

2

∣∣ψ1(x)
∣∣2 +

1

2

∣∣ψ2(x)
∣∣2 + Re{ψ1(x)ψ∗2(x)} =

1

2

∣∣〈x|ψ1〉+ 〈x|ψ2〉
∣∣2 , (1.5)

which means that the state of the electrons after passing through the slits must be described

by

|ψ〉 =
1√
2

(|ψ1〉+ |ψ2〉) . (1.6)

A superposition such as Eq. (1.6) does not represent the state of a particle which “actually”

went through either one of the slits 1 or 2 with equal probabilities, nor does it refer to the

limitation in our knowledge about which slit the electron went through . Rather Eq. (1.6)

contains all the information that can be known about the system and describes a state in

which both the components are simultaneously present at all times .

Conclusion: This example beautifully presents the implications and meaning of the state-

ment that a superposition of physically realizable states can also be a valid physical state in

standard quantum mechanics. In this example, the electron, at the level of the slits, is simul-

taneously present at two distinct positions (slits) - a very non-classical state of affairs. Also,

the coherence between the components ψ1(x) and ψ2(x) in the state ψ(x) given by Eq. (1.6)

is represented by the interference term, Re{ψ1(x)ψ∗2(x)}, in Eq. (1.5).

1.2.2 Observability of interference effects at macroscopic level

In the previous section, we discussed how superposition effects are easily visible at the sub-

atomic scales. But as we go on to macroscopic scales, such interference effects, which reveal

the quantum nature of systems, become really difficult to observe. In the usual textbook

study of quantum mechanics, the unobservability of interference phenomena at macroscopic

level is associated with our inability to experimentally probe scales which are necessary to

resolve such patterns. For example, the wavelength λ associated with the matter wave of a

particle of mass m moving with a velocity v is typically given as the de Broglie wavelength:

λ =
h

mv
, (1.7)

where h is the Planck’s constant .

For a particle of mass 1 gm moving with a velocity of 1 m/s, this wavelength equals

3



1.2. THE SUPERPOSITION PRINCIPLE

6.626×10−29 cm which is too small to be resolved with the current experimental techniques .

But what is often neglected while answering these questions is the fact that the environment

starts becoming ever more important as we increase the size of the system.

Not only that , recent experiments have been able to create these interference patterns with

molecules as large as C70 and they have revealed that these interference patterns start dis-

appearing as we keep increasing the rate of environmental interaction. To emphasize the

importance of the environmental interaction in the disappearance of interference patterns

and hence in the loss of quantum behavior of systems, we shall discuss a recent experi-

ment which studied the effect of environment on the interference pattern created by C70

molecules.

1.2.3 Interferometry with C70 molecules and decoherence

Figure 1.1: Decrease of interference effects
from the left panel to the right panel due to
an increase of surrounding air pressure. The
x-axis is the position of the third grating in
the experiment, which acts as a mask that is
moved transverse to the beam and in front of
the detector to measure the interference pat-
tern produced by the first two gratings. [Fig-
ure taken from [7] ]

We have already seen how interference ef-

fects were observed in double-slit experi-

ments with electrons and discussed, in the

previous section, the difficulty of observ-

ing interference effects for macroscopic ob-

jects. But recent advances in experimen-

tal methods have enabled experimentalists

to observe interference effects in molecules

having a mass exceeding 10000 amu and

containing more than 810 atoms [6]. Here

we shall discuss an experiment carried out

by Hackermüller et al. [7] which showed

the existence of interference effects with C70

molecules and suppression of interference

due to interaction with gas molecules in the

setup. OneC70 molecule is almost seven hun-

dred thousand times heavier than an electron.

The de Broglie wavelengths were of the order of a few picometers with the velocities em-

ployed, but the experimentalists employed some clever techniques to observe the interfer-
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1.2. THE SUPERPOSITION PRINCIPLE

ence with even such minute de Broglie wavelengths (see [11], Section 6.2 for a brief discus-

sion of the experimental procedure). But what is important for our discussion is the fact that

they were able to observe a reduction in the strength of interference when the gas pressure

in the experimental setup was increased. This fits in neatly into the paradigm of decoher-

ence since an increase in gas pressure will increase the interaction of the C70 molecules with

the gas molecules and the increased environmental interaction leads to increased decoher-

ence. This variation is visible in Fig. 1.1. In fact, these experimentalists were able to study

the gradual decrease of interference effects with the increase of air pressure by defining a

quantity called visibility V (p) by

V (p) =
cmax(p)− cmin(p)

cmax(p) + cmin(p)
, (1.8)

where cmax(p) and cmin(p) are the maximum and minimum amplitudes, respectively, at pres-

sure p. For a perfect interference pattern, cmin(p) = 0 and hence V (p) = 1. For no interfer-

ence at all, cmin(p) = cmax(p) giving rise to V (p) = 0. The experimentalists increased the air

pressure gradually and found out that visibility decreased linearly with the increase in air

pressure. This variation is shown in Fig. 1.2.

Figure 1.2: Decrease of visibility of the inter-
ference pattern with increasing air pressure.
[Figure taken from [7]]

These experiments indicate the trend of

observing interference effects in bigger and

bigger objects, and it seems increasingly

likely that we might be able to produce

interference effects between objects large

enough to be visible to the naked eye. But

what is even more interesting is the fact that

we now have definite proof that environ-

mental interaction plays a major part in the

loss of coherence of quantum states. Mo-

tivated by such results, we shall set out to

study the theory of open quantum systems

and learn some of the necessary tools in the

next few sections.
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1.3. OPEN QUANTUM SYSTEMS: NECESSARY TOOLS

1.3 Open quantum systems: necessary tools

In the previous section, we saw an experiment that showed us how environmental interac-

tion can affect the dynamics of a system and renders its quantum properties unobservable.

This is one of the motivations for us to study open quantum systems to see if we can get a

quantitative measure of the environment’s effect on the properties of the system. But such a

study in the framework of quantum mechanics necessitates a familiarity with certain tools

and concepts, such as entanglement, density matrices, Wigner functions, etc. So, before go-

ing to the study of open quantum systems in the next chapter, we shall discuss these tools

in the subsequent sections.

1.4 Entanglement

Let us consider a quantum system S that is composed of two subsystems SA and SB. The

two subsystems SA and SB are said to be entangled with one another if the state of the

system S cannot be written as a product of any two states of the individual subsystems. That

is, the total state |Ψ〉 of the entire system S cannot be decomposed in the form

|Ψ〉 = |ψ〉A ⊗ |φ〉B = |ψ〉A |φ〉B . (1.9)

for any two states |ψ〉A of SA and |φ〉B of SB. We shall now discuss the Bell states as a simple

example of entangled states . If we consider a system of two spin-half particles A and B,

described by their respective two-dimensional orthonormal bases {|↑〉i , |↓〉i} where i = A,B,

then the Bell states given by ∣∣Ψ±〉 =
1√
2

(
|↑〉A |↑〉B ± |↓〉A |↓〉B

)
(1.10)∣∣Φ±〉 =

1√
2

(
|↑〉A |↓〉B ± |↓〉A |↑〉B

)
. (1.11)

are entangled states and for any Bell state |Ψi〉 we claim that we cannot find any two states

|ψ〉A and |φ〉B such that

|Ψi〉 = |ψ〉A |φ〉B . (1.12)

Proof : Let us take, for example, the Bell state∣∣Φ+
〉

=
1√
2

(
|↑〉A |↓〉B + |↓〉A |↑〉B

)
. (1.13)
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1.5. THE DENSITY MATRIX FORMALISM OF QUANTUM MECHANICS

Let us say that there exist states |ψ〉A and |φ〉B of the form

|ψ〉A = a |↑〉A + b |↓〉A and (1.14)

|φ〉B = c |↑〉B + d |↓〉B (1.15)

such that ∣∣Φ+
〉

= |ψ〉A |φ〉B . (1.16)

Now,

|ψ〉A |φ〉B = ac |↑〉A |↑〉B + ad |↑〉A |↓〉B + bc |↓〉A |↑〉B + bd |↓〉A |↓〉B . (1.17)

Comparing this with Eq. (1.13), we find

ad = bc =
1√
2
, (1.18)

ac = bd = 0 . (1.19)

The equations in the first line of Eq. (1.19) imply that all the coefficients a, b, c, d have to

be non-zero, whereas those in the second line imply otherwise . Hence the equations are

inconsistent and the state
∣∣Φ+

〉
is not separable, i.e. it is entangled . The same can be shown

for the other three Bell states .

Let us pause for a moment to appreciate what the idea of entanglement physically cor-

responds to. It basically means that no individual quantum state can be ascribed to any two

quantum subsystems that are entangled with one another and only a total state exists for

the entire system . The idea of entanglement between the system and the environment and

hence the loss of definite phase relations between the states of the system shall prove to be

the key for explaining the evolution of open quantum systems from quantum behaviour to

classical behaviour, as we shall see in the next chapter .

1.5 The density matrix formalism of quantum mechanics

We have seen in the previous section that if two systems are entangled with one another,

individual quantum states cannot be ascribed to any of them. Hence, while studying the

dynamics of such systems, the state vector formalism of quantum mechanics turns out to

be insufficient. If we are performing measurements only on one of the systems, then the

7



1.5. THE DENSITY MATRIX FORMALISM OF QUANTUM MECHANICS

statistics of that measurement cannot be represented by a state vector. It is in this context

that the idea of density operators provides a much more elegant and efficient way of doing

things. Given its relevance in studying open quantum systems, we shall briefly discuss the

density operator formalism of quantum mechanics in this section.

1.5.1 Density matrices describing a pure state

If a system is known to be in a quantum state |Ψ〉, then it is said to be in a pure state and the

density operator for the system ρ̂ is given by

ρ̂ = |Ψ〉 〈Ψ| . (1.20)

When this operator is represented in a particular basis, the resulting matrix is known as the

density matrix. But the term ’density matrix’ is used extensively in the literature for the

density operator and we shall continue to use the two terms interchangeably.

Properties :

1. Trace of a pure state density matrix is equal to one .

Proof : Let us expand |Ψ〉 in an orthonormal basis {|i〉} .

|Ψ〉 =
∑
i

ci |i〉 where
∑
i

c∗i ci = 1 . (1.21)

Now,

Tr(ρ̂) =
∑
i

〈i|ρ̂|i〉 =
∑
i

〈i|Ψ〉 〈Ψ|i〉 =
∑
i

cic
∗
i = 1 . (1.22)

2. The expectation value of any observable Â in a state with the density matrix ρ̂ is given

by Tr(ρ̂Â).

Proof : Let us consider the eigenbasis |ai〉 of the operator Â, i.e. |ai〉 such that

Â |ai〉 = ai |ai〉 . (1.23)

Now,

Tr(ρ̂Â) =
∑
i

〈ai|ρ̂Â|ai〉 =
∑
i

〈ai|Ψ〉 〈Ψ|Â|ai〉 =
∑
i

ai 〈ai|Ψ〉 〈Ψ|ai〉

8



1.5. THE DENSITY MATRIX FORMALISM OF QUANTUM MECHANICS

=
∑
i

ai| 〈ai|Ψ〉 |2 = 〈Â〉Ψ ≡ 〈Â〉ρ̂ . (1.24)

It might seem that this does not tell us everything about the statistics of measurements

that we make with operator Â on state |Ψ〉. It gives use the mean value of measure-

ments. But, for example, what about the variance? While we cannot say anything

about the variance using only Tr(ρ̂Â), we just need to find Tr(ρ̂Â2) and use the expres-

sion for variance as σ2
A = 〈A2〉 − 〈A〉2. Likewise, expectation values of higher powers

of the operator Â can be found and the measurement statistics for any experiment can

be evaluated.

3. The evolution of the pure-state density matrix ρ̂ of a system with a Hamiltonian H is

i~
dρ̂

dt
= [H, ρ̂] . (1.25)

Proof : The Schrödinger equation is given by

i~
d

dt
|Ψ〉 = H |Ψ〉 . (1.26)

Taking Hermitian conjugate of Eq. (1.26), we find

− i~ d
dt
〈Ψ| = 〈Ψ|H . (1.27)

Now,

i~
dρ̂

dt
= i~

d

dt
(|Ψ〉〈Ψ|) = i~

[
|Ψ〉 d

dt
〈Ψ|+

(
d

dt
|Ψ〉
)
〈Ψ|

]
=
(
−|Ψ〉〈Ψ|H +H|Ψ〉〈Ψ|

)
= (Hρ̂− ρ̂H) = [H, ρ̂] . (1.28)

1.5.2 Density matrices describing a mixed state

Mixed-state density matrices represent systems whose quantum states are not entirely

known. Let us say that the system is in one of the pure states {|Ψi〉} with probabilities

{pi}, then the density matrix for the system is given by

ρ̂ =
∑
i

pi|Ψi〉〈Ψi| =
∑
i

piρ̂i with
∑
i

pi = 1 , (1.29)

where “ρ̂i”s are the ith pure-state density matrices. If one of the pis is 1 and the rest are zero,

we have the case of a pure-state density matrix. Otherwise, it is called a mixed-state density

9



1.5. THE DENSITY MATRIX FORMALISM OF QUANTUM MECHANICS

matrix. Note that the states {|Ψi〉}, while normalized, are not assumed to be orthogonal to

each other. (One could have a spin-1/2 system with 50% probability to be in state |0〉 and 50%

probability to be in state (1/
√

2)
[
|0〉+ |1〉

)
.) We would like to point out here that Eq. (1.29)

does not represent a system that is in a superposition of different pure quantum states. The

system represented by Eq. (1.29) is actually in one of the pure states ρ̂i, its just that we do

not know which pure state it is in. The mixed-state density matrix is just a tool that takes

into account our ignorance about the actual state of the system and produces the correct

measurement statistics (the correct expectation values for all operators) for such systems.

Up to now, we have emphasized the point that given an ensemble {pi, |Ψi〉}, we can

construct the mixed density matrix for the system and be sure that the system is actually

in any one of the states {|Ψi〉}. But the converse is not true. For example, if we are given

a mixed density matrix and are asked which particular ensemble it corresponds to, there is

no unique answer. In fact, one can prove that two ensembles {pi, |Ψi〉} and {qj,
∣∣Φj

〉
} will

correspond to the same density matrix if [9]

√
pi |Ψi〉 =

∑
j

Uij
√
qj
∣∣Φj

〉
, (1.30)

where Uij are elements of a unitary matrix. This works even if the two ensembles are not

of the same size since we can add states with zero probabilities in the smaller ensemble to

make sizes of both the ensembles equal.

Proof :

ρ̂ =
∑
i

pi|Ψi〉〈Ψi| =
∑
i

√
pi|Ψi〉〈Ψi|

√
p∗i =

∑
i

∑
j

Uij
√
qj
∣∣Φj

〉∑
k

U∗ik
√
q∗k 〈Φk|


=
∑
jk

√qjqk ∣∣Φj

〉
〈Φk|

∑
i

UijU
∗
ik

 =
∑
jk

√qjqk ∣∣Φj

〉
〈Φk|

∑
i

(
U †U

)
kj


=
∑
jk

√
qjqk

∣∣Φj

〉
〈Φk| δkj =

∑
j

qj
∣∣Φj

〉 〈
Φj

∣∣ . (1.31)

All the properties that we proved for pure state density matrices hold true for mixed-

state density matrices as well. For the sake of completeness, we shall briefly discuss some

proofs here.

1. Trace of a mixed-state density matrix is unity.

10



1.5. THE DENSITY MATRIX FORMALISM OF QUANTUM MECHANICS

Proof :

Tr(ρ̂) = Tr
(∑

i

piρ̂i

)
=
∑
i

piTr(ρ̂i)

=
∑
i

pi (as Tr(ρ̂i) = 1)

= 1 (as
∑
i

pi = 1) . (1.32)

Here we have used Eq. (1.22).

2. The expectation value of any observable Â for a system with a mixed-state density

matrix ρ̂ is just the sum of the expectation values of Â in the ith state weighted by the

respective probabilities pi. This is given by Tr(ρ̂Â).

Proof :

Tr(ρ̂Â) =
∑
i

piTr(ρ̂iÂ)

=
∑
i

pi〈Â〉ρ̂i

= 〈Â〉ρ̂ , (1.33)

where we have used Eq. (1.24).

3. The evolution of the mixed-state density matrix ρ̂ of a system with a Hamiltonian H is

given by

i~
dρ̂

dt
= [H, ρ̂] . (1.34)

Proof :

i~
dρ̂

dt
=
∑
i

pi

(
i~
dρ̂i
dt

)
=
∑
i

pi[H, ρ̂i]

= [H,
∑
i

piρ̂i]

= [H, ρ̂] , (1.35)

using Eq. (1.28)

11



1.5. THE DENSITY MATRIX FORMALISM OF QUANTUM MECHANICS

1.5.3 Entropy of a mixed state

For a system that is in a mixed state, we do not know for certain which pure state the sys-

tem is in. But the degree of ignorance about the actual state of the system will vary from

one mixed state to another. For example, if a system is in either one of the states |Ψ1〉 and

|Ψ2〉 with equal probabilities, then the amount of ignorance about the state of the system is

higher than if, say, the system is in state |Ψ1〉 with 90% probability and |Ψ2〉 with 10% prob-

ability. Hence, to quantify the degree of mixedness of a state, we shall introduce the notion

of entropy of a density matrix. Let us first see how can we distinguish a pure-state density

matrix from a mixed-state one.

Distinguishing pure-state and mixed-state density matrices:

For a pure-state density matrix,

ρ̂2 = ρ̂⇒ Tr(ρ̂2) = 1 , (1.36)

but this does not hold true for mixed state density matrices.

Proof: For a pure state density matrix, we have

ρ̂2
pure = |Ψ〉〈Ψ|Ψ〉〈Ψ| = |Ψ〉〈Ψ| = ρ̂pure , (1.37)

whereas for a mixed state density matrix from Eq. (1.29),

ρ̂2
mixed =

∑
i,j

pipj|Ψi〉〈Ψi|Ψj〉〈Ψj| . (1.38)

For Eq. (1.38) to be equal to ρ̂mixed, we need

pipj
〈
Ψi

∣∣Ψj

〉
= piδij . (1.39)

This would first of all require the states {|Ψi〉} to be orthogonal, which, as we have noted

before, need not be the case for a general mixed state density matrix. Even if they were

orthogonal, we would need p2
i = pi, which is only possible if one of the pis is 1 and the rest

are 0 (since they have to sum to 1)—the case of a pure-state density matrix. For a mixed-state

density matrix, Eq. (1.39) can never be satisfied. For such a system, Tr(ρ̂2) < 1.

12
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Von Neumann entropy

The von Neumann entropy of a state ρ̂ is given by[9]

S = −Tr(ρ̂ log2ρ̂) . (1.40)

Let us work in the eigenbasis of the density matrix, i.e., ρ̂ =
∑

i ai|i〉〈i|. Now,

Tr(ρ̂ log2ρ̂) =
∑
i

〈i|ρ̂ log2ρ̂|i〉

=
∑
ijk

aj〈i|j〉〈j|log2ak|k〉〈k|i〉

=
∑
ijk

ajδij log2(ak) 〈j|k〉 〈k|i〉

=
∑
ijk

ajδij log2(ak)δjkδki

=
∑
i

ai log2ai . (1.41)

In the case when one of the eigen values is zero, we take its contribution 0log20 to be 0. This

is physically justified since we are just stating that a state that is not present will not make

a contribution to the entropy. Since ais are probablilites that lie between 0 and 1, the von

Neumann entropy is never negative. For a pure state, one of the eigenvalues is 1 and the

rest are zero. Hence the von Neumann entropy attains its minimum value, zero, at pure

states. The maximum will obviously occur when all the eigen values have the same value.

For an N ×N density matrix, the von Neumann entropy will then be given by

S = −
N∑
i=1

1

N
log2

1

N
= −N × 1

N
(− log2N) = log2N . (1.42)

The density matrix for such a case is given by

ρ̂ =
N∑
i=1

1

N
|Ψi〉〈Ψi| , (1.43)

and the state of the system is called maximally mixed. Since ρ̂ is a Hermitian matrix, the

eigen vectors corresponding to distinct eigen values are orthogonal. Even though here the

eigen values are not distinct, one can use the fact that any linear combination of eigen vec-

tors is again an eigen vector and perform a Gram-Schmidt orthogonalization to obtain an

13
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orthonormal basis of eigen vectors. Thus, such a density matrix can be obtained, for exam-

ple, by creating a mixture of N orthogonal, and thus mutually exclusive, states with equal

probability.

Hence, the von Neumann entropy can take a minimum value of zero for pure states,

while its maximum value, in the space ofN pure states, is log2N for maximally mixed states.

1.5.4 Reduced density matrices

We have already seen in Section 1.4 that for two quantum systems A and B that are entangled

with one another, no individual quantum state can be ascribed to either of them. But if we

have an observer who has access to system A alone and is performing local measurements

on system A, there is a tool that can essentially produce all the local measurement statistics.

This is known as the reduced density matrix of the system. We shall define this object and

discuss some of its properties here.

Let us say we have two systems A and B which are entangled with one another and the

state of the combined system AB is given by ρ̂, then the reduced density matrices for the

systems A and B are defined by

ρ̂A = TrB
(
ρ̂
)

and ρ̂B = TrA
(
ρ̂
)
. (1.44)

Here TrB is known as the partial trace over system B. Let us formally define what that means.

If {Ψk} and {Φl} are the orthonormal basis of systems A and B respectively and ÔA and ÔB

are operators on respective systems, then

TrB
(
ÔA ⊗ ÔB

)
= ÔATrB

(
ÔB

)
= ÔA

∑
l

〈Φl|ÔB|Φl〉 . (1.45)

We shall now give a concrete example of the reduced density matrix of a system. Let us take

the Bell state ∣∣Ψ+
〉

=
1√
2

[
|0A〉 |0B〉+ |1A〉 |1B〉

]
=

1√
2

1∑
i=0

|iA〉 |iB〉 , (1.46)

where |0i〉 , |1i〉 respectively represent the spin-up and spin-down states of two spin-half

particles A and B. Now the reduced density matrix for the system A is given by

ρ̂A =
1

2
TrB

( 1∑
i,j=0

|iA〉 |iB〉 〈jA| 〈jB|
)

14
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=
1

2

1∑
ijk=0

|iA〉〈jA| 〈kB|iB〉 〈jB|kB〉

=
1

2

1∑
ijk=0

|iA〉〈jA|δkiδjk

=
1

2

1∑
i=0

|iA〉〈iA|

=
|0A〉〈0A|+ |1A〉〈1A|

2

=
IA
2
. (1.47)

Note that ρ̂A is a mixed state since Tr(ρ̂2
A) = 1

4
Tr(IA) = 1

2
which is less than 1. So we can

clearly see here that although the total state of AB is known, the reduced density matrix of

system A is a mixed state, implying that we do not exactly know which state it is in. Note

that the same density matrix can also be obtained by preparing the system A by a random

process to have 50% probability of being in a pure state |0A〉 and 50% probability of being in a

pure state |1A〉. But here there is no notion of A existing in a pure state. It is just that it is part

of a larger system AB and the measurement statistics are represented by the above reduced

density matrix when we have access only to A. But, as we have seen, the two scenarios are

same at the level of density matrices and, hence, measurement statistics.

We shall end the discussion of density matrices by showing that the reduced density

matrices indeed provide the correct measurement statistics for local measurements. Let us

say {Ψk} and {Φl} are the orthonormal basis of systems A and B respectively and consider an

operator Ô which acts on system A alone. These are represented by Ô = ÔA⊗ ÎB where ÎB is

the identity operator on the Hilbert space of B. Now the expectation value for the combined

state ρ̂ of such an observable ÔA is given by [11]

〈Ô〉 = Tr(ρ̂Ô)

=
∑
kl

〈Φl| 〈Ψk| ρ̂(ÔA ⊗ ÎB) |Ψk〉 |Φl〉

=
∑
k

〈Ψk|
(∑

l

〈Φl|ρ̂|Φl〉
)
ÔA |Ψk〉

=
∑
k

〈Ψk| (TrBρ̂)ÔA |Ψk〉

=
∑
k

〈Ψk| ρ̂AÔA |Ψk〉
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= TrA(ρ̂AÔA) . (1.48)

This shows that the reduced density matrices produce correct local measurement statistics.

1.6 Wigner functions

1.6.1 Introduction: The necessity of Wigner functions

In quantum mechanics, given the wave function ψ(x) of a system, the probability density in

position space is given by |ψ(x)|2. But if we want to find the momentum space probability

density φ(p), we need to perform the integral

φ(p) =
1√
2π~

∫
ψ(x)e−

ipx
~ dx . (1.49)

Even if the integral is not difficult to perform, it is a bit difficult to visualize the momentum

space density distribution if one is given ψ(x) alone. Also, classical mechanics, explored in

the phase space of coordinates and momenta, provides us with insights not obtained from a

study in coordinate space, even if the results from both approaches are equivalent.

It is thus desirable to have a function that incorporates information about both the posi-

tion space and momentum space probability densities and such a function would naturally

be defined on phase space. The Wigner function was built for just that purpose, as a proba-

bility density on phase space. But one needs to take into account, in the context of quantum

mechanics, the uncertainty principle which forbids the simultaneous precise measurement

of observables that do not commute with one another. This essentially imposes certain con-

ditions on the Wigner function. The direct consequence one can perceive is that the Wigner

function cannot be localised beyond a limit imposed by the uncertainty principle. If one

attempts to localize it too much in the x-direction, one would necessarily have to allow for

an increase in spread in the momentum direction. Another property that sets the Wigner

function apart from a usual probability distribution is that the Wigner function can turn

negative. Thus, instead of a probability distribution function in phase space, we get what is

called a quasi-probability distribution.

As we have stated before, classical systems are best described by trajectories in phase

space. But quantum systems are described by abstract vectors in Hilbert space. Thus, it is
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useful to have a phase space description of quantum mechanics for the study of the corre-

spondence between classical and quantum mechanics and the quantum-to-classical transi-

tion. This is our main point of interest in Wigner functions.

We shall provide a brief description of Wigner functions in this section.

1.6.2 Definition

Let us consider a state |Ψ〉 whose position space representation is given by Ψ(x, t) and mo-

mentum space wave function is given by Φ(p, t). The Wigner function of such a state is

defined to be

W (x, p, t) =
1

π~

∫ ∞
−∞

dyΨ(x− y, t)Ψ∗(x+ y, t)e
2ipy
~

=
1

π~

∫ ∞
−∞

dy〈x− y|Ψ〉〈Ψ|x+ y〉e
2ipy
~

=
1

π~

∫ ∞
−∞

dydp′dp′′〈x− y|p′〉〈p′|Ψ〉〈Ψ|p′′〉〈p′′|x+ y〉e
2ipy
~

=
1

π~

∫ ∞
−∞

dydp′dp′′
( 1√

2π~
e
ip′(x−y)

~
)
Φ(p′, t)Φ∗(p′′, t)

( 1√
2π~

e−
ip′′(x+y)

~
)
e

2ipy
~

=
1

π~(2π~)

∫ ∞
−∞

dp′dp′′dye
i(2p−p′−p′′)y

~ Φ(p′, t)Φ∗(p′′, t)e
i(p′−p′′)x

~

=
1

π~

∫ ∞
−∞

dp′dp′′δ(2p− p′ − p′′)Φ(p′, t)Φ∗(p′′, t)e
i(p′−p′′)x

~

=
1

π~

∫ ∞
−∞

dp′′Φ(2p− p′′, t)Φ∗(p′′, t)e
2i(p−p′′)x

~

=
1

π~

∫ ∞
−∞

dqΦ(p− q, t)Φ∗(p+ q, t)e
−2iqx

~ (1.50)

where p′′ = p+ q .

It can also be written as

W (x, p, t) =
1

π~

∫
dy〈x− y|ρ̂|x+ y〉e

2ipy
~ (1.51)

=
1

π~

∫
dq〈p− q|ρ̂|p+ q〉e−

2ixq
~ (1.52)

which can be generalized to mixed state density matrices as well.
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1.6.3 Properties

1. The Wigner function of any quantum system is always real.

Proof :

W (x, p, t) =
1

π~

∫ ∞
−∞

dyΨ(x− y, t)Ψ∗(x+ y, t)e
2ipy
~

⇒ W ∗(x, p, t) =
1

π~

∫ ∞
−∞

dyΨ∗(x− y, t)Ψ(x+ y, t)e
−2ipy

~

= − 1

π~

∫ −∞
∞

dy′Ψ∗(x+ y′, t)Ψ(x− y′, t)e
2ipy′

~ with y′ = −y

=
1

π~

∫ ∞
−∞

dy′Ψ(x− y′, t)Ψ∗(x+ y′, t)e
2ipy′

~

= W (x, p, t) . (1.53)

2. The position and momentum space probability densities are given by

|Ψ(x, t)|2 =

∫ ∞
−∞

dp W (x, p, t) and |Φ(p, t)|2 =

∫ ∞
−∞

dx W (x, p, t) . (1.54)

Proof : ∫ ∞
−∞

dp W (x, p, t) =
1

π~

∫ ∞
−∞

dpdyΨ(x− y, t)Ψ∗(x+ y, t)e
2ipy
~

=

∫ ∞
−∞

dyδ(y)Ψ(x− y, t)Ψ∗(x+ y, t)

= Ψ(x, t)Ψ∗(x, t)

= |Ψ(x, t)|2 , (1.55)

where we have used

1

π~

∫ ∞
−∞

dpe
2ipy
~ = δ(y) . (1.56)

A similar proof can be given for the momentum space probability density.

3. The integral of the Wigner function over the entire phase space is unity.

Proof : ∫ ∞
−∞

dp dx W (x, p, t) =

∫ ∞
−∞

dx |Ψ(x, t)|2 = 1 , (1.57)

using Eq. (1.54).
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4. Expectation values of observables are found by averaging them over the entire phase

space. That is[1]

〈Ô〉 =

∫
dxdpW (x, p)Õ(x, p) , (1.58)

where Õ(x, p) is known as the Weyl transform of the operator Ô, defined by

Õ(x, p) = 2

∫
dy〈x+ y|Ô|x− y〉e−

2ipy
~

= 2

∫
du〈p+ u|Ô|p− u〉e

2ixu
~ . (1.59)

(1.60)

Proof:

〈Ô〉 = Tr(ρ̂Ô) =

∫
dx′dp′〈x′|ρ̂|p′〉〈p′|Ô|x′〉

=

∫
dx′dx′′dp′dp′′〈x′|ρ̂|x′′〉〈x′′|p′〉〈p′|Ô|p′′〉〈p′′|x′〉 . (1.61)

Now we let x′ = x− y , x′′ = x+ y and p′ = p+ u , p′′ = p− u. Also using

〈x|p〉 =
1√

2π~
exp

{
ipx

~

}
, dx′dx′′ = 2dxdy and dp′dp′′ = 2dpdu (1.62)

in Eq. (1.61) yields

〈Ô〉 =
4

2π~

∫
dxdydpdu〈x− y|ρ̂|x+ y〉e

i(p+u)(x+y)
~ 〈p+ u|Ô|p− u〉e−

i(p−u)(x−y)
~

=

∫
dxdp

[
1

π~

∫
dy〈x− y|ρ̂|x+ y〉e

2ipy
~

] [
2

∫
du〈p+ u|Ô|p− u〉e

2ixu
~

]
=

∫
dxdpW (x, p)Õ(x, p) . [Q.E.D] (1.63)

Although we can see that the Wigner function encodes information about both the position

and momentum space probability density, we should keep in mind that it is not a model

probability distribution function because of its negative tendencies, i.e., for some states, it

can take negative values in some regions of phase space.

1.6.4 Examples of Wigner functions for various quantum systems

Having discussed the utility of Wigner functions and some of its prime properties, we would

now illustrate the behavior of the Wigner functions of various quantum systems to under-

stand how it looks and the ways in which it differs from a classical probability distribution.
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Wigner function for a coherent state : Let us consider a quantum harmonic oscillator hav-

ing Hamiltonian of the form

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 , (1.64)

where symbols bear their usual meaning.

Coherent states {|α〉} are minimum uncertainty states of the harmonic oscillator potential

and are the eigenstates of the annihilation operator with an eigenvalue α. They are given by

â |α〉 = α |α〉 , (1.65)

where we have defined the creation operator (â†) and the annihilation operator (â) by the

following expressions:

â =

√
mω

2~
x̂+ i

1√
2~mω

p̂ , â† =

√
mω

2~
x̂− i 1√

2~mω
p̂ . (1.66)

The expectation values of position and momentum for a coherent state |α〉 can be found to

be

〈x̂〉α = 〈α|x̂|α〉 = Re(α)

√
2~
mω

and 〈p̂〉α = 〈α|p̂|α〉 = Im(α)
√

2~mω . (1.67)

Hence, we can say that the eigenvalue of a coherent state |α〉 is

α =

√
mω

2~
〈x̂〉α + i

1√
2~mω

〈p̂〉α . (1.68)

Now let us find the position space representation of coherent states (Ψα(x)), which can be

easily done by solving the differential equation obtained by writing Eq. (1.65) in position

representation: √
~

2mω

dΨα(x)

dx
+

√
mω

2~
xΨα(x) = αΨα(x) . (1.69)

Eq. (1.69) is solved by

Ψα(x) = c exp

{
−mω

2~
x2 +

√
2mω

~
αx

}
. (1.70)

The constant can be fixed by normalization. Denoting by x0 and p0 the respective expectation

values of position and momentum of the coherent state |α〉, we have

α =

√
mω

2~
x0 + i

1√
2~mω

p0 , (1.71)

20



1.6. WIGNER FUNCTIONS

and the normalized solution is

Ψα(x) =
(mω
π~

) 1
4

exp

{
ip0x

~
− mω

2~
(x− x0)2

}
. (1.72)

One of the prime features of a coherent state is that is that if we let it evolve in time, it

still remains a coherent state. At time t, the state given by Eq. (1.72) becomes

Ψα(x, t) =
(mω
π~

) 1
4

exp

{
iptx

~
− mω

2~
(x− xt)2

}
, (1.73)

where

xt = x0 cos(ωt) +
p0

mω
sinωt , (1.74a)

pt = p0 cosωt−mωx0 sinωt . (1.74b)

Note that Eq. (1.74) describes the classical phase space trajectory of a particle that starts out

in harmonic oscillator potential with initial position and momentum x0 and p0, respectively.

With the wave function at our hand, we are in a position to find the Wigner function of a

coherent state and study its behavior. The Wigner function for the state Ψα(x, t) turns out to

be

W (x, p, t) =
1

π~
exp

{
−mω

~
(x− xt)2 − 1

mω~
(p− pt)2

}
. (1.75)

Note that the Gaussian is peaked at xt, pt which is the classical solution for the system. The

evolution of this Wigner function is shown in Fig. 1.3.

A few features of the Wigner function are quite noteworthy. We can explicitly see that

the peak of the Gaussian traces out the trajectory of the classical solution of the system.

Moreover the spread of the Gaussian is a measure of the uncertainty of the state and the

fact that the spread of the Gaussian remains constant as it circles around the phase space,

implies that it remains a minimum uncertainty state throughout its evolution.

Wigner function for a Gaussian wave packet following free particle trajectory: Now we

shall discuss the example of the Wigner function of a Gaussian wave packet evolving under

no force and hence following a free particle trajectory. The normalized, time-dependent

wave function that we shall consider is1

Ψ(x, t) =
(√
παF (t)~

)− 1
2 exp

i[p0(x− x0)− p2
0t

2m
]

~

 exp

{
−

[x− x0 − p0t
m

]2

2α2~2F (t)

}
, (1.76)

1For a derivation of this and related properties, see Nicholas Wheeler’s essay titled “Gaussian Wavepack-
ets” here.
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(a) time = 0 (b) time = π/2

(c) time = π (d) time = 2π/3

(e) time = 2π

Figure 1.3: Time evolution of the Wigner function associated with the coherent state given
by Eq. (1.73). The parameters have been chosen to be m = ω = ~ = x0 = p0 = 1. Note that
the Gaussian has its initial peak at (1,1) and it circles around the phase-space just like the
classical solution.

where F (t) is defined to be

F (t) = 1 + i(t/τ) with τ = m~α2 (1.77)
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and α is a constant that characterizes the initial width of the Gaussian. The peak of the wave

function is always situated at x = x0 + p0t/m, which is precisely the classical trajectory of a

free particle whose initial position and momentum are x0 and p0 respectively.

The integral which we need to perform to find the Wigner function for the state given by

Eq. (1.76) is a bit lengthy. Here we quote only the end result:

W (x, p, t) =
1

π~
exp

{
−

(x− x0 − p0t/m)2 + [(x− x0 − p0t/m) t
τ
− α2~(p− p0)(1 + t2/τ 2)]2

α2~2(1 + t2

τ2 )

}
.

(1.78)

(a) time = 0 (b) time = 2 sec

(c) time = 4 sec (d) time = 6 sec

Figure 1.4: Time evolution of the Wigner function (Eq. (1.78)) associated with the Gaussian
wavefunction following a free particle trajectory, described by Eq. (1.76). The initial position
has been taken to be zero (x0 = 0) and the initial momentum has been set to one (p0 = 1).
Also all the other parameters have been set to unity, i.e., m = α = ~ = 1. Notice that the
momentum coordinate of the peak remains at 1 and its position coordinate is increasing
linearly with time, just like a classical particle with similar initial conditions.

The Wigner function given by Eq. (1.78) has been plotted in Fig. 1.4. We can observe here
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as well that the peak of the Gaussian follows the classical trajectory. One of the aspects in

which the evolution of this Wigner function differs from that of a coherent state is in terms

of its spread. We can notice that the spread of the Wigner function increases with time,

implying an increase in the uncertainty associated with the state. This is also borne out by

algebraic calculation.

Now we are in possession of the various tools which are needed to study decoherence

and we shall begin the discussion of decoherence in the next chapter.
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Chapter 2

Decoherence: an introduction

2.1 Introduction

Figure 2.1: Classical and quan-
tum scattering. [Figure taken
from [11]]

Before we begin our discussion of decoherence, we must

first understand what we mean by coherence. In a very

crude manner, quantum coherence can be said to be a

measure of the quantumness of a state. We have already

shown in the previous chapter that a superposition of def-

inite states is also a valid state in quantum mechanics and

the superposition can manifest itself in the form of in-

terference effects in suitable measurements. Decoherence

can be said to be the loss of definite phase relations be-

tween the different components of a superposition state.

Usually it is caused by the interaction of the environment

with the system. But the effect of environmental interac-

tion is very different in classical and quantum mechanics.

In classical mechanics, the environment can effect the dy-

namics of the system by changing its momentum. If the

environmental perturbation is weak in terms of the mo-

mentum carried by it, then its existence can essentially be

entirely ignored. But the situation is quite different in its

quantum counterpart. In the quantum picture what is more important is that the interac-

tion entangles the environment with the system and it transports coherence from the local
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system to the global combined system-environment pair. Let us consider the example of

environmental photons scattering off a particle, which is schematically shown in Fig. 2.1.

The classical perturbation to the particle will be determined by the photon momenta, and

given the momenta are negligible, environmental effects can be ignored while studying the

dynamics of the particle. But in the quantum case, the photons will become entangled with

the particle and take away coherence from the system, even if their momenta are virtually

zero. This makes superposition of states in some basis determined by the interaction impos-

sible to exist, rendering the system classical. Hence we can not ignore environmental effects

while studying the dynamics of quantum systems. In this chapter, we shall see that envi-

ronmental interactions not only affect the dynamics, but they also decide which observables

we see at the system level. The following sections will include a brief study of decoherence

in the context of open quantum systems.

2.2 Decoherence and the local damping of interference

In this section, in the context of the double slit experiment, we will show how environmental

interaction can lead to the disappearence of interference effects . The environment consists of

photons or air molecules that scatter off the electron and hence let us infer the electron’s loca-

tion.

Figure 2.2: Schrödinger’s cat
turning classical.[ Figure taken
from: Daniel Moreno Andrés,
“Quantum mechanics in biolog-
ical systems (I): Introduction” ]

The number density of these perturbations will vary from

one experiment to another and our analysis will let us

study its effects at different limits. Let us say that the en-

vironment is in the state |E0〉 before the interaction takes

place and |Ψ1〉 and |Ψ2〉 represent electron states localized

around positions x1 and x2, respectively. The interaction

dynamics is of the form

|Ψ1〉 |E0〉 → |Ψ1〉 |E1〉 and |Ψ2〉 |E0〉 → |Ψ1〉 |E2〉
(2.1)

where |E1〉 and |E2〉 represent post-interaction environ-

mental states. In the double-slit experiment, the pre-
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interaction composite state
∣∣Φi
〉

is given by∣∣∣Φi
〉

=
1√
2

(
|Ψ1〉+ |Ψ2〉

)
|E0〉 . (2.2)

After the interaction takes place, the final composite state
∣∣Φf
〉

becomes of the form

∣∣∣Φi
〉
→
∣∣∣Φf
〉

=
1√
2

(
|Ψ1〉 |E1〉+ |Ψ2〉 |E2〉

)
=

1√
2

2∑
i=1

|Ψi〉 |Ei〉 . (2.3)

Now we can find the reduced density matrix of the system and study its properties to under-

stand how the environmental interaction has changed the local dynamics of the electron. Let

{|ek〉} be an orthonormal basis set of environment. Then, the reduced density matrix of the

electron after interaction, ρ̂fel, is given by tracing the full density matrix over the environment

states:

ρ̂fel = TrEn

(1

2

2∑
i,j=1

|Ψi〉〈Ψj| ⊗ |Ei〉
〈
Ej
∣∣ )

=
1

2

2∑
i,j=1

|Ψi〉〈Ψj|
∑
k

〈ek|Ei〉〈Ej|ek〉

=
1

2

2∑
i,j=1

|Ψi〉〈Ψj|〈Ej|

(∑
k

|ek〉〈ek|

)
Ei〉

=
1

2

2∑
i,j=1

|Ψi〉〈Ψj|〈Ej|Ei〉

=
1

2

(
|Ψ1〉〈Ψ1|+ |Ψ2〉〈Ψ2|+ |Ψ1〉〈Ψ2|〈E2|E1〉+ |Ψ2〉〈Ψ1|〈E1|E2〉

)
. (2.4)

The density matrix of the electron before the interaction was given by

ρ̂iel =
1

2

(
|Ψ1〉〈Ψ1|+ |Ψ2〉〈Ψ2|+ |Ψ1〉〈Ψ2|+ |Ψ2〉〈Ψ1|

)
, (2.5)

where the two cross terms at the end denote the interference between the component states

|Ψ1〉 and |Ψ2〉. The effect of the environment on the local dynamics of the system is summa-

rized by the overlap of the environmental states |E1〉 and |E2〉. This physically corresponds

to the distinguishability of the two environmental states which are one-to-one correlated

with the component states |Ψ1〉 and |Ψ2〉. If enough number of particles scatter off the elec-

tron, the environmental states correlated with the two different position states of the electron
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will be sufficiently distinguishable from one another. For an almost vanishing overlap be-

tween these states , i.e., 〈E1|E2〉 ' 0 , ρ̂fel becomes

ρ̂fel '
1

2

(
|Ψ1〉〈Ψ1|+ |Ψ2〉〈Ψ2|

)
. (2.6)

The cross terms which represented the interference effects between the component states of

the electron have vanished, implying no local observable of the form Ô = Ôel ⊗ ÎEn can

observe interference effects between them. The system has essentially become classical!

Here we have said that the states |Ψ1〉 and |Ψ2〉 represent states localized around positions

x1 and x2, but they could have been any two states of the system and, if the interaction

between the system and the environment is of the form in Eq. (2.1), the same conclusions

will still hold.

2.3 Decoherence timescales

In the previous section, we saw that the vanishing of interference effects between the two

states of the system at the system level was a consequence of orthogonality of the environ-

mental states which were one-to-one correlated with them. The orthogonality of the envi-

ronmental states was motivated from the fact that the system states were sufficiently distinct

from one another and that the environment was able to resolve this difference to a good ex-

tent. But this decoherence does not happen instantaneously. Let us consider the example

of spatial decoherence due to environmental photons scattering off an object. In the long-

wavelength limit, i.e., when the separation between x and x′ is smaller than the wavelength

of the photon, the inner product of the environmental states
∣∣Ex(t)〉 and

∣∣Ex′(t)〉, which are

one-to-one correlated with system states |Ψx〉 and |Ψx′〉 denoting localization around x and

x′, respectively, can be found to be [11]〈
Ex(t)

∣∣Ex′(t)〉 = e−Λ|x−x′|2t = e
− t
τd , (2.7)

where Λ carries information about the physical properties of the scattering process and τd

is known as the decoherence timescale. It is the timescale over which the system loses its

coherence significantly. The behavior of Eq. (2.7) is quite intuitive. For states that are too

close to another, the environment, in the long wavelength limit, can not easily distinguish

between them and a lot of photons need to scatter off the object for the environment to be
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able to sufficiently resolve the two distinct states, making the decoherence timescale larger.

On the other hand, in the short wavelength limit,〈
Ex(t)

∣∣Ex′(t)〉 = e−Γt , (2.8)

where Γ is the total scattering rate. This behavior can be traced back to the fact that in short

wavelength limit, the wavelength of the photon is enough to resolve the separation between

x and x′ and hence the decoherence timescale is independent of the separation. In summary,

decoherence timescales vary from one process to another and largely depend on the nature

of interaction between the system and the environment and their properties.

2.4 Einselection and pointer states

Einselection, a shorthand for environment-induced superselection, refers to the dynamical

selection of a set of states of the system that are least prone to decoherence. It is in the

sense that if the system starts in any one of these states it does not get entangled with the

environment and hence does not lose its quantum coherence. Let us say that the interaction

between the system and the environment is of the form of Eq. (2.1) and consider two states

given by

|Ψ±〉 =
1√
2

(
|Ψ1〉 ± |Ψ2〉

)
. (2.9)

Now if the system starts out in a state |Ψ〉 which is a superposition of the states |Ψ+〉 and

|Ψ−〉,
|Ψ〉 =

1√
2

(
|Ψ+〉+ |Ψ−〉

)
, (2.10)

it does not get entangled with the environment:

|Ψ〉 |E0〉
Interaction−−−−−−→ |Ψ〉 |E1〉 . (2.11)

This is quite obvious because the state |Ψ〉 is nothing but the state |Ψ1〉. But what is inter-

esting is the fact that the interference effects between components |Ψ+〉 and |Ψ−〉 are not

suppressed by the environmental interaction. We get back the same superposition even af-

ter interaction. This, essentially, is the result of the environment’s inability to distinguish
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between states |Ψ+〉 and |Ψ−〉. To see this, consider the post-interaction composite state for

|Ψ±〉:
|Ψ±〉 |E0〉 →

1√
2

(
|Ψ1〉 |E1〉 ± |Ψ2〉 |E2〉

)
. (2.12)

Notice that for 〈Ψ1|Ψ2〉 = 0, the reduced density matrix associated with the environment for

both the states |Ψ±〉 is

ρ̂±E =
1

2

(
|E1〉〈E1|+ |E2〉〈E2|

)
(2.13)

Hence no measurement in the {|E1〉 , |E2〉} basis can reveal any information about which of

the states |Ψ±〉was prepared initially.

To sum it all up, the states which get minimally entangled with the environment in the

course of interaction are known as preferred states or pointer states. These are the states

which get minimally affected by decoherence whereas a superposition of such states gener-

ally loses its quantum coherence quite rapidly.

If the pointer states are orthogonal to one another and complete, we can say that deco-

herence leads to the emergence of a preferred basis for the system. For example, in the case

of an interaction of the form Eq. (2.1) position eigenstates are the pointer states. As we know

that they are complete and orthogonal, position basis is the preferred basis for the system.

But there is one small caveat involved. As we know that position eigenstates are not physi-

cally realizable, the pointer states are very sharply peaked Gaussians and hence we can say

that position basis is an approximate preferred basis for the system.

The emergence of a preferred basis does not always happen. For example, if we con-

sider a spin-half particle interacting with a macroscopic quantum apparatus described by a

harmonic oscillator potential which, in turn, is coupled to a heat bath, we can show that at

zero temperature of the heat bath, coherent states of the apparatus are the pointer states [3].

But the coherent states are not orthogonal and they form an over-complete basis. Hence, no

preferred basis emerges in these cases.

2.5 Finding pointer states

An important part of studying decoherence is to find out the pointer states of the system,

given a total Hamiltonian for the combined system-environment pair. One of its prime ne-

cessities lie in the domain of quantum information and quantum computation, where we
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need states that will be least disturbed by the environmental interaction to perform quan-

tum operations on. We are looking for system states |si〉 of the form

|si〉
∣∣Ei(0)

〉
→ |si〉

∣∣Ei(t)〉 , (2.14)

where
∣∣Ei(0)

〉
and

∣∣Ei(t)〉 are the environmental states at t = 0 and t = t, respectively.

In general, the total Hamiltonian is of the form

Ĥtotal = Ĥsystem + Ĥenvironment + Ĥinteraction . (2.15)

Now we shall try to discuss how to find the pointer states in the quantum measurement

limit. Quantum measurement limit is the limit when the energy scales associated with the

interaction Hamiltonian is much higher than the energy scales associated with both the sys-

tem and the environment Hamiltonians. In this limit,

Ĥtotal ≈ Ĥinteraction . (2.16)

Now the interaction Hamiltonian can be written in the form

Ĥint =
∑
α

Ŝα ⊗ Êα , (2.17)

where {Ŝα} and {Êα} are system and environment operators respectively. We claim that

Eq. (2.14) will hold for the system states {|si〉} if they are the simultaneous eigenstates of

{Ŝα}, i.e.,

Ŝα |si〉 = λαi |si〉 . (2.18)

For such system states, the evolution of the composite state will be given by

e−iĤintt |si〉 |E0〉 = e−i(
∑
α Ŝα⊗Êα)t |si〉 |E0〉

= |si〉 e−i(
∑
α λ

α
i Êα)t |E0〉

= |si〉
∣∣Ei(t)〉 . (2.19)

If the operators {Ŝα} are Hermitian, they can describe physical observables. Take the example

of an interaction Hamiltonian of the form

Ĥ = x̂⊗ Ê . (2.20)
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This could be given a physical meaning that the environment is carrying out a measurement

of position of the system. In this case, the position eigenstates will be the pointer states.

One of the main tools for finding the pointer states for a generic total Hamiltonian is

known as “the predictability sieve”. For finding the predictability sieve for a particular

system, we see the evolution of all pure states of the system and employ some measure of

mixedness to study which of these states change least by that measure. (An example of such

a measure of mixedness of a state would be the von Neumann entropy we introduced in

Section 1.5.3.) These states are the ones that retain their quantum nature maximally, i.e., the

ones that do not decohere, in the course of their evolution and hence are the approximate

pointer states for the system. (Exact pointer states would be the ones that do not change at

all due to interaction with the environment. But it is not possible to find such states in many

practical situations.) This method is called the predictability sieve because the states that we

find are states which are most stable under interactions with environment and hence most

predictable.
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Chapter 3

Master equations in decoherence

3.1 Introduction

In the previous chapters, we have learned that the information about the local dynamics of

the system can be found by studying its reduced density matrix, which is obtained by tracing

the total density matrix over the environmental degrees of freedom. Usually, the environ-

ment contains a large number of degrees of freedom and it is very difficult to obtain an ex-

pression for the density matrix of the total system-environment pair. In the master-equation

formalism, certain assumptions are made about the nature of the system-environment inter-

action and the reduced density matrix at later times is evaluated by

ρ̂S(t) = Ô(t)ρ̂S(0) , (3.1)

where Ô(t) is an operator whose form is derived under those assumptions. The best part

about this approach is that it enables us to find the approximate evolution of the reduced

density matrix of the system even when it is really difficult to find the exact dynamics of

the combined state. In this chapter, we shall talk about master equations that are first order

differential equations and are local in time, i.e., they are of the form

d

dt
ρ̂S(t) = −i[Ĥ ′S, ρ̂S(t)] + D̂[ρ̂S(t)] , (3.2)

where the first term is the unitary part of the evolution with Ĥ ′S being the perturbed sys-

tem Hamiltonian, the free system Hamiltonian perturbed by the environment, and D̂ carries

information about the non-unitary evolution of the reduced density matrix due to decoher-

ence. In the next section, we will study a very important type of master equation, known as

the Born-Markov master equation.
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3.2 The Born-Markov master equation

The Born-Markov master equation describes the evolution of the reduced density matrix of

the system under two approximations. The approximations are as follows:

1. Born approximation : This approximation states that the system is weakly coupled to

the environment and the number of degrees of freedom of the environment is large

compared to the system. Hence the environmental state remains almost constant dur-

ing the evolution and the total state can always be written in a product form, i.e.,

ρ̂(t) ≈ ρ̂S(t)⊗ ρ̂E(0) . (3.3)

2. Markov approximation : This approximation states that the correlations that arise

within the environment due to its interaction with the system die down much faster

than the timescale over which the state of the system undergoes a considerable change.

This approximation corresponds to the memory effects of the environment being neg-

ligible as the environment quickly “forgets” the information about its interaction with

the system.

Now we consider a total Hamiltonian of the form

Ĥ = Ĥ0 + Ĥint , (3.4)

where Ĥ0 = Ĥsystem + Ĥenvironment and the interaction is treated as a perturbation. Further-

more, it is always possible to write the interaction Hamiltonian Ĥint in the diagonalized

form

Ĥint =
∑
α

Ŝα ⊗ Êα , (3.5)

where Ŝα and Êα are unitary (not necessarily Hermitian) system and environment operators,

respectively. Next we introduce the interaction picture, where an operator Ô(t) becomes

ÔI(t) given by

ÔI(t) = eiĤ0tÔ(t)e−iĤ0t . (3.6)

The evolution of the density matrix in the interaction picture is given by

d

dt
ρ̂I(t) = −i[Ĥint, ρ̂

I(t)] . (3.7)
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For such a Hamiltonian, the evolution of the reduced density matrix of the system under the

Born-Markov approximation can be found to be [11]

d

dt
ρ̂S(t) = −i[ĤS, ρ̂S(t)]−

∑
α

(
[Ŝα, B̂αρ̂S(t)] + [ρ̂S(t)Ĉα, Ŝα]

)
, (3.8)

where B̂α and Ĉα are

B̂α =

∫ ∞
0

dτ
∑
β

Mαβ(τ)ŜIβ(−τ) and Ĉα =

∫ ∞
0

dτ
∑
β

Mβα(−τ)ŜIβ(−τ) . (3.9)

The quantity M̂αβ(τ) is known as the environmental self-correlation function and is given

by

M̂αβ(τ) =
〈
Êα(τ)Êβ(0)

〉
ρ̂E(0)

= TrEn
(
Êα(τ)Êβ(0)ρ̂E(0)

)
, (3.10)

where
〈
Ô
〉
ρ̂E

denotes the expectation value of the operator Ô in the environmental state ρ̂E .

The Born-Markov master equation has the important property that it is local in time, i.e.,

to find the reduced density matrix at a time t = t + dt we only need to know the reduced

density matrix at time t. Also, the effect of the environment in the system’s dynamics is

essentially captured in the coefficients Mαβ , where the average is taken over the initial state

of the environment.

These are all very desirable features of a master equation but the assumptions we have

made to derive this equation are only approximately correct and in some cases the reduced

density matrices obtained from Eq. (3.8) violate the positivity condition. The positivity con-

dition is the following. For any density matrix,

ρ̂ =
∑
i

pi|Ψi〉〈Ψi| ; pi ≥ 0 , (3.11)

ρ̂ is always positive in the sense that for any pure state |Φ〉,

〈Φ|ρ̂|Φ〉 =
∑
i

pi 〈Φ|Ψi〉 〈Ψi|Φ〉

=
∑
i

pi| 〈Ψi|Φ〉 |2

≥ 0 . (3.12)

The quantity 〈Φ|ρ̂|Φ〉 is interpreted as the occupation probability of the state |Φ〉 in ρ̂. Hence

the negativity of the reduced density matrix of the system is very unphysical. But there exists
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a subset of Born-Markov master equations that always respect the positivity of the reduced

density matrix of the system. These are the ones that can be written in a form known as

the Lindblad form. Note that there are also Born-Markov master equations that cannot be

written in the Lindblad form but still respect positivity. We shall discuss the Lindblad form

in the next section.

3.3 The Lindblad form

The master equations which can be written in the form [5][4]

d

dt
ρ̂S(t) = −i[Ĥs, ρ̂S(t)] +

1

2

∑
αβ

λαβ
(

[Ŝα, ρ̂S(t)Ŝ†β] + [Ŝαρ̂S(t), Ŝ†β]
)

(3.13)

are known as Lindblad form master equations and they always respect the positivity of

the density matrix. The coefficients λαβ contain all the information about the decoherence

process. The matrix defined by the coefficients λαβ can be diagonalized and the Lindblad

form can be transformed into

d

dt
ρ̂S(t) = −i[Ĥ ′s, ρ̂S(t)]− 1

2

∑
α

cα
(
ρ̂S(t)L̂†αL̂α + L̂†αL̂αρ̂S(t)− 2L̂αρ̂S(t)L̂†α

)
, (3.14)

where Ĥ ′S is the perturbed system Hamiltonian, the free system Hamiltonian perturbed by

the environment, whereas L̂αs are linear combinations of Ŝα and are known as Lindblad

operators or Lindblad generators. As we have stated below Eq. (3.5), the system operators

are unitary but not always Hermitian. But when they are, L̂αs are also Hermitian and we

can associate observables with them. Then, Eq. (3.14) becomes

d

dt
ρ̂S(t) = −i[Ĥ ′s, ρ̂S(t)]− 1

2

∑
α

cα[L̂α, [L̂α, ρ̂S(t)]] . (3.15)

This final expression has a noticeable consequence in terms of pointer states of the system.

If the commutator of L̂α vanishes with ρ̂S(t) for all values of α, then the evolution of the

density matrix of the system is unitary:

d

dt
ρ̂S(t) = −i[Ĥ ′s, ρ̂S(t)] . (3.16)

As L̂αs are nothing but linear combinations of Ŝα, in general we would have

[L̂α, ρ̂S(t)] = 0 ⇒ [Ŝα, ρ̂S(t)] = 0 . (3.17)
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We could of course have cases where there are linear combinations of Ŝα that have vanishing

commutator with ρ̂S(t) without Ŝα sharing that property, but such cases would be rare. It is

easy to see that the above equation would be satisfied if the system starts out in any of the

states {|si〉} which are simultaneous eigen states of all the Ŝα,

Ŝα |si〉 = λiα |si〉 ⇒ [Ŝα, ρ̂S(0)] = Ŝα|si〉〈si| − |si〉〈si|Ŝα

= λiα|si〉〈si| − λiα|si〉〈si|

= 0 . (3.18)

Thus, such states would undergo unitary evolution and would be immune to decoherence

in general. Note that this ties in with our earlier statement in Section 2.5 that simultaneous

eigenstates of {Ŝα} are the pointer states for the system that do not decohere.

Equipped with the understanding of master equations, we shall study a very important

type of decoherence model known as the quantum Brownian motion in the next chapter.
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Chapter 4

Quantum Brownian motion

4.1 Introduction

In classical physics, Brownian motion is described by the equation

mẍ+ ηẋ+ V ′(x) = F (t) , (4.1)

where η is a constant characteristic of damping, V (x) is a potential function and F (t) is a

fluctuating force. The force averages out to zero and has a correlation function of the form〈
F (t)

〉
= 0 ; 〈F (t)F (t′)〉 = 2ηkTδ(t− t′) , (4.2)

where T is temperature. This form of correlation function is known as white noise (since

a Fourier transform of the delta function, to go to the frequency domain, will have equal

power at all frequencies). It says that the forces at different times are not correlated with each

other. In practical situation, like the case of a particle colliding with ambient molecules, there

is a correlation with a certain time scale (since there are interactions between the molecules

responsible for the collision) but this timescale is much faster than the other timescales in-

volved in the system and we can effectively take this time scale to be zero. The equations

involved in the study of dissipative open quantum systems often take a form similar to the

above equation of Brownian motion. In this chapter, we shall study a “particle” q which is

coupled to a scalar quantum field φ (which is effectively a bunch of harmonic oscillators in

Fourier space) and is also bound by a harmonic potential, following the approach taken by

Unruh and Zurek in their paper titled “Reduction of a wave packet in quantum Brownian motion”

[13]. The coordinate q is not a coordinate of the spacetime in which the field lives. It could
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be seen as representing some internal degree of freedom of a particle which is permanently

located at a fixed point in position space (here taken as the origin).

4.2 The model

The Lagrangian density for this total system is given by [13]

L =
1

2

[
φ̇2 −

(∂φ
∂x

)2
]

+
δ(x)

2

(
q̇2 − Ω2

0q
2
)
− δ(x)εqφ̇ . (4.3)

The first set of terms is the Lagrangian of a free massless scalar field, the second set of terms

is the Lagrangian of a harmonic oscillator q (where we have added a 1/2 factor that we think

was missed due to a typo in the paper) and the last term is the interaction term. The constant

Ω0 is the natural frequency of the harmonic oscillator and ε is the coupling constant between

the system and the field. The δ function signifies that the system represented by q is situated

at x = 0. We shall see soon that the linear coupling between the field and time-derivative of

the coordinate is what gives rise to an equation of the form of a Langevin equation for the

coordinate q. Given this Lagrangian density, the conjugate momenta for φ and q are

Πφ =
∂L

∂φ̇
= φ̇− δ(x)εq , (4.4)

Πq =
∂L

∂q̇
= δ(x)q̇ . (4.5)

The total energy for the system can be easily found and it is given by

E =

∫ [
Πφφ̇+ Πq q̇ −L

]
dx

=
1

2

(
q̇2 + Ω2

0q
2
)

+

∫
1

2

[
φ̇2 +

(
∂φ

∂x

)2
]
dx , (4.6)

which is necessarily a positive-definite quantity. Now we shall turn our attention to finding

the evolution equations for φ and q. The equation of motion for the field φ is

∂µ
∂L

∂
(
∂µφ
) =

∂L

∂φ
for µ = x, t⇒ ∂t

(
φ̇− εδ(x)q

)
+ ∂x (−∂xφ) = 0

⇒ φ̈− ∂2
xφ = εδ(x)q̇ . (4.7)

On the other hand, the equation of motion for q is given by

∂t

(
∂L

∂q̇

)
=
∂L

∂q
⇒ q̈ + Ω2

0q = −εφ̇
∣∣∣∣
x=0

. (4.8)
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The delta function is responsible for the value of the field at only x = 0 to be present on the

right hand side.

Eq. (4.7) has the solution

φ = φ1 ≡ φ0 +
ε

2

[
q(t− x)θ(x) + q(t+ x)θ(−x)

]
, (4.9)

where θ(x) is the Heavyside function and φ0 is the complementary function for Eq. (4.7), i.e.,

φ̈0 − ∂2
xφ0 = 0 . (4.10)

We shall assume that φ0 is chosen as infinitely differentiable. Note that this solution can

be equivalently written as

φ1 = φ0 +
ε

2
q(t− |x|) ≡ φ0 +

ε

2
q(v) . (4.11)

Since |x| is continuous function, this is also continuous. Taking the time derivative,

∂φ1

∂t
= φ̇0 +

ε

2

∂q(v)

∂v
= φ̇0 +

ε

2
q̇(t− |x|) , (4.12)

which, assuming the function q has continuous first derivatives, is continuous. Here, the

q̇(t−|x|) in the last line has to be interpreted as the object obtained by taking the first deriva-

tive of the function q(t) and then replacing t by t− |x| in the resulting expression. Similarly,

all higher time derivatives are continuous if the corresponding derivatives of q are continu-

ous. Next we take the first spatial derivative:

∂φ1

∂x
=
∂φ0

∂x
− ε

2

∂q(v)

∂v

∂|x|
∂x

=
∂φ0

∂x
− ε

2

∂q(v)

∂v

[
θ(x)− θ(−x)

]
, (4.13)

which is discontinuous only at x = 0, again assuming that the first derivative of the function

q is continuous. Taking one more spatial derivative,

∂2φ1

∂x2
=
∂2φ0

∂x2
− ε

2

∂2q(v)

∂v2

[
θ(x)− θ(−x)

]2 − ε

2

∂q(v)

∂v

[
δ(x) + δ(−x)

]
=
∂2φ0

∂x2
− ε

2

∂2q(v)

∂v2
− ε∂q(v)

∂v
δ(x)

=
∂2φ0

∂x2
− ε

2

∂2q(v)

∂v2
− εq̇δ(x) where q̇ =

∂q(t)

∂t
, (4.14)

Here the delta function gives the size of the discontinuity in the first derivative along x.

Now we shall show that Eq. (4.7) can be solved by Eq. (4.9).
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Proof: From Eq. (4.9), we can see that

φ1 = φ0 +
ε

2
q(t− x) for x > 0 , (4.15a)

φ1 = φ0 +
ε

2
q(t+ x) for x < 0 . (4.15b)

Now,

q̈ (t± x)− ∂2
xq(t± x) = 0 . (4.16)

So, for x 6= 0,

φ̈1 − ∂2
xφ1 = φ̈0 − ∂2

xφ0 +
ε

2

[
q̈ (t± x)− ∂2

xq(t± x)
]

= 0 , (4.17)

which means that Eq. (4.9) satisfies Eq. (4.7) for x 6= 0. The effect of the delta function on the

right hand side of Eq. (4.7) is that it fixes the amount of discontinuity in ∂xφ at the origin.

Integrating Eq. (4.7) with respect to x infinitesimally about the origin, we find

lim
a→0+

[∫ a

−a
φ̈ dx− ∂φ

∂x

∣∣∣∣a
−a

]
= εq̇ . (4.18)

The first term on the LHS of the above equation vanishes for any well-behaved function and

we are left with

lim
a→0+

[
∂φ

∂x

∣∣∣∣
a

− ∂φ

∂x

∣∣∣∣
−a

]
= −εq̇ . (4.19)

Let us evaluate this quantity for Eq. (4.9).

lim
a→0+

∂φ1

∂x

∣∣∣∣
a

= lim
a→0+

[
∂φ0

∂x

∣∣∣∣
a

− ε

2
q̇(t− x)

∣∣∣∣
a

]
= lim

a→0+

∂φ0

∂x

∣∣∣∣
a

− ε

2
q̇(t) , (4.20)

lim
a→0+

∂φ1

∂x

∣∣∣∣
−a

= lim
a→0+

[
∂φ0

∂x

∣∣∣∣
−a

+
ε

2
q̇(t+ x)

∣∣∣∣
−a

]
= lim

a→0+

∂φ0

∂x

∣∣∣∣
−a

+
ε

2
q̇(t) . (4.21)

Remembering that φ0 and all its derivatives are continuous, we find

lim
a→0+

[
∂φ1

∂x

∣∣∣∣
a

− ∂φ1

∂x

∣∣∣∣
−a

]
= −εq̇ , (4.22)

which is what the delta function contribution in Eq. (4.14) is. Hence we can finally conclude

that Eq. (4.9) is a solution of Eq. (4.7).

41



4.2. THE MODEL

We can now substitute this solution in Eq. (4.8). Using Eq. (4.12), we find

q̈ +
ε2

2
q̇ + Ω2

0q = −εφ̇0 , (4.23)

to be evaluated at x = 0. This equation is of the form of the classic Langevin equation for

the coordinate q with the free field φ0 playing the role of the forcing term. Let us solve this

equation to find the general form of q at any time t.

The complementary function qc for the differential equation given by Eq. (4.23) is easy to

find. Taking a trial solution of the form q = eαt for the equation

q̈c +
ε2

2
q̇c + Ω2

0qc = 0 (4.24)

yields

α2 +
ε2

2
α + Ω2

0 = 0 , (4.25)

which together with the fact that q0 and p0 are the initial position and momenta of the particle

gives us

qc =
[
q0 cos Ωt+ (p0 + γq0) sin ΩT/Ω

]
e−γt , (4.26)

where we have defined

γ =
ε2

4
; Ω =

√
Ω2

0 − γ2 . (4.27)

Now to get the particular integral of Eq. (4.23) we shall first find the Green’s function G(t, t′)

satisfying

G̈(t, t′) + 2γĠ(t, t′) + Ω2
0G(t, t′) = δ(t− t′) =

1

2π

∫ ∞
−∞

dωeiω(t−t′) . (4.28)

Using the D operator method, where D ≡ d
dt

yields

G(t, t′) =
1

2π

∫ ∞
−∞

dω
eiω(t−t′)

D2 + 2γD + Ω2
0

=
1

2π

∫ ∞
−∞

dω
eiω(t−t′)

−ω2 + 2iωγ + Ω2
0

=
1

2π

∫ ∞
−∞

dω
eiω(t−t′)[

ω − (iγ − Ω)
] [

(Ω + iγ)− ω
] . (4.29)

This integral can be evaluated using contour integral methods. The integral has two simple

poles in the upper half plane and for t > t′ , i.e., (t − t′) > 0, using the residue theorem, it

can be written as [8]

G(t, t′) =
1

2π
× 2πi×

∑
Residues of the integral in the upper half plane
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= i

[
ei(iγ−Ω)(t−t′)

2Ω
− ei(iγ+Ω)(t−t′)

2Ω

]

=
e−γ(t−t′)

Ω

[
eiΩ(t−t′) − e−iΩ(t−t′)

2i

]
=

1

Ω
sin
[
Ω(t− t′)

]
e−γ(t−t′) . (4.30)

And, as for t < t′, i.e., (t− t′) < 0,

G(t, t′) =
1

2π
× 2πi×

∑
Residues of the integral in the lower half plane = 0 . (4.31)

Now the particular integral qp for Eq. (4.23) can be written as

qp =

∫ ∞
0

G(t, t′)
[
−εφ̇0(t′)

]
dt′ = − ε

Ω

∫ t

0

dt′ sin
[
Ω(t− t′)

]
e−γ(t−t′)φ̇0(t′) . (4.32)

Hence, the entire solution for Eq. (4.23) is

q = qc + qp =
[
q0 cos Ωt+ (p0 + γq0) sin Ωt/Ω

]
e−γt − ε

Ω

∫ t

0

dt′ sin
[
Ω(t− t′)

]
e−γ(t−t′)φ̇0(t′) .

(4.33)

The momentum p, from Eq. (4.5), is

p = q̇ =

[
p0 cos Ωt−

[
γ

Ω
(p0 + γq0) + Ωq0

]
sin Ωt

]
e−γt

− ε
Ω

d

dt

∫ t

0

dt′ sin
[
Ω(t− t′)

]
e−γ(t−t′)φ̇0(t′) . (4.34)

The above set of equations can describe classical as well as quantum systems and hence we

can treat q, p, φ as operators as well. When position and momentum are used as operators,

we shall use the notation P,Q.

The state of the total system is described by the density matrix ρOF , whereas the state of

the oscillator alone is described by the reduced density matrix ρ:

ρ ≡ ρO = TrF (ρOF ) . (4.35)

We introduce a “(k,∆)” representation for the density matrix as

ρ(k,∆) =

∫
dq′ eikq

′
ρ(q′ −∆/2, q′ + ∆/2) . (4.36)
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Next we represent the position components of the density matrix using shift operators eip∆.

Notice that

Tr
[
δ(Q− q)eip∆/2ρeip∆/2

]
=

∫
dQ̃〈Q̃|δ(Q− q)eip∆/2ρeip∆/2|Q̃〉

=

∫
dQ̃δ(Q̃− q)〈Q̃|eip∆/2ρeip∆/2|Q̃〉

=

∫
dQ̃δ(Q̃− q)〈Q̃−∆/2|ρ|Q̃+ ∆/2〉 as eip∆

∣∣∣Q̃〉 =
∣∣∣Q̃+ ∆

〉
= 〈q −∆/2|ρ|q + ∆/2〉

= ρ(q −∆/2, q + ∆/2) . (4.37)

where we have denoted the eigenvalue ofQ associated with the eigenstate
∣∣∣Q̃〉 as Q̃ to avoid

confusion between the operator Q and its eigenvalue, i.e.,

Q
∣∣∣Q̃〉 = Q̃

∣∣∣Q̃〉 (4.38)

We can now derive an expression for ρ(k,∆) in terms of the density matrix, position and

momentum operators:

ρ(k,∆) =

∫
dq′ eikq

′
ρ(q′ −∆/2, q′ + ∆/2)

=

∫
dq′ eikq

′
Tr
[
δ(Q− q′)eip∆/2ρeip∆/2

]
=

∫
dq′ dQ̃eikq

′
δ(Q̃− q′)〈Q̃|eip∆/2ρeip∆/2|Q̃〉

=

∫
dQ̃ eikQ̃〈Q̃|eip∆/2ρeip∆/2|Q̃〉

=

∫
dQ̃ 〈Q̃|eikQeip∆/2ρeip∆/2|Q̃〉

=

∫
dQ̃ 〈Q̃|ei(kQ+∆P/2)e−

ik∆
4 ρeip∆/2|Q̃〉 [using B.C.H formula [10] , [Q,P ] = i ]

=

∫
dQ̃ e−

ik∆
4 〈Q̃|eip∆/2ei(kQ+∆P/2)ρ|Q̃〉 [using cyclicity of trace]

=

∫
dQ̃ e−

ik∆
4 e

ik∆
4 〈Q̃|ei(kQ+∆P )ρ|Q̃〉

= Tr
[
ei(kQ+∆P )ρ

]
(4.39)

While working in the Heisenberg representation, the density matrix remains constant while

the operators change with time. We have the functional form of Q(t) and P (t) in Eq. (4.33)
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and Eq. (4.34), respectively. Plugging those in Eq. (4.39) and assuming that the system and

the field were uncorrelated at t = 0 yields

ρ(k,∆) = Tr

ρ0e
i

[
∆

(
P0 cos Ωt− γ

Ω
P0 sin Ωt− γ

2+Ω2

Ω
Q0 sin Ωt

)
e−γt+k

(
Q0 cos Ωt+

P0+γQ0
Ω

sin Ωt
)
e−γt

]
× TrF

ρ0
F exp

{
−i
[
∆
d

dt
+ k

]
ε

Ω

∫ t

0

sin (Ω(t− t′))e−γ(t−t′)dt′

} . (4.40)

where we have taken

ρ0 ≡ ρ0
O and ρ0

OF = ρ0ρ0
F . (4.41)

The right hand side of Eq. (4.40) has been obtained in the Heisenberg picture where the

operators had been taken to time dependent. But we can connect with the Schrödinger

picture where k,∆ will be time dependent using the relation

ρ(k,∆) = ρ0(k(t),∆(t))E(k,∆; t) , (4.42)

where E(k,∆; t) denotes the effect of environment on ρ(k,∆). Now,

ρ0(k(t),∆(t)) = Tr
[
exp
{
i(k(t)Q0 + ∆(t)P0)

}
ρ0

]
. (4.43)

Hence Eq. (4.42) can be written as

ρ(k,∆) = ρ0(k(t),∆(t))E(k,∆; t)

= Tr
[
exp
{
i(k(t)Q0 + ∆(t)P0)

}
ρ0

]
E(k,∆; t) . (4.44)

Comparing this with Eq. (4.40) and rearranging terms results in

∆(t) =

[
∆

[
cos Ωt− γ

Ω
sin Ωt

]
+
k

Ω
sin Ωt

]
e−γt, (4.45a)

k(t) =

[
k

[
cos Ωt+

γ

Ω
sin Ωt

]
− ∆(γ2 + Ω2)

Ω
sin Ωt

]
e−γt, (4.45b)

E(k,∆; t) = TrF

ρ0
F exp

{
−i
[
∆
d

dt
+ k

]
ε

Ω

∫ t

0

sin (Ω(t− t′))e−γ(t−t′)dt′

} . (4.45c)

The kernel for the evolution of the density matrix is simply

G(k′,∆′, k,∆; t) = δ(k′ − k(t))δ(∆′ −∆(t))E(k′,∆′; t) , (4.46)
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as ∫
dk′ d∆′ G(k′,∆′, k,∆; t)ρ0(k′,∆′) = ρ0(k(t),∆(t))E(k,∆; t) = ρ(k,∆) . (4.47)

Eq. (4.44) along with Eq. (4.45c) give the complete solution for the reduced density matrix of

the system.

4.3 The master equation

In the previous section, we obtained the full solution for the reduced density matrix of the

system. Here we shall obtain the master equation that governs the evolution of the reduced

density matrix. We shall do so because the master equation shows different effects of the

environment on the system (such as dissipation, decoherence, etc.) and often it is easier to

numerically integrate the master equation than to evaluate the solution numerically.

The master equation is of the form

ρ̇ = Lρ . (4.48)

In order to find the operator L which generates time evolution, we need to find the time

derivative of ρ(k,∆). For this purpose, we shall use the formula that for any operator A(t)

deA(t)

dt
=

∫ 1

0

eλA(t)Ȧe(1−λ)A(t)dλ . (4.49)

The expression for reduced density matrix is

Tr
[
ρ0ei(kQ+∆P )

]
. (4.50)

Differentiating this equation with respect to time gives

ρ̇ = Tr

[
ρ0

∫ 1

0

eiλ(kQ+∆P )[i(kQ̇+ ∆ṗ)]ei(1−λ)(kQ+∆P )dλ

]
. (4.51)

Now we use Q̇ = P and evaluate Ṗ = Q̈ using Eq. (4.8). Plugging these in the above

equation leads to

ρ̇ = Tr

[
ρ0

∫ 1

0

eiλ(kQ+∆P )[i(kP + ∆(−Ω2
0Q− ε2P/2− εφ̇0))]ei(1−λ)(kQ+∆P )dλ

]
. (4.52)
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To simplify this equation, we shall use the derivatives of ρ(k,∆) w.r.t (k,∆). They are found

to be

∂ρ(k,∆)

∂∆
= Tr

[
ρ0

∫ 1

0

eiλ(kQ+∆P )[iP ]ei(1−λ)(kQ+∆P )dλ

]
, (4.53)

∂ρ(k,∆)

∂k
= Tr

[
ρ0

∫ 1

0

eiλ(kQ+∆P )[iQ]ei(1−λ)(kQ+∆P )dλ

]
. (4.54)

Using the above two equations, Eq. (4.52) simplifies to

ρ̇ =

[
k
∂

∂∆
−∆Ω2

0

∂

∂k
− ∆ε2

2

∂

∂∆

]
ρ(k,∆)− i∆εTr

[
ρ0

∫ 1

0

eiλ(kQ+∆P )φ̇0e
i(1−λ)(kQ+∆P )dλ

]
.

(4.55)

Let us denote the second part of this equation by D(t), i.e.,

D(t) = −i∆ε Tr

[
ρ0

∫ 1

0

eiλ(kQ+∆P )φ̇0e
i(1−λ)(kQ+∆P )dλ

]
. (4.56)

We need to find a simplified form of D(t) and to do so we first calculate

kQ+ ∆P

= k

(
Q0 cos Ωt+

P0 + γQ0

Ω
sin Ωt

)
e−γt + ∆

(
P0 cos Ωt−

[
γ

Ω
(P0 + γQ0) + ΩQ0

]
sin Ωt

)
e−γt

−
(

∆
d

dt
+ k

)[
ε

Ω

∫ t

0

dt′ sin (Ω(t− t′))e−γ(t−t′)φ̇0(t′)

]
. (4.57)

For the sake of notational clarity, we define Ψ(t), which is a function of the field φ as well as

time, as

Ψ(t) =

[
ε

Ω

∫ t

0

dt′ sin (Ω(t− t′))e−γ(t−t′)φ̇0(t′)

]
. (4.58)

We also denote the φ independent part as S(k,∆, P0, Q0), i.e.,

S(k,∆, P0, Q0) = k

(
Q0 cos Ωt+

P0 + γQ0

Ω
sin Ωt

)
e−γt

+∆

(
P0 cos Ωt−

[
γ

Ω
(P0 + γQ0) + ΩQ0

]
sin Ωt

)
e−γt . (4.59)
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With this notation, D(t) becomes

D(t) = −i∆ε Tr

[
ρ0

∫ 1

0

eiλ(S(k,∆,P0,Q0)−(∆d/dt+k)Ψ(t))φ̇0e
i(1−λ)(S(k,∆,P0,Q0)−(∆d/dt+k)Ψ(t))dλ

]
.

(4.60)

Noticing that S(k,∆, P0, Q0) commutes with φ̇0, we get

D(t) =− i∆ε Tr
[
ρ0ei(S(k,∆,P0,Q0))

]
× Tr

ρ0
F

∫ 1

0

dλ

[
exp

{
−iλ(k + ∆

d

dt
)Ψ(t)

}
φ̇0 exp

{
−i(1− λ)(k + ∆

d

dt
)Ψ(t)

}] .

(4.61)

Now the expression for ρ(k,∆) from Eq. (4.40) can be written as

ρ(k,∆) = Tr
[
ρ0ei(S(k,∆,P0,Q0))

]
Tr

[
ρ0
F exp

{
−i(k + ∆

d

dt
)Ψ(t)

}]
. (4.62)

We shall now show that D(t) can be written as

D(t) = −i∆ερ(k,∆)

−i ∂
∂α

ln Tr

ρ0
F exp

{
−i
[
(k + ∆

d

dt
)Ψ(t)− αφ̇0

]}
 ∣∣∣∣∣

α=0

. (4.63)

Consider the quantity,

∂

∂α
lnTr

ρ0
F exp

{
−i
[
(k + ∆

d

dt
)Ψ(t)− αφ̇0

]} ∣∣∣∣∣
α=0

≡ ∂

∂α
lnM

∣∣∣∣∣
α=0

= Tr

[
ρ0
F

∫ 1

0

dλ exp

{
−iλ

[
(k + ∆

d

dt
)Ψ(t)− αφ̇0

]}[
iφ̇0

]
× exp

{
−i(1− λ)

[
(k + ∆

d

dt
)Ψ(t)− αφ̇0

]}]
×M−1

∣∣∣∣∣
α=0

= Tr

[
ρ0
F

∫ 1

0

dλ exp

{
−iλ

[
(k + ∆

d

dt
)Ψ(t)

]}[
iφ̇0

]
× exp

{
−i(1− λ)

[
(k + ∆

d

dt
)Ψ(t)

]}]
×M−1 . (4.64)

Using this, the right hand side of Eq. (4.63) becomes

− i∆ερ(k,∆)

−i ∂
∂α

ln Tr

ρ0
F exp

{
−i
[
(k + ∆

d

dt
)Ψ(t)− αφ̇0

]}
 ∣∣∣∣∣

α=0
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= −i∆εTr
[
ρ0ei(S(k,∆,P0,Q0))

]
×M × (−i)

× Tr

ρ0
F

∫ 1

0

dλ exp

{
−iλ

[
(k + ∆

d

dt
)Ψ(t)

]}[
iφ̇0

]
exp

{
−i(1− λ)

[
(k + ∆

d

dt
)Ψ(t)

]}M−1

= −i∆ε Tr
[
ρ0ei(S(k,∆,P0,Q0))

]
× Tr

ρ0
F

∫ 1

0

dλ

[
exp

{
−iλ(k + ∆

d

dt
)Ψ(t)

}
φ̇0 exp

{
−i(1− λ)(k + ∆

d

dt
)Ψ(t)

}]
= D(t) . [Q.E.D] (4.65)

Now, for any arbitrary linear operator O and a Gaussian density matrix ρ,

Tr
[
ρ0
F exp{iOφ0}

]
= exp

{
−1

2
Tr
[
ρ0
F (Oφ2

0)
]}

. (4.66)

Inspecting Eq. (4.63), we find that it is of the form

D(t) = −i∆ερ(k,∆)

[
−i ∂
∂α

lnTr
[
ρ0
F exp{iOφ0}

]] ∣∣∣∣
α=0

, (4.67)

where,

Oφ0 = −(k + ∆
d

dt
)Ψ(t) + αφ̇0 . (4.68)

Now we are in a position to obtain a simpler expression for D(t). Notice that

D(t) = −i∆ερ(k,∆)

[
−i ∂
∂α

lnTr
[
ρ0
F exp{iOφ0}

]] ∣∣∣∣
α=0

= −i∆ερ(k,∆)

[
−i ∂
∂α

ln exp

{
−1

2
Tr
[
ρ0
F (Oφ2

0)
]}] ∣∣∣∣

α=0

=
∆ερ

2

∂

∂α
Tr
[
ρ0
F (Oφ2

0)
]∣∣∣∣
α=0

=
∆ερ

2
Tr

[
ρ0
F

∂

∂α
(Oφ2

0)

]∣∣∣∣
α=0

=
∆ερ

2
Tr

ρ0
F

∂

∂α

[
−2
(
αφ̇0(t)

)(
k + ∆

d

dt

)
Ψ(t) + α2φ̇2

0(t)

]∣∣∣∣
α=0

=
∆ερ

2
Tr

ρ0
F

[
−2φ̇0(t)

(
k + ∆

d

dt

)
Ψ(t)

]
= −∆ερ Tr

[
ρ0
F φ̇0(t)

(
k + ∆

d

dt

)
ε

Ω

∫ t

0

dt′ sin (Ω(t− t′))e−γ(t−t′)φ̇0(t′)

]
; τ ≡ t− t′
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= −∆ερ Tr

ρ0
F φ̇0(t)

[
kΨ(t) +

∆ε

Ω

∫ t

0

dt′
[
Ω cos Ωτe−γτ − γ sin Ωte−γτ

]
φ̇0(t′)

]
= −∆ε2ρ Tr

ρ0
F

[
(k − γ∆)

∫ t

0

dt′
sin Ωτ

Ω
e−γτ φ̇0(t)φ̇0(t′)

+ ∆

∫ t

0

dt′ cos Ωτe−γτ φ̇0(t)φ̇0(t′)

] . (4.69)

Due to the requirement of symmetrization,

Tr
[
ρ0
F φ̇0(t)φ̇0(t′)

]
=

1

2
〈φ̇0(t)φ̇0(t′) + φ̇0(t′)φ̇0(t)〉ρF . (4.70)

Using this in Eq. (4.69) yields

D(t) = −∆ε2

2
ρ(k,∆)

[
(k − γ∆)

∫ t

0

dt′
sin Ωτ

Ω
e−γτ 〈φ̇0(t)φ̇0(t′) + φ̇0(t′)φ̇0(t)〉ρF

+ ∆

∫ t

0

dt′ cos Ωτe−γτ 〈φ̇0(t)φ̇0(t′) + φ̇0(t′)φ̇0(t)〉ρF

]
. (4.71)

The correlation function for the quantum noise for the scalar field φ0 which is in thermal

equilibrium at a temperature T = β−1 is given by

〈φ̇0(t)φ̇0(t′) + φ̇0(t′)φ̇0(t)〉ρF =
2

π

∫ Γ

0

dω ω coth
βω

2
cosωτ , (4.72)

where we have introduced a cut-off Γ. Now D(t) can be explicitly evaluated for the field φ0.

It is given by

D(t) = −∆ε2ρ(k,∆)

[
k − γ∆

Ωπ

∫ Γ

0

dω ω coth
βω

2

(∫ t

0

dτ cosωτ sin Ωτe−γτ

)

+
∆

π

∫ Γ

0

dω ω coth
βω

2

(∫ t

0

dτ cosωτ cos Ωτe−γτ

) ]
. (4.73)

We now define the following functions:

f(t,Γ, β) =
1

Ωπ

∫ Γ

0

dω ω coth
βω

2

[∫ t

0

dτ cosωτ sin Ωτe−γτ

]
, (4.74a)

g(t,Γ, β) =
1

π

∫ Γ

0

dω ω coth
βω

2

[∫ t

0

dτ cosωτ cos Ωτe−γτ

]
, (4.74b)
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4.3. THE MASTER EQUATION

h(t,Γ, β) = g − γf . (4.74c)

Using the above definitions, Eq. (4.73) becomes

D(t) = −∆ε2[kf + ∆h]ρ(k,∆) = −4γ∆[∆h+ kf ]ρ(k,∆) . (4.75)

Putting this in Eq. (4.55) gives us the final form for the evolution of the reduced density

matrix:

ρ̇ =

[
k
∂

∂∆
−∆Ω2

0

∂

∂k
− 2γ∆

∂

∂∆
− 4γ∆2h(t,Γ, β)− 4γ∆kf(t,Γ, β)

]
ρ(k,∆) . (4.76)

The time-dependent functions f, g, h determine the non-unitary evolution of the density

matrix. To study the properties of this master equation, we transform it back to the (q, q′)

representation using the following relations:

∆ = q − q′ , k = i

[
∂

∂q
+

∂

∂q′

]
, (4.77a)

∂

∂k
= −i(q + q′) ,

∂

∂∆
=

∂

∂q
− ∂

∂q
. (4.77b)

This results in

ρ̇(x, x
′
, t) =[i(

∂2

∂q2
− ∂2

∂q′2
+ Ω2

0(q2 − q′2))− 2γ(q − q′)( ∂
∂q
− ∂

∂q′
)− 4γ(q − q′)2h)]ρ

− 4iγ(q − q′)( ∂
∂q

+
∂

∂q′
)fρ . (4.78)

Note that we have obtained the signs of the Ω2
0 term and the γh term as opposite to those in

the paper. The first three terms in this equation denote unitary time evolution. The rest of

them arise due to dissipation as well as decoherence.

We can transform the above equation to find the equation governing the evolution of the

Wigner function of the system. It turns out to be [13]

Ẇ (x, p) = (− ∂

∂q
p+ Ω2

0

∂

∂p
q + 2γ

∂

∂p
p+ 4γh

∂2

∂p2
− 4γf

∂

∂q

∂

∂p
)W (x, p) . (4.79)

In the subsequent sections, we study the behavior of this master equation for various sys-

tems to study its implications. We have assumed the coefficients h, f, g to be constants in the

following study as these coefficients become constant after the initial transient regime [13].
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4.4. THE EVOLUTION OF A POSITION CAT STATE

4.4 The evolution of a position cat state

Position cat state is just a superposition of two Gaussians in position space whose initial

wave function is given by [14]

Ψpos(x, t = 0) = exp[−
(x− ∆x)

2

2

4δ2
] + exp[−

(x+ ∆x)
2

2
)2

4δ2
] , (4.80)

where δ is the width of each of the Gaussians, ∆x is the separation between them and we

assume ∆x > δ.

Figure 4.1: Initial state for the cat state given by Eq. (4.80) with ∆x = 2, δ = 0.2

Evolution of density matrix for the decoherence term :

The initial density matrix associated with the position cat state is,

ρ(x, x
′
, 0) =

(
e−

x−∆x
2

4δ2 + e−
x+ ∆x

2
4δ2

)(
e−

x
′
−∆x

2
4δ2 + e−

x
′
+ ∆x

2
4δ2

)
. (4.81)

Now we shall plot the evolution of the density matrix for the decoherence term alone with

the initial state given by the above equation [14]. With only the decoherence term, we have

ρ̇(x, x
′
, t) = τ−1

D (x− x′)2ρ(x, x
′
) , (4.82)

where τD is the decoherence timescale and from the analysis above it is given by τ−1
D = 4γh.

The figures in Fig. 4.2 show this evolution for the initial state given by Eq. (4.80) with ∆x =

2, δ = 0.2. Notice that the off-diagonal elements of the density matrix decay exponentially

with time, implying the loss of quantum coherence in the position basis.
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4.5. EVOLUTION OF THE QUANTUM HARMONIC OSCILLATOR

(a) time = 0 (b) time = 0.5 sec

(c) time = 1 sec (d) time = 1.5 sec

Figure 4.2: Time evolution according to Eq. (4.82) for the cat state density matrix given by
Eq. (4.81); τD = 1 sec.

Evolution of the Wigner function of the position cat state :

We have studied the evolution of the Wigner function of the position cat state according to

Eq. (4.79). The master equation for the Wigner function has been solved numerically for this

purpose and the resulting evolutions in shown in Fig. 4.3. Notice that the suppression of the

interference term, implying the emergence of classicality, can be clearly seen in the figures.

4.5 Evolution of the quantum harmonic oscillator

The evolution of the 9th excited state of the quantum harmonic oscillator in different limits

is studied in [12] . Here we try to reproduce the results for this particular case.
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4.5. EVOLUTION OF THE QUANTUM HARMONIC OSCILLATOR

(a) time = 0 (b) time = 0.05

(c) time = 0.1 s (d) time = 0.15 s

(e) time = 0.2 s (f) time = 0.25 s

Figure 4.3: Time evolution of the Wigner function according to Eq. (4.79) with an initial
position superposition (cat state) given by Eq. (4.80). ∆x = 6, δ = 1, γ = 0.1,Ω0 = 1, h =
0.1, f = 0.01.

The 9th excited state for the quantum harmonic oscillator is given by (see Fig. 4.4)

Ψ(x, t = 0) = Ae−
mωx2

2~ H9( 2

√
mω

~
x) , (4.83)

where A is the normalization constant, m is the mass and ω is the angular frequency of the
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4.5. EVOLUTION OF THE QUANTUM HARMONIC OSCILLATOR

oscillator .

Figure 4.4: Wave function associated with the 9th excited state of the harmonic oscillator,
given by Eq. (4.83). The parameters have been set to unity, i.e., m = ω = ~ = 1

Evolution of density matrix for the 9th excited state of quantum harmonic oscillator :

The evolution of the density matrix for the 9th excited state of the quantum harmonic oscil-

lato due only to decoherence component is plotted in Fig. 4.5. Notice again the decaying of

the off-diagonal elements of the density matrix denoting the loss of coherence.

Evolution of the Wigner function for the 9th excited state :

The evolution of the Wigner function according to Eq. (4.79) for the initial state given by

Eq. (4.83) is shown in Fig. 4.6. The solution was obtained by numerically solving Eq. (4.79)

for γ = 1, Ω0 = 1, h = 1 and f = 0.01. Notice how the initial symmetry between position

and momentum is broken due the form of the environmental coupling of the forcing field φ

with x. Also notice the way superpositions have died out with the passage of time.
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4.5. EVOLUTION OF THE QUANTUM HARMONIC OSCILLATOR

(a) time = 0 (b) time = .06 sec

(c) time = .12 sec (d) time = .18 sec

Figure 4.5: Time evolution according to Eq. (4.82) for the density matrix of the 9th excited
state of the quantum harmonic oscillator given by Eq. (4.83). τD was chosen to be unity while
plotting these figures.
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4.5. EVOLUTION OF THE QUANTUM HARMONIC OSCILLATOR

(a) time = 0 (b) time = 0.15 sec

(c) time = 0.3 sec (d) time = 0.45 sec

(e) time = 0.6 sec

Figure 4.6: Time evolution of the Wigner function according to Eq. (4.79) for the 9th excited
state of the quantum harmonic oscillator is plotted here. The solutions were obtained by
numerically solving Eq. (4.79) for γ = 1, Ω0 = 1, h = 1 and f = 0.01.

57



Chapter 5

Summary

In this work, we have shown how systems lose their quantum nature by virtue of their inter-

action with the environment. We began our work by discussing some of the key features of

quantum mechanics that give it a distinctive color in the mundane world of human common

sense and makes it stand apart. Afterwards, we show how those features slowly fade away

in the abyss of the macroscopical domain. We set out to seek what causes this transition and

at our first stop meet some experiments. These experiments told us that the reason behind

this transition isn’t just our unfortunate inability of “see”-ing these exotic features, which

become too minuscule as we enter the “big” world of basketballs and bananas. The story

goes down the rabbit hole. They whispered into our ears stories of the omnipresence of na-

ture, of the environment, which becomes unavoidable as we climb up the ladder of size and

sang to us how this mingling (entanglement) of the environment with buckyballs (system)

leads to a transfer of quantum features from the system to the global level. Motivated by

their chants, we first armed ourselves with certain tools such as density matrices and Wigner

functions, which were necessary to study systems that are not selfishly closed. We saw some

examples of these constructs for various systems and understood what they imply. Then we

finally delved into the study of open quantum systems, to find that depending upon the way

a system interacts with the environment, certain system quantum states are preferred over

others. The environmental interaction leads to the emergence of a set of “pointer states”

which get least entangled with the environment and a superposition of these states loses its

quantum coherence quite rapidly. Next we focused our attention on the system alone and

tried to construct equations that denote the evolution of the system with minimal input from

the environment. These “master equations”, specifically the Born-Markov master equation,
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derived under certain approximate assumptions, sometimes lead to the violation of positiv-

ity of density matrices, a very undesirable feature, but the ones which could be written in

a Lindblad form were free of this sin. The master equations made our lives simpler by a

great deal as we didn’t have to take care of the environmental degrees of freedom, which

were often too large to take care of anyways, and they let us construct simplistic models

of the system-environment interaction to derive observable effects thereof. Finally, in the

last chapter, we took up a specific model of system-environment interaction, known as the

quantum Brownian motion, and derived the master equation along with its solutions for

the particular case. We finally ended our work by studying the evolution of different initial

states under this master equation. We plotted these numerically obtained solutions to find

that indeed the superposition of certain states lose their quantum nature in the course of

time, giving a concrete appeal to the theory we had developed up to that point and bringing

our quest to a temporary end.
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