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ABSTRACT

Recent observations of the gravitational waves (GWs) from the merged binary black holes

have sparked an interest in whether such black holes have a primordial origin or not. An-

other interest has been to study primordial black holes as a cold dark matter candidate.

This project is aimed to study the generation of primordial black holes (PBHs) through the

inflation scenario and their contribution to the cold dark matter. In this report, we have

studied two scenarios: ultra-slow inflation and punctuated inflation. We have outlined the

formation of such black holes through the collapse of large density fluctuations that were

generated during inflation during radiation domination. We found that it is possible to

produce a copious amount of primordial black holes by enhancing the power spectrum on

small scales when comparing the power spectrum with large scales (CMB scales) which is

well constrained by the recent Planck data. It has been found that (based on the parameters

of the different potentials) PBH of mass 10−16M⊙ can account for 1.5 % of the dark matter at

present.
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Chapter 1

Introduction

Primordial Black Holes (PBHs) are light black holes that can be formed in the early universe.

Though several formation mechanisms exist in the literature such as cosmic string loops [1],

bubble formation [2], grand unified theories [3], tachyonic reheating [4], phase transitions

[5], and the large density perturbation’s collapse [6]. But in this report, we will mainly focus

on the collapse of large density perturbation generated by the inflation during radiation

domination. The study of the formation of PBHs originates back half a century ago. PBHs

were realized early as a strong candidate for dark matter because it is not an elementary

particle and is naturally long-lived.

1.1 A bit of history

Y. Zel’dovich, I. Novikov [7], and S. Hawking [8] discussed the PBHs for the first time. Dur-

ing his studies on PBHs, Hawking discovered the famous Black holes (BHs) evaporation.

It was the work of B. Carr [9] and G. Chapline [10] that related PBHs contribution to the

dark matter in our cosmos. Today only PBH of mass greater than 1015 g exists today due

to the Hawking evaporation and they contribute to the cold dark matter. PBH dark matter

behaves like particle dark matter on the cosmological scales. An interesting property of PBH

as cold dark matter candidate is that in order to explain this we do not need any new par-

ticle to explain them. We need to modify the early universe description at the small scales

such that it is consistent with the observed constraints on the large scales which account for
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1.2. CONSEQUENCES OF PBHS DISCOVERY

large density fluctuations. A considerable amount of work was done to constrain the PBHs

abundance by using their peculiar properties at the small scales which would eventually

lead to apparent effects such as lensing, electromagnetic emission from accretion processes,

gravitational waves, etc.

In the 1990s, the MACHO collaboration’s 2 years [11] Large Magellanic Cloud mi-

crolensing results ignited an interest in PBHs. The result suggests if we assume PBHs exist

in our Milky Way, a significant fraction of the mass in our Milky Way is composed of sub-

solar compact objects. EROS [12] and OGLE [13] results outdated the claim and it suggested

only a small fraction of mass could be in the form of sub-solar PBHs. This eventually con-

strained the PBH abundance in sub-solar mass range.

A second wave was ignited by the famous detection of gravitational waves (GWs) by the

LIGO/VIRGO collaboration [14]. It was realized that the observed signal could be compat-

ible with PBHs merger. It even did not violate the bound requiring PBHs to be at most as

abundant as the dark matter in our universe.

1.2 Consequences of PBHs discovery

It is still not clear whether PBHs formed or not, if they did, they could have numerous

consequences on our current understandings of the universe even if the PBHs consist of only

a small portion of dark matter. The following mentioned statements are a few motivating

points:

• PBHs provide a unique probe to the early universe [15] . This could provide informa-

tion on small-scale physics.

• This could be a test of primordial non-Gaussianities [16].

• Mereger events produced by PBH could be detected by LIGO/VIRGO collaboration

even though it accounts for a small fraction of cold dark matter [17].

• They could be the primordial seeds for the supermassive BHs formation [18] (observed

at high redshift).
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1.3. OUTLINE OF THE REPORT

• They can help in constraining the physics related to PBHs even if they never existed.

1.3 Outline of the report

The report is organized in the following way. In chapter 2, we discuss the need for inflation.

We begin with the preliminaries of cosmology and the motivation for inflation. In chapter

3, we focus on the inflation and background evolution of certain models and compare the

analytical and numerical results. In chapter 4, we introduce one of the famous features

of inflation, i.e., perturbations and power spectrum, and would discuss in detail, certain

models. In chapter 5, we describe the numerical approach to generating power spectrum

and compare the available analytical solutions for the power spectra of models mentioned

in the literature. In chapter 6, we discuss PBH formation and its contribution to cold dark

matter. In the end, we conclude the report with the observed constraints on the PBHs.

1.4 Notation and units

We use the metric with signature (+ - - -). Greek indices (µ, ν, ....) going from 0 to 3 denote

space-time coordinates whereas Latin indices (i,j,..) goes from 1 to 3 (spatial coordinates).

We work in the natural units c=h=kB=1 and defined the Planck mass MPl=1/
√
8πG

3



Chapter 2

Why do we need inflation?

The hot big bang model has emerged to be the best available model related to the origin of

our universe. A cataclysmic event, called the big bang, happened some 1010 years ago, when

the universe came into existence and expanded away from a singular point. At the earliest

phases, our universes consisted of radiation at incredibly high temperatures and densities.

As the expansion was in the act, density and temperature fell and electrons, protons, and

neutrons emerged from the radiation bath. Further, heavier elements were born from sim-

ple atoms such as hydrogen, and helium. Apparently, during this phase, this model predic-

tion has been consistent with observations. The development of the hot big bang model has

made use of our understanding of local physical laws and it has proved extremely success-

ful, to date, in providing insight into the structure of the universe.

2.1 Friedmann line element

Survey of 2DF (2-Dimensional Field) [19], SDSS (Sloan Digital Sky Survey) [20], and DES

(Dark Energy Survey) [21] suggest that universe at the scale of 100 Mpc or more is homo-

geneous and isotropic. The general metric which captures the homogeneity and isotropy of

the universe, can be written by multiplying the space part with a time dependent term a(t)

ds2 = dt2 − a2(t)

(
dr2

1−Kr2
+ r2dθ2 + r2sin2θdϕ2

)
(2.1)

4



2.2. FRIEDMANN EQUATIONS

Through conformal transformation dη = dt/a(t), metric (2.1) reduces to

ds2 = a2(η)

(
dη2 − dr2

1−Kr2
− r2dθ2 − r2sin2θdϕ2

)
(2.2)

where spatial part is written in term of spherical polar co-ordinates r, θ, and ϕ. The constant

K with K = 0, ±1 corresponds to flat, close and open universe. The geometry exhibits

by above line element know as a Friedmann-Robsertson-Walker spacetime. Upon using,

Einstein field equation

Gµ
ν = Rµ

ν −
δµν
2
R =

8πG

c4
T µ
ν (2.3)

where Gµ
ν = is Einstein Tensor. T µ

ν is stress- energy tensor, defined as

T µ
ν = (ρ+ p)uµuν − pδµν (2.4.a)

T µ
ν =


ρ(t)

−p(t)
−p(t)

−p(t)

 (2.4.b)

where ρ and p are the energy density and the pressure density of the perfect fluid respec-

tively.

2.2 Friedmann equations

On solving Einstein equation for FLRW universe, one obtains(
ȧ

a

)2

+
K

a2
=

8πG

3
ρ (2.5.a)

ä

a
= −4πG

3
(ρ+ 3p) (2.5.b)

ρ̇+ 3

(
ȧ

a

)
(ρ+ p) = 0 (2.5.c)

These are called Friedmann equations, which are the evolution equation of a (scale factor),

ρ (energy density), and p (pressure density). The Hubble parameter is defined as

H ≡ ȧ

a
(2.6)
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2.3. CONSTITUENTS OF UNIVERSE

2.3 Constituents of universe

In order to solve the Friedmann equations, we need to provide an additional information

regarding the equation of state, such that p is function of ρ. We assume a linear relation

between them

p = wρ (2.7)

where w is state parameter. Upon integrating equation (2.5.c), we get

ρ ∝ a−3(1+w) (2.8)

Using above result and eq. (2.5.a) for K = 0 i.e., spatial flat universe, we obtain

a(t) ∝

{
t

2
3(1+w) , w ̸= −1,

eHt, w = −1
(2.9)

For different epoch, w is shown in table 2.1

w ρ(a) a(t) a(τ) τi

Matter Domination 0 a−3 t2/3 τ 2 0
Radiation domination 1/3 a−4 t1/2 τ 0

Cosmological constant - Λ -1 a0 eHt -τ−1 ∞

Table 2.1: FLRW solutions for a universe with K = 0 at different epoch. Ref. TASI Lectures
on Inflation, Daniel Baumann [22]

We define ρc and the density parameter Ω (both are useful in defining the ingredients of the

universe as

ρc(t) =
3H2

8πG
, Ω =

ρ

ρc
(2.10)

where ρc(to) is 1.88h2 × 10−26kgm−3. Hence, the Friedmann equation (2.5.a) can be modified

as

Ω− 1 =
ρ

3H2/8πG
=

K

a2H2
(2.11)

where Ω: ratio of energy density ρ to critical energy density ρc. ‘

6



2.4. DRAWBACKS OF THE HOT BIG BANG MODEL

Figure 2.1: ρ/ρo,cr vs a/ao for different constituents of a flat universe.
Ref. [23]

2.4 Drawbacks of the hot big bang model

Despite all its successes [24] [25], there remain some unsatisfactory aspects of the Hot Big

Bang theory. The two unanswered questions which are in this model: why is the universe

so close to flat today? Why is it so large, making the observed universe an ’improbable

accident’. They are the motivation for need of the inflation.

2.4.1 The flatness Problem

The total energy density parameter of the universe is Ωtot, which is close to the critical

density. Very conservatively, it is known (from cosmic microwave background radiation

(CMBR)) to lie in the range Ωtot ≤ 10−2 [24]. Geometrically, it means that the universe is

quite close to the flat (Euclidean) geometry. Eq. (2.11) can be rewritten as with modulus as

|Ωtot(t)− 1| = |K|
a2(t)H2(t)

(2.12)

As the Ωtot is nearly equal to one, we can assume a situation where we have a con-

ventional universe ( matter + radiation). We are ignoring the contribution through the cos-

mological constant and curvature. Using the solutions ignoring the curvature term, we find

7



2.4. DRAWBACKS OF THE HOT BIG BANG MODEL

that [24] [25]

|Ωtot(t)− 1| ∝ 1

a2a−4
∝ a2 (radiation domination), (2.13.a)

|Ωtot(t)− 1| ∝ 1

a2a−3
∝ a (matter domination). (2.13.b)

In either case, |Ωtot-1| is an increasing function of time. Since today ,|Ωo-1| is almost zero at

present, we can determine its value at tPl (the time at which the temperature of the universe

is TPl ∼ 1019 Gev). As the universe’s temperature varies inversely with the scale factor (T ∝
1/a), one can write

|Ω− 1|T=TPl

|Ω− 1|T=To

≈
(
a2Pl
a2o

)
≈
(
T 2
Pl

T 2
o

)
≈ O(10−64) (2.14)

where "o" stands for the present epoch, and T0∼10−13 GeV is the present day temperature of

the CMBR. To get the (Ω0-1)∼ 1 at present, (Ω-1) at early times has to be fine-tuned amazingly

close to zero, but without being exactly zero. This is the famously known as flatness problem

and also termed as the ’fine tuning problem’.

Figure 2.2: Flatness problem in the standard cosmology. Ref. [25]

2.4.2 The horizon problem

In FLRW universe(2.1), the horizon, i.e., the size of a causally connected region, is defined

as the physical radial distance travelled by a light ray from the big bang singularity at t=0

upto a given time t. It is defined as [26]

h(t) = a(t)

∫ t

0

1

a(t′)
dt′ (2.15)

8



2.4. DRAWBACKS OF THE HOT BIG BANG MODEL

One can compare the size of the forward and the backward light cone at the time of decou-

pling by assuming that the universe was matter-dominated from tdec (time of decoupling)

until today to. One can find the physical size of the region on the last scattering surface (this

is when the photons decoupled from the electrons and baryons at a red shift(z) ∼ 1100 and

temperature∼ 0.3 eV)

lB(t0, tdec) = adec

∫ t0

tdec

1

a(t′)
dt′ ≃ 3(t2dect0)

1/3 (2.16)

where adec is scale factor at decoupling. Further assuming that from the big bang to the

epoch of decoupling, universe was radiation dominated, one finds

lF (0, tdec) = adec

∫ tdec

0

1

a(t′)
dt′ = 2tdec (2.17)

The ratio, R is defined as ratio of the length of backward to the forward light cones at de-

coupling. It is equal to

R =

(
lB
lF

)
=

(
3

2

)(
t0
tdec

)1/3

≃ 70 (2.18)

where to ≃1010 years and tdec ≃105 years. Though the forward light cone is almost 70 times

smaller than the backward light cone, we find the cosmic microwave background radiation

(CMBR) turns out to be extraordinarily isotropic. This is famously known as the horizon

problem.

One can state the the horizon problem in an alternate way. Suppose λ is associated

with the physical scale of perturbations for different modes and it grows as a scale factor,

i.e., λ ∝ a. For the power-law expansion (a ∝ tp), the Hubble radius1, defined as H−1,

goes as ap. For the radiation and matter epoch, p is smaller than 1. This implies that λ grows

faster than the corresponding Hubble radius as we move forward in time (Fig. 2.3) [26]. This

means that the primordial perturbations on the scales larger than the Hubble radius are not

correlated at early times. Consequently, this fails to explain the anisotropies observed in the

CMBR, and the temperature of the radiation in all directions has been the same (2.73 K).

1Hubble radius is a scale at which a mode will start feeling the expansion of the universe. It also defines a
causal region.

9



2.4. DRAWBACKS OF THE HOT BIG BANG MODEL

Figure 2.3: The Hubble radius (green) and a perturbation scale λ (red) vs a scale factor. Ref.
[25]

10



Chapter 3

Inflation and background evolution

Inflation was proposed to resolve the problems with the hot big bang model. Inflation is

defined as a period of evolution of the universe during which the universe expanded rapidly

and the double derivative of a becomes larger than 0.

INFLATION ⇐⇒ ä > 0 ⇐⇒ (ρ+ 3p) < 0 (3.1)

Perturbation of the length scales (1≲ λ0 ≲ 104 Mpc) re-enter the Hubble radius during ei-

ther radiation or the matter domination. To explain the causal connection between different

modes, these modes should be well inside the Hubble radius at the very early stage of the

universe, i.e., λp < H−1. This will be possible, if we have an epoch in the early universe

during which these length scales increases faster than the Hubble radius as we go forward

in time, i.e.,
d

dt

(
λp
H−1

)
> 0 (3.2)

which eventually leads to

ä > 0 (3.3)

In nutshell, the universe has to go through a phase of accelerated (inflationary) expan-

sion during the early universe which would account for the generation of the primordial

fluctuations. In Fig. 2.3, if we include the condition (3.3) then H−1 behaves as an where n is

smaller than 1 during the inflationary phase. In Fig. 3.1, we illustrated the evolution of the

Hubble radius and perturbation scales during inflation and radiation/matter epochs. It is

11



3.1. RESOLVING THE HORIZON PROBLEM

Figure 3.1: The Hubble radius (green) and a perturbation scale λ (red) vs a scale factor in the
standard inflationary model. Ref. [25]

quite evident that modes leaving the Hubble radius during the late phase of inflation, would

not be well inside the Hubble radius during the early epoch of the universe unless we have

inflation.

3.1 Resolving the horizon problem

In order to resolve the horizon problem, we assume that the universe underwent exponential

inflation from time ti to tf . LetH1 be the constant during the inflation andA be the extent by

which a scale factor increased during the inflationary phase. ForA ≫ 1, horizon’s expansion

has dominating contribution at the decoupling and then, the length of the forward light cone

be

lI(tdec, 0) = adec

∫ tdec

0

1

a(t′)
dt′ ≃

(adec
H

)(tdec
tf

)1/2

A, (3.4)

1As we have from the condition of the inflation that ρ+3p<0. We assume an extreme condition when ρ = -p
and this would eventually lead to inflation and is known as de-Sitter inflation.

12



3.2. RESOLVING THE FLATNESS PROBLEM

where ti ≃ H−1. Therefore, the ratio of the forward to the backward light-cone is (using

H ≃ 1013GeV)

RI =

(
lB
lF

)
≃
(

A

1026

)
(3.5)

For RI ≃ 1, A ≃ 1026. Therefore, the scale factor increases by 1026. Change in scale factor is

expressed using N (number of e-folds) and is defined as

N =

∫ t

ti

Hdt = ln

(
a(t)

ai

)
(3.6)

Therefore,we need about 60 e-folds of inflation (Since N = ln(af/ai) ≃ 60) to overcome the

horizon problem.

3.2 Resolving the flatness problem

Inflation resolves the flatness problem elegantly. As the Hubble parameter is constant dur-

ing inflation, therefore,

|Ω− 1| = |K|
a2H2

∝ 1

a2
(3.7)

We assume that the start of radiation phase is the end of the inflation, where |Ω−1| ≃ 10−60.

Using eq. (3.6), one can write

|Ω− 1|t=tf

|Ω− 1|t=ti

=

(
ai
af

)2

= e−2N (3.8)

which means |Ω−1|t decreases as e−2N till the end of the inflation (Fig. 3.2). It requires about

60 e-folds in order to resolve the horizon problem.

3.3 Inflation and the inflaton

In the above two-section, we saw how inflation resolves the horizon and flatness problems.

However, we still need to answer a question: what is responsible for the inflation at the early

times? It cannot be the cosmological constant (Λ), because a universe dominated by vacuum

energy stays dominated by it for the infinite future. Since in de-Sitter background radiation

and matter-energy density decreases exponentially, we will never have radiation and matter

13



3.3. INFLATION AND THE INFLATON

Figure 3.2: Illustration of the flatness problem’s solution where |Ω − 1| decreases as expo-
nentially till the end of the inflation and then increases as for the radiation/ matter epoch to
match the current value, i.e. |Ω− 1|t=to ≃ 1 Ref. [25]

domination [27]. In high energy physics, scalar fields are often used, that can help us in

driving inflation. Consider a canonical scalar field ϕ (known as inflaton), described by V(ϕ).

Action (3.9.a) and the stress-energy tensor (3.9.b) of such field are

S[ϕ] =

∫
d4x

√
−g
[(

1

2

)
(∂µϕ∂

µϕ)− V (ϕ)

]
(3.9.a)

T µ
ν = ∂µϕ∂νϕ− δµν

[(
1

2

)
(∂λϕ∂

λϕ
)
− V (ϕ)

]
(3.9.b)

Using the above action (3.9.a), one arrives at the Klein-Gordon equation

ϕ̈+ 3Hϕ̇+ Vϕ = 0 (3.10)

Being homogeneous and isotropic, the Friedmann background (2.1) implies that ϕ will be

time dependent and the stress energy tensor would be diagonal and can be written in term

of ϕ as follows

T 0
0 = ρ =

[(
ϕ̇2

2

)
+ V (ϕ)

]
, (3.11.a)

T i
j = −ρδij = −

[(
ϕ̇2

2

)
− V (ϕ)

]
δij. (3.11.b)

One finds the condition of inflation using the above expression for the ρ and p, i.e. (ρ +

3p) < 0

ϕ̇2 < V (ϕ) (3.12)
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3.4. SLOW ROLL INFLATION

which means inflation can be only achieved when the dominance of the potential energy

prevails over the kinetic term.Friedmann equations eq. (2.5.a) and (2.5.b) reduce to

H2 =

(
1

3M2
Pl

)[(
ϕ̇2

2

)
+ V (ϕ)

]
(3.13.a)

Ḣ = − ϕ̇2

2M2
Pl

(3.13.b)

Integrating above both equations in terms of cosmic time t we get [26]

ϕ(t) =
√
2MPI

∫
dt

√
(−Ḣ) (3.14.a)

V (t) =M2
PI(3H

2 + Ḣ) (3.14.b)

3.4 Slow roll inflation

The condition (3.3) that prevalence of the potential energy over the the kinetic energy of the

inflaton is a must for inflation to happen. However, if the inflaton gradually rolls down the

potential,

ϕ̇2 ≪ V (ϕ) (3.15)

then the inflation is guaranteed. In order to attain the required 60 or more e-folds of inflation,

we ensure

ϕ̈≪ (3Hϕ̇) (3.16)

The above two conditions are popularly termed slow-roll approximation and they are used

to construct analytical solutions for both background and the perturbations.

3.5 Slow roll parameters

Given a potential for an inflaton, slow roll approximation requires the following two dimen-

sionless parameters to be less than unity in order to inflation to occur

ϵV =

(
M2

Pl

2

)(
Vϕ
V

)2

(3.17.a)

ηV = (M2
Pl)

(
Vϕϕ
V

)
(3.17.b)
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3.6. BACKGROUND EVOLUTION

where Vϕϕ is d2V/dϕ2. These are termed as the potential slow roll (PSR) parameters. One of

the flaws is that these parameters do not take into consideration the field’s dynamics. It does

not impose any restriction on the kinetic energy of the field. To do this, we use (3Hϕ̇ = −Vϕ)

[26]. However, PSR parameters are useful. They assist in determining the domains and

parameters that can lead to inflation for a given potential. The following definition of the

slow roll parameter and higher order slow roll parameters are now more commonly used,

ϵ1 = − Ḣ

H2
and ϵi+1 =

dlnϵi
dN

(3.18)

By substituting (3.18) in the (3.13.b), we get

ä

a
= H(1− ϵ1) (3.19)

This automatically leads to the condition on ϵ1, i.e., it must be less than unity till the inflation

is in the action. Once it becomes equal to unity, inflation ceases.

3.6 Background evolution

We will slightly modify our Friedmann equations (eq. 3.13.a, 3.13.b, 3.10) by changing the

independent vairable from t and N (dN = Hdt) (3.6) and we get

H2 =
V (ϕ)

(M2
Pl)(3− ϵ1)

(3.20.a)

dH

dN
= −2ϵ1H (3.20.b)

d2ϕ

dN2
+ (3− ϵ1)

(
dϕ

dN

)
+
Vϕ
H2

= 0 (3.20.c)

where eq. (3.22.b) is the Klein-Gordon equation and ϵ1 (slow roll parameter) modifies to

ϵ1 =
1

2M2
Pl

(
dϕ

dN

)2

(3.21)

By utilizing the slow roll inflation (3.16), we can find the ϕ analytically, i.e.,

H2 ≃ V (ϕ)

3M2
Pl

(3.22.a)

dϕ

dN
≃ − Vϕ

3H2
(3.22.b)
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3.7. MODEL: QUADRATIC POTENTIAL

3.7 Model: Quadratic potential

We will explore the quadratic model in this section, as well as plot and compare the evolu-

tion of the inflaton, H , ϵ1 with the analytical solution.

This model has the following form,

V (ϕ) =
1

2
m2ϕ2 (3.23)

Upon using (3.10), we get

dϕ̇

dϕ
= −

ϕ̇
√
( 3
2M2

PI
)(ϕ̈+m2ϕ2) +m2ϕ

ϕ̇
(3.24)

For the case when kinetic energy of the inflaton is dominating over potential energy, we find

that (for the case ϕ > 0, ϕ̇ < 0)
dϕ̇

dϕ
≃

√
3

2M2
PI

ϕ̇ (3.25)

The solution of this equation is

ϕ̇ = Ce

√
3

2M2
PI

ϕ

(3.26)

where C < 0 is constant. This equation shows that velocity of inflaton decreases exponen-

tially more quickly than decrease in inflaton value. Therefore, the case of dominating kinetic

energy gets damped within a short interval and the trajectory in the phase plot meets attrac-

tor. This substantially enlarges the set of the initial condition which leads to an inflation-

ary stage [28]. Once the trajectory joins the attractor (Fig. 3.3), we use slow roll condition

(3Hϕ̇ ≃ −Vϕ) get that

ϕ̇atr ≈ −
√

2

3
mMPl (3.27)

We will utilize the eq. (3.22.a) and (3.22.b) to evaluate the analytical form for the inflaton (ϕ),

Hubble parameter(H) , and the slow roll parameter(ϵ1) and we get

ϕ2 ≃ ϕ2
i − 4M2

PlN (3.28.a)

H2 ≃ m2

6

[(
ϕi

MPl

)2

− 4N

]
(3.28.b)

ϵ1 ≃
2

ϕ2
i − 4M2

PlN
(3.28.c)
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3.7. MODEL: QUADRATIC POTENTIAL

Figure 3.3: Phase-space plot (ϕ̇-ϕ) of the quadratic potential (3.23). For this, we have used
m=1 and G=1. The attractor solution is mentioned in eq. (3.27). (Plotted in python by using
a self-written code for the background evolution).

In order to compare the analytical and numerical solution for the above three parameters,

we used the value of ϕi = 16.5 MPl, m = 7.18× 10−6MPl, ϵ1i = 7.346 × 10−3, and Ne = 68.6

(e-fold value at the end of the inflation) from the ref. [29]. For coding purpose, MPl = 1 has

been chosen.

As we can in figures (3.4b), (3.4c), and (3.4d) the numerical solution and analytical solution

match well enough, this acts as a benchmark for the code used for the numerical evaluation.
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3.7. MODEL: QUADRATIC POTENTIAL

(a)
V (ϕ) vs ϕ (b) ϕ vs N

(c)
H vs N (d) ϵ1 vs N

Figure 3.4: These are plots of the V (ϕ), ϕ, H, and ϵ1. As we can see the numerical and
analytical matches well except at the end where the slow roll approximation fails. (Plotted
in python by using a self-written code for the background evolution).
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Chapter 4

Generation of perturbation

Our universe is homogeneous, but only when averaged over large scales. Looking back in

time till the last scattering surface, we find that the order of temperature inhomogeneity is

of the order of 10−5. Our current view of the universe’s structure is that it originated with

a small ’seed’ perturbations that evolved through time to form all of the structures we see

today. Our proposal for the perturbation’s origin is quantum fluctuations during inflation

in the early universe. It has generated both density perturbation and gravitational waves.

They extend from very short scales to cosmological scales. We will depart from the homo-

geneity and isotropy that allow us to characterise different models in this chapter. We will

deal with tiny perturbations, assuming that the perturbation’s distribution is statistically

homogeneous and isotropic [30].

4.1 Classification of the perturbation and gauge invariance

In a Friedmann background, the perturbation is decomposed according to how they behave

on the hyperspaces of the constant time. This classify perturbations into three types: scalars,

vectors, and tensors. Inhomogeneities and anisotropies in the universe are caused by scalar

perturbations, which are invariant under spatial rotation. Vector perturbation transforms

like a vector under rotation and they are generated by a rotational field or vorticity field.

Tensor perturbation which behaves as a tensor under rotation is the reason for the gravita-

tional waves generation without any source.
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4.2. SCALAR PERTURBATIONS

In a (D+1) dimensional spacetime, the perturbed metric tensor has two scalar (irre-

spective of the dimension we are in, (D-1) vector, and (D+1)(D-2)/2 tensor degree of free-

dom (DOF) (for detailed calculation refer ref. [26]). Overall we have D(D+1)/2 degrees of

freedom for describing our perturbed metric in the FLRW background. So, for the case of

the (3+1) dimensional spacetime, we have two scalar, two vectors, and two tensor degrees

of freedom. Because the magnitude of these perturbations is supposed to be very small, we

can describe them using linear perturbation theory, and it can be proved that in the linear

order, all of these perturbations evolve separately. [31] [30] [26].

There would be one more point we would add that we have a comoving observer in

the case of the FLRW background and it is special because with its respect the universe looks

homogeneous and isotropic. But same is not true in the case of perturbations. Hence, there

is no preferred reference frame for describing them. There is a variety of coordinate choices

that exist. But we have to keep one point at the back of the mind that the metric and coordi-

nates reduce to the background FLRW line element when perturbation goes zero. Gauge is

such a choice of the coordinate that preserves the background FLRW. Going from one Gauge

to another through co-ordinate transformation is known as Gauge transformation. There are

two ways to deal with it: declare certain gauge-invariant quantities or pick a specific gauge

and operate with it throughout. We will be adopting the latter approach for the following

discussion [26]. The former approach can be found in the work of the ref. [32] [33].

4.2 Scalar perturbations

After accounting for the scalar perturbation in the background universe, our FLRW metric

becomes [32]

ds2 = (1 + 2A) dt2 − 2a(t) (∂iB) dxidt− a2(t) [ (1− 2ψ) δij + 2(∂i∂jE)] dx
idxj (4.1)

As we can see we have four scalar, i.e., A, B, E, and ψ. But two can be eliminated through

following infinitesimal co-ordinate transformations

t→ t+ δt and xi → xi + ∂i(δx) (4.2)

where δx and δt are function of space and time. Clearly, the metric (4.1) will not be invariant

under above gauge transformation. So, in order to have the metric invariant, A, B,ψ, and E
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4.2. SCALAR PERTURBATIONS

transform as

A→ (A − δ̇t), B → [B +
δt

a
− a ˙δx], (4.3)

ψ → (ψ − Hδt), E → E − δx. (4.4)

We can choose the specific form of the δt and δx and restrict ourselves to a particular gauge.

We can define two gauge invariant quantities - known as Bardeen potential in literature [34]

[33]- which characterizes the two dof of the scalar perturbation as mentioned above and

they are given as

Φ = A+
d

dt

[
a
(
B − aĖ

)]
and Ψ = ψ −

[
aH(B − aĖ)

]
. (4.5)

Two popular gauge that are used: the Newtonian gauge (B=0, E=0) and the spatial flat

gauge (ψ=0, E=0). We will work in the Newtonian gauge. In this gauge, A = Φ and ψ = Ψ

and hence, perturbed metric (4.1) looks like

ds2 = (1 + 2Φ)dt2 − a2(t)(1− 2Ψ)δijdx
idxj (4.6)

The Einstein equation can be separated into background and perturbed part at linear order,

i.e.,

Gµ
ν = Ḡµ

ν + δGµ
ν and T µ

ν = T̄ µ
ν + δT µ

ν (4.7)

where Ḡµ
ν and δGµ

ν are background Einstein tensor and the perturbed Einstein tensor re-

spectively. Similarly, T̄ µ
ν and δT µ

ν are background stress-energy tensor and the perturbed

stress-energy tensor respectively. As we know background universe follow Ḡµ
ν = T̄ µ

ν , there-

fore,

δGν
µ = 8πGδ T ν

µ (4.8)

The perturbed Einstein tensor’s components for the line element (4.6) are

δG0
0 = −6H (Ψ̇ +HΦ) + (

2

a2
)∇2Ψ, (4.9.a)

δG0
i = 2∇i(Ψ̇ +HΦ), (4.9.b)

δGi
j = −2[Ψ̈ +H(3Ψ̇ + Φ̇) + (2Ḣ + 3H2)Φ + (

1

a2
)∇2(Φ−Ψ)]δij + (

1

a2
)∇i∇j(Φ−Ψ). (4.9.c)

Scalar fields and ideal fluids with no vorticity are assumed to be the sources of the perturba-

tions. At the linear order, these scalar fields and fluids do not posses any anisotropic stress.

Under this condition, the perturbed stress-energy tensor looks like

δT 0
0 = δρ, δT 0

i = ∇i(δσ), δT i
j = −δpδij, (4.10)
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4.2. SCALAR PERTURBATIONS

where δρ, δσ, and δp are the perturbation in the energy density, energy flux, and the pressure

respectively. In the absence of anisotropic stresses, Φ = Ψ, as proved by eq. (4.9.c). As a

result, we have

−3H
(
Φ̇ +HΦ

)
+

(
1

a2

)
∇2Φ = (4πG) δρ, (4.11.a)

∇i

(
Φ̇ +HΦ

)
= (4πG)∇i (δσ) (4.11.b)

Φ̈ + 4HΦ̇ +
(
2Ḣ + 3H2

)
Φ = (4πG) δp (4.11.c)

(4.11.d)

and using the equations (4.11.c) and (4.11.a) we obtain the following differential equation of

Φ governing

Φ′′ + 3H
(
1 + c2A

)
Φ′ − c2A∇2Φ +

[
2H′ + (1 + 3c2A)H2

]
Φ =

(
4πGa2

)
δpNA (4.12)

where Φ′ = ∂Φ/∂η, H = a′/a (conformal Hubble parameter), c2A = p′/ρ′ (adiabatic speed of the

perturbations), and δpNA = (δp− c2Aδρ) (non-adiabatic pressure).

To study the quantitative implications of the above equation of motion, we introduce

a gauge invariant quantity in term of Φ and cosmological parameters, known as curvature

perturbation (R) [26]

R = Φ+

(
2ρ

3H

)(
Φ′ +HΦ

ρ+ p

)
, (4.13)

Upon using eq. (4.12) and background equations, one finds that R in Fourier space can be

written as

R′
k =

(
H

H2 −H′

)[
(4πGa2)δpNA

k − c2Ak
2Φk

]
(4.14)

It can be easily seen in the limit k/aH = k/H ≪ 1 (super Hubble scale), the term c2Ak
2Φk

can be neglected. Furthermore, non-adiabatic pressure is assumed to be zero in the case of

a perfect fluid. (i.e. δpNA = 0). Therefore, R′
k ≃ 0. In the case of a scalar field, however,

the equation is (4.22). In other words, on super Hubble scales, when the perturbation is

adiabatic curvature perturbation Rk freezes when it is outside the Hubble radius.

23



4.3. VECTOR PERTURBATIONS

4.3 Vector perturbations

The FLRW metric is written as (after including the vector perturbation [32]),

ds2 = dt2 − 2a(t)(Si)dx
idt− a2(t)[δij + (∇iFj +∇jFi)]dx

idxj (4.15)

By choosing a particular gauge where Si = 0 and Fi ∝ Fi (a divergence free vector), It is

possible to derive the components of a perturbed Einstein tensor and they are as

δG0
0 = 0 (4.16.a)

δG0
i =

(
1

2

)
(∇2Ḟi) (4.16.b)

δGi
j = −

(
1

2

)
[3H(∇iḞj +∇jḞi) + (∇iF̈j +∇jF̈i)] (4.16.c)

(4.16.d)

In absence of the vector sources, δG0
i and δGi

j become zero. Hence, equating them equal to

zero would lead to Fi = 0. It means in absence of vector sources, the vector perturbations

vanish identically.

4.4 Tensor perturbations

When the tensor perturbations are taken in account, the FLRW metric turns out to be

ds2 = dt2 − a2(t) [δij + hij] dx
idxj (4.17)

where hij is a symmetric, transverse and traceless tensor. As we have seen, there are two

independent degrees of freedom, which correspond to two different types of gravitational

wave polarization. We can write the perturbed Einstein tensor as follows:

δG0
0 = 0 (4.18.a)

δG0
i = 0 (4.18.b)

δGi
j = −

(
1

2

)[
ḧij + 3Hḣij −

(
1

a2

)
∇2hij

]
(4.18.c)

(4.18.d)
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4.5. GENERATION OF PERTURBATIONS DURING INFLATION

We obtain the differential equation related to the amplitude of the gravitational wave [32] in

conformal time coordinate to be in the absence of aniostropic stress.

h′′ij + 2Hh′ij −∇2hij = 0 (4.19)

4.5 Generation of perturbations during inflation

One of the most striking characteristics of inflation is that it provides the mechanism for

perturbation production [26]. It is the quantum fluctuation related to inflation that grows

and leads to inhomogeneities and anisotropies. The level of inhomogeneity in the CMBR

and the structure formation are determined by the curvature perturbation term, which is

proportional to the Bardeen potential. Using the perturbed Einstein equation, we will try to

find the equation of motion for the curvature perturbation term. Then, we will quantize the

curvature and tensor perturbations. This will help in imposing vacuum initial conditions on

the various Fourier modes of the perturbations when they are well inside the Hubble radius

at the early epoch.

4.5.1 The curvature perturbation’s (R) equation of motion

The perturbation in the assumed scalar field is δϕ. The perturbed stress energy tensor

δT 0
0 = (ϕ̇ ˙δϕ− ϕ̇2Φ + Vϕδϕ) = δρ, (4.20.a)

δT 0
i = ∇i(ϕ̇δϕ) = ∇i(δσ), (4.20.b)

δT i
j = −(ϕ̇ ˙δϕ− ϕ̇2Φ− Vϕδϕ)δ

i
j = −δpδij. (4.20.c)

Because there is no anisotropic stress in the scalar field, therefore, Φ = Ψ. On substituting the

values of δρ, δσ, and δp from equations (4.20.a), (4.20.b), and (4.20.c) into equations (4.9.a),

(4.9.b), and (4.9.c) , we get

Φ′′ + 3H(1 + c2A)Φ
′ − c2A∇2Φ + [2H′ + (1 + 3c2A)H2]Φ = (1− c2A)∇2Φ (4.21)

Upon comparing with eq. (4.12), we get

δpNA =

(
1− c2A
4πGa2

)
∇2Φ (4.22)
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4.5. GENERATION OF PERTURBATIONS DURING INFLATION

In this case, Rk simplifies to

R′
k = −

(
H

H2 −H′

)
(k2Φk) (4.23)

Again differentiating the above equation and using the definition of curvature perturbation

(4.14), Bardeen potential (4.12), and background equations, we obtain the differential equa-

tion of Rk which governs the evolution of the curvature perturbation to be

R′′
k + 2

(
z′

z

)
R′

k + k2Rk = 0 (4.24)

where z is defined as (aϕ̇/H) = (aϕ′/H) and is completely dependent on the background

quantities. The Mukhanov-Sasaki variable v [26] is defined as v = Rz. Substituting the

definition of v in eq. (4.24), we obtain a differential in term of the Fourier modes of v as

ν ′′k +

[
k2 −

(
z′′

z

)]
νk = 0 (4.25)

4.5.2 Quantization of the perturbations

Because the Friedmann background is homogeneous and isotropic, we can write R in terms

of the Fourier modes as

R̂(η, x⃗) =

∫
d3k⃗

(2π)3/2

[
âkRk(η)e

ik⃗.x⃗ + â†kR
∗
k(η)e

−ik⃗.x⃗
]

(4.26)

where âk and â†k are the creation and annihilation operator, which follow the commutation

relation. At the linear order perturbation theory, it is the two-point correlation function that

specifies the power spectrum and statistical behaviour of the perturbation. Perturbations

are Gaussian in nature at the linear order. The power spectrum is described this way:∫ ∞

0

dlnkPs(k) =

∫
d3(x⃗− x⃗′)

(2π)3
⟨0|R̂(η, x⃗)R̂(η, x⃗′)|0⟩e−i[⃗k.(x⃗−x⃗′)] (4.27)

where âk|0⟩ = 0 for all k values. Using the above definition, we get scalar power spectrum as

Ps(k) =

(
k3

2π2

)
|Rk|2 =

(
k3

2π2

)(vk
z

)2
(4.28)

26



4.5. GENERATION OF PERTURBATIONS DURING INFLATION

This approaches to a constant value when it reaches the super Hubble scale. Similarly for

tensor perturbation, eq. (4.17) we define u = ah and in the Fourier space it behaves as

u′′k +

[
k2 −

(
a′′

a

)]
uk = 0 (4.29)

Eq. (4.25) and (4.29) are known as Mukhanov- Sasaki equation. Similar to scalar power

spectra, tensor power spectra is defined as

PT (k) = 2

(
k3

2π2

)
|hk|2 =

(
k3

2π2

)(uk
a

)2
(4.30)

We define scalar spectral index (ns), tensor spectral index (nT), and tensor-to-scalar ratio (r)

as quantities that are related to observations. They are as follows:

ns = 1 +

(
d lnPs

d lnk

)
, nT =

(
d lnPT

d lnk

)
, r =

PT (k)

Ps(k)
(4.31)

When a mode crosses the Hubble radius (k = aH), the parameters listed above are exam-

ined. On the CMB scale, we will also discuss the limits on both parameters.

4.5.3 The Bunch Davies initial condition

We place some initial conditions on different modes of the perturbations when the modes

are well inside the Hubble radius (at very early times).. As seen in eq. (4.29) and eq. (4.25), in

sub-Hubble domain k/(aH) ≫ 1, uk and vk behave as e±(ikη). Because the scalar and tensor

perturbations are in vacuum in the initial state, just a positive frequency must be chosen and

symptomatic form of the initial conditions are.

lim
(k/aH)→∞

(νk(η), uk(η)) →
(

1√
2k

)
e−ikη (4.32)

4.5.4 Slow roll inflation power spectrum and observational constraints
on CMBR

In the super-Hubble limit, the power spectrum of the scalar and tensor perturbation behaves

as [35] [26] [25]

Ps(k) ≃
(
H2

2πϕ̇

)2

(4.33)
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4.5. GENERATION OF PERTURBATIONS DURING INFLATION

PT (k) ≃
(

8

M2
P

)(
H

2π

)2

(4.34)

The CMBR temperature anisotrpies has been measured with high accuracy by Planck

satellite [36]. The power spectrum can be parameterised with two free parameters as

Ps = As

(
k

k∗

)ns − 1

(4.35)

According to current observations, As ≃ 2.092 × 10−9 [36] , which is known as COBE nor-

malisation [26], which is the amplitude of the mode (termed as pivot scale k∗ = 0.05Mpc−1),

leaves the Hubble radius nearly 50 e-folds before the end of the inflation. According to the

analysis of CMB data ns ≃ 0.9626 ± 0.0057 and r < 0.43 [36].
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Chapter 5

Numerical approach for evaluation of the
scalar power spectrum

In the models where it is not possible to find the analytical behaviour of the background and

the perturbations, we employ numerical methods for the evaluation. As we have seen the

scalar and tensor perturbations depend on the background variables, we will first evaluate

it by using eq. (3.20.a) and (3.22.b). The field is assumed to start on the inflationary attractor

when solving these equations. The inflaton’s initial state is set to require 60 or so e-folds

before the inflation is terminated.

For further discussion, we will restrict ourselves to scalar perturbations. To solve for

the curvature perturbation, we can modify eq. (4.24), i.e., evolution of the Rk, by expressing

t time as N e-folds and rewriting it as

d2Rk

dN2
+
(
1− 2ϵ1 + 2

zN
z

) dRk

dN
+

(
k

aH

)2

Rk = 0 (5.1)

where zN is defined as dz/dN and z = a dϕ/dN . This equation will dictate how the cur-

vature perturbation will evolve with increasing N values. Now, we need to set the initial

condition. We defined the Bunch Davies initial condition when a mode is well inside the

Hubble radius, i.e., k/aH ≫ 1, as we have seen. For the same N = Nic. The initial condi-

tion on Rk is

Rk(Nic) =
1

z(Nic)

1√
2k

(5.2)

R′
k(Nic) = −Rk(Nic)

{
1 +

ϕNN(Nic)

ϕN(Nic)

}
+ i

√
k

2

1

Z(Nic)a(Nic)H(Nic)
(5.3)
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where ϕN = dϕ/dN and ϕNN = d2ϕ/dN2.

The perturbation will evolve from Nic (k/aH ≫ 1, known as sub-Hubble) to Nshs

(k/aH ≪ 1, known as super-Hubble). But implying this numerically, it is impossible. There-

fore, numerically we take k/aH = 102 for the sub-Hubble and k/aH = 10−5 for the super-

Hubble. Apart from specific cases, it is found that once outside the Hubble radius, the

amplitude of the Rk freezes to a constant value. This is evident in fig. (5.1), where we have

plotted the real and the imaginary part of the Rk for k = 0.05 Mpc−1 when it comes to the

quadratic potential.

There is one more ingredient we will feed for determining the perturbation. As we can see

in eq. (5.2), we need to find z(N). But z contains "a" scale factor, we can prove that

ai =
kp

e(N−N∗)H(N −N∗)
(5.4)

where kp = 0.05Mpc−1 is pivot scale at which the amplitude of scalar perturbation is known

through observations. N∗ is the e-fold value such that kp crosses Hubble radius at Nend −N∗

e-folds.

Figure 5.1: The evolution of the real and imagined parts of Rk for the quadratic potential (k
= 0.05 Mpc−1). (Evaluated using a self written code).
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Let’s discuss about the code that was used to compute the background quantities. The

Klein-Gordan equation was solved using Python code. To evaluate the field values at dif-

ferent N e-folds values, we used the RK4 method [37]. We then used the background data

to compute the scalar power spectrum for various Fourier modes using the inbuilt solver

(SciPy). The code is model-agnostic and can be used with any single field or canonical scalar

field. For all numerical analysis, MPl is set to be unity.

5.1 Quadratic potential

We are considering the potential of the inflaton of the form

V =
m2

2
ϕ2 (5.5)

Based on the COBE normalization [38], we find that the parameter m = 7.18 × 10−6 MPl. In

order to determine the power spectrum, we have chosen the initial values of field and slow

roll parameter as ϕi = 16.5 MPl and ϵ1i = 7.346× 10−3, respectively. According to the ref. [29],

the end of inflation occurs after 68.6 e-folds, and the kp = 0.05 Mpc−1 exits the Hubble radius

50 e-folds (N∗) before the end of inflation.

In fig. (5.2), we can see that power spectrum, computed numerically and analytically

(eq. (4.33)), are separated by on y-axis (0.5 in log scale) and the slope differs by 0.0124. These

differences are very small and evidently, the analytical and numerical values are agreeing

very well.

5.2 Small field potential

We choose potential of the form

V (ϕ) = Vo

[
1−

(
ϕ

µ

)q]
(5.6)

We will focus on the scenario where q= 2. On setting µ = 10 MPl. We find that based on

COBE normalization, Vo = 5.38 × 10−10M4
Pl. The initial conditions are: ϕ = 1.6 MPl and ϵ1i =

5.39 × 10−4, and Nend = 68.4. From the ref. [29], the pivot scale kp crosses 50 e-folds before
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5.3. STAROBINSKY MODEL

Figure 5.2: The quadratic potential’s scalar power spectrum. (Evaluated using a self written
code).

the end of inflation.

In fig. (5.3), the difference in the slope of the numerical and the analytical solutions is

0.0065. It is easily seen that both the solution are behaving well at the CMB scales.

5.3 Starobinsky Model

Till now, we have dealt with slow roll inflation, but now we have a potential which deviates

from slow roll for a brief period. Here is a model described by Starobinsky [39]. A linear

potential with an abrupt shift in slope is used to characterise it.

V (ϕ) =

{
V0 + A+(ϕ− ϕo) for ϕ > ϕo,

V0 + A−(ϕ− ϕo) for ϕ < ϕo,
(5.7)

where A+ ̸=A−. We call it SM. We utilise the smoothed version of the above potential [40]to

perform the numerical analysis and it is given as

V (ϕ) = Vo +
1

2
(A+ + A−)(ϕ− ϕo) +

1

2
(A+ − A−)(ϕ− ϕo)tanh

(
ϕ − ϕo

∆ϕ

)
(5.8)
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5.3. STAROBINSKY MODEL

Figure 5.3: Power spectra for the small field potential (Evaluated using a self written code).

If we assume that Vo dominates, the first slow roll parameter (ϵ1) will always be small. As

can be seen, slow roll inflation has two stages, each with a brief break from the slow roll

(fig. (5.4a)). This is represented in the large values of the second (ϵ2) and third (ϵ3) slow

roll parameters in the figures (5.4b), (5.4c) when the inflaton passes ϕo. Because of the small

value of ϵ1, we can express the scalar power spectrum analytically [39]. The detailed analysis

can be found in the reference [40]. It can be shown that the power spectrum for such model

is

Ps(k) ≃ As

{
1 − 3∆A

A+

ko
k

[(
1 − k2o

k2

)
sin

(
2k

ko

)
+

2ko
k

cos

(
2k

ko

)]
+

92

2A2
+

k2o
k2

(
1 +

k2o
k2

) [
1 +

k2o
k2

− 2ko
k

sin

(
2k

ko

)
+

(
1 − k2o

k2

)
cos

(
2k

ko

)] } (5.9)

where ∆A = A− - A+. When comparing the above spectrum to the CMB data, we multiply it

by (k/kp)
ns−1 to account for the tilt. When one compare the best fit values of the parameters

to CMB data, we get As = 2.11 × 10−9, ko = 6.34 × 10−5 Mpc−1, ∆A/A+ = -0.074, ns = 0.97

(taken from the ref .[39]).
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5.3. STAROBINSKY MODEL

(a) ϵ1 vs N

(b) ϵ2 vs N (c) ϵ3 vs N

Figure 5.4: Plots of the first, second, and third slow roll parameters for the SM case. It is
evident that ϵ2 and ϵ3 acquire very large values when it is crossing the ϕo. (Plotted in python
by using a self-written code).

In fig. (5.5), we can see that the analytical and the numerical power spectra matches perfect

ally and On large scales, it has a step-like feature, whereas on small scales, it is scale invari-

ant.

Till now, we have tested our code with three potentials which are well established in the lit-

erature and our code is fine. Therefore, we have sufficient confidence in it. We will go ahead

with it for studying potentials which would have non-trivial behaviour on small scales and

would lead to formation of PBHs.
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5.3. STAROBINSKY MODEL

Figure 5.5: Power spectrum for the Starobinsky model. (Evaluated using a self written code).
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Chapter 6

Formation of primordial black holes

The detection of gravitational waves from black hole binaries has revived interest in deter-

mining if such BHs might add to a strong candidate for cool dark matter (CDM). There are a

few events that have been reported by the LIGO-VIRGO scientific collaboration [41] [42]. An

interesting conclusion that emerges from the LIGO-VIRGO data analysis, is that such BHs

are massive, with mass > 10M⊙, where M⊙ = 2 × 1033g (solar mass). In the present chap-

ter, we will see how PBHs which originate in the early universe, can be generated through

special initial conditions.

6.1 Cold dark matter and primordial black holes

As we know from the standard cosmology, how plasma and atoms-molecules came into ex-

istence post inflation. Further, it led to large-scale structure formation such as stars, galaxies,

clusters, etc. We have to wait for nearly 100 million years to have the first stellar black hole

(formed from the death of a massive star). Typically, a star with a mass of more than 3 M⊙

would collapse to form an astrophysical black hole.

A black hole is a region of spacetime with very high curvature surrounded by a horizon

sphere [43]. Usually, the radius of the black hole is defined using Schwarzschild radius,

defined as

Rs =
2GM

c2
(6.1)
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The possible range of the mass of the BHs are 10−5 kg to 1040 kg. Through observations, we

found that black holes in binary systems have a range 3 M⊙ to 160 M⊙ (X-ray + GWs) and

supermassive black holes have 106 M⊙ to 1010 M⊙ (galactic centre, AGN).

Ample evidence for the dark matter (DM) arises not only from the observations of the

’late’ universe, such as galaxy clusters’ observations, galactic rotation curves, and the bul-

let luster, but also from the growth of the perturbation between the CMBR formation and

first galaxy formation, as well as the measurement of baryon-to-photon ratio from the Big

Bang nucleosynthesis (BBN) (1 minute after the big bang) to the CMBR formation (400,000

years later). Hence, during the early universe dark matter must exist and therefore, stellar

black hole cannot be a dark matter candidate. However, if we have BHs formed through the

collapse of the hot dense plasma at very early times (before BBN), then, we have a poten-

tial candidate for the cold dark matter (CDM). They can form with any mass due to their

primordial nature and are classified as non-baryonic, non-relativistic, and nearly collision-

less. PBHs are thus seen as a one-of-a-kind non-baryonic contender for the CDM that is not

bound by the BBN constraint.

6.2 Ultra slow roll

In chapter 1, we mentioned about the various mechanisms for the formation of the PBH, but

for the current discussion, we will focus on the inflationary scenario only. During the ra-

diation and matter dominance epochs, curvature perturbations (produced during inflation)

re-enter the Hubble radius, forming PBHs. Majority of the inflationary models follow slow-

roll inflation but they would not produce sufficient BHs for the astrophysical implications.

As we have shown, the scalar power spectrum is bound on big scales (CMB scales), but it

should be enhanced on small scales to have a considerable number of PBHs [44] [45]. This

is possible if we deviate from the slow-roll inflation. We will identify such models where

we start with slow roll but then deviate for a brief period and eventually return to slow roll

before the inflation ends ( fig. (6.1)).

To drive inflation with deviation from the slow roll, we consider an ultra-slow roll

scenario where we will briefly depart from the slow roll. This can be done using a point

of inflection in the potential. The point of inflection would cause an ultra-slow roll period,
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6.2. ULTRA SLOW ROLL

Figure 6.1: Example of how the field is rolling in a typical potential with a point of inflection.
Ref. [45].

boosting the power spectrum for all modes leaving the Hubble radius during the same pe-

riod. This can be divided into two categories where we violate inflation for a short period,

known as punctuated inflation (PI) [44], and another where inflation is not violated, known

as ultra slow-roll inflation (USR).

As we mentioned in ultra slow roll model, we have a point of inflection, i.e., dV/dϕ = 0 and

d2V/dϕ2 = 0. Recall the equation of motion of the inflaton

ϕ̈+ 3Hϕ̇+
dV

dϕ
= 0 (6.2)

For slow-roll inflation, we ignored the ϕ̈ but if we use the same when we reach the inflection

point, then, ϕ̇ = 0. This implies that the field is not moving at all. This does not mean that

the inflation has ended rather if it is not at the bottom of the potential, then, the potential

energy will dominate and this is the case with the cosmological constant. Hence, we will

have eternal de-Sitter expansion. But this is not what we see. [45]

If we do not ignore ϕ̈, then, the equation of motion be

ϕ̈+ 3Hϕ̇ = 0. (6.3)
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6.3. SCALAR POWER SPECTRUM

In this case, the field velocity decreases quickly as ϕ̇ ∝ a−3 ∝ e−3N (upon solving eq.

(6.3)). Hence, the potential energy dominates very quickly but ϕ̇ does not become zero

because this helps the inflaton to pass through the flat potential to avoid eternal inflation

and produce the inflaton perturbations. Note that the slow-roll parameter behaves as

ϵ1 =
ϕ̇2

2M2
PlH

2
=

1

2M2
P

(
dϕ

dN
)2 ∝ a−6 ≪ 1. (6.4)

ϵ1 is small and decreasing rapidly and this implies H is very close to constant. In a typical

slow roll case, ϵV and ϵ1 can be used interchangeably but this is not true with USR as former

becomes 0. In-fact, ϵ1 dips during USR and higher order slow roll parameters (ϵ2, and ϵ3) do

not follow slow roll behaviour rather they have very high values. This peculiar behaviour

helps in recognizing the deviation from slow roll. We will further see this when we discuss

various inflationary models.

6.3 Scalar power spectrum

As seen in chapter 4, we mentioned the analytical expression of the scalar power spectrum

when a mode is crossing the Hubble radius and is expressed as

Ps(k) ≃
(
H2

2πϕ̇

)2

=
H2

8π2M2
Plϵ1

(6.5)

where ϵ1 is defined in eq. (6.4). This works properly for slow-roll inflation (shown in Chapter

5) but is partially true for ultra slow roll inflation. For slow-roll inflation, we saw how

a mode freezes out once it crosses the Hubble radius but it is not true for ultra slow roll

inflation. Rather one needs to evolve the perturbation till the ultra slow roll ends. It is quite

evident that in ultra slow roll inflation, if we replace ϵ1 with ϵV, then, the value of the scalar

power spectrum would blow up and things would go bizarre

Recall in eq. (6.4), that ϵ1 goes as a−6 and H is close to constant, consequently

Ps ∝ a6 ∝ e6N (6.6)

during ultra slow roll inflation. This means perturbation grows very fast during ultra slow

roll. But it does not last long as if it does, then, Ps → 1. At this point, the perturbation
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theory will break down and also it would lead to eternal inflation. This occurs when√
Ps ≃

H√
ϵ
≃ H

∆ϕ
∆N

≃ 1 (6.7)

Now, ∆ϕ = H∆N , that means during 1 e-fold field moves backwards (towards starting

point) with scale H . So, the potential is moving up when it has to go down where infla-

tion can end. Hence, inflation never stops. The typical value of the scalar power spectrum

required for PBH formation, lies in the the range Ps ≃ 10−3 − 10−2 and it is independent

of PBH mass and any potentially observable value of fraction of CDM in PBHs (A detailed

calculation is shown in Appendix B ).

6.4 PBH formation

PBH mass would be comparable to the horizon massMH (amount of mass within the Hubble

radius). At the time of BBN, universe was dominated by the radiation and even after the

inflation ends, it was same (inflaton reheated the universe by decaying into radiation). At

the time of the radiation-matter equality, the horizon mass was on the order of 1016M⊙.

Therefore, we will focus on PBH formation during radiation domination when the Hubble

mass was small.

As during radiation domination, background pressure was ρ/3 and in order to collapse

mode kPBH must have strong gravity to overcome the pressure and collapse to form a BH.

Typical order of perturbation on CMB scale is (known as density contrast)

δ =
δρ

ρ
≃ Rk ≃

√
Pk ≃ 5× 10−5 (6.8)

which is very small for the formation of PBH. In order to form PBH, we need δρ/ρ ∼ 1 when

a mode is re-entered into the Horizon. This can be done on small scales by proper choice

of the initial conditions. It was in 1975, Bernard Carr [9] gave an estimate for the threshold

value of δ using the Jean’s length and Newtonian Gravity [45]. According to Carr,

δ =
δρ

ρ k=aH

> δc = c2s (6.9)

where c2s is speed of the perturbation [46]. During radiation domination, cs = 1/
√
3. But

more recent simulations show that δc ≃ 0.45. It is evident in the fig. (6.2), that once a mode
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Figure 6.2: Sketch of how PBHs are formed when a k-mode with wavelength λ. When δ goes
more than δc, perturbation collapse to form PBH. More heavy PBHs are formed by large λ
or small k. Ref. [47]

having δ more than δc, re-enters the Hubble horizon, leading to a collapse forming a PBH.

PBH mass is related to mass of the horizon at the time of the formation and it is related as

MPBH = γMH = γ
4π

3

ρ

H3
(6.10)

where γ is efficiency of the collapse. During radiation domination,

H2 =
8πG

3
ρ =

4π3G

45
g∗T

4 (6.11)

where g∗ is relativistic degree of freedom and T temperature. Upon integrating above equa-

tion, one obtains

t =

(
4π3G

45
g∗

)−1/2
1

2T 2
(6.12)

Substituting this in eq. (6.10), one obtains

MPBH = γ
4π

3

ρ

H3
= γ

c3t

G
∝ 2.03× 105γ

(
t

1s

)
M⊙ (6.13)

This puts a constraint on the mass of the PBH based on Hawking evaporation [48], i.e., the

BH of mass 1015 g must have evaporated by now.

The Hubble parameter can be expressed in terms of redshift as [49]

H2 = Ω0rH
2
0 (1 + z)4(

g∗
g0∗

)−1/3(
gs∗
gs0∗

)−4/3 (6.14)

where g0∗ = 3.38 and gs0∗ = 3.94 are the effective energy and the entropy degree of the free-

dom.
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We will relate the mass of PBH with the horizon mass at the equality. Assum-

ing, entropy and energy degree of freedom are equal at the matter-radiation equality

(ρ ∝ g
−1/3
∗ a−4). One can prove using eq. (6.10) that (For proper proof see Appendix A)

MPBH = γ
√
2Meq.

(
g∗
geq.

)1/6(
a

aeq.

)2

(6.15)

where a is defined at the time of the PBH formation. Using the relation, keq. = aeq.Heq. and

k = aH (keq. and k are modes).

MPBH =
γ√
2
Meq.

(
g∗
geq.

)−1/6(
k

keq.

)−2

(6.16)

where Meq = 5.83 × 1047 kg. As we can see, on small scales i.e., large k value would form

smaller mass BHs whereas on large scales heavier mass BH can form. For the case of solar

mass PBH, kPBH (≃ 107Mpc−1) collapses to form PBH.

As we have assumed at the re-entry of the mode inside the Hubble radius, it collapses

instantaneously and forms PBH. We define fractional abundance of PBHs as

fPBH =
ρoPBH

ρoCDM

(6.17)

We define mass fraction of PBHs at the formation time as

β(MPBH) =
ρPBH

ρtot
(6.18)

During radiation domination, β(MPBH) behaves as proportional to a (ρPBH ≃ a−3 and

ρtot ≃ ρrad. ≃ a−4). Using the above definition, one can prove that [49] [44] [50]

fPBH = γ3/2 21/4 β(MPBH)
Ωo

Mh
2

Ωo
CDMh

2

(
g∗
geq.

)1/4(
MPBH

Meq.

)−1/2

(6.19)

where g∗ is at the formation time of PBH. Ω0
Mh

2 and Ω0
CDMh

2 are dimensionless parameters

which describe the matter and cold dark matter density at present epoch and values are 0.14

and 0.12 respectively. g∗= 106.75 and geq.= 3.36 are used along with γ = 0.2 (all reference from

[44]).

fPBH =
( γ

0.2

)3/2( β(MPBH)

1.46× 10−8

)(
g∗
geq.

)−1/4(
MPBH

M⊙

)−1/2

(6.20)
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Only task is to compute β and this is carried out by employing Press-Schechter formalism

[51]. According to Press-Schechter formalism, the density contrast can be characterized us-

ing Gaussian distribution and is defined as

P(δ) =
1√
2πσ2

e

(
− δ2

2σ2

)
(6.21)

The variance in the Gaussian distribution can be written as an integral over matter power

spectrum. We use window function[50] to smoothened the matter power spectrum. There-

fore,

σ2(R) =

∫ ∞

0

dlnkPδ(k)W
2(kR), (6.22)

whereW (kR) = e−(kR)2/2 andR is scale over which PBH can be formed and it is computed by

taking R = k−1
PBH (when kPBH is re-entering the Hubble radius). The matter power spectrum

and the inflationary power spectrum can be related as [50]

Pδ(k) =
16

81

(
k

aH

)4

Ps(k) (6.23)

Hence β, is defined as

β =

∫ 1

δc

dδP(δ) ≃ 1

2

[
1 − erf

(
δc√
2σ2

)]
(6.24)

where erf: error function.

So far, we have all the essential elements to investigate the potentials of the interest. In

further section, we will present two models: Ultra slow roll (USR) and Punctuated Inflation

(PI). We set MPl = 1 and M⊙ = 1 for all numerical purposes. For the case when β ≪ 1, then

it can be show that

β ∝ 1

2
erfc

(
δc√
2σ

)
∝ σ√

2πσc
e−δ2c/(2σ

2) (6.25)

where erfc is complimentary error function. As we can see if we do small change in δc or

change in relation between R and δ, there would be exponential change in β. Hence, fPBH

would change very fastly.
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6.5 Models

6.5.1 Ultra Slow Roll Inflation (USR)

A potential of the form is considered [44]

V (ϕ) = Vo

[
tanh

(
ϕ√
6MPl

)
+ A sin

[
tanh

(
ϕ/

√
6MPl

)
fϕ

]]2
(6.26)

where parameters involved have values: Vo = 2 × 10−10M4
Pl, A = 0.130383, fϕ = 0.129576.

Figure 6.3: USR potential with black dash line as showing the point of inflection at 1.05 MPl.
(Plotted using Python).

The point of inflection is at ϕo = 1.05 MPl in fig. (6.3). The initial condition is ϕi = 6.1 MPl.

The end of the inflation is after 66 e-folds and the pivot scale exits the Hubble radius 56.2

e-folds before the inflation ends. All the values are taken from the ref. [44].

It can be seen that ϵ2 and ϵ3 (fig. (6.4a), and (6.4b)) become very large which clearly

shows the departure from the slow roll inflation. But ϵ1 (fig. (6.4c)) becomes very low when

it is near by point of inflection. It never touches one during whole process, hence, there is
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(a) ϵ1 vs N

(b) ϵ2 vs N (c) ϵ3 vs N

Figure 6.4: Plots of the first, second, and third slow roll parameters for the USR. It is evident
that ϵ2 and ϵ3 acquire very large values when it reaches inflection point and ϵ1 does not cross
1 except at the end of the inflation. Hence, there is no interruption of inflation. (Plotted in
python by using a self-written code.)

no interruption of inflation. Once ϵ1 becomes very low, it is in ultra slow roll domain and it

rises again to enter the slow roll inflation.

The plot of the scalar power spectrum for the USR model is shown in fig. (6.5). As we

can see that it is constrained on the large scales by the CMB data but on small scales it has

enhanced. It has the peak value of 1.77 × 10−2 which is sufficient for the production of the

PBHs. For finding fPBH, we have used three values of δc: 1/3, 0.35, and 0.4 (ref. [44]). We

can see that in the window 10−18 M⊙ to 10−13 M⊙, there is sufficient contribution of PBH as

CDM. For δc: 1/3, 0.35, and 0.4, we have maximum value of fPBH as 1.58× 10−2, 0.398× 10−3,

and 2.20 × 10−9. The maximum contribution to CDM comes from PBH of mass 10−15 M⊙
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Figure 6.5: Power spectra for the USR model. (Evaluated using a self written code)

6.5.2 Punctuated Inflation (PI)

We choose a potential of the form [44] (fig. 6.7)

V (ϕ) = Vo

[
c0 + c1 tanh

(
ϕ√
6α

)
+ c2 tanh2

(
ϕ√
6α

)
+ c3 tanh3

(
ϕ√
6α

)]2
(6.27)

where parameters involved have values: Vo = 2.1 × 10−10M4
Pl, c0 = 0.16401, c1 = 0.3, c2 =

-1.42, c3 = 2.20313, and α = 1. The inflection point is at ϕo = 0.53 MPl. The initial condition is

ϕi = 7.4 MPl. The end of the inflation is after 68 e-folds and the pivot scale exits the Hubble

radius 54.5 e-folds before the end of the inflation. All the values are taken from the ref. [44].

Evidently, ϵ1 (fig. (6.8a)) crosses unity for a small period before going in ultra slow

inflation. This is where inflation interrupts and is the main difference between ultra slow

roll potential and punctuated potential. ϵ2 (fig. (6.8b)) becomes very large when the tran-

sition happens from slow roll to ultra slow and ϵ3 ((6.8c)) blows up when the transition is

happening. The plot of the scalar power spectrum is depicted in fig. (6.9) for the PI model.

We can observe that on small scales it has enhanced and on large scale it is consistent with

CMB observations. It has maximum value 0.01856 at k = 9.68 × 1013 Mpc−1 which is of the

order of 10−2.

Again same value of δc has been used which were used for USR case. Now, the window
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Figure 6.6: fPBH for the USR. (Evaluated using a self written code)

10−18 M⊙ to 10−14 M⊙ has the contribution of PBH as CDM. The maximum values of fPBH

are 3.72 × 10−3, 7.702 × 10−5, and 2.26 × 10−10 for δc: 1/3, 0.35, and 0.4 respectively. For all

three values, maximum contribution to CDM is from PBH of mass 10−16 M⊙
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Figure 6.7: PI potential with black dash line as showing the point of inflection at 0.53 MPl

(Plotted using Python).
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(a) ϵ1 vs N

(b) ϵ2 vs N (c) ϵ3 vs N

Figure 6.8: Plots of the first, second, and third slow roll parameters for the PI. It is evident
that ϵ2 and ϵ3 acquire very large values when it reaches inflection point and ϵ1 crosses 1 for
a brief period before it hits ultra slow roll domain. Hence, there is interruption of inflation.
(Plotted in python by using a self-written code).
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Figure 6.9: Power spectra for the PI model. (Evaluated using a self written code).

Figure 6.10: fPBH for the PI. (Evaluated using a self written code).
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Chapter 7

Observational constraints on fPBH

PBHs have significant impact over cosmology and astrophysics. They leave different obser-

vational effects which allow us to constraint their properties. All these constraints are based

on electromagnetic signals except gravitational waves. There are two kinds of constraints:

Direct and indirect constraints. Direct constraints are based on investigation of observa-

tional effects that PBHs could directly trigger by their gravitational properties and are not

dependent of the formation mechanism of PBH. They are broadly divided in four categories,

namely: Gravitational lensing, Dynamical effects, Accretion, and Large scale structure. Indi-

rect constraints are not connected to the direct observations rather they are based on things

which are connected to PBH. These constraints are briefly discussed below and shown in

figures (7.1) and (7.2).

• Hawking radiation (HR): Due to HR, PBHs of mass 1015 g would have evaporated by

now or are evaporating. Moreover, PBHs of small enough mass which are evaporating

today should emit strong γ ray and cosmic ray background that could be observed

[52].

• CMB observations: There are variety of impact due to CMB on fPBH. There are con-

straints on generation of entropy, spectral distortion of CMB, and CMB anisotropies.

PBHs have imprints on CMB. Because of the heat generation, it creates distortion and

anisotropies in CMB. The constraint is in the range 1013 to 1017g. [53].

• Lensing effects: If an compact object passes the line of sight of a star, it is set to produce
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Figure 7.1: Observational constraints on fPBH with USR model prediction. (Evaluated using
a self written code based on data available).

micro-lensing effect. Depending on the order of lensing, various events have been ob-

served. For instance, the Subaru Hyper Supreme Cam (HSC) [54] observed the M31

and put a constraint on the mass of the PBHs as 10−10M⊙ to 10
−5M⊙. Similarly, KE-

PLER (K) [55] mission measured the microlensing effect of our own galaxy and found

the limits on PBH mass as 10−9M⊙ to 10
−3M⊙. There are constraint due to OGLE (O)

[13] experiment, which measured the microlensing of both Galactic Bulge and Magel-

lanic Clouds. According to it, PBHs abundance are in the range 10−3M⊙ to 10
−1M⊙ for

sufficient contribution to fPBH.

• Dynamical constraints: Various dynamical constraints have been observed where de-

struction of a variety of astronomical objects take place whenever PBHs pass nearby.

Zhilyaev [56] suggested that stars could capture PBHs and they go to center of the star.

This produces γ-ray burst (20-300 keV). In case of White Dwarf (WD) [57], it can lead

to white dwarf explosion. Several authors believe that interaction of PBH and Neutron

Star (NS) [58] can explain various astronomical phenomena. These put constraints on

PBHs mass as 10−15M⊙ to 10
−8M⊙. This can also help in explaining the solar-mass
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Figure 7.2: Observational constraints on fPBH with PI model prediction. (Evaluated using a
self written code based on data available).

PBHs [59].

Binary stars with a large separation are vulnerable to disruption caused by the

passage of nearby PBHs. Most of the observations come from the wide-binaries (WD),

which constraints the mass of the PBH in the range 104M⊙ to 10
7M⊙ [60].

There are limits in the high mass scale, where the halo objects will overheat the

galactic disc. Based on this, PBH mass range lies in 106M⊙ to 10
12M⊙ (DH). Whereas

another mass range arises because of the dynamical friction (DF) of the halo ob-

jects which gets dragged in the the galactic nuclei. This leads to PBHs in the range

104M⊙ to 10
12M⊙.

• Large scale structure (LSS): Carr and Silk [61] pointed out that even if fPBH is small,

PBHs of mass 102M⊙ could generate cosmic structures via the seed or ’Poisson’ effect.

The constraint is in domain 106M⊙ to 10
12M⊙. Lyman-α forest [62] observations have

been used to obtain an upper limit on mass of the PBH which is 104M⊙ which can

contribute significantly to DM.
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• Gravitational wave: During the first two run of LIGO/Virgo, BHs of the mass 8-51

M⊙ [63]were observed. After further analysis, it was found that PBHs could be in the

range 101M⊙ to 10
2M⊙. There are constraints based on the induced GWs which are

calculated based on the 11 years data of Pulsar Timing Array of the North American

Nanohertz Observatory for Gravitational waves (NanoGrav) [64]. They infer PBHs

should be in the mass range 0.0004 - 2 M⊙.
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Chapter 8

Conclusion

The focus of this chapter will be to summarise the work presented in the report and mention

the further work that can be done. Our work is largely based on the production of PBHs

using the inflationary scenario.

In the first chapter, we mentioned the history and consequences of the PBHs discovery.

We also mentioned about different formation mechanisms of PBH. But we focused particu-

larly on the collapse of the large density fluctuations. We discussed the hot big bang model

and the various universe constituents in the second chapter. We also discussed the problem

with the hot big bang, i.e., the horizon problem and the flatness problem.

In the third and fourth chapters, we motivated for the need of inflation. We saw how

elegantly it resolved both of the problems. Then, we introduced the scalar fields which are

necessary for driving the inflation. To have sufficient inflation, we used the slow-roll in-

flation, and to keep a check on the inflation, we used the slow-roll parameters. We also

demonstrated the inflationary attractor, as well as a comparison of analytical and numerical

estimates of the inflaton, the first slow roll parameter, and the Hubble parameter. We also

introduced perturbation. We classified them as scalar, vector, and tensor. We discussed in

detail scalar perturbations and how they can be used to construct a gauge-invariant term

R which measures the curvature perturbation. The scalar perturbations were then quan-

tized, and the two-point correlation function: scalar power spectrum was introduced. For

the case of slow-roll inflation, we used the Bunch Davies initial condition to estimate the

scalar power spectrum at the Hubble crossing.
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In the fifth chapter, we discussed three models namely, the quadratic model, small

field model, and Starobinsky model. We compared the analytical and the numerical form of

the scalar power spectrum. We found that both matches well for all three models. In

the sixth chapter, we discussed in detail the PBH formation and its relation with cold dark

matter. As slow-roll inflation is insufficient for the PBH formation, we introduced ultra

slow-roll inflation and punctuated inflation. The scalar power spectrum was enhanced at

small scales while it was consistent at large scales with the Planck CMB data. For the for-

mation of PBH, we used Press Schechter formalism where the collapse of the over-density

is dependent on the probability distribution of the density contrast δ. This density contrast

has to be greater than a threshold value δc. and the probability distribution is Gaussian in

nature. We estimated the fraction of cold dark matter due to PBH (fPBH). Based on the nu-

merical estimation, we found the mass range and the fPBH in the following table

Model Mass range Max. value δc = 1/3 δc = 0.35 δc = 0.4

USR 10−18M⊙ - 10−14M⊙ 10−16M⊙ 1.5 % 0.03 % 10−7 %
PI 10−18M⊙ - 10−13M⊙ 10−15M⊙ 0.3 % 10−3 % 10−8 %

In the last chapter, we discussed the observational constraints on the fPBH due to vari-

ous astrophysical and gravitational waves observations such as microlensing effect, gravita-

tional waves, dynamical effects, accretion, large scale structure, and many more. We worked

on a single value of a point of inflection and three values of δc. One can see the effect of

change of inflection point on the scalar power spectrum. This can be utilized to see how it

effects the fPBH. Further, one can also study the effect of on-Gaussianities.
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Appendix A

Proof for relation between k and MPBH for
the PBH

For finding the relation betweenMPBH and k, we will assume that PBHs were formed during

radiation domination, therefore, energy and entropy degree of freedom can be assumed to

be same, i.e., g∗ = gs∗.

For radiation,

ρ ∝ g∗T
4. (A.1)

According to entropy conservation

g2∗T
3a3 = constant (A.2)

Therefore, using above one can prove that

ρ ∝ g−1/3
∗ a−4. (A.3)

Mass of a PBH is equal to efficiency term (γ) times the horizon mass, i.e., MPBH = γ MH =

γ/2HG. Utilising above information, one can find that

MPBH = γ
√
2Meq.

(
g∗
geq.

)1/6(
a

aeq.

)2

(A.4)

Using the relation keq. = aeq.Heq. and k = aH (keq. and k are modes), we can prove that

keq
k

=
√
2
a

aeq

(
geq
g∗

)−1/6

(A.5)
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Putting this back in eq. (A.4), one gets

MPBH =
γ√
2
Meq.

(
g∗
geq.

)−1/6(
k

keq.

)−2

(A.6)

Fractional abundance of PBHs is

fPBH =
ρoPBH

ρoCDM

(A.7)

Mass fraction of PBHs at the time of formation is

β(MPBH) =
ρPBH

ρtot
(A.8)

This can simplified to

β(MPBH) =
ρPBH

ρtot
=

ρoPBH

ρoCDM

ρoCDM

ρoc

(
Ho

H

)2 (ao
a

)2
(A.9)

This further simplifies to

β(MPBH) =
ρPBH

ρtot
=

ρoPBH

ρoCDM

ρoCDM

ρoc

(
Heq

H

)2 (aeq
a

)2( Ho

Heq

)2(
ao
aeq

)2

(A.10)

Now using, (
Heq

H

)2

= 2

(
geq
g∗

)−1/3(
a

aeq

)4

, (A.11)(
Heq

Ho

)2

=
2 ρom
ρoc

(
ao
aeq

)3

, (A.12)

where 2 appears because at the matter-radiation equality ρtot. eq. = 2ρm. eq. = ρr. eq..

Using above ingredients, we obtain

fPBH = γ3/2 21/4
Ωo

Mh
2

Ωo
CDMh

2

(
g∗
geq.

)1/4(
MPBH

Meq.

)−1/2

(A.13)
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Appendix B

Typical order of Ps for sufficient
production of PBH

As we defined the Fractional abundance of PBHs is

fPBH =
ρoPBH

ρoCDM

=

∫ 1

δc

dδP(δ) (B.1)

We assumed P(δ) to be Gaussian in nature (Press Schechter formalism). The variance of this

distribution is defined as

σ2(R) =

∫ ∞

0

dlnkPδ(k)W
2(kR), (B.2)

where W (kR) is window function which is Gaussian in nature and R is scale at which PBH

is formed, i.e., R = k−1
PBH . For simplicity assume that σ2 = Ps. Therefore, it can be proved in

the limit 1 ≪ δc/σ

β ∝ 1

2
erfc

(
δc√
2σ

)
∝ σ√

2πσc
e−δ2c/(2σ

2) (B.3)

Now, the variance would be of this Gaussian distribution as an rough estimate be

Ps ∼ σ2 ∼ δ2c
ln(1/β)

∼ 0.2

ln(1/β)
(B.4)

Therefore, using eq. (6.15), (A.6), and (6.17), for case when MPBH ∼ M⊙ and fPBH ∼ 1, one

obtains

k ∼ 107Mpc−1, a ∼ 10−8 aeq (B.5)
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and as β ∝ a, so β ∼ 10−8, i.e, one 10 parts per billion of the universe will be needed to

form PBH in order to account for all the DM present today [16]. Further,

Ps ∼ 0.2

ln(1/β)
∼ 0.2

ln(108)
∼ 10−2 (B.6)
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