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ABSTRACT

Theories of inflation provide a causal mechanism for the origin of perturbations in the

early universe, perturbations which evolve and leave an imprint on the cosmic microwave

background. The n-point statistics of the observed perturbations can be used to constrain

various models of inflation. Most of the efforts have been to study the tensor power spec-

trum. In this work, I study the tensor bi-spectrum during two models of inflation, namely

power law inflation and inflation driven by a quadratic potential model. The aim of this

work is to construct a Python code to numerically evaluate the tensor bi-spectrum during

inflation for an arbitrary triangular configuration of wavevectors.
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Chapter 1

Introduction

Inflation refers to a period of rapid expansion in the early universe and the theory of

inflation was proposed to overcome a few of the drawbacks of the conventional hot big bang

model of the universe, the flatness problem and the horizon problem to name a few. Infla-

tion also provides a causal mechanism for the generation of perturbations in the universe,

perturbations which evolved into the large scale structure of the universe. From an observa-

tional perspective, the inhomogenities in the early universe leave an imprint as anisotropies

on the cosmic microwave background (CMB) and studying the CMB, specifically the n-point

statistics of perturbations, will help us constrain numerous inflationary models. The two-

point statistic refers to the power spectrum of perturbations and the three-point statistic

refers to the bi-spectrum of perturbations. In this work, I will study the tensor bi-spectrum,

the easiest of the three-point functions.

This thesis presents a study of the tensor bi-spectrum, G(k1,k2,k3), and the non-

Gaussianity parameter, hNL. It is organized as follows. In this chapter, I give a brief in-

troduction to inflation and why scalar fields are needed to drive inflation. I also introduce

the conditions imposed on a scalar field that drives inflation. I will discuss linear perturba-

tion theory and tensor perturbations in the metric. I will discuss how the scale factor, a(t),

the scalar field, φ, and the potential driving the scalar field, V (φ), are related to each other.

In the next chapter, I will discuss how we can solve the equation governing the evolution of

the tensor perturbations after we obtain solutions for the evolution of the scalar field driv-

ing inflation. After obtaining solutions for the evolution of the tensor perturbations, I will

discuss how the tensor bi-spectrum, G(k1,k2,k3), can be evaluated. In the third chapter, I
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1.1. CONVENTIONS AND NOTATIONS

will discuss the numerical methods implemented to solve for the scalar field φ, the tensor

perturbations hk, the tensor bi-spectrum G(k1,k2,k3) and the non-Gaussianity parameter

hNL.

1.1 Conventions and notations

I shall work in (3 + 1) dimensions and I shall adopt the metric signature (−,+,+,+).

Latin indices, with the exception of k which represents wavevectors, represent spatial coor-

dinates whereas greek indices denote all spacetime coordinates. Planck mass is defined as

MPl = (8πG)−1/2. t refers to cosmic time and an overdot refers to differentiation with respect

to cosmic time whereas η refers to conformal time and an overprime represents differenti-

ation with respect to conformal time. For convenience with the numerics, we measure the

duration of inflation not in terms of cosmic time or conformal time but in terms of e-folds

N , where N is defined as

N = ln

(
a(t)

a0

)
, (1.1)

a0 is the scale factor when inflation started and a(t) is the scale factor when inflation ends.

1.2 Metric perturbations

Inhomogenities in the Cosmic Microwave Background have been measured to be one

part in 105 [1, 2] and given the expanding nature of our universe, it can be inferred that they

were much smaller at earlier epochs. Therefore, we can study the generation and evolution

of such anisotropies in the universe using linear perturbation theory.

The perturbations in a Friedmann background can be classified as scalar, vector and

tensor according to their behaviour under local rotation of spatial coordinates on hyper sur-

faces of constant time. The perturbations that remain invariant under rotations are classi-

fied as scalar. In fact, scalar perturbations are largely responsible for the anisotropy we see

in our universe. Vector and tensor perturbations behave as vectors and tensors under lo-

cal rotations. Rotational velocity fields generate vector perturbations and are therefore also

referred to as Vorticity modes and the tensor perturbations describe gravitational waves.
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1.2. METRIC PERTURBATIONS

(Refs. [3, 4, 5, 6, 7, 8, 9, 10, 11, 12] can be studied for a better understanding of cosmological

linear perturbation theory.) I shall restrict myself to tensor perturbations of the metric for

the scope of this work.

The metric tensor governing a Friedmann universe describes a homogeneous and

isotropic universe, which is not a valid assumption under the presence of perturbations.

We can therefore choose to work in a number of coordinate systems under the condition

that they reduce to the standard Friedmann line element in the limit when the perturbations

vanish. We shall represent the tensor perturbations in the metric as

ds2 = −dt2 + hij(t,x)dxidxj, (1.2)

where the tensor perturbations are characterized by the transverse, traceless matrix γij , i.e.

they satisfy the conditions γii = diγij = 0, and is given by

hij = a2(t)
[
eγ(t,x)

]
ij
. (1.3)

Similar to how we characterized the perturbations, we can characterize the sources

which give rise to them, namely the stress-energy tensor. Like the metric tensor, the stress-

energy tensor is a two tensor and therefore, perturbations in the stress-energy tensor can also

be classified into scalar, vector and tensor components. The decomposition theorem dictates

that scalar, vector and tensor perturbations are decoupled and can therefore be studied inde-

pendent of one another. Therefore, a scalar field driving inflation is a scalar source that gives

rise to scalar perturbations, velocity fields with Vorticity are vector sources that give rise to

vector perturbations and having eliminated the scalar and vector contributions, anisotropic

stresses constitute a tensor source that give rise to tensor perturbations.

The perturbed metric, say δgµν , can be used to derive the perturbed Einstein tensors,

which can then be related to the perturbed stress-energy tensor, say δTµν , giving rise to the

Einstein’s equations which govern the evolution of the metric perturbations. Under these as-

sumptions, the perturbed Einstein tensor governing the tensor perturbations corresponding

to the metric described in Eqn. (1.2) is given by
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1.3. QUANTIZATION OF METRIC PERTURBATIONS

δGi
j = −

(
1

2

)(
γ̈ij + 3Hγ̇ij −

1

a2
∇2γij

)
, (1.4)

after imposing the condition that γij is a transverse and traceless matrix. In the absence of

anisotropic stresses i.e if δT ij = 0, we get that

γ̈ + 3Hγ̇ −
(

1

a2

)
∇2γ = 0. (1.5)

which is the equation governing the evolution of tensor perturbations across cosmic time t.

The above equation can be rewritten in terms of conformal time η as

γ
′′

+ 2Hγ′ −∇2γ = 0, (1.6)

whereH = a
′
/a.

1.3 Quantization of metric perturbations

As I had mentioned earlier, understanding the n-point statistics of the perturbations

will help us constrain numerous inflationary models. Therefore, we would like to under-

stand the behaviour of the tensor perturbations in Fourier space. Eqn. (1.6) that governs the

evolution of the tensor perturbations in conformal time, η, can be rewritten in Fourier space

as

g
′′

k + 2Hg′

k + k2gk = 0. (1.7)

The homogeneity of the Friedmann background allows us to quantize the tensor per-

turbations. Upon quantization, we can write the tensor perturbation, γ̂, in terms of it’s

Fourier component, gk(η), as

γ̂ij(η,x) =
∑
s

∫
d3k

(2π)3/2

[
âk

sεsij(k)gk(η)eik·x + âk
s†εs∗ij (k)g∗k(η)e−ik·x

]
, (1.8)

where the creation and annihilation operators, âsk and âs†k , follow the standard commutation

relations. εsij(k) denotes the polarization tensor of tensor perturbations, where s denotes

their helicity and it satisfies the conditions εsii(k) = kiε
s
ij(k) = 0 given the transverse and

4



1.4. THE BUNCH-DAVIES INITIAL CONDITIONS

traceless nature of the tensor perturbations. As we are working in the linear order in pertur-

bations, the two point function of the quantum field, γ̂, can be used to characterize the power

spectrum of the tensor perturbations. The power spectrum of the tensor perturbations PT (k)

is defined as

〈γ̂kij(η)γ̂k
′

mn(η)〉 =
(2π)2

2k3
Πk
ij,mn

4
PT (k)δ(3)(k + k′), (1.9)

where the quantity Πk
ij,mn is given by

Πk
ij,mn =

∑
s

εsij(k)εs∗mn(k). (1.10)

The vaccum state |0〉 is defined as âsk|0〉 = 0 ∀ k and s. Using Eqs. (1.8) and (1.9) and

the assumption that the vacuum state |0〉 is the initial quantum state of the perturbations,

we can obtain the tensor power spectrum as

PT(k) = 4
k3

2π2
|gk|2, (1.11)

where the factor of 2 is needed to take into account the two states of polarization, + and ×,

of the gravitational waves.

1.4 The Bunch-Davies initial conditions

We need to understand the initial conditions from which the tensor perturbations

evolve in order to arrive at a complete analytical solution to the problem at hand. On in-

dividual modes, we impose the initial conditions when they are well within the Hubble

radius i.e when η → −∞ or (k/aH) >> 1. In this sub-Hubble limit, the curvature of space-

time can be neglected. Further, upon imposing the condition that the solution uk contain

positive frequency modes, we obtain a solution to the Eqn. (2.8) in the sub-Hubble limit as

lim
(k/aH)→∞ uk(η)→

(
1√
2k

)
e−ikη, (1.12)

where uk = MPlagk/
√

2.
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1.5. THE TENSOR BI-SPECTRUM

1.5 The tensor bi-spectrum

The moments of primordial perturbations can be used to understand their statistical

properties. The variance or the power spectrum of the primordial perturbations would have

contained all of it’s statistical properties if they were Gaussian. However, non-Gaussianities

in the primordial perturbations would manifest either as non-zero odd moments or as the

even moments taking a different form. Hence, non-zero three point functions of the primor-

dial perturbations would be the first evidence of non-Gaussianity. We adopt the so-called

Maldacena formalism as it is the most complete formalism to calculate the three-point func-

tions generated during inflation amongst different approaches [15]. In this section, we will

only concentrate on the three-point function involving tensors.

The tensor bi-spectrum in Fourier space, Gm1n1m2n2m3n3
γγγ (k1,k2,k3) evaluated towards

the end of inflation at conformal time, say ηe, is defined as [15, 16, 17, 18, 19]

〈γ̂k1
m1n1

(ηe)γ̂
k2
m2n2

(ηe)γ̂
k3
m3n3

(ηe)〉 = (2π)−3/2Gm1n1m2n2m3n3
γγγ (k1,k2k3)δ

(3)(k1 + k2 + k3), (1.13)

where γkmn represents the tensor perturbation γmn in Fourier space. We can arrive at the ten-

sor three-point function using the action governing the tensor perturbations and the stan-

dard rules of perturbative quantum field theory [15, 16, 17, 18, 19]. Using Maldecena’s ap-

proach, we can obtain a cubic order action of the form,

S3
γγγ[γij] =

1

2

∫
dη

∫
d3x

[
a2

2
γljγim∂l∂mγij −

a4

4
γijγlm∂l∂mγij

]
. (1.14)

The interaction Hamiltonian corresponding to the above action is needed to evalu-

ate the three-point correlation function using the methods of quantum field theory. At

the cubic order, it can be shown that Hint = −Lint, where Hint is the interaction Hamil-

tonian and Lint is the interaction Lagrangian [15, 16, 17, 18, 19]. The tensor bi-spectrum

Gm1n1m2n2m3n3
γγγ (k1,k2,k3) can be expressed in terms of the Hamiltonian Ĥγγγ as [17, 19, 20]

〈γ̂k1
m1n1

(ηe)γ̂
k2
m2n2

(ηe)γ̂
k3
m3n3

(ηe)〉 = −i
∫ ηe

ηi

dη〈[γ̂k1
m1n1

(ηe)γ̂
k2
m2n2

(ηe)γ̂
k3
m3n3

(ηe), Ĥγγγ(η)]〉. (1.15)
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1.6. DRIVING INFLATION

The tensor bi-spectrum Gm1n1m2n2m3n3
γγγ (k1,k2,k3), calculated in perturbative vaccum,

can be written as [15, 17, 19, 20]

Gm1n1m2n2m3n3
γγγ (k1,k2,k3) =

M2
Pl

[(
Πk1
m1n1,ij

Πk2
m2n2,im

Πk3
m3n3,lj

− 1

2
Πk1
m1n1,ij

Πk2
m2n2,ml

Π3
m3n3,ij

)
k1mk1l + fivepermutations

]
× [hk1(ηe)hk2(ηe)hk3(ηe)Gγγγ + complexconjugate] ,

where the quantities G is given by [18, 19]

Gγγγ(k1,k2,k3) =
−i
4

∫ ηe

ηi

dηa2h∗k1
h∗k2

h∗k3
. (1.16)

1.6 Driving inflation

In a spatially flat, smooth Friedmann universe, the line element that describes the uni-

verse can be written as

ds2 = dt2 − a2(t)dx2 = a2(η)
(
dη2 − dx2

)
, (1.17)

and for such a line element, the Einstein’s equations can be rewritten as the following two

Friedmann equations

(
ȧ

a

)2

= H2 =

(
8πG

3

)
ρ, (1.18)

(
ä

a

)
= Ḣ +H2 = −

(
4πG

3

)
(ρ+ 3p), (1.19)

where ρ and p denote the energy density and the pressure of the field driving the change

and H = ȧ/a is the Hubble parameter. A necessary condition to solve the horizon problem

and to achieve inflation on the scale factor a(t) is

ä > 0. (1.20)

7



1.6. DRIVING INFLATION

From Eqns. (1.19) and (1.20), it is straight forward to notice that

ρ+ 3p < 0, (1.21)

is a necessary condition for a field that drives inflation. We know that a matter field has

p = 0 and that a radiation field has p = ρ/3, neither of which satisfy the above condition. We

therefore invoke the presence of a scalar field φ, itself driven by a potential V (φ), to drive

inflation. A scalar field that drives inflation is also referred to as an Inflaton.

We can write the action, S[φ], for such a scalar field and the corresponding stress-

energy tensor Tµν as

S[φ] =

∫
d4x
√
−g
[(

1

2

)(
∂λφ∂λφ

)
− V (φ)

]
, (1.22)

T µν = ∂µφ∂νφ− δµν
[(

1

2

)(
∂λφ∂λφ

)
− V (φ)

]
. (1.23)

From Eqn. (1.22) defining the action, S[φ], for a scalar field φ, we can derive the equa-

tion of motion for the scalar field to be

φ̈+ 3Hφ̇+ Vφ = 0, (1.24)

where Vφ = dV/dφ.

We can also arrive at solutions to the scalar field, φ, and the potential, V (φ), using

the stress-energy tensor, T µν , defined in Eqn. (1.23) and the Friedmann equations defined in

Eqns. (1.18) and (1.19). From Eqn. (1.23), we can write the individual components of the

stress-energy tensor as

T 0
0 =

(
φ̇2

2

)
+ V (φ) = ρ, (1.25)

T ij = −

[(
φ̇2

2

)
− V (φ)

]
δij = −pδij. (1.26)
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1.6. DRIVING INFLATION

Using the definitions for energy density ρ and the pressure p from Eqs. (1.25) and

(1.26), we can rewrite Eqs. (1.18) and (1.19) defining the Hubble parameter and the evolution

of the Hubble parameter in cosmic time t as

Ḣ =
−φ̇2

2M2
Pl

, (1.27)

H2 =

(
1

3M2
Pl

)(
φ̇2

2
+ V

)
. (1.28)

We can also rewrite Eqn. (1.27) and (1.28) to express the scalar field φ and the potential

V in terms of the Hubble parameter and the first derivative of the Hubble parameter in

terms of cosmic time, t, as

φ(t) =
√

2

∫
dt
√
−Ḣ, (1.29)

V (t) = 3H2 + Ḣ. (1.30)

9



Chapter 2

Inflationary models

Numerous models have been proposed to solve the horizon problem. In this chapter,

I will specifically discuss power law inflation and slow-roll inflation. I will discuss the form

of the scalar field driving inflation and the solution of the equation governing the evolution

of the tensor perturbations and the analytic form of the tensor power spectrum in both cases.

Further, I will discuss the analytic form of the tensor bi-spectrum during slow-roll inflation.

2.1 Power law inflation

Power law inflation is one of many models of inflation where inflation is being driven

by a single scalar field. During power law inflation, we assume that the scale factor, a(t), has

a power law dependence on cosmic time t, namely

a(t) = a0t
q. (2.1)

We can be rewrite the above equation to obtain the evolution of the scale factor in terms

of conformal time, η, as

a(η) =
(
−H̄η

)(γ+1)
, (2.2)

where H̄ and γ are given by

H̄ = a
1/q
0 (q − 1) and γ = −

(
2q − 1

q − 1

)
. (2.3)

10



2.1. POWER LAW INFLATION

2.1.1 Evolution of the scalar field driving power law inflation

Using the scale factor given by Eqn. (2.1), we can rewrite the Eqns. (1.29) and (1.30)

that define the scalar field, φ, and the potential, V , in terms of the Hubble parameter, H , and

it’s first derivative with respect to cosmic time, Ḣ , as

φ(t) =
√

(2q) ln

[
t

√(
V0

(3q − 1)q

)]
, (2.4)

V (φ) = V0 exp

[
−φ

√(
2

q

)]
. (2.5)

Further, for convenience in numerical evaluation, we can rewrite the scalar field, φ,

and the Hubble parameter, H , in terms of e-fold N as

φ(N) =

√(
2

q

)
N −

√
(2q) ln t0, (2.6)

H(N) = H0 exp−N/q, (2.7)

where t0 =
√

((3q − 1)q/V0).

Having solved the background equations that govern the evolution of the scalar field

during inflation, we can now attempt to solve the equation governing the evolution of tensor

perturbations. We can rewrite Eqn. (1.6) governing the evolution of tensor perturbations in

conformal time, η, by substituting gk = (uk/a) as

u′′k +

[
k2 −

(
a′′

a

)]
uk = 0, (2.8)

and the power spectrum governing tensor perturbations, namely Eqn. (1.11), can be rewrit-

ten as

PT(k) = 4

(
k3

2π2

)
|hk|2 = 4

(
k3

2π2

)(
|uk|
a

)2

. (2.9)
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2.2. SLOW ROLL INFLATION

2.1.2 The tensor power spectrum during power law inflation

Armed with the analytic solution to the background driving inflation and the initial

conditions imposed on the tensor perturbations, we can attempt to solve the Eqn. (1.7) gov-

erning the evolution of tensor perturbations in fourier space to obtain the power spectrum

of tensor perturbations. Substituting the scale factor given by Eqn. (2.1) in the Eqn. (2.8), we

can arrive at a solution satisfying the initial conditions defined in Eqn. (1.12) as

uk(η) =

(
−πη

4

)1/2

ei[ν+(1/2)](π/2)H(1)
ν (−kη), (2.10)

where ν = [γ + (1/2)] and H
(1)
ν is the Hankel function of the first kind and of order ν [13]. In

the super-Hubble limit ( i.e as (−kη → 0)), we can approximate the Hankel function to

H(1)
ν (z) ∼ −(i/π)Γ(ν)

(z
2

)(−ν)
, (2.11)

where Γ(ν) is a Gamma function. In the super-Hubble limit, uk and a have the same be-

haviour and therefore, the tensor perturbation hk reach a constant value, allowing us to

obtain the tensor power spectrum in the super-Hubble limit as

PT(k) = AT H̄2

(
k

H̄

)2(γ+2)

, (2.12)

where

AT =

[
1

π3

](
|Γ(ν)|2

2(2γ+1)

)
. (2.13)

2.2 Slow roll inflation

We have previously seen that (ρ+ 3p) < 0 is a necessary condition for inflation to take

place. Using the definitions of ρ and p from Eqn. (1.25) and Eqn. (1.26), we can restate

the above the condition as φ̇2 < V (φ). However, if φ̇2 << V (φ), Inflation is guaranteed

to take place. We can interpret the above condition as the field slowly rolling down the

potential, V (φ). Moreover, using the above condition and Eqn. (3.2), we can ensure that

inflation occurs for a sufficiently long time, provided φ̈ << 3Hφ̇. These two conditions on

the first and second derivative of the scalar field, phi, lead to the slow-roll approximation,

12



2.2. SLOW ROLL INFLATION

using which we can construct analytical solutions for the evolution of the background and

the evolution of tensor perturbations.

The slow-roll condition is quantified using slow-roll parameters and two types of slow-

roll parameters are often considered in literature, namely potential slow-roll parameters and

Hubble slow-roll parameters. We will only be working with the Hubble slow-roll param-

eters. The Eqn. (1.27) that relates the evolution of the scalar field to the derivative of the

Hubble parameter, Ḣ , can be rewritten as

φ̇ = −2M2
PlHφ, (2.14)

where Hφ = dH/dφ. This expression can be used to rewrite the Eqn. (1.28) that relates the

Hubble parameter, H , it’s derivative, dH/dφ, and the potential, V (φ), as

H2
φ −

3H2

2M2
Pl

= − V

2M4
Pl

, (2.15)

The above equation is referred to as the Hamilton-Jacobi formulation of inflation. Con-

sidering the Hubble parameter, H , to be a function of the scalar field, φ, we can define the

dimensionless Hubble slow-roll parameters εH and δH as

εH = 2M2
Pl

(
Hφ

H

)2

δH = 2M2
Pl

(
Hφφ

H

)
(2.16)

where Hφφ = d2H/dφ2. Using Eqns. (3.2), (2.14) and (2.15), we can rewrite the two Hubble

slow-roll parameters as

εH = −

(
Ḣ

H2

)
, δH = εH −

(
˙εH

2HεH

)
. (2.17)

Note that conditions on the Hubble slow-roll parameters εH and δH correspond to

constraining the kinetic energy of the scalar field and the acceleration of the scalar field,

respectively. Specifically, kinetic energy of the scalar field can be neglected if εH << 1 and

the acceleration of the scalar field can be ignored in comparison to the term involving the

velocity, φ̇, if δH << 1.

13



2.2. SLOW ROLL INFLATION

2.2.1 Evolution of the scalar field during slow-roll inflation

Using the above definitions of the slow-roll parameters, let us now arrive at an analytic

solution to the evolution of the scalar field. We can rewrite Eqn. (3.2), the equation governing

the evolution of the scalar field. and Eqn. (1.28) in terms of the slow-roll parameters as

H2
(

1− εH
3

)
=

V

3M2
Pl

, (2.18)

3Hφ̇

(
1− δH

3

)
= −Vφ. (2.19)

In the slow-roll approximation, εH << 1 and δH << 1, the above equations can be

rewritten as

H2 =
V

3M2
Pl

, (2.20)

3Hφ̇ = −Vφ. (2.21)

The above equations can be integrated trivially to arrive at an analytic solutions to

evolution of the scalar field, φ. We can look at a general set of models the potential, V (φ),

where is defined as V (φ) = V0φ
n. These set of models are classified as ‘large-field’ models.

For such as form of the potential function, the analytic solution to the scalar field is given by

φ(4−n)/2)(t) = φ
(4−n)/2)
i +

√
V0
3

(
n(n− 4)

2

)
MPl(t− ti), (2.22)

φ(t) = φi exp−4MPl

√
V0/3(t−ti), (2.23)

where the first solution is when n 6= 4 and the second when n = 4.

2.2.2 The tensor power spectrum during slow-roll inflation

The two Hubble slow-roll parameters, εH and δH , can be rewritten in terms of the

conformal time coordinate, η, as

14



2.2. SLOW ROLL INFLATION

εH = 1−
(
H′

H2

)
, δH = εH −

(
ε′H

2HεH

)
. (2.24)

Further, using the first Hubble slow-roll parameter, εH , we can establish that

(
a′′

a

)
= H2(2− εH). (2.25)

In order to arrive at an analytic solution to the evolution of the tensor perturbations

using the Eqn. (1.5), we need to be able to write H in terms of conformal time η. We can

rewrite the first of the two equations in Eqn. (2.24) as

η = −
∫ (

1

1− εH

)
d

(
1

H

)
, (2.26)

Under the slow-roll approximation, εH << 1, the above integral becomes trivial and

leads to

H = −
[

1

(1− εH
)η

]
. (2.27)

Using the above expression forH in terms of the conformal time, η, we can rewrite the

Eqn. (2.25) as

(
a′′

a

)
=

(
2 + 3εH
η2

)
, (2.28)

where we assumed the slow-roll approximation and neglected the higher orders of εH . We

can now solve the Eqn. (2.8). We can clearly see that the solutions to the equation will be

Hankel functions [14], similar to the solutions in the power law case, of order, ν,

ν =

[(
3

2

)
+ εH

]
. (2.29)

The tensor power spectrum can now be evaluated in the super-Hubble limit, i.e−kη →
0, by expanding the Hankel function about the origin, as

15



2.2. SLOW ROLL INFLATION

PT (k) =

(
2H2

π2M2
Pl

)[
|Γ(ν)|
Γ(3/2)

]2
2(2ν−3)(1− εH)(2ν−1), (2.30)

where we assumed that −kη = (1− εH)−1. In the slow-roll approximation, the tensor power

spectrum evaluated when the modes cross the Hubble radius can be approximated at the

leading order as

PT (k) =

(
8

2M2
Pl

)(
H

2π

)2

k=aH

. (2.31)

2.2.3 The tensor bi-spectrum during slow-roll inflation

Having defined the tensor bi-spectrum, let us evaluate the tensor bi-spectrum in slow

roll inflation. The first two slow roll parameters, namely ε1 and ε2, are constant at the leading

order in the slow approximation. We can assume that the scale factor as well as the tensor

perturbation mode, hk, are given by their de Sitter forms. By setting the slow roll parameters

in the index, ν, of the Hankel function to zero, we can obtain the de Sitter limit of the tensor

perturbation modes as

hk(η) =

√
2

MPl

iH0√
2k3

(1 + ikη)e−ikη. (2.32)

The tensor bi-spectrum can now be estimated by simply substituting the above form

of hk and evaluating the integral in Eqn. (1.16) from ηi = −∞ to ηe = 0.

Gγγγ(k1,k2,k3) =
−i
4

1

H2
0

(
−iH0

MPl

)3
1√

k31k
3
2k

3
3

∫ ηe

ηi

dη
1

η2
(1− ik1η)(1− ik2η)(1− ik3η)eikT η

=
−i
4

1

H2
0

(
−iH0

MPl

)3
1√

k31k
3
2k

3
3

∫ ηe

ηi

dη
1

η2
[
−1 + ikTη + (k1k2 + k2k3 + k3k1)η

2 − ik1k2k3η3
]
eikT η,

where kT = k1 + k2 + k3. As you can see, the above integrand can be separated into four

terms with different powers of η. While the η0 and η1 are straight forward to integrate, it

should be noted that the η−2 and η−1terms should be integrated together, giving rise to a

term similar toe−η/η. Together with the complex conjugate term, this term can be converted

into a sin η/η term and set to 1. We can finally obtain the tensor bi-spectrum to be
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2.2. SLOW ROLL INFLATION

Gm1n1m2n2m3n3
γγγ (k1,k2,k3) =

H4
0

2M4
Pl

1

k31k
3
2k

3
3

[(
Πk1
m1n1,ij

Πk2
m2n2,im

Πk3
m3n3,lj

− 1

2
Πk1
m1n1,ij

Πk2
m2n2,ml

Πk3
m3n3,ij

)
k1mk1l + fivepermutations

]
×
[
−kT +

k1k2 + k2k3 + k3k1
kT

+
k1k2k3
k2T

]
.
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Chapter 3

Numerical results

I shall now discuss the numerical methods used to evaluate the scalar field, the tensor power

spectrum and the tensor bi-spectrum during two models of inflation, namely power law

inflation and inflation driven by a quadratic potential model. The chapter is split into three

sections on the inflation, on the tensor power spectrum and the tensor bi-spectrum. In each

section, I shall discuss the numerical results for power law inflation and for inflation driven

by a quadratic potential model. Also, as the tensor bi-spectrum is evaluated in three limits,

namely in the equilateral limit, in the squeezed limit and for an arbitrary configuration of

wavevectors, the section on tensor bi-spectrum is divided as such, in which the numerical

results for power law inflation and for inflation driven by quadratic potential model will be

discussed.

3.1 Numerical evaluation of the inflaton

As mentioned earlier, the scalar field driving the inflation is often referred to as the ‘Infla-

tion’. We assume that the potential V (φ) driving power law inflation is related to the scalar

field φ as

V (φ) = V0 exp

[
−
√

2

q
(φ− φi)

]
, (3.1)

where φi is the value of the scalar field at N = 0 and q is the power law index. Recall that

the equation governing the scalar field is given by

φ̈+ 3Hφ̇+ Vφ = 0, (3.2)

18



3.1. NUMERICAL EVALUATION OF THE INFLATON

where Vφ = dV/dφ. We shall now rewrite the above equation in terms of e-fold N as

d2φ

dN2
+

[
3− 1

2

(
dφ

dN

)2
]

dφ

dN
+

[
6−

(
dφ

dN

)2
]

1

2V (φ)

dV (φ)

dN
= 0. (3.3)

Note that the the Hubble parameter H in the above equation is defined as

H2 =
2V (φ)

3− (dφ/dN)2
. (3.4)

We numerically solve the Eqn. (3.10) using an implementation of the fourth order

Runge-Kutta method in Python [21, 22, 23]. Integration is performed from e-fold N = 0 to

N = 70. Note that the initial conditions for solving the differential equation are

φ = 1, (3.5)

dφ

dN
=

(√
2q

t0

1

H0

)
, (3.6)

where H0 is the value of the Hubble parameter at N = 0. Also note that φ at N = 0 was

referred to as φi in Eqn.(3.1). Figures 3.1 and 3.2 show the numerical estimates of the scalar

field φ and the Hubble parameter H as a function of e-fold time N .

Similarly, the potential driving inflation in the quadratic potential model is

V (φ) =
1

2
m2φ2, (3.7)

where m = 7147× 10−9.

We arrive at a numerical solution for the scalar field during inflation driven by

quadratic potential model in the same manner with which we arrived at the numerical re-

sults in the previous case, during power law inflation. We numerically solved the Eqn. (3.3)

using a Runge-Kutta 4 method implemented in python. To arrive at the numerical solution,

we assumed that the initial values for the scalar field, phi, and it’s derivative with respect to

e-fold N , dφ/dN as
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3.1. NUMERICAL EVALUATION OF THE INFLATON

Figure 3.1: Numerical estimate of the scalar field φ as a function of N in power law inflation.

Figure 3.2: Numerical estimate of the Hubble parameter H as a function of N in power law
inflation.
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3.2. NUMERICAL EVALUATION OF THE TENSOR POWER SPECTRUM

Figure 3.3: Numerical estimate of the scalar field φ as a function of N in inflation driven by
quadratic potential model.

φ =
165

10
, (3.8)

dφ

dN
= −10−5. (3.9)

Figure 3.3 shows the numerical estimate of the scalar field with respect to e-fold N and

Figure 3.4 shows the numerical estimate of the Hubble parameter, H , with respect to e-fold

N during inflation driven by a quadratic potential model.

3.2 Numerical evaluation of the tensor power spectrum

The Eqn. (1.5) governing the evolution of tensor perturbations in cosmic time t can be

rewritten in terms of e-fold N as

d2hk
dN2

+

(
3 +

1

H

dH

dN

)
dhk
dN

+
k2

a2H2
hk = 0. (3.10)
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Figure 3.4: Numerical estimate of the Hubble parameter H as a function of N in inflation
driven by quadratic potential model.

We can now solve the above second order differential equation numerically as we al-

ready have the numerical solution of the scalar field, φ, and Hubble parameter, H , as func-

tions of e-fold N . Similar to the integration routine used to numerically estimate the scalar

field φ, we use a fourth order Runge-Kutta method to solve the above equation numerically.

To arrive at the initial conditions to perform the numerical integration, we first need to

arrive at an appropriate e-fold N . In our results, we choose to set the initial conditions when

the modes are well inside the Hubble scale corresponding to the mode i.e k/aH = 100. We

perform the numerical integration till e-fold N when the modes are well outside the Hubble

radius i.e k/aH = 10−5. Using the Bunch-Davies initial conditions, Eqn. (1.12), we can write

hk and dhk/dN in terms of e-fold N as

hk =
1√

2k0a(N)
, (3.11)
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Figure 3.5: Numerical estimate of the tensor power spectrum PT as a function of k in power
law inflation.

dhk
dN

= − 1√
2k0a(N)

−
i
√

(k0/2)

a2(N)H(N)
, (3.12)

From the numerical solution to hk, we can evaluate the tensor power spectrum using

Eqn. (1.11). Figure 3.5 shows the numerical solution of the tensor power spectrum PT (k)

during power law inflation as a function of k.

Similar to what we had done earlier, having arrived at the numerical solution for the

background, we can now solve the Eqn. (3.10) that governs the evolution of the tensor per-

turbations during inflation to arrive at a numerical solution for the evolution of the tensor

perturbations. Again, as mentioned earlier in the case for power law inflation, we assume

that the initial conditions for tensor perturbations, hk, and the derivative of the tensor per-

turbations with respect to e-fold N , dhk/dN , using the Eqns. (3.11) and (3.12).
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Figure 3.6: Numerical estimate of the tensor power spectrum PT as a function of k in infla-
tion driven by quadratic potential model.

Figure 3.6 shows a numerical solution for the power spectrum of tensor perturbations

in the super-Hubble limit during inflation driven by a quadratic potential model.

3.3 Numerical evaluation of the tensor bi-spectrum

As mentioned earlier, we neglect the polarization of the tensor perturbations. We can

therefore rewrite the equation that defines tensor bi-spectrum, G, and the non-Gaussianity

parameter hNL as

G = hk1(ηe)hk2(ηe)hk3(ηe)G + h∗k1(ηe)h
∗
k2

(ηe)h
∗
k3

(ηe)G∗, (3.13)

hNL =
k31k

3
2k

3
3G

k31PT (ηe)PT (ηe) + k32PT (ηe)PT (ηe) + k33PT (ηe)PT (ηe)
, (3.14)

where

24
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G =
−i
4

(k21 + k22 + k23)

∫ ηe

ηi

dηa(η)h∗k1(η)h∗k2(η)h∗k3(η). (3.15)

While the equations governing the tensor bi-spectrum, G, and the non-Gaussianity

parameter, hNL, can be trivially converted from cosmic time t to e-fold N , the integral G can

be rewritten as

G =
−i
4

(k21 + k22 + k23)

∫ Nf

Ni

dN
a(N)

H(N)
h∗k1(N)h∗k2(N)h∗k3(N). (3.16)

It is to be noted that the function, hk, and therefore the integral itself oscillate highly

in the extreme sub-Hubble domain (kη → −∞). In order to regulate these integrals, we

introduce a cut-off factor e−κkT /3a(N)H(N), where κ is a small positive quantity and kT is the

sum of the individual wavevectors. Such a cut-off also proves to be essential inorder to

identify the correct perturbative vaccum.

3.3.1 Equilateral limit

In the equilateral limit, we assume that the three wavevectors, k1, k2 and k3, have the

same amplitude. We can therefore rewrite Eqn. (1.16) as

G =
−i
4

(3k2)

∫ Nf

Ni

dN
a(N)

H(N)
h∗k(N)3 (3.17)

We can solve the above integral as we already have the numerical solutions of the scale

factor a(N), the Hubble parameterH(N) and the strength of tensor perturbations hk(N). We

evaluate the integrals over the same limits in which we solved the Eqn. (3.10), i.e from when

the modes are well inside the Hubble scale corresponding to the mode i.e k/aH = 100 till

when the modes are well outside the Hubble radius i.e k/aH = 10−5.

Figure 3.7 shows the dependence of G during power law inflation on the amplitude of

the wavevector k.
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Figure 3.7: Numerical estimate of G as a function of k in the equilateral limit in power law
inflation.

Figure 3.8 shows the numerical estimate of the tensor bi-spectrumG during power law

inflation as a function of k. Given the dependence of hk and G on k, we can arrive at the fact

that k6G is an invariant quantity. The figure 3.9 shows the invariance of k6G as a function

of k. The blue dotted line denotes the numerical results obtained where as the green crosses

represents

k6Gγγγ(k) ∝ k4(γ+2). (3.18)

where the γ on the left hand side denote the tensor perturbations and the γ on the right hand

side denotes the exponent in the Eqn. (2.10).

We can finally estimate the value of the non-Gaussianity parameter hNL during power

law inflation using Eqn. (3.14). Figure 3.10 shows the dependence of hNL as a function of k.

As you can see, the value of the hNL is invariant in k.

26



3.3. NUMERICAL EVALUATION OF THE TENSOR BI-SPECTRUM

Figure 3.8: Numerical estimate of the tensor bi-spectrum G as a function of k in the equilat-
eral limit in power law inflation.

Figure 3.9: Numerical estimate of the invariant k6G as a function of k in the equilateral limit
in power law inflation.
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Figure 3.10: Numerical estimate of the non-Gaussianity parameter hNL as a function of k in
the equilateral limit in power law inflation.

Similar to the earlier case in power law inflation, having arrived at a numerical solu-

tion for the evolution of tensor perturbations during inflation driven by quadratic potential

earlier, we can now evaluate the tensor bi-spectrum numerically. Again, as in the case with

power law inflation earlier, we solve the Eqn. (3.17) numerically to arrive at the integral G
using which we can arrive at the tensor bi-spectrum, G, and the non-Gaussianity parameter,

hNL.

Figure 3.11 shows the numerical solution to the integral G with respect to e-fold

wavenumber k. Figure 3.12 shows the numerical solution to the tensor bi-spectrum G as

a function wavenumber k. Figure 3.13 shows the invariance of k6G with respect to k. Figure

3.14 shows the numerical solution of the non-Gaussianity parameter, hNL, during inflation

driven by quadratic potential model with respect to wavenumber k.
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Figure 3.11: Numerical estimate of G as a function of k in the equilateral limit in inflation
driven by quadratic potential model.

Figure 3.12: Numerical estimate of the tensor bi-spectrum G(k) as a function of k in the
equilateral limit in inflation driven by quadratic potential model.
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Figure 3.13: Numerical estimate of the invariant k6G(k) as a function of k in the equilateral
limit in inflation driven by quadratic potential model.

Figure 3.14: Numerical estimate of the non-Gaussianity parameter hNL as a function of k in
the equilateral limit in inflation driven by quadratic potential model.
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3.3.2 Squeezed limit

In the squeezed limit, we assume that the amplitude of two of the modes is equal, say

|k1| = |k2| = |k| and we assume k3 to be a pseudo-zero mode, k0, with an amplitude much

smaller than k. We numerically arrive at the solutions of k and k0 independently following

which we evaluate the integral in G from ηi corresponding to the smallest mode, k0, till ηe
corresponding to the largest mode, k.

Figure 3.15 shows the numerical estimate of the tensor bi-spectrum value G during

power law inflation as a function of k in the squeezed limit and figure 3.16 shows the in-

variance of k3/2k3/20 G, where the blue dashed line denotes the numerical results where as the

green crosses represent

k31k
3Gm1n1m2n2m3n3

γγγ (k1, k) ∝ k
2(γ+2)
1 k2(γ+2), (3.19)

where the γ on the left hand side denote the tensor perturbations and the γ on the right hand

side denotes the exponent in the Eqn. (2.10) and k1 denotes the pseudo-zero wavevector in

the squeezed limit.

Figure 3.17 shows the numerical estimate of the non-Gaussianity parameter hNL dur-

ing power law inflation as a function of k in the squeezed limit and as you can see, hNL
reaches an invariant value.

Similar to the previous case for power law inflation, when we estimated the tensor bi-

spectrum in the squeezed limit during power law inflation, we set |k1| = |k2| = |k| and we

|k3| = |k0|, where |k| >> |k0|. Using the above assumption and the numerical solutions to the

tensor perturbations for various k, we first arrive at a numerical estimate of the integral, G,

using which we can estimate the tensor bi-spectrum, G, and the non-Gaussianity parameter,

hNL, as a function of wavenumber k.

Figure 3.18 shows the numerical estimate of the tensor bi-spectrum during inflation

driven by a quadratic potential model and Figure 3.19 shows the invariance of k3Gk30G with

respect to the wavenumber k in the squeezed limit. Figure 3.20 shows the numerical estimate

of the non-Gaussianity parameter, hNL, with respect to k.
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Figure 3.15: Numerical estimate of the tensor bi-spectrum G as a function of k in the
squeezed limit in power law inflation.

Figure 3.16: Numerical estimate of the invariant k3/20 k3/2G(k) as a function of k in the
squeezed limit in power law inflation.
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Figure 3.17: Numerical estimate of the non-Gaussianity parameter hNL as a function of k in
the squeezed limit in power law inflation.

Figure 3.18: Numerical estimate of the tensor bi-spectrum G(k) as a function of k in the
squeezed limit in inflation driven by quadratic potential model.
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Figure 3.19: Numerical estimate of the invariant k3/20 k3/2G(k) as a function of k in the
squeezed limit in inflation driven by quadratic potential model.

Figure 3.20: Numerical estimate of the non-Gaussianity parameter hNL as a function of k in
the squeezed limit in inflation driven by quadratic potential model.
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3.3.3 Triangular configuration of wavevectors

In this case, we consider wavevectors, k1,k2 and k3 which form a triangle. Numerically

speaking, we fix |k1| = 1e − 02 and we vary |k3| from 0 till 1e − 02. From these two values

and the fact that

|k1|2 + |k2|2 + |k3|2 = 1, (3.20)

we can estimate the value of |k2|. We solve the Eqn. (3.10) to find the numerical solutions to

this triangular configuration of wavevectors. Numerically, we solve the Eqn. (3.10) from Ni

corresponding to the smallest wavevector a till Nf corresponding to the largest wavevector

where Ni and Nf are e-fold N when the modes are well inside the Hubble scale correspond-

ing to the mode i.e k/aH = 100 and when the modes are well outside the Hubble radius i.e

k/aH = 10−5.

Figure 3.21 shows the hNL values during power law inflation for such a triangular

configuration of wavevectors.

Similar to the numerical procedure carried out in the earlier case, in power law infla-

tion, we evaluate hNL for wavevectors k1,k2,k3 which form a triangular configuration. As

mentioned previously, we set |k1| = 10−2 and we obtain the corresponding values of |k2| and

|k3|.

Fig 3.22 represents numerical estimates of non-Gaussianity parameter, hNL , during in-

flation driven by a quadratic potential model for a triangular configuration of wavevectors.
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3.3. NUMERICAL EVALUATION OF THE TENSOR BI-SPECTRUM

Figure 3.21: Density plot of the numerical estimates of the non-Gaussianity parameter hNL
as a function of k for a triangular configuration of wavevectors in power law inflation.

Figure 3.22: Density plot of the non-Gaussianity parameter hNL as a function of k for a
triangular configuration of wavevectors in inflation driven by quadratic potential model.
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Chapter 4

Summary

In this work, we have studied the tensor perturbations in the metric and evaluated the

power spectrum and bi-spectrum of tensor perturbations. We then looked at analytic solu-

tions to the tensor power spectrum and the tensor bi-spectrum during power law inflation

and during slow roll inflation. We have also numerically evaluated the tensor bi-spectrum

in the super-Hubble limit in power law inflation and for inflation driven by a quadratic

potential model.

In the first chapter, we discussed the theory of inflation briefly and the constraints on

a scalar field driving inflation. By studying the stress-energy tensor corresponding to the

scalar field, we were able to arrive at the equation governing the evolution of the scalar

field. Having solved for the background, we studied the perturbed Einstein tensors and the

perturbed stress-energy tensor to arrive at the equation governing the evolution of the tensor

perturbations. We then quantized the tensor perturbations and arrived at an analytic form

of the power spectrum of tensor perturbations. We then defined the tensor bi-spectrum, G,

using the Maldacena formalism and the non-Gaussianity parameter, hNL.

In the second chapter, we discussed the analytical solutions to the tensor perturbations

in two models of inflation, namely power law inflation and slow roll inflation. We discussed

the analytical solutions to the scalar field phi in both of the cases and using the solutions

to the background, we arrived at the analytical expressions to the evolution of the tensor

perturbations with respect to conformal time, η. We then attempted to arrive at an analytic

expression for the tensor bi-spectrum G in slow roll inflation.
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In the third chapter, we discussed the numerical methods implemented to solve the

background equations and the equations governing tensor perturbations in two models of

inflation, namely power law inflation and inflation driven by a quadratic potential model.

Having solved for the tensor perturbations, we evaluate the relevant integrals and estimate

the tensor bi-spectrum, G, and the non-Gaussianity parameter, hNL, in the super-Hubble

limit. We evaluated the tensor bi-spectrum, G, and the non-Gaussianity parameter, hNL,

numerically in the equilateral limit, in the squeezed limit and for a triangular configuration

of wavevectors.
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Appendix A

Python code : Arbitrary triangular
configuration of wavevectors

import numpy
from scipy.integrate import simps

import time
import multiprocessing as mp
import random
import string

parallel_output = mp.Queue()

q = 51.
V0 = (204./100.)*1e-08
t0 = (q*(3.*q -1.)/V0)**(1./2)

phi0 = 1.
dphi0 = (2.*q)**(1./2)/t0

Ni = 0.
Nf = 70.

# Note that in this code, I use the prefix ’d’ to represent
derivative with respect to time (except for the case of dV
where the derivative is with respect to phi) and the prefix ’D’
to represent derivative with respect to e-fold N. Also, the
suffix ’0’ is used to represent the initial conditions in various
cases. Also, as can be seen here, we evaluate the scalar field
in the e-fold N range Ni to Nf.

V = lambda _phi : V0*numpy.exp(-(2./q)**(1./2)*(_phi -phi0))
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dV = lambda _phi : -(2./q)**(1./2)*V0

*numpy.exp(-(2./q)**(1./2)*(_phi -phi0))

’’’ Functions to evaluate the values of the potential function V(phi)
and the derivative of V with respect to phi.
Note that functions can be defined using the lambda notation, as shown
above or using the usual def and return statements, as shown below.’’’

H0 = ((1./3)*(dphi0**(2.)/2. +V(phi0)))**(1./2.)
Dphi0 = dphi0/H0

def DDphi(_N, _phi, _Dphi):
’’’ Returns the value of the second derivative of
phi with respect to e-fold N.’’’
return -(3. -_Dphi**(2.)/2.)*_Dphi -(dV(_phi)/
(2.*V(_phi)))*(6. -_Dphi**(2.))

def phi_rk4_step(_N, _phi, _Dphi, _step):
’’’ Returns 2 values, the first of the two is the value by which phi
needs to be updated and the second of the two is the value by which the
first derivative of phi with respect to e-fold N needs to be updated.’’’
F1 = _Dphi
f1 = DDphi(_N, _phi, _Dphi)
F2 = _Dphi +f1*_step/2.
f2 = DDphi(_N +_step/2., _phi +F1*_step/2., _Dphi +f1*_step/2.)
F3 = _Dphi +f2*step/2.
f3 = DDphi(_N +_step/2., _phi +F2*_step/2., _Dphi +f2*_step/2.)
F4 = _Dphi +f3*step
f4 = DDphi(_N +_step, _phi +F3*_step, _Dphi +f3*_step)

return (F1 +2.*F2 +2.*F3 +F4)*_step/6., (f1 +2.*f2 +2.*f3 +f4)*_step/6.

’’’We evolve the scalar field phi for e-fold N ranging from Ni to Nf.’’’

npts = 100000
step = (Nf-Ni)/(npts)

phi_ = phi0
Dphi_ = Dphi0

phi_array = numpy.empty(0)
Dphi_array = numpy.empty(0)
N_array = numpy.empty(0)

N = Ni
while N < Nf +step:
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phi_array = numpy.append(phi_array, phi_)
Dphi_array = numpy.append(Dphi_array, Dphi_)
N_array = numpy.append(N_array, N)

phi_update, Dphi_update = phi_rk4_step(N, phi_, Dphi_, step)
phi_ = phi_ +phi_update
Dphi_ = Dphi_ +Dphi_update

N += step

#2000001
#2000000
N_new = numpy.linspace(Ni,Nf,2000001)
phi_array_new = numpy.interp(N_new, N_array, phi_array)
Dphi_array_new = numpy.interp(N_new, N_array, Dphi_array)

phi_array = phi_array_new
Dphi_array = Dphi_array_new
N_array = N_new
step = (Nf-Ni)/(2000000)

phi = lambda _N : phi_array[int((_N-Ni)/step)]
Dphi = lambda _N : Dphi_array[int((_N-Ni)/step)]

H = lambda _N : (V(phi(_N))/(3. -Dphi(_N)**(2.)/2.))**(1./2)
DH = lambda _N : -(1./2)*H(_N)*Dphi(_N)**2.

’’’The above functions let us access the values of H(N) and DH(N)
when we try to evaluate the tensor perturbations h_k. We have obtained
these values from the phi and Dphi values earlier.’’’

ai = 1e-05
A = lambda _N : ai*numpy.exp(_N)
’’’The scale factor in terms of e-fold N.’’’

def DDhk(_k, _N, _hk, _Dhk):
’’’Returns the value of the second derivative of the tensor
perturbations h_k with respect to e-fold N. We need this
value when we are trying to evaluate h_k’’’
return -((3. +(DH(_N)/H(_N)))*_Dhk +((_k/(A(_N)*H(_N)))**(2.))*_hk)

def hk_rk4_step(_k, _N, _hk, _Dhk, _step):
’’’a runge-kutta 4 stepper function that returns the value by which
h_k nd Dh_k need to be updated.’’’
F1 = _Dhk
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f1 = DDhk(_k, _N, _hk, _Dhk)
F2 = _Dhk +f1*_step/2.
f2 = DDhk(_k, _N +_step/2., _hk +F1*_step/2., _Dhk +f1*_step/2.)
F3 = _Dhk +f2*_step/2.
f3 = DDhk(_k, _N +_step/2., _hk +F2*_step/2., _Dhk +f2*_step/2.)
F4 = _Dhk +f3*_step
f4 = DDhk(_k, _N +_step, _hk +F3*_step, _Dhk +f3*_step)

# print f1, f2, f3, f4, F1, F2, F3, F4, _step

return (f1 +2.*f2 +2.*f3 +f4)*_step/6., (F1 +2.*F2 +2.*F3 +F4)*_step/6.
# [Dhk, hk] update

def solve_Nics(k, eN_array):
’’’Returns the value of e-fold N when the mode is
in the sub-Hubble domain, which we define as k/(A*H) =10^2.’’’
Ni = eN_array[0]
step = eN_array[1] -eN_array[0]
Nics_temp = numpy.asarray([k - 1e+02*A(N)*H(N) for N in eN_array])
nics_test = numpy.where(Nics_temp > 0)
return Ni + nics_test[0][-1]*step

def solve_Nshss(k, eN_array):
’’’Returns the value of e-fold N when the mode is
in the super-Hubble domain, which we define as k/(A*H) =10^(-5).’’’
Ni = eN_array[0]
step = eN_array[1] -eN_array[0]
Nshss_temp = numpy.asarray([k - 1e-05*A(N)*H(N) for N in eN_array])
nshss_test = numpy.where(Nshss_temp > 0)
return Ni + nshss_test[0][-1]*step

def initialize_hk(k, _Nics):
’’’Returns the value of h_k for the mode k at e-fold N of _Nics.
We obtain his value by imposing the Bunch-Davies initial conditions’’’
hk0 = numpy.zeros(1,dtype=complex)
hk0.real = (((k)**(1./2))*A(_Nics))**(-1.)
return hk0

def initialize_Dhk(k, _Nics):
’’’Returns the value of h_k for the mode k at e-fold N of _Nshss.
We obtain his value by imposing the Bunch-Davies initial conditions’’’
Dhk0 = numpy.zeros(1,dtype=complex)
Dhk0.real = -(1./A(_Nics))*((k)**(-1./2))
Dhk0.imag = -((k)**(1./2))/(A(_Nics)*A(_Nics)*H(_Nics))
return Dhk0
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def evolve_hk(k, _Nics, _Nshss, _step):
’’’Returns the values of h_k for the mode k for e-fold N ranging from
_Nics to _Nshss. We use the h_k values later on to estimate calG.’’’
hk = numpy.empty(0, dtype=complex)
Dhk = numpy.empty(0, dtype=complex)

hk = initialize_hk(k, _Nics)
Dhk = initialize_Dhk(k, _Nics)

hk_array = numpy.empty(0, dtype=complex)

N = _Nics
while N < _Nshss:

hk_array = numpy.append(hk_array, hk)

array = hk_rk4_step(k, N, hk, Dhk, _step)
hk = hk + array[1]
Dhk = Dhk + array[0]

N += _step

return hk_array

def calG(hk_k1_array, hk_k2_array, hk_k3_array,
k1, k2, k3, _Nics, _Nshss):

’’’Returns the value of \mathcal{G} which is in turn used to
estimate G, the tensor bi-spectrum. The integral is evaluated
for e-fold N ranging from _Nics till _Nshss. Note that the extra
factor exp(-(e*k)/(A*H)) is put in by hand to satisfy the
consistency relation.’’’
N_range = numpy.linspace(_Nics, _Nshss, len(hk_k1_array))
func_int = ((A(N_range)/numpy.asarray([H(N) for N in N_range]))*

(numpy.conj(hk_k1_array)*numpy.conj(hk_k2_array)

*numpy.conj(hk_k3_array))*
(numpy.exp(-e*(k1 +k2 +k3)/(3.*A(N_range)

*numpy.asarray([H(N) for N in N_range])))))
result = simps(func_int, N_range)

return -(k1**2. +k2**2. +k3**2)/4.*result

*numpy.array([0.+1.j], dtype=complex)

def calG_cc(hk_k1_array, hk_k2_array, hk_k3_array,
k1, k2, k3, _Nics, _Nshss):

’’’Returns the value of the complex conjugate of \mathcal{G}
which is in turn used to estimate G, the tensor bi-spectrum.
The integral is evaluated for e-fold N ranging from _Nics till
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_Nshss. Note that the extra factor exp(-(e*k)/(A*H)) is put in
by hand to satisfy the consistency relation.’’’
N_range = numpy.linspace(_Nics, _Nshss, len(hk_k1_array))
func_int = ((A(N_range)/numpy.asarray([H(N) for N in N_range]))*

(hk_k1_array*hk_k2_array*hk_k3_array)*
(numpy.exp(-e*(k1 +k2 +k3)/(3.*A(N_range)

*numpy.asarray([H(N) for N in N_range])))))
result = simps(func_int, N_range)

return (k1**2. +k2**2. +k3**2)/4.*result

*numpy.array([0.+1.j], dtype=complex)

k1 = 1e-02
kmin = 1e-03
kmax = 1e-02
k3 = numpy.arange(0.,1.,.05)*k1

k_array = []
’’’Since k1 is fixed, k_array will contain the set of [k2, k3] values.’’’
for i in range(len(k3)):

if k3[i]/k1 < 0.5:
k2 = numpy.linspace(1. -k3[i]/k1, 1., 2 +int(k3[i]/k1/0.05))*k1
[k_array.append([kx, k3[i]]) for kx in k2]

else :
k2 = numpy.linspace(k3[i]/k1, 1., 2 +int((1. -k3[i]/k1)/0.05))*k1
[k_array.append([kx, k3[i]]) for kx in k2]

print len(k_array)
print k_array

hk_k1_array = numpy.empty(0, dtype=complex)
hk_k2_array = numpy.empty(0, dtype=complex)
hk_k3_array = numpy.empty(0, dtype=complex)

e =1./50

Nics = solve_Nics(kmin, N_array)
Nshss = solve_Nshss(kmax, N_array)

hk_k1_array = evolve_hk(k1, Nics, Nshss, step)
tps_k1 = 4.*(k1)**3./(2.*numpy.pi**2.)

*(numpy.absolute(hk_k1_array[-1]))**2.

def main(k_set):
k2, k3 = k_set
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hk_k2_array = evolve_hk(k2, Nics, Nshss, step)
hk_k3_array = evolve_hk(k3, Nics, Nshss, step)

tps_k2 = 4.*(k2)**3./(2.*numpy.pi**2.)

*(numpy.absolute(hk_k2_array[-1]))**2.
tps_k3 = 4.*(k3)**3./(2.*numpy.pi**2.)

*(numpy.absolute(hk_k3_array[-1]))**2.

CalG = calG(hk_k1_array, hk_k2_array, hk_k3_array,
k1, k2, k3, Nics, Nshss)
CalG_cc = calG_cc(hk_k1_array, hk_k2_array,
hk_k3_array, k1, k2, k3, Nics, Nshss)

G = ((hk_k1_array[-1]*hk_k2_array[-1]*hk_k3_array[-1])*CalG
+(numpy.conj(hk_k1_array[-1])*numpy.conj(hk_k2_array[-1])

*numpy.conj(hk_k3_array[-1]))*CalG_cc)

h_NL = -((4./(2.*numpy.pi**2.))**2.*(k1**3.*k2**3.*k3**3*G)/
(2.*k1**3.*tps_k2*tps_k3 +2.*k2**3.*tps_k3*tps_k1
+2.*k3**3.*tps_k1*tps_k2))

print (k1, k2, k3, str(tps_k1).strip(’[]’),
str(tps_k2).strip(’[]’), str(tps_k3).strip(’[]’),
str(CalG.real).strip(’[]’), str(CalG.imag).strip(’[]’),
str(G.real).strip(’[]’), str(G.imag).strip(’[]’),
str(h_NL.real).strip(’[]’))

return None

pool = mp.Pool(processes = 4)
temp_results =
[pool.apply_async(main, args = (k_set, )) for k_set in k_array[2:]]
results = []

for i in range(len(temp_results)):
results.append(temp_results[i].get())

print results

CalG = calG(hk_k1_array, hk_k1_array, hk_k1_array,
k1, k1, k1, Nics, Nshss)
CalG_cc = calG_cc(hk_k1_array, hk_k1_array, hk_k1_array,
k1, k1, k1, Nics, Nshss)

G = ((hk_k1_array[-1]*hk_k1_array[-1]*hk_k1_array[-1])*CalG
+(numpy.conj(hk_k1_array[-1])*numpy.conj(hk_k1_array[-1])
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*numpy.conj(hk_k1_array[-1]))*CalG_cc)

h_NL = -((4./(2.*numpy.pi**2.))**2.*(k1**3.*k1**3.*k1**3*G)/
(2.*k1**3.*tps_k1*tps_k1 +2.*k1**3.*tps_k1*tps_k1
+2.*k1**3.*tps_k1*tps_k1))

print (k1, k1, k1, str(tps_k1).strip(’[]’),
str(CalG.real).strip(’[]’), str(CalG.imag).strip(’[]’),
str(G.real).strip(’[]’), str(G.imag).strip(’[]’),
str(h_NL.real).strip(’[]’))
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