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ABSTRACT

The aim of the project is to understand various classical and semi-classical aspects of

black holes. After arriving at the metric describing static and rotating black holes, we go on

to study various classical phenomena involving dynamics of particles and photons such as

the precession of the perihelion of Mercury, gravitational bending of light and the Penrose

process. We then go on to analyze the behavior of classical fields around a black hole. In

particular we study the phenomena of super radiance around rotating black hole. We also

study the behavior of quantum fields near a black hole. In this context we begin by studying

the behavior of quantum fields in the presence of horizons in spacetime, such as it occurs in a

Rindler frame (i.e. the frame of a uniformly accelerated observer). We then go on to analyze

the origin of Hawking radiation and its implication for the thermodynamics of black holes.
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Chapter 1

Introduction

Einstein’s theory of general relativity provides a new view point of looking at gravity in

terms of curvature of the spacetime. General theory of relativity is a classical theory and it

has predicted some remarkable results about the structure of the universe and other large

scale objects present in the universe. This theory also predicts the presence of spacetime

singularities and spacetime horizons in the form of black holes. In this work, we concentrate

on the study of black holes and look at various classical and semi-classical aspects of black

holes. When the curvature of spacetime becomes infinite, as in the case of a black hole,

we cannot account for the structure of the spacetime using purely classical physics. This

motivates one to look beyond a classical theory of gravity (general relativity) and adapt

some new approach. Among various new methods which intends to solve the problems

present in general theory of relativity we look into, the semi-classical way of treating gravity.

In this approach, the gravitational field is inherently classical but the fields present in the

background are assumed to be quantum in nature.

This report is broadly divided into two parts. The first part of the report deals with the

study of black holes in the classical regime. Trajectories of particles are studied around a

static black hole and few of the first experimentally verified predictions of general relativity,

such as precession of perihelion of mercury and bending of light around a massive gravitat-

ing object are reviewed. General relativity also predicts the presence of rotating black holes,

formed from collapsing stars having some angular momentum. We look at how particles

and fields behave around such rotating black holes and study the phenomenon of Penrose

process and super-radiance. In the case of rotating black hole, we can have an analogy

between thermodynamics and these classical processes (Penrose process, super-radiance)
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[1, 2, 3]. In the case of super-radiance we have stimulated emission when some scalar field

is incident on the black hole. From this fact one can guess that there might be spontaneous

emission from a black hole when quantum fields are studied around it and this motivated

the study of quantum fields in the background of a black hole.

In the second part of the thesis, we deal with the study of quantum fields in flat and

curved spacetimes. Study of quantum fields in Minkowski and Rindler spacetime led to

Unruh effect [4, 5, 6, 7]. We also survey how Unruh effect emerges due to inequivalent

quantization in Minkowski and Rindler spacetime. Thermal Green‘s function are periodic

in imaginary time and when Green‘s function defined in Minkowski space is projected on

Rindler space it behaves like one defined at a finite temperature. Using this, we can easily

obtain the translation probability rate of an accelerated detector in the Minkowski vacuum

and verify that the thermality condition holds [8, 9, 10].

Study of quantum fields in the background of a collapsing star, which eventually settles

down as a static black hole, reveals the fact that static black holes can spontaneously emit

particles and this phenomenon is known as Hawking radiation [2, 6, 11, 12, 13] . This result

has some remarkable implications as it shows that we can associate a temperature (Hawking

temperature) with the black hole horizon and thus a black hole truly behaves as a thermo-

dynamic system. In the purely classical regime, it is not possible to associate a physical

temperature with the black hole, and this illustrates the importance of semi-classical studies

of black holes. It can be also shown that eternal black holes exhibit Hawking radiation by

the study of thermal Greens function. The particles created by black holes are observed at

I+ and the concept of particle is ill-defined near the black hole horizon. Due to Hawking

radiation the mass of the black hole must deplete and this can be understood in a better

way by studying the expectation value of the stress-energy tensor defined near the black

hole horizon [7, 14]. Since the stress-energy tensor is a local object we can study Hawking

radiation in the vicinity of a black hole using it. Next we study black hole thermodynamics

in this context and survey the laws of black hole thermodynamics defining an entropy for

the black hole event horizon [15, 16, 17, 18] .

In this report all Latin indices, a, b, c, ... runs over 0, 1, 2, 3where 0-index denotes the time

dimension and the other three index denotes spatial dimension. Throught the report we

used the metric signature (+−−−) except in chapter two we have used the signature (−+
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++). We also used “ geometrized units′′, in which the speed of light, c, and the Newtonian

gravitation constant, G, is set to unity.
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Chapter 2

Static black holes

2.1 Solving the Einstein equation

General theory of relativity tells us how spacetime is influenced in the presence of sources

and the way this source is constrained due to geometry of the spacetime. This can be better

understood by looking at the field equation, known as Einstein equation, which is given as:

Gab = κTab,

Here Gab contains second derivative of the metric and is known as the Einstein tensor, κ is

8πG, where G is the Newton’s gravitational constant and Tab is the stress energy tensor. The

Einstein equations are a set of second order, non-linear, coupled differential equations that

relates the energy source (Tab) with the geometry (Gab) of the spacetime. In four dimensions

there are ten field equations in ten different variables, viz. the ten independent components

of the metric tensor gab.

2.1.1 Static vacuum solution

At present there exist a huge number of exact and approximate solutions to the Einstein

equation. The first and the simplest solution of the Einstein equations was given by Karl

Schwarzschild in 1916 for a static and spherically symmetric spacetime having no external

energy source.

A spacetime is said to be static when it possesses a timelike Killing vector field which is

hypersurface orthogonal [2, 21]. The coordinate basis which is used for defining the metric

has the Killing parameter t as one of the coordinate. This implies that the metric must be
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2.2. TRAJECTORIES OF PARTICLES AND PHOTONS IN SCHWARZSCHILD SPACETIME

independent of the t coordinate. As this Killing vector field is orthogonal to the t = constant

hypersurface there cannot be any cross term such as dtdxµ in the metric. This implies static

spacetime not only has time translation symmetry but it also remains invariant under the

diffeomorphism, t → −t, i.e. it has time reflection symmetry. Spherical symmetry im-

plies that the spacetime must be invariant under rotation about an axis and this requires a

two dimensinal part within the t = constant hypersurface to be a two dimensional sphere.

Choosing t, r, θ, φ as our coordinate basis we can write the metric of the full spacetime as

ds2 = f(r)dt2 − g(r)dr2 − r2(dθ2 + sin2θdφ2). (2.1)

Using vacuum Einstein equation the two variables of the above metric can be determined

and we can write the solution as

ds2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2(dθ2 + sin2θdφ2), (2.2)

where M is the mass of the gravitating test body. This solution of the vacuum Einstein

equation is known as the Schwarzschild metric and this metric makes some remarkable

predictions, few of them will be reviewed in this report.

It can be seen directly from the solution (2.2) that this metric becomes singular at two

points corresponding to r = 0 and r = 2M . The singularity related to the r = 0 point is

a true singularity of the spacetime while the singularity at r = 2M is just a pathological

singularity corresponding to the particular choice of the coordinate system we are working

in. The strength of this solution lies in the fact that this solution is unique for the given

symmetries of the spacetime and the predictions made by the Schwarzschild metric are the

some of the experimentally verified tests of general relativity.

2.2 Trajectories of particles and photons in Schwarzschild
spacetime

As mentioned earlier, there are two singularities in the Schwarzschild metic which add some

peculiarity to the orbit of particles and photons around the black hole [1] [22]. One way to

understand that the singularity at the r = 2M surface is due to the choice of coordinates is

by considering radially infalling particles in different time frames.

5



2.2. TRAJECTORIES OF PARTICLES AND PHOTONS IN SCHWARZSCHILD SPACETIME

2.2.1 Trajectory of a radially infalling particle

For a radially infalling particle, we have

θ̇ = φ̇ = 0. (2.3)

Considering ξµ to be an arbitrary Killing vector, we know that for a particle moving along

a geodesic the quantity pµξµ is a constant. As Schwarzschild spacetime is static and spher-

ically symmetric it has four Killing vector fields. ξt is the only timelike Killing vector field

exhibited by this spacetime. For ξt, the conserved quantity is(
1− 2M

r

)
pt = Ẽ, (2.4)

where Ẽ is a constant. Now considering the metric given in (2.2) and differentiating with

respect to proper time τ , we get for a radially infalling particle(
1− 2M

r

)
ṫ2 −

(
1− 2M

r

)−1

ṙ2 = 1, (2.5)

where the overdots represent differentiation with respect to τ . Using (2.4), we can write this

equation as

(
1− 2M

r

)
= −E2 + ṙ2. (2.6)

The constant E is defined as Ẽ/m and it can have different values corresponding to different

initial conditions. If we consider a particle dropped in the black hole from infinity with zero

initial velocity then, E = 1

Using this particular choice for the constant and integrating (2.6) we get

τ − τ0 =
2

3
√

2M

(
r

3
2 − r

3
2
0

)
(2.7)

Now, if we want the motion of the particle in terms of the coordinate time ‘t’ we get from

(2.5) and (2.6), taking E = 1

dt

dr
= −

( r

2M

) 1
2

(
1− 2M

r

)−1

. (2.8)
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2.2. TRAJECTORIES OF PARTICLES AND PHOTONS IN SCHWARZSCHILD SPACETIME

Integrating this equation gives

t− t0 =
2

3
√

2M

(
r

2
3 − r

2
3
0 + 6Mr

1
2 − 6Mr

1
2
0

)
+ 2Mln

(r
1
2 + (2M)

1
2 )(r

1
2
0 − (2M)

1
2 )

(r
1
2 − (2M)

1
2 )(r

1
2
0 + (2M)

1
2 )

(2.9)

From Eq. (2.7) we can see that the motion of the particle is smooth across the r = 2M

surface. Thus the singularity at r = 2M is not a physical singularity and it does not affect

the motion of the particle. When we consider the motion of the particle with respect to its

coordinate time we can see from (2.9) that at r = 2M , t becomes infinity which denotes that

the particle will never pass the horizon. This shows that the singularity at the r = 2M is

dependent on the coordinate basis we have chosen.

2.2.2 Precession of the perihelion of Mercury

For a one body system having a central gravitating object producing a spherically symmetric

gravitational field, the appropriate solution of the metric around such a system is described

by the Schwarzschild solution. Differentiating both sides of Eq. (2.2) with respect to proper

time τ , we get, for timelike geodesics:

1 =

(
1− 2M

r

)
ṫ2 −

(
1− 2M

r

)−1

ṙ2 − r2(θ̇2 + sin2θφ̇2), (2.10)

where, as mentioned before, an overdot represents differentiation with respect to τ .

The timelike Killing vector ξt and the rotational Killing vector ξφ lead to:(
1− 2M

r

)
ṫ =

Ẽ

mc2
= E (2.11)

r2φ̇ =
L̃

mc2
= L, (2.12)

whereL andE represents angular momentum and energy per unit mass, respectively. Using

equations (2.11) and (2.12) in (2.10) and taking θ to be constant we get:

1 =

(
1− 2M

r

)−1

E2 −
(

1− 2M

r

)−1

ṙ2 − r−2L2 (2.13)

Upon changing to variable r = 1/u, this equation takes the form:

7



2.2. TRAJECTORIES OF PARTICLES AND PHOTONS IN SCHWARZSCHILD SPACETIME

d2u

dφ2
+ u =

M

L2
+ 3Mu2. (2.14)

This equation differs from the Newtonian result due to the presence of the second term on

the right hand side. For planetary motion this last term is very small and so we can solve

this differential equation by perturbative method under some assumptions. First we solve

the equation

d2u

dφ2
+ u = 0, (2.15)

by substituting u = Ae−αφ. Using proper boundary condition we get u = Ccosφ, where C is

a constant.

Taking the particular solution of the equation

d2u

dφ2
+ u =

M

L2
, (2.16)

the total solution of the above equation can be obtained to be

u =
M

L2
(1 + e cosφ) (2.17)

where e = CL2/m is the eccentricity of the orbit. Substituting this value of u in equation

(2.14) we can expand the last term and write the full equation as:

d2u

dφ2
+ u =

M

L2
+

3M3

L4
(1 + e2 cos2φ+ 2e cosφ). (2.18)

The solution to this equation can be arrived at by adding solution of the particular inte-

grals to the general solution. Due to the correction term on right hand side there are three

particular integrals whose solutions are

u =
3M3

L4
, (2.19)

u = −3M3

6L4
cos 2φ+

1

2

3M3

L4
, (2.20)

u =
1

2

3m3

L4
φ sinφ. (2.21)
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2.2. TRAJECTORIES OF PARTICLES AND PHOTONS IN SCHWARZSCHILD SPACETIME

The first two terms add a small constant to the solution (2.17). Only the third term con-

tributes significantly and this has been also experimentally observed. Taking into account

all these facts we can write the final solution of Eq. (2.14) as

u =
M

L2
(1 + e cosφ) +

3M3

L4
φsinφ. (2.22)

For small φ, sinφ ∼ φ and cosφ ∼ 1 Under this approximation the total solution is given by:

u =
M

L2

[
1 + e cos

(
1− 3M2

L2

)
φ

]
. (2.23)

This relation shows that u is a periodic function of φ and the periodicity is

2π(
1− 3M2

L2

) . (2.24)

This periodicity is clearly greater than 2π and so it can be concluded that ‘r’ traces out an

approximate ellipse that rotates about its foci. The amount of precession per rotation is given

as

∆ =
2π(

1− 3M2

L2

) − 2π =
6πM2

L2
. (2.25)

Inserting all the constants which we have set to unity we obtain that

∆ =
6πG2M2m2

L̃2c2
. (2.26)

2.2.3 Bending of light

For null geodesics ds2 = 0 and thus the constants obtained by using the Killing symmetries

of the Schwarszchild metric get modified as the derivative of Eq. (2.2) is no more with

respect to the arc length, but wit respect to a suitable affine parameter.

Using this fact and equation (2.14), we can write the equation governing the trajectory of

a photon as

d2u

dφ2
+ u = 3Mu2. (2.27)
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2.2. TRAJECTORIES OF PARTICLES AND PHOTONS IN SCHWARZSCHILD SPACETIME

Setting the right hand side to zero and using the boundary condition that φ = 900 when the

photon hits the surface of the central mass we get

u =
sinφ

R
(2.28)

Here R can be regarded as the distance of closest approach for the photon to the central po-

tential or the radius of the central gravitating object. Substituting this value of u in equation

(2.27) we get

d2u

dφ2
+ u =

3Msin2φ

R2
=

3M

R2
(1− cos2φ). (2.29)

This equation has two particular solutions given by

u =
3M

R2
, (2.30)

u =
3M

6R2
cos2φ. (2.31)

Summing up everything the total solution is

u =
sinφ

R
+

M

2R2
cos2φ+

3M

2R2
. (2.32)

From the above expression we see that at large ‘r’ the value of φ should be small. In the limit

u→ 0, sinφ ∼ φ, cosφ ∼ 1, we get the angle of deviation viz.φ∞ to be

φ∞ = −2M

R
. (2.33)
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Chapter 3

Stationary blackholes

By definition, a stationary spacetime exhibits a one parameter group of isometries whose

orbits are timelike. This implies that the sliding of the metric along a timelike killing vector

field, say ξt, preserves the metric. In this chapter we shall consider axisymmetric spacetimes.

By this we mean that the spacetime must exhibit a spacelike Killing vector ξφ whose orbits

are closed. For a spacetime to be both stationary and axisymmetric the Killing vectors , ξt
and ξφ, must commute with each other. This extra condition implies that we can treat ξt and

ξφ as coordinate vectors since the Lie bracket of two coordinate vector is always zero[2].

By using the above mentioned conditions we can write the general form of a stationary

and axisymmetric metric as:

ds2 =
∑
ab

gabdx
adxb (3.1)

where the chosen coordinate system is (x0 = t, x1 = φ, x2, x3) and due to the symmetries of

the spacetime gab is independent of t and φ. Thus we have ten unknown variables in two

functions that is needed to be solved. Using certain theorems and few other assumptions

helps one to reduce the problem into a much more convenient form. In the next section

we see how this reduction of variables is done to lead to a form for the metric describing a

stationary axisymmetric spacetime.

3.1 Metric describing a rotating black hole

The general form of the metric given in (3.1) can be simplified considerably using the theo-

rem which states that the two dimensional subspace spanned by vectors orthogonal to the

11



3.2. GENERAL PROPERTIES OF THE KERR METRIC

coordinate vectors ξt and ξφ is tangent to the two dimensional surface, i.e. integrable. For

this theorem we can choose a set of coordinate (x2, x3) and span the two dimensional sur-

face, without having any crossterm with t or φ. This reduces the number of independent

variables in the metric from ten to six. Making the choice of coordinate x2 = ρ and x3 = z

we can write the most general metric for a stationary axisymmetric metric as

ds2 = −V (dt− wdφ)2 + V −1ρ2dφ2 + Ω2(dρ2 + Λdz2). (3.2)

Here we have made the choice ρ2 = V X +W 2 and w = W/V

Taking ρ2 = r2 + a2cos2θ, defining ∆ = r2 − 2 + a2 and using the metric (3.2) we get the

metric of a rotating black hole in vacuum as;

ds2 = − ρ2∑2 ∆dt2 +

∑2 sin2θ

ρ2
(dφ− ωdt)2 +

ρ2

∆
dr2 + ρ2dθ2 (3.3)

where ∑2
= (r2 + a2)2 − a2∆sin2θ and ω =

2µra∑2 . (3.4)

Looking at this metric in the asymptotic limit determined by the condition r → ∞ we can

identify a as the angular momentum per unit mass.

The metric given in (3.3) describes the spacetime around a rotating black hole and is

known as the Kerr metric.

3.2 General properties of the Kerr metric

In the so called Boyer-Lindquist coordinates, the Kerr spacetime is described by the line

element [23]

ds2 = −
(

1− 2µr

ρ2

)
dt2 − 4µar sin2θ

ρ2
dtdφ+

ρ2

∆
dr2 + ρ2dθ2

+

(
r2 + a2 +

2µra2sin2θ

ρ2

)
sin2θdφ2.

(3.5)

12



3.2. GENERAL PROPERTIES OF THE KERR METRIC

In the limit a → 0 this metric reduces to the Schwarzschild metric as expected and in the

limit µ→ 0, it corresponds to the flat spacetime metric thus giving the interpretation of µ as

the mass parameter M of the Schwarzschild metric [1]. In the limit µ→ 0 the metric reduces

to

ds2 = −dt2 +
ρ2

r2 + a2
dr2 + ρ2dθ2 + (r2 + a2)sin2θdφ2 (3.6)

Performing the coordinate transformation

x =
√

(r2 + a2)sinθcosφ; y =
√

(r2 + a2)sinθsinφ; z = rcosθ (3.7)

the above metric reduces to the known Cartesian form. This coordinate transformation also

gives that in the plane given by θ = π/2, r = 0 corresponds to a disk of radius ‘a′.

As mentioned before, since the Kerr metric is axially symmetric and stationary, ξt =

∂/∂t and ξφ = ∂/∂φ are two Killing vectors of the metric. We can relate the norm of these

Killing vectors with three metric components and arrive at some interesting results about

the spacetime. The metric becomes ill defined at ρ = 0. The condition ρ = 0 also gives

r2 + a2cos2θ = 0 (3.8)

When θ = π/2 this equation gives r = 0. Since r = 0 in the θ = π/2 plane corresponds to a

disk of radius a, the condition ρ = 0 gives a ring like singularity.

At the event horizon, the norm of the r = constant hypersurface becomes null. The

normal to the r = constant surface is given by ∂ar. The normal becomes null when

gab∂ar∂br = 0 = grr. The condition grr = 0 leads to ∆ = 0 and thus the solution to the

equation ∆ = 0 gives the location of the event horizon. On solving the quadratic equation

given by ∆ = 0 we find that the location of the event horizon to be

RH = µ+
√
µ2 − a2 (3.9)

Here we ignored the second root, which corresponds to the interior horizon.

If we consider trajectory of observers moving with 4-velocity u along the timelike killing

vector ξt then we can define the relation ξt = Ru. R is the normalization constant defined

by R2 = −ξtξt. Using this relation and the frequency of an observer moving in spacetime

13



3.2. GENERAL PROPERTIES OF THE KERR METRIC

with momentum p the surface of infinite redshift is given by the condition R = 0. Now

R2 = −ξtξt = −gttξtξt = 0 = gtt. Solution to the equation gtt = 0, which is given as

RE = µ+
√
µ2 − a2cos2θ (3.10)

gives the location of the surface of infinite redshift in case of the Kerr metric. As we can

see, in the case of Kerr black holes, the event horizon is not the surface of infinite redshift.

The surface of infinite redshift is known as the ergosurface and the region between the event

horizon and the ergosurface is known as ergosphere. Thus, it is seen clearly that the timelike

Killing vector field ξt does not generate the event horizon, instead the event horizon is gen-

erated by the Killing vector ξt + ΩHξφ, where ΩH can be interpreted as the angular velocity

of the horizon.

3.2.1 Static limit

A static observer i.e an observer whose r, θ, φ are fixed, will have a four velocity proportional

to the timelike Killing vector Cξt. Where C is the normalization constant and given by

C = (−gtt)
1
2 . As seen earlier ξt becomes null on the ergosurface and it is spacelike in the

ergosphere. This denotes that a static observer cannot remain static inside the ergosphere.

The dragging of the inertial frame inside the ergosphere forces an observer to rotate with

the blackhole.

Zero angular momentum observers (ZAMOs) can be defined as the observers satisfy the

condition

L = uaξφ = gφtṫ+ gφφφ̇ = 0. (3.11)

From this equation we get

Ω =
dφ

dt
=
−gtφ
gφφ

, (3.12)

where Ω is the angular velocity of the ZAMOs. Using the explicit form of the Kerr metric

(3.3) we get Ω = ω. Thus the ZAMOs rotate with the black hole and the angular velocity

increases as one moves closer to the black hole (as ω ∝ r ).

14



3.2. GENERAL PROPERTIES OF THE KERR METRIC

3.2.2 Stationary observers

We consider an observer moving with angular velocity Ω such that it does not feel the vari-

ation of the gravitational field around the black hole. The four velocity of such an observer

is given as

u = C(ξt + Ωξφ), (3.13)

The normalization constant C is found to be

C = (−gtt − 2Ωgtφ − Ω2gφφ)1/2. (3.14)

A stationary observer can exist in this spacetime when the four velocity (3.13) is timelike.

It fails to remain timelike when the normC changes sign and thus we get a limiting condition

governed by the sign of C for the existence of stationary observer in Kerr spacetime. Using

the fact that the sign of C must be positive, we get the equation

gtt + 2Ωgtφ + Ω2gφφ < 0. (3.15)

This equation has two roots and this limits the value of Ω as

Ω− < Ω < Ω+ (3.16)

where Ω± is given as

Ω± = ω ±
√
ω2 − (gtt/gφφ). (3.17)

For a static black hole Ω = 0, this ensures that Ω− should change sign at RE . As an

observer moves further into the ergosphere Ω− increases while Ω+ decreases. Using the

explicit metric components from (3.3) and using (3.17) we get gtt/gφφ = ω2 at the event

horizon. Thus when the event horizon is reached Ω− = Ω+ = ΩH and the observer is forced

to rotate around the black hole with an angular velocity ω, where ω is given by

ω =
a

R2
H + a2

. (3.18)

From the above analysis, one can also come across the fact that the Killing vector defined

as

ξk = ξt + ΩHξφ (3.19)
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3.3. PENROSE PROCESS

becomes null on the event horizon and thus for Kerr black holes the event horizon is a Killing

horizon generated by ξk

3.3 Penrose Process

The conserved energy of a particle can be defined as E = −pµξt. As it was seen earlier the

Killing vector ξt is not timelike throughout the spacetime and changes sign as one enters

the ergosphere. Thus inside the ergosphere of a Kerr blackhole particles can have negative

energy [23]. Energy of a particle must be positive definite asymptotically and so it is not

possible for a particle to have negative energy while entering or leaving the ergosphere. A

particle having positive energy can enter the ergosphere and then break into two parts, one

part having negative energy while the other part can have positive energy. This mechanism

can be adopted suitably for explanation of the existence of negative energy particle within

the ergosphere. The part having negative energy can fall into the event horizon while the

part having positive energy escapes out to infinity.

Let the initial energy of the particle be E. Once the particle enters the ergospehere and

splits up into two, let the energy of the two parts be E−(negative energy part) and E+ (posi-

tive energy part). From the conservation of energy we get E+ > E and thus it is possible to

extract energy from a rotating blackhole and transfer them to infinity by this process. The

existence of the particles having negative energy inside the ergosphere can be explained in

a better way by considering the scalar product of the 4−momentum with itself and using

E = −pµξt = −pt.
For the Penrose process both the angular momentum (L) and mass (M) of the Kerr black-

hole decreases. The dot product of the 4−momentum with the Killing vector ξk must be

negative outside the event horizon since ξk is timelike in this region. Using E = −pµξt and

L = pµ.ξφ one can write

pµ.ξt = pµ.ξt + ΩHp
µ.ξφ = −E + ΩHL < 0. (3.20)

When a particle enters the ergo region, the mass and angular momentum changes by δM =

E and δJ = L. Using the above equation and (3.18) one can write

δM >
aδJ

R2
H + a2

. (3.21)

16



3.4. SUPER-RADIANCE

Using the two dimensional metric describing the event horizon and let σ be the determi-

nant of this metric, the area of the event horizon can be defined as

A =

∫ ∫ √
σdθdφ = 4π(R2

H + a2). (3.22)

Taking variation of this area we get

δA = 8π(RHδRH + aδa). (3.23)

Using equation (3.9) and considering J = Ma the variation in the area of the event horizon

can be written as

δA = 8π
a

ΩH

√
M2 − a2

(δM − ΩHδJ). (3.24)

For particle entering the ergosphere it was obtained previously, (δM − ΩHδJ) > 0. Thus for

the Penrose process the area of the event horizon increases and when the above equation is

written in the form

δM =
κ

8πG
δA+ ΩHδJ. (3.25)

It can be interpreted as the first law of black hole thermodynamics.

3.4 Super-radiance

Study of particles in the ergo region showed that energy can be extracted from the Kerr

black hole. When a similar analysis is done by considering free scalar fields propagating in

the ergosphere the phenomenon of super-radiance takes place.

Equation of motion of a massless scalar field in Kerr spacetime is given by

∂a(
√
−ggab∂aΦ) = 0 (3.26)

Using the explicit form of the Kerr metric this equation can be expanded as

[
−(r2 + a2)2

∆
+ a2sin2θ

]
∂2Φ

∂t2
− arM

∆

∂2Φ

∂t∂φ
+

(
1

sin2θ
− a2

∆

)
∂2Φ

∂φ2
+

∂

∂r

(
∆
∂Φ

∂r

)
+

1

sinθ

∂

∂θ

(
sinθ

∂Φ

∂θ

)
= 0. (3.27)
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3.4. SUPER-RADIANCE

In this wave equation if we substitute

Φ = e−iωteimφR(r)S(θ), (3.28)

we can separate out the ‘r′ dependent part as

∂

∂r

(
∆
∂R

∂r

)
+

[
ω2 (r2 + a2)2 − 4arMωm+ a2m2

∆
−D

]
R = 0, (3.29)

where D is the separation constant.

This equation can be simplified by introducing a new coordinate defined by

dr∗

dr
=

(r2 + a2)

∆
. (3.30)

In terms of the variable r∗, the redefined equation in the asymptotic limit (r → ∞) reduces

to

d2R

dr∗2
+

2

r

dR

dr∗
+ ω2R = 0. (3.31)

This equation is similar to the radial part of the spherical wave equation defined in flat space

time. Solving this equation we get

R ∼ e±iωr
∗

r
(3.32)

The two values correspond to the ingoing and the outgoing wave modes in the asymptotic

limit.

Similarly taking the near horizon limit defined by ∆ → 0 equation (3.29) can be written

as

d2R

dr∗2
+

[
ω2 − 4aRHMωm+ a2m2

(R2
H + a2)2

]
R = 0 (3.33)

This equation can be simplified by using (3.9) and (3.18) to yeild

d2R

dr∗2
− (ω −mΩH)2R = 0. (3.34)

This equation has the solution

R ∼ e[±i(ω−mΩH)r∗] (3.35)
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3.4. SUPER-RADIANCE

The wave mode with the minus sign in the exponent corresponds to the ingoing mode near

the horizon and the other one, is the outgoing mode. For the energy momentum tensor for

the above scalar field is

4πTab = ∂aΦ∂bΦ−
1

2
gab[∂dΦ∂

dΦ] (3.36)

The energy flux is given as Pb = Tabξt = Tat. The flux of energy coming out or going into

the horizon can be calculated by integrating pb over the two surface describing the horizon

for the given wave mode. The total energy flux is given as

P =

∫
T rt
√
−gdθdφ (3.37)

Using the expression of the energy momentum tensor and the wave modes given in (3.35)

the energy flux through the horizon is given as

dE

dt
= Cω(ω −mΩH), (3.38)

where C is a constant. The sign of (ω−mΩH) determines whether energy is flowing into the

horizon or flowing out through the horizon. This shows that for wave modes having fre-

quency in the range 0 < ω/m < ΩH energy comes out of the black hole and this phenomenon

is called super-radiance.
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Chapter 4

Quantum field theory in flat spacetime

Let us consider a (1+1) dimensional system consisting of a real massless scalar field, Φ(x, t),

satisfying the field equation

∂a∂aΦ = 0. (4.1)

This field equation can be derived from the action of the system which is given as

S =
1

2

∫
d2x
√
−ggab∂aΦ∂bΦ. (4.2)

In the process of canonical field quantization [7] we define Φ and its conjugate momentum,

π(x, t), as an operator satisfying the equal time commutation relation given as

[
Φ(x, t),Φ(x

′
, t)
]

= 0, (4.3)[
π(x, t), π(x

′
, t)
]

= 0, (4.4)[
Φ(x, t), π(x

′
, t)
]

= iδ(x− x′). (4.5)

Using (4.1) we can define the Klein-Gordon inner product calculated on a spacelike hy-

persurface as

(Φ1, φ2) = −i
∫
dΣa
√
−gΣ(Φ1

←→
∂a φ

∗
2) (4.6)

4.1 Quantization in Minkowski coordinates

We take the Minkowski line element in (1 + 1) dimensions which is given by
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4.1. QUANTIZATION IN MINKOWSKI COORDINATES

ds2 = dt2 − dx2. (4.7)

For this line element, equation (4.6) can be written as

(∂2
t − ∂2

x)Φ = 0. (4.8)

The solution of this equation after proper normalization is give by

uk =
1√
4πω

e−i(ωt−kx). (4.9)

These modes are defined to be positive frequency modes since they are eigenfunctions of

the operator (∂/∂t) with positive eigen values. Using (4.1) and calculating the scalar product

on t = constant hypersurface we define a set of orthogonality relation between the modes

uk and their complex conjugates u∗k as

(uk, uk′ ) = δ(k − k′); (u∗k, u
∗
k′

) = −δ(k − k′); (uk, u
∗
k′

) = 0 (4.10)

From the above relations it is clear that the normal modes defined in (4.9) and their com-

plex conjugates form a complete orthonormal basis which can be used for expanding the

scalar field as

Φ(x, t) =

∫
dk
(
âkuk(t, x) + â†ku

∗
k(t, x)

)
, (4.11)

where âk and â†k are the annihilation and the creation operators which satisfy the standard

commutation relations. Using the annihilation operator the Minkowski vacuum state can be

defined as

âk|0M〉 = 0 (4.12)

From the Minkowski vacuum state defined above we can obtain the multi particle states

by repeated application of the creation operator, â†k.
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4.2. QUANTIZATION IN ACCELERATED FRAME

4.2 Quantization in accelerated frame

In a similar way as in the previous section, we can write the field equation in an accelerated

frame of reference (Rindler coordinates) and quantize the system. But before doing so let us

set up the Rindler coordinates which describes an accelerated observer [24].

For an observer travelling with uniform acceleration,say, a, the equation of motion is

given as

d

dt
(γu) = a, (4.13)

where u is the velocity of the observer and γ = 1/
√

1− u2. Integrating Eq. (4.13) and using

the boundary condition,u = 0 at t = 0 gives

u = at
√

1 + a2t2. (4.14)

We integrate Eq. (4.14) to get x in terms of t as

x =
1

a

√
1 + a2t2, (4.15)

where we have used the condition that x = 1/a at t = 0. The proper time τ of an observer

set in the accelerated frame is related to the Minkowski time t as follows

dτ = dt
√

1− v2. (4.16)

We integrate this equation and get

τ =
1

a
sinh−1(at). (4.17)

Using Eqs. (4.15) and (4.17), we can write

x =
1

a
cosh(aτ); and t =

1

a
sinh(aτ) (4.18)
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4.2. QUANTIZATION IN ACCELERATED FRAME

Using the fact that any two dimensional coordinate system is conformally flat we can

write the relation between the coordinates of an accelerated frame (τ, ξ) and Minkowski

coordinate (x, t) as

t =
1

a
eξasinh(aτ), and x = 1

a
eξacosh(aτ).

(4.19)

In these newly defined coordinate the flat space line element takes the form

ds2 = e2gξ(dτ 2 − dξ2). (4.20)

From the transformation defined in (4.19) we see that in the range −∞ < τ < ∞ and

−∞ < ξ <∞ the coordinates only cover the right wedge of the two dimensional Minkowski

spacetime. Thus the Rindler coordinates are incomplete and we can infer this by saying that

the accelerated observer cannot observe more than 1/a in the direction opposite to its direc-

tion of motion. Since events beyond the right wedge cannot be observed we can think of it

as a horizon.

In the Rindler coordinates the field equation (4.1) takes the form

(∂2
τ − ∂2

ξ )Φ(τ, ξ) = 0. (4.21)

Solving this equation we can write the wave modes after proper normalization as

vk̃(τ, ξ) =
1√
4πω̃

e−i(ω̃τ−k̃ξ) (4.22)

Using (4.6) the orthogonality relation between these modes and their complex conjuate v∗
k̃

can be defined as

(vk̃, vk̃′ ) = δ(k̃ − k̃′); (v∗
k̃
, v∗
k̃′

) = −δ(k̃ − k̃′); (vk̃, v
∗
k̃′

) = 0. (4.23)

As these modes and their complex conjugate form a complete basis, the expansion of the

scalar field in terms of these modes are given by
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4.3. UNRUH EFFECT

Φ(τ, ξ) =

∫
dω̃(b̂k̃vk̃(τ, ξ) + b̂†

k̃
v∗
k̃
(τ, ξ)) (4.24)

Here b̂k̃ and b̂k̃† are the annihilation and the creation operators defined in the Rindler co-

ordinated, which satisfy the standard commutation relation. The vacuum state in this new

coordinate system can be defined as

b̂k̃|0R〉 = 0 (4.25)

where |0R〉 is refered to as the Rindler vacuum.

4.3 Unruh effect

The fact that the vacuum in Minkowski space |0M〉 appears to be a thermal state when

viewed by an accelerated observer is known as Unruh effect. For derivation of the Unruh

effect we need to express the Minkowski modes in terms of the Rindler modes by means of

the so called Bogolubov transformations.

As both sets of normal modes, uk and vk̃ are complete we can express one of them in

terms of the other as

vk̃(τ, ξ) =

∫
dk
(
α(k, k̃)uk(t, x) + β∗(k, )u∗k(t, x)

)
(4.26)

and

uk(t, x) =

∫
dk̃
(
α∗(k, k̃)vk̃(τ, ξ)− β(k, )v∗

k̃
(τ, ξ)

)
(4.27)

The quantities α(k, k̃) and β(k, k̃) are known as the Bogolubov coefficients [19, 20]. We can

use the inner product defined in (4.6) and the orthonormality conditions of the mode to

express the Bogolubov coefficients as follows

α(k, k̃) = (vk̃, uk) β(k, k̃) = −(vk̃, u
∗
k) (4.28)
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4.3. UNRUH EFFECT

The annihilation operators âk, â
†
k and b̂k̃, b̂

†
k̃

can be related using the Bogolubov coeffi-

cients as

âk = (uk,Φ(τ, ξ)) =

∫
dω̃(α(k, k̃)b̂k̃ + β∗(kk̃)b̂†

k̃
) (4.29)

and

b̂k̃ = (v,Φ(t, x)) =

∫
dω(α∗(k, k̃)âk − β∗(k, k̃)â†k). (4.30)

Using the commutation relations[
âk, â

†
k′

]
= δ(k − k′),

[
b̂k̃, b̂

†
k̃′

]
= δ(k̃ − k̃′) (4.31)

and from the expression for the creation and annihilation operator in Eqs. (4.29) and (4.30),

we can arrive at the relations

∫
dk
(
α∗(k, k̃

′
)α(k, k̃)− β∗(k, k̃′)β(k, k̃) ) = δ(k̃ − k̃′), (4.32)∫

dk
(
α(k, k̃)β(k, k̃

′
)− β(k, k̃)α(k, k̃

′
) ) = 0. (4.33)

Next we calculate the Bogolubov coefficients between the Minkowski modes and the

Rindler modes using Eq. (4.28). Computing the inner product on the τ = 0 hypersurface we

get

α(k, k̃) =
1

4π
√
ωω̃

∫
dξ(ωeaξ + ω̃)eiω̃ξexp

[
−i
(
ka−1eaξ

)]
, (4.34)

β(k, k̃) =
1

4π
√
ωω̃

∫
dξ(ωeaξ − ω̃)eiω̃ξexp

[
i
(
ka−1eaξ

)]
. (4.35)

When the Minkowski modes are expressed in terms of the Rindler modes, if the coefficient

β(k, k̃) is non-zero then we can see from (4.30) the Minkowski vacuum will not be annihi-

lated by the annihilation operator defined in the Rindler coordinate. The Bogolubov coef-

ficients can be calculated by performing the integrals given in (4.34) and (4.35). At first we

substitute z = eaξ and the integrals reduces to
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4.3. UNRUH EFFECT

α(k, k̃) =
a−1

4π
√
ωω̃

∫
dz(ωz + ω̃)zilg

−1−1e−ikzg
−1

, (4.36)

β(k, k̃) =
a−1

4π
√
ωω̃

∫
dz(ωz − ω̃)zilg

−1−1eikzg
−1

. (4.37)

Using the known identity given by

∫ ∞
0

xs−1e−bxdx = exp(−slnb)Γ (s) (4.38)

and using proper cut-off which is set to zero finally, the integrals can be evaluated to give

α(k, k̃) =
1

4πa

√
ω

ω̃
(ωk̃ + kω̃)

(
k

a

)
−ik̃a−1

Γ(−ik̃a−1)eπk̃/2a (4.39)

and

β(k, k̃) = − 1

4πa

√
ω

ω̃
(ωk̃ + kω̃)

(
k

a

)
−ik̃a−1

Γ(−ik̃a−1)e−πk̃/2a. (4.40)

From the above expressions we get the relation

β(k, k̃) = −α(k, k̃)e−πk̃/a. (4.41)

The number operator can be defined in Rindler coordinates to be b̂k̃b̂
†
k̃
. The expectation

value of this Rindler number operator in Minkowski vacuum is given as

〈0M |NR|0M〉 = 〈0M |b̂k̃b̂
†
k̃
|0M〉 =

∫
dk|β(k, k̃)|2 (4.42)

where we use Eq. (4.30) for arriving at the final expression. Using equation (4.32) we get

〈0M |NR|0M〉 =
1

2πk

∫ [
a−1dk

exp(2πω̃a−1)− 1

]
(4.43)

Thus it is clear that the Rindler number operator in |0M〉 state gives a thermal spectrum

at temperature a/2π. This also shows that the quantization in Minkowski and the Rindler

coordinates are inequivalent which we shall further discuss in the next section.
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4.4. INEQUIVALENT QUANTIZATION AND CORRELATION IN VACUUM

4.4 Inequivalent quantization and correlation in vacuum

As mentioned previously, the Rindler coordinates cover only a part of the Minkowski space

and an observer in Rindler spacetime cannot obtain any information from the region beyond

the Rindler horizon. Defining a new set of coordinates as

t+ x = ṽ = g−1egv, (4.44)

t− x = ṽ = −g−1egu, (4.45)

where v = ξ + τ and u = ξ − τ . In these coordinates, the Rindler line element (4.20) takes

the from

ds2 = e2gξdudv (4.46)

and the general solution of these wave equation is in these coordinate can be written as

P (u) + F (v). The outgoing mode i.e. the mode dependent on u when expressed in terms of

the Minkowski null coordinates defined in (4.45) is given as

p = exp[i
ω

g
ln(−ũ)]. (4.47)

Clearly this field mode cannot be defined for all values of ũ as p = 0 for ũ > 0.

The Rindler spacetime exhibits a Killing vector given by χ = ∂/∂τ . In terms of the null

coordinates defined for Minkowski space χ takes the form

χ = g(ṽ∂ṽ − ũ∂ũ) (4.48)

It is easily seen that the field mode defined in (4.47) is a positive frequency mode with respect

to ξ but it is not a purely positive frequency mode with respect to the timelike Killing vector

(∂/∂t) defined for Minkowski space. The field mode p is not purely positive frequency with

respect to u coordinate is also evident from the fact that p vanishes for u > 0 and a purely

positive frequency mode cannot vanish on any open interval.

For expressing the Minkowski wave modes in terms of the Rindler modes we can define

p for ũ > 0 by analytic continuation. If we take the branch cut of ln(ũ) on the upper half
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4.4. INEQUIVALENT QUANTIZATION AND CORRELATION IN VACUUM

plane we can define a function ln(ũ + iπ) which is analytic for positive values of ũ and it

agrees with ln(−ũ) on the negative real axis. Using this we can define a new mode which

will have purely positive ũ frequency. This mode is defined as

h = p(ũ) + e
−πω
g p(−ũ), (4.49)

and the annihilation operator defined by a(h) = (h, φ) gives a(h)|0〉M = 0. By using linear-

ity of the Klein-Gord0n product we can express the annihilation operator defined above in

terms of the Rindler annihilation and creation operator as

a(h) = a(p) + e−πω/ga(p̃), (4.50)

where p̃(ũ) = p(−ũ) and a(p̃) = −a†(p̃∗) Using eq. (4.50) the expectation value of the num-

ber of particle in Minkowski space as detected by an Rindler observer can be calculated

after normalizing the modes properly and a Planckian spectrum can be obtained with the

temperature a/2π.
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Chapter 5

Quantum field theory in curved
spacetimes

Previously we saw that a rotating black hole exhibits the phenomenon of super radiant scat-

tering which involves stimulated emission when a scalar field is incident on a rotating black

hole. This suggests that when quantum fields are studied around a rotating black hole it

should also exhibit spontaneous emission. Remarkably it was found by Hawking that even

static black holes exhibit this phenomenon of spontaneous radiation in presence of quantum

fields around the black hole. This phenomenon of spontaneous emission of particle from a

blackhole is known as Hawking radiation.

When a free quantized scalar field passes through the interior of a collapsing star its

modes gets red-shifted. As this field crawls out of the surface of the star undergoing collapse

the extent of red-shif increases. On performing the Bogolubov transformation between the

standard outgoing Minkowski field modes and the red-shifted modes emerging from the

star we get a Planckian spectrum of particle. Thus it implies that the initial “in vacuum”

state contains a thermal flux of outgoing particles at late times. We work in (1+1) dimension

by choosing a two dimensional metric corresponding to a spherical collapsing object. This

is done to avoid the difficulty of dealing with complex algebra while we get the same result

when extended to (3 + 1) dimensions. The way in which the star is collapsing is also kept

arbitrary as it does not effect the final result as long as it asymptotically settles down to a

Schwarzschild black hole.
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5.1. PARTICLE PRODUCTION BY BLACK HOLE

5.1 Particle production by black hole

It is assumed that when the star started collapsing in the past, spacetime was nearly flat

and thus the Minkowski vacuum is a good approximation describing such a state. When

the star has collapsed sufficiently and formed a black hole, the exterior spacetime of the star

is described by the Schwarzschild metric and in this region we also need to define a new

vacuum state. In this section we will calculate the Bogolubov transformation between the

“in” and “out” vacuum state to obtain the thermal spectrum of particle at late times far away

from the black hole.

Now we look at mode solutions of the standard Klein-Gordon equation for Schwarzschild

spacetime. The Klein-Gordn equation can be written as

1√
−g

∂a
[
−ggab∂bφ

]
= 0 (5.1)

where g is the determinant of the Schwarzschild metric. For solving this equation we use

the trial solution

R(r)Θ(θφ)
(
Ae−iωt + A∗eiωt

)
(5.2)

In the asymptotic region defined by r → ∞ the radial part of Eq. (5.1) is simply given as

e±iωr. We change variable r to r∗, where r∗ is defined as the tortoise coordinates (given in

Appendix A). In terms of these redefined coordinates the solution of Eq. (5.1) is given as

1√
2πω

e−iω(t−r∗)/rYlm(θφ) =
1√
2πω

eiωu/rYlm(θφ), (5.3)

1√
2πω

e−iω(t+r∗)/rYlm(θφ) =
1√
2πω

eiωv/rYlm(θφ). (5.4)

When working in (1+1) dimensions and neglecting the effect of back scattering of field

modes these mode solutions reduces to the standard flat space form for large distances.

We can define a vacuum with respect to these modes as a|0M〉 = 0 where a is the annihila-

tion operator defined with respect to the modes given in Eqs.(5.3)and (5.4). This suggests

that there is no incoming radiation from I−. Due to the presence of the collapsing star these

modes will get red-shifted which otherwise would have propagated in the same initial form.

We now compute the red-shifted modes reaching I+ after passing through the collapsing

star. In (1 + 1) dimensions the spacetime in the exterior region of the collapsing star can be
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best described by the Schwarzschild metric. We take an arbitrary form of the metric defined

in terms of the null coordinates as

ds2 = C(r)dudv (5.5)

where

u = t− (r∗ −R∗0), (5.6)

v = t+ (r∗ −R∗0), (5.7)

where R∗0 is a constant and r∗ is defined as

r∗ =

∫
C(r)−1dr. (5.8)

This arbitrary metric is assumed to be asymptotically flat and this is given by the condition

C(r) → 1 in the limit r → ∞. The interior spacetime of the collapsing star is defined by a

metric which in a arbitrary form is given as

ds2 = A(U, V )dUdV (5.9)

and

U = τ − (r −R0), (5.10)

V = τ + (r −R0), (5.11)

R0 and R∗0 are related in the same way as r and ‘r∗’. It is assumed that at τ = 0 the star is at

rest and the surface of the star is given by r = R0. To depict the scenario of a wave entering

the collapsing star and emerging out we assume that the wave gets reflected at r = 0, which

is the center of the star, and restrict the treatment to only positive values of r. To achieve this

we need to impose the boundary condition φ = 0 at r = 0.

We denote the relation between the interior and the exterior coordinates of the star, ig-

noring any reflection at the surface of the star, in an arbitrary functional form as
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5.1. PARTICLE PRODUCTION BY BLACK HOLE

U = α(u) (5.12)

v = β(V ) (5.13)

Using Eqs. (5.10) and (5.11), we can define the centre (r = 0) of the radial coordinate by the

line

V = U − 2R0 (5.14)

For τ > 0 the star starts collapsing along the worldline r = R(τ). Matching the interior and

the exterior metric along this collapsing surface we get

dU

du
=

C(1− Ṙ)

[AC(1− Ṙ2) + Ṙ2]− Ṙ
(5.15)

dv

dV
=

[AC(1− Ṙ2) + Ṙ2] + Ṙ

C(1 + Ṙ)
(5.16)

where C is evaluated at r = R(τ) and the overdot represents differentiation with respect to

τ . When the star collapses to a sufficiently small region in spacetime, it forms a black hole.

At this point the surface of the collapsing star coincides with the event horizon of the black

hole which is given by C = 0. When this condition is used Eqs.(5.15) and (5.16) reduce to

dU

du
∼ (Ṙ− 1)C(R)/2Ṙ (5.17)

dv

dV
∼ A(1− Ṙ)/2Ṙ, (5.18)

and calculating the second limit using the standard L Hospital‘s rule. Now, near the event

horizon, R(τ) can be expanded as

R(τ) = Rh − Ṙ(τh)(τh − τ) +O([τh − τ ]2), (5.19)

where we have defined R = Rh at the horizon.Using this and integrating Eq. (5.17) we get

U = De−κu + constant. (5.20)
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5.1. PARTICLE PRODUCTION BY BLACK HOLE

we define κ as the surface gravity of the black hole and it is given as

κ =
1

2

∂C

∂r
calculated at r = Rh

(5.21)

Integrating Eq.(5.18) we see that the relation between v and V is linear.

The mode functions are given by the solution of the equation (5.1) with the boundary

condition that φ = 0 at r = o.We mentioned previously (5.14) how the center of the radial

coordinate system is defined. Using these facts we can write the solution to the field mode

as

1√
4πω

(e−iωv − e−iωβ[α(u)−2R0]) (5.22)

where we defined v at r = 0 using (5.14) to be

v = β[V ] = β[α(u)− 2R0]. (5.23)

This solution shows how the outgoing modes get complicated due to the red-shifting. Using

(5.20) we can write this outgoing mode as

fω =
1√
4πω

e−iω(aexp[−κu]+b) . (5.24)

This mode can be expressed in terms of the standard outgoing modes(i.e the modes

which have not suffered the red-shifting) as

fω =
1

2π

∫ [
αωΩe

−iΩu + βωΩe
iΩu
]
dΩ. (5.25)

The particle content of this outgoing modes can be calculated in a similar way as in section

4.3 by calculating the Bogolubov coefficients and we get

〈NΩ〉 = |βωΩ|2 =
2M

exp[8πMΩ]− 1
, (5.26)

33
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where we have made use of the fact that the surface gravity, κ = 1/4M and M as the mass of

the black hole. Thus equation (5.26) gives a thermal spectrum of particles at the temperature

of

T =
κ

2π
(5.27)

This confirms the result that a particle detector would not detect any particle at I− as

spacetime is asymptotically flat but at I+ due to the complicated phase factor of the modes

due to the red-shift the particle detector will register particle for this state. From Eq. (5.26)

we can see that the wavelength of the emitted particles are nearly order of ‘M’. Thus we can-

not investigate the origin of these particles near the horizon as we cannot localize a quanta

within one wavelength. Thus the concept of particle is globally defined and particles are

observed at I+. One plausible way of explaining Hawking radiation is by the tunneling

mechanism. Due to quantum fluctuations virtual particles and anti particles are continu-

ously created. When the the separation between these virtual particles are of the order of

the size of the black hole, strong tidal forces prevents re-annihilation of these pairs. The

particle having positive energy escapes out to infinity and contributes to the flux of radia-

tion obtained at I+ and the other particle having negative energy falls into the black hole

singularity. As the black hole absorbs the negative energy particle the energy and the mass

of the black hole reduces.

5.2 Hawking radiation – some essential aspects

In this section we look into some features of Hawking radiation and also investigate a major

issue related to the way Hawking radiation is derived.

5.2.1 Black hole evaporation

In the previous section we derived Hawking radiation for a two dimensional collapsing star

and arrived at the thermal spectrum of outgoing particles (5.26). We also neglected any

back-scattering of the mode due the black hole. The later assumption is not valid in (3 + 1)

dimensions as the angular part of the Klein-Gordon equation written in the Schwarzschild

coordinates will act as an effective potential which effectively scatter off the incoming waves
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5.2. HAWKING RADIATION – SOME ESSENTIAL ASPECTS

partially. Taking this fact into account we can modify the spectrum of particle by introducing

an absorption factor as

Np =
Γp

eω/TH − 1
, (5.28)

Where TH is the Hawking temperature and Γp is the factor that indicates the emissivity of

the black hole and it is known as ‘greybody factor’ [7]. The presence of the ‘greybody factor’

also shows that a black hole does not behave as a perfect black body.

We can calculate the rate of loss of a black hole mass due to Hawking radiation from the

flux of the radiant energy. Using Stefan-Boltzmann law we get

L = ΓσAT 4
H =

Γ

15360πM2
(5.29)

Where L is the flux of energy emitted by the black hole, σ = π2/60 and ‘A’ is the area of the

black hole which can be calculated as

A = 4πr2
H = 16πM2. (5.30)

The rate of loss of mass is related to the energy flux as

dM

dt
= −L = − Γ

15360πM2
(5.31)

Integrating this equation with the initial condition M(0) = Mo we get

M(t) = M0

(
1− tl

t

) 1
3

, (5.32)

where tl is the lifetime of an isolated black hole and it is given as

tl = 5120πM3
0/Γ. (5.33)
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5.2.2 The trans-Planckian issue

It was stated earlier that the model with which we are working, for investigating the Hawk-

ing radiation, is asymptoticly flat. For a static observer to detect particle at I+ the state near

the horizon must be vacuum as described by a free-fall observer, i.e. an observe who is

falling across the event horizon freely. The generic state which we defined at the past null

infinity is Minkowski vacuum and thus one must show that the free-fall vacuum must result

from the initial vacuum which we choose. This was done by tracing the v modes backward

in time and through the collapsing star to the past null infinity. By doing this the free-fall

frequency matches with the Killing frequency at I− as we demanded. But tracing the mode

backward in time has a subtle problem involved with it [25] [26]. As these modes are prop-

agated backwards they get exponentially blue-shifted with respect to the Killing time. For a

outgoing quanta of radiation at a time t after the black hole is formed the amount of blue-

shifting of the propagated mode to I− is determined by a factor of eκt where κ is the surface

gravity of the black hole. This factor can be found from the relation between the frequency

of a mode at the past null infinity and the future null infinity. A mode of frequency Ω on I−

is related to a mode of frequency ω on I+ as

ω(u,Ω) = α′(u)Ω, (5.34)

where α′(u) is defined by (5.20). For a Hawking mode of frequency∼ κ the typical frequency

of the field mode at I+ is given as

Ω ∼ κ/α′(u) ∝ eκu. (5.35)

From this relation we see that for u → ∞ the blue shifting is enormously large. This issue

can be sidestepped in several ways and the problem can be resolved in various approaches

[27, 28, 29, 30].
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Chapter 6

Thermal Green function

For free scalar field we can associate the expectation value of commutator and the anti-

commutator with different Green functions. We can write

iG(x, x′) = 〈0φ(x), φ(x′)]|0〉

iG1(x, x′) = 〈0|φ(x), φ(x′)|0〉, (6.1)

where ‘G’ is known as the Schwinger function andG1 is called Hadamards elementary func-

tion. We can write these Green functions in terms of the positive and negative frequency part

as

iG(x, x′) = G+(x, x′)−G−(x, x′), (6.2)

G1(x, x′) = G+(x, x′) +G−(x, x′), (6.3)

where G± are know as the Wightman functions. All the four Green functions introduced till

now are defined by expectation value of the field operators in the vacuum state and thus

are defined at zero temperature. The thermal Green functions can be obtained by replacing

the vacuum expectation value used for defining the zero temperature Green function by the

ensemble average over the other pure states.

If we define a state as |ψi〉, then the probability for a system to be in this state is given as

p = e−βEi/Σ[e−βEi ] (6.4)

where β = 1/kbT and E is the energy associated with the states . Using this we can get the

ensemble average of any operator ‘B’ at temperature T as

〉β = Σpi〈ψi|B|ψi〉 (6.5)
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Now we can define the thermal Green functions, G±β , as

G+
β = 〈φ(x)φ(x′)〉β (6.6)

G−β = 〈φ(x′)φ(x)〉β (6.7)

Using Heisenberg’s equation the evolution of the field operator can be written as

φ(t, x) = eiH(t−t0)φ(t0, x)e−iH(t−to). (6.8)

Using (6.5) we can write

G+
β (t, x; t′, x′) = tr[e−βHφ(t, x)φ(t′, x′)]/tr[e−βH ]

= tr[e−βHφ(t, x)eβHe−βHφ(t′, x′)]/tr[e−βH ]

= tr[φ(t+ iβ, x)e−βHφ(t′, x′)]/tr[e−βH ]

= G−β (t+ iβ, x; t′, x′) (6.9)

where we have used Eq. (6.8) in the third step. From (6.2) we get

iGβ(x, x′) = iG(x, x′) (6.10)

and this result is justified as the commutator for a free scalar field is a constant number and

thus it does not matter in which state we are calculating the expectation value. But from

(6.3) we get

G1
β(t, x; t′, x′) = G1

β(t+ iβ, x; t′, x′) (6.11)

which shows that the thermal Green function is periodic in imaginary time.

In (1+1) dimensions the Green function calculated for Minkowski spacetime is

GM = 〈0M |φ(x)φ(x′)|0M〉 =
1

4π
Ln
(
−(x− x′)2 + (t− t′)2

)
(6.12)
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For an observer traveling along a hyperbolic trajectory given by ξ = a−1 we can write trans-

formation equation between the Minkowski coordinate (x, t) and the Rindler coordinate

(ξ, τ) as

x = a−1sinh aτ (6.13)

t = a−1cosh , aτ (6.14)

and using this coordinate transformation we can write (6.12) as

GM =
1

4π

(
−1

a2
(sinh aτ − sinh aτ ′)2 +

1

a2
(cosh aτ − coshaτ ′)2)

=
1

4π
ln

4

a2
sinh2 a(τ − τ ′/2)) program@epstopdf(6.15)

Although this is periodic in imaginary time with a period of 2π/a we cannot immedi-

ately interpret this Green function as a thermal Green function because it is invariant under

translation by 2π/a in each of its argument which is different from condition given in (6.9).

While writing the Minkowski Green function we must consider the fact that the spacetime

momentum must lie within the future light cone and also the vacuum cannot have any four

momentum.To satisfy these conditions the invariant interval,(t − t′)2 − (x − x′)2 , must be

timelike . Using these facts we can write the Green function for any arbitrary dimension in

the integral form as

G(x, t;x′, t′) =
1

2π

∫
dnkθ(k0)J(k2)e−ik((x−x′)−(t−t′)) (6.16)

here J(k2) is a function which vanishes when k is spacelike. Evaluating this along the hy-

perbolic trajectory as before, we get

G(τ, τ ′) =
1

2π

∫
dnkθ(k0)J(k2)e−i(

2
a

sinh a(τ−τ ′/2)). (6.17)

This Green function gives a contribution only when k0 > 0. Now for the convergence of

the above integral the imaginary part of sinha(τ − τ ′/2) must be negative. We can do an

analytical continuation by τ → τ − iθ. Using this we can write

Sinha(τ − τ ′/2) = sinh a(τ − τ ′/2− iθ/2) (6.18)
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using the identity sinh(x− iy) = sinh xcos y− icosh xsin y we can see that for the convergence

of the integral (6.17) 0 < θ < 2π. We also know the identity sinh(x − iπ) = sinh(−x). If we

choose θ as 2π/a then the above Green function becomes periodic in imaginary time also

satisfy the KMS condition

G(τ − iβ, τ ′) = G(τ ′, τ) (6.19)

A similar analysis can be done for eternal black holes by looking at the Green function de-

fined in Kruskal coordinate from Schwarszchild coordinate.
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Chapter 7

Black hole thermodynamics

The event horizon of a black hole acts as a causal boundary which does not allow any prop-

agation of information from the interior region of the black hole to the outside. This led

Bekenstein to propose that we can associate entropy with the horizon of the black hole [16]

and it was conjectured by him that this entropy is related to the surface area of the black hole

up to some proportionality constant. After this Jim Bardeen, Brandon Carter, and Stephen

Hawking proposed four laws governing various properties and behavior of black holes [31].

These laws are analogous to the four laws of classical thermodynamics and at that time peo-

ple could guess strongly that a black hole acts as a thermodynamic system. We saw previ-

ously that in the case of Penrose process and super-radiance we can write a relation between

the mass of the black hole, the area of the event horizon and its angular momentum which

looks very similar to the first law of thermodynamics, upon interpreting the area of the event

horizon as the entropy, the surface gravity as the temperature associated with the horizon.

The major break through came in this field after hawking showed that a black hole can emiH

thermal flux of particle and the temperature is precisely related to the surface gravity of the

black hole in the same was as it was demanded for the laws of black hole thermo dynamics

to hold and also the entropy is given as A/4, where A is the area of the black hole. It was

thus evident that a black hole acts as a thermodynamic system which is in thermal equilib-

rium with its surrounding. The importance of black hole thermodynamics lies in the fact

that we can get an idea about the microscopic degrees of freedom of the space time by in-

vestigating and analyzing macroscopic quantities such as entropy. It was also shown later

that the field equations governing the dynamics of gravity can be derived by extremising

the entropy defined for such a system.
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7.1. ZEROTH LAW

7.1 Zeroth law

The zeroth law of black hole thermodynamics states that the surface gravity of a stationary

black hole remains uniform and unchanged over the entire event horizon. There are two

ways in which the zeroth law can be proved, each having its own advantages and draw-

backs. Firstly we can assume that a spacetime exhibits a bifurcation surface and it can be

shown that the zeroth law holds. In the second approach we need to assume that the domi-

nant energy condition holds and using a specific field equation of gravity zeroth law can be

proved.

For a stationary axisymmetric black hole the Killing vector generating the horizon can be

written as

χa = ξt + ΩHξφ. (7.1)

As this Killing field becomes null on the horizon (χaχ
a = 0) we can write

χbχa;b = κχa, (7.2)

where κ is a constant, defined as the surface gravity of the black hole. By taking Lie deriva-

tive of this equation with respect to the Killing vector field ξa we get

κ, aξa = 0, (7.3)

which shows that the surface gravity is constant along the generator of the horizon. Now

we need to prove that the surface gravity is also constant along the event horizon (i.e. from

one generator to the other).

Using the Killing equation, ξa;b = −ξb;a, and the Frobenius’ theorem, which is given as

ξ[a

h

b

ξc] = 0, (7.4)

we can write (7.2) as

κ2 = −1

2
χa;bχ

a;b. (7.5)
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To show that κ is constant on a bifurcate killing horizon we take the derivative of (7.5) along

the tangent , ka, to the event horizon. This gives

κka
h

a

κ = −1

2
ka

h

a

h

b

χc

bh
χc. (7.6)

Using the known identity
h

a

h

b

ξc = −Rd
bcaξa (7.7)

we get

κka
h

a

κ =
1

2
kaRd

abcξd

ah
ξb. (7.8)

= 0 (7.9)

This shows that the surface gravity defined on a bifurcate killing horizon is constant. All

spacetime might not posses a bifurcation surface and so we can derive zeroth law starting

from Eq. (7.5) and using Einstein equation and the dominant energy condition, which states

that matter should flow along timelike or null world lines.

7.2 First law

We consider a stationary black hole being perturbed by some influx of matter across the

horizon and Tab represents the variation of the energy momentum tensor. We assume that

once the perturbation is removed the black hole settles down to a stationary state.

If we define a killing parameter, τ , for the generators of the horizon then from (7.2) we

see that, τ , is not an affine parameter along the null geodesic generators of the horizon.We

can define an affine parameter, λ along these generators and the relation between both these

parameter is

λ ∝ eκτ . (7.10)

For small perturbation of the black hole we can write

4M =

∫
dτ

∫
dσ24Tab(ξt)aχb, (7.11)

4J = −
∫
dτ

∫
dσ24Tab(ξφ)aχb, (7.12)
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where 4M and 4J are the change in mass and angular momentum of the black hole and

dσ2 is the differential area element of the horizon. Using Eq. (7.11) and (7.12) we can write

4M − Ω4J =

∫
Tab((ξt)

a + Ω(ξφ)a)χbdσ2dτ

=

∫
Tabχ

aχbdσ2dτ (7.13)

Using the Raychaudhuri’s equation [2] [23] [32] defined for the change of expansion along a

geodesic which is non-affinely parametrized and retaining terms upto first order we get

dθ

dτ
= κθ − 8πTabχ

aχb. (7.14)

Using this equation from (7.13) we get

4M − Ω4J = − 1

8π

∫
τdσ2

(
dθ

dτ
− κθ

)
=

κ

8π

∫
θdτdσ2

=
κ

8π

∫
1

δσ2

d(δσ2)

dτ
dτdσ2

=
κ

8π
δσ2. (7.15)

Thus we get an expression which is analogous to the first law of thermodynamics. There is

a generalized version of the first law which does not takes into account any specific theory

of gravity, and is valid for any classical theory of gravity arising from a diffeomorphism

invariant Lagrangian [33].

7.3 Second law

This law states that the entropy of the blackhole cannot decrease during any physical process

if the null energy condition holds. As we saw that the entropy of a black hole, in general

relativity, is related to the surface area of the event horizon, the second law states that the

surface area of the black hole cannot decrease during any physical process. We saw this

analogy in the case of Penrose process and super-radiance where the surface area of the black

hole increased. The second law can be formulated in a mathematical way by looking at the

evolution of the black hole surface area using the Raychaudhuri’s equation and assuming
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null energy condition. From Raychaudhuri’s equation we get

dθ

dλ
= −1

2
θ2 − σabσab −Rabk

akb. (7.16)

Using Einstein equation we can replace Rabk
akb by Tabk

akb and in the above equation we

have assumed the congruence of the null geodesics to be hypersurface orthogonal. Assum-

ing null energy condition, Tabkakb > 0, we see that all the quantities on the right hand side

of Eq. (7.16) is positive. Thus we arrive at the condition

dθ

dλ
<

1

2
θ2. (7.17)

Integrating this equation we get

1

θ
>

1

θ0

+
1

2
λ. (7.18)

Now suppose the expansion, θ0, is negative at some point of time then from Eq. (7.18) we

get that θ ∼ −∞ within some finite value of the affine parameter τ . Now the expansion is

given as

θ =
1

A

dA

dτ
, (7.19)

where A is the are of the black hole. For θ ∼ −∞we get A = 0, which implies that there will

be caustics formed in the future null direction of the geodesic. Now according to Cosmic

censorship theorem, which states that there can be no naked singularities in spacetime or

the generators of the event horizon can have no future end points, this is not allowed. Thus

the expansion of the event horizon must be always positive which implies that the area of

the event horizon always increases.
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Chapter 8

Conclusion and summary

In this report, we first investigated various classical aspects of a black hole. When trajecto-

ries of particles and photons are studied around a black hole we get some remarkable new

predictions which cannot be obtained from Newtonian gravity. The most remarkable fea-

ture of Einstein’s theory of general relativity is that it allows existence of spacetime having

a horizon as a null surface. Predictions such as bending of light around a massive grav-

itating object and precession of perihelion of Mercury were among the first things to get

experimentally verified and general relativity surpassed these tests with a very high degree

of accuracy. In various other theories of gravity, such as the Brans Dicke theory, we get the

same result with a very high degree of accuracy. In the case of rotating black hole we also

saw how we can extract energy from the black hole by means of Penrose process. Consid-

ering how the mass of the black hole changes along with its angular momentum, we got a

equation which is analogous to first law of thermodynamics provided all the quantities are

interpreted properly.

Next we have studied behavior of fields around a black hole and in this context we have

investigated super-radiance. In case of super radiance we saw that when scalar fields, hav-

ing frequency between a particular range, are incident on a rotating black hole it exhibits

stimulated emission of radiation where the energy of the outgoing flux is greater than the

ingoing flux. Vector fields also exhibit this phenomenon but fermionic fields does not ex-

hibit super-radiance. This directly relates to the fact that fermoinic fields violates the weak

energy condition and also the energy current is timelike or null in the ergoregion of a Kerr

black hole for a fermionic field. The phenomenon of super-radiance is very important in

the context of black holes because it motivates the fact that study of quantized fields might
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exhibit spontaneous emission.

In the next part of the project we moved into the study of quantum fields in various

background spacetime. At first we studied the inequivalent quantization of a scalar field

in Minkowski and Rindler coordinates which eventually lead to the so called Unruh effect.

We investigated this particular phenomenon using two different approaches. In the first

approach we extracted the particle number by performing a Bogolubov transformation be-

tween the field modes defined in Minkowski and Rindler spacetime. In the second approach

we extended the Rindler modes by analytic continuation and obtained the desired result.

Study of quantum fields in curved spacetime lead to the Hawking radiation. For deriving

the Hawking radiation we considered a collapsing star which will eventually settle down

to a stationary black hole. At infinity, the Killing frequency matches with the frequency de-

scribed for a Minkowski mode as the spacetime is assumed to be asymptotically flat. Near

the horizon, the state is very different from the Minkowski vacuum as it is a vacuum state,

known as free fall vacuum, defined by an observer who is freely falling across the event hori-

zon. The fact that the free fall frequency is different from the Killing frequency gives rise to

Hawking radiation. In case of Hawking radiation the particles are observed at infinity and

as definition of particle is a global concept we do not have much of an idea about the near

horizon characteristics of Hawking radiation from this investigation. Studying the expecta-

tion value of the stress energy tensor, which is a local object, we can probe the physics near

the black hole horizon. For calculating this expectation value choosing the correct state is

very important, which in case of a collapsing star (does not have a past horizon), is defined

best by the Unruh vacuum. For the case of eternal black holes the state is Hartle-Hawking

vacuum. These vacuum states are regular on the horizon and so we do not need to deal with

divergences when calculating the expectation value.

The fact that a black hole can emit a thermal distribution of particle and association of

entropy with the event horizon of a black hole strengthened the foundation of black hole

thermodynamics which was proposed before the discovery of the Hawking radiation. We

studied the laws of black hole thermodynamics and show how a black hole can be treated

as a thermodynamic system.
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APPENDIX A

.1 Kruskal-Szekeres coordinate

As we have seen earlier the Schwazschild metric behaves badly at the r = 2M surface and

also by looking at radial null trajectories we have shown that this singularity is just a coor-

dinate singularity. The fact that the r = 2M surface is not a physical singularity can be also

verified by extending the spacetime so that it is geodesically complete and is maximal. The

maximal analytic extension of the Schwarzschild spacetime was done by Kruskal and we

illustrate it in this section.

We define a new coordinate as

r∗ =

∫
rdr

r − 2M
= r + 2M ln

( r

2M
− 1
)
. (1)

As we can see from the above equation that r∗ changes logarithmically and thus slower than

r near the horizon, this is known by the name of tortoise coordinate. We can define a new

set of null coordinates as

u = (t− r∗) and v = (t+ r∗). (2)

Using these the Schwarzschild metric can be written as

ds2 = (1− 2M/r )du dv (3)

Using (1) and (2) we can write

r − 2M = 2M exp

[
v − u

4M

]
e−r/2M. (4)

We can rewrite (3) using (4) as

ds2 = 2M
exp

[
v−u
4M

]
e−r/2M

r
du dv (5)

Near the horizon, r ∼ 2M , this line element is regular but still this coordinate is defined

only for r > 0. To achieve extension of the coordinate beyond the r = 0 point we need to re-

parametrize the null geodesics using the coordinate transformation U = U(u)andV = V (v).
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For finding out the exact form of the transformation we can calculate the affine parameter

along the null geodesic by using the equation

E = gabk
a(ξt)

b (6)

Using this we can define the coordinate transformation as

U = −e−u/4M (7)

V = ev/4M (8)

which transforms the line element into the form

ds2 =
32M3

r
e−r/2M dU dV (9)

We can further define two new coordinate as

T = (U + V )/2 and X = (V − U)/2 (10)

to cast the line element defined in (9) as

ds2 =
32M3

r
e−r/2M(dT 2 − dX2) (11)
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