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ABSTRACT

The aim of the project is to understand the need for the epoch of the inflation during the early

stage of the radiation dominated era, and describe how inflation is typically achieved using

scalar fields. In this context we begin by studying the hot big bang model and understand

its shortcomings such as the horizon and flatness problems. We shall then go on to analyse

as to how a brief period of accelerated expansion, viz. inflation, can help in overcoming

these difficulties. Inflation is typically achieved using scalar fields, and it is the quantum

components of the scalar fields which are responsible for the generation of the perturbation

in the early universe. Finally, the goal will be to understand the characteristics and the

evolution of the perturbations in the Friedmann universe.
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Chapter 1

Introduction

Currently, cosmology is one of the most promising areas of physical science that has in-

spired many to devote their mind and thoughts into it. Cosmology forms a nice balance

between observation and theory, where theory is formulated based on the observational

data, which in turned is interpreted using correct theory. This discipline of physics is based

on the endeavour to understand the origin, evolution and the future of this ever evolving

universe. The complex laws governing the dynamics of this evolving universe still eludes

bright minds, thus making cosmology that much more attractive and acceptable. With ac-

curate and advanced data available from observations, in the recent times, cosmology has

become a precision science.

1.1 The hot big bang model

Modern cosmology is based on the prevailing theory about the origin and the evolution of

the universe, known as the hot big bang model [1]. The fundamental development of the

theory is based on the key ideas of the general theory of relativity and cosmological prin-

ciple [2]. General relativity generalises special relativity and the Newton’s law of universal

gravitation to describe gravity as the geometric property of space and time. The cosmolog-

ical principle, in its modern form, states that on a sufficiently large scale, i.e. of the order

of 100 Mpc, the matter content of the universe in homogeneous and isotropic. This is, in

essence, a generalisation of the Copernican principle that the earth is not at the centre of

the solar system. In the same notion there is no specially favoured position in the universe.

This is, strongly supported by a variety of observations and the most overwhelming among

1



CHAPTER 1. INTRODUCTION 2

them has been the nearly identical temperature of the cosmic microwave background radi-

ation coming from the different parts of the sky. This is the best available theory describing

our cosmos, thus inevitably theoretical cosmology in the recent years have developed on

this foundation.

Over the years, the hot big bang model has survived numerous scientific interventions,

because of three strong and significant observational triumphs. The first of these observa-

tions essentially provides evidence that the universe is expanding. It is suggested by the

fact that the all galaxies have a redshift that is proportional to their distance. It is true that

all objects in relative motion with respect to earth, the point of observation, will exhibit a

Doppler shift. But, surprisingly majority of the observed objects exhibit redshift, and not a

blue shift, which is suggestive of the fact that they are receding away from us. Moreover as

the redshift is proportional with the distance of the object (for suitable small distances), it

can be concluded that recession speed enhances with distance. However local systems like

our galaxy do not feel this expansion due to the local gravitational attraction. Otherwise it

would have been next to impossible to measure the redshift. Edwin Hubble was the first to

observe this phenomenon in the year 1927, and gave the relation

v = H0d

where v is the velocity of the galaxy and d its distance, a relation commonly known as the

Hubble’s law [2, 3] and H0 is the Hubble parameter today.

The next most important observational fact is the presence of almost perfectly isotropic

background radiation of photons from our relic past. The isotropy of the radiation is about

1 part in 105 and is known as the Cosmic Microwave Background Radiation (CMB) [4]. The

temperature of the microwave is measured to be 2.728 ± 0.004 K and is, in fact, a nearly per-

fect black body spectrum. CMB are the relic radiation reaching us from the era of decoupling

when photon ceases to interact with matter as radiation density falls below a certain level.

This reflects the fact that radiation density falls faster than the matter density and CMB

is precisely the radiation reaching us from around that time of transition. The CMB was

discovered by the American radio astronomer Arno Penzias and Robert Wilson in the year

1964. Since then, observational data from Cosmic Background Explorer Satellite (COBE) and

Wilkinson Microwave Anisotropy Satellite (WMAP) have enlightened our understanding of

this background radiation. While fairly isotropic, these satellites provide enough evidence
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for the presence of anisotropies in the CMB. These observed patterns of the fluctuation pro-

vide a direct snapshot of the early universe.

In addition to these, another remarkable achievement of modern cosmology is the theory

of Big Bang Nucleosynthesis (BBN), which explains the abundance of very light elements in

the early primordial universe. It is believed that the process of necleosynthesis was triggered

within the first three minutes after the big bang. Observations as well as the theory suggest

that the ratio of the number density of the baryons to the photons remains constant over

time, thus allowing us to determine the baryon density at a given time. BBN is in good

agreement with both the theoretical understanding and the observational measurement and

thus is regarded as a strong evidence towards the support of the hot big bang model.

Thus these three highly successful observational triumphs strongly support the hot big

bang model. However, despite the success of the model in explaining these results from

the different observations, the model has serious drawbacks. According to the model, the

CMB photons arriving at us today from widely separated directions of the sky could not

have interacted at the time of decoupling. However, observations suggest that the CMB

photons are highly isotropic, as mentioned earlier. Even the photons observed from exactly

diametrically opposite ends of the sky have nearly identical temperature. Thus this leads to

serious concerns about the validity of this theory. Later we will discuss as to how inflation

can be used to resolved this so called horizon problem and overcome the drawbacks.

1.2 The scope of this project

In the succeeding chapters, the main focus will be to discuss the problems with the hot big

bang model. We will broadly classify the drawbacks as the horizon and the flatness prob-

lems and discuss how we are able to solve them using the inflationary paradigm. However

before we go on to the details, we shall discuss the dynamics of the Friedmann-Robertson-

Walker (FRW) metric. The next chapter is dedicated to understanding the arguments which

lead to the development of the FRW metric. Then we study the dynamics by solving the

Einstein equations and assuming ideal fluid to be the source we arrive at the Friedmann

equations. The evolution of the universe is divided into radiation and matter dominated

eras and we impose condition on the equation of state to arrive at the dependence of the

scale factor on time. In the following chapter, we discuss in detail the problem associated
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with the big bang model. In the fourth chapter, we shall describe the brief period of accel-

erated expansion,viz. inflation. We shall then go onto discuss how inflation overcomes the

horizon problem and how it is achieved using scalar fields. We then introduce the Potential

Slow Roll (PSR) parameters and the Hubble Slow Roll (HSR) parameters and successfully

show how the smallness of these parameters satisfies the conditions for inflation.

The last chapter is mainly dedicated to understanding cosmological perturbation theory.

We will discuss the evolution of the scalar perturbation at the super-Hubble scales during

both radiation and matter dominated eras, as it is mainly responsible for the anisotropies in

the CMB. The perturbation is considered only in the linear order as deviation from homo-

geneity is very small in the early phase. Finally, we shall discuss some aspects of vector and

tensor perturbations.

1.3 Notations and conventions

We shall mention here the various conventions and the notation that will be used through-

out the following chapters. All the analysis are done in (3 + 1) dimensions, and we will

adopt the metric signature of (+,−,−,−). The Greek indices will represent the spacetime

coordinates, while the Latin indices shall denote spatial coordinates only. Both cosmic time

t and conformal time τ are used depending upon the need. Further, differentiation with re-

spect to cosmic time coordinate will be referred as an over-dot, while an over-prime denotes

derivative with respect to conformal time coordinates of the Friedmann metric. Throughout

the text, we shall work with the spatially flat Friedmann model.



Chapter 2

The Friedmann universe

In this chapter, we shall begin by arriving at the FRW metric using the cosmological prin-

ciples as the guiding tool. We then go on to discuss the dynamics of the Friedmann model

and the various epochs of the early and the present universe.

2.1 The Friedmann-Robertson-Walker metric

To construct the simplest model of the universe, we begin with the assumption that the

universe is homogeneous and isotropic, i.e. there is no preferred position and direction in

space respectively. As discussed earlier, this is based on the cosmological principle, which

largly is the result of the observation of the CMB, which is isotropic to 1 part in 105. A generic

space time interval can be written as :

ds2 = gµνdx
µdxν = gttdt

2 + 2gtidtdx
i + gijdx

idxj. (2.1)

Isotropy of space implies that the gti component must be zero, otherwise a non zero three

vector, say vi, identifies a specific direction in space, which violates isotropy. In the coordi-

nate system of the fundamental observer, we can label the spacelike surfaces using proper

time of the clock carried by them. This implies that we can set gtt = 1. The metric now

reduces to the form:

ds2 = dt2 − dl2, (2.2)

where dl2 is the spatial part of the metric that can be expressed as

dl2 = eλ(r) dr2 + r2
(
dθ2 + sin2θ dφ2

)
= lijdx

idxj. (2.3)

5
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The quantity λ(r) is independent of φ and θ due the spherical symmetry. Now, a space of

constant curvature is characterized by the following Riemann tensor [2]

Rijkl = κ(likljl − lilljk). (2.4)

The Ricci tensor corresponding to the Reimann tensor Eq. (2.4) is given by

Rij = 2κlij. (2.5)

Now calculating the non trivial component of the Ricci tensor and using the above equation

(2.5), we arrive at the following equations:

1

r

dλ

dr
= 2κeλ, (2.6)

and

1 +
(r

2

)( dλ

dr

)
e−λ − e−λ = 2κr2. (2.7)

On integrating these equations , we obtain that

e−λ(r) = (1− κr2). (2.8)

Upon substituting this e−λ(r) in Eq (2.3), we obtain the spatial component of the line element

to be

dl2 =
dr2

(1− κr2)
+ r2

(
dθ2 + sin2θ dφ2

)
= lijdx

idxj. (2.9)

Consequently this leads to the final FRW metric:

ds2 = dt2 − a2(t)
[

dr2

(1− κr2)
+ r2(dθ2 + sin2θdφ2)

]
. (2.10)

Here a(t) is the scale factor determining the expansion rate the universe. This is only de-

pendent on time and is independent of any spatial components. However such geometric

considerations alone does not allow us to determine the value of κ and the form of the

function a, known as the expansion factor. Thus we need to consider the dynamics of the

Friedmann model in order to understand the evolution of the universe.
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2.2 Dynamics of the Friedmann Universe

The main aspect of General Relativity is that it connects the geometry to the matter or the

energy content of the universe. This is described by the Einstein equation [3]

Gµν = Rµν −
1

2
gµν = (8πG)Tµν , (2.11)

where Gµν is the Einstein Tensor , Rµν is the Ricci tensor, the Ricci Scalar

R = gµνRµν , (2.12)

is the contracted Ricci tensor and Tµν is the symmetric tensor describing the matter content

of the universe. Also G is the Newton gravitational constant.

Based on the cosmological principle of isotropy of spacetime it is required that the com-

ponent T i0 of the stress energy tensor must vanish and T ij must be diagonal. Likewise homo-

geneity implies that all the components must the independent of any spatial direction. Thus

the stress-energy tensor can be represented as:

T µν = diag. (ρ,−p,−p,−p). (2.13)

Here we have assumed the source to an ideal fluid with energy density ρ and pressure p.

The Einstein tensor on the left side of the Eq. (2.12) can be calculated for the FRW metric

and one obtains the following non trivial components [3]:

Gt
t = 3

a2
(ȧ+ κ) Gi

j = 1
a2

(2aä+ ȧ2 + κ2)δij. (2.14)

Upon using the above stress energy tensor as the source and the expressions for the Einstein

tensor we arrive at the following two Friedmann equations:(
ȧ

a

)2

+
κ

a2
=

8πG

3
ρ, (2.15)

2
ä

a
+

(
ȧ

a

)2

+
κ

a2
= −(8πG)p. (2.16)

Substituting Eq. (2.15) in equation Eq. (2.16) we obtain the following relation

ä

a
= −4πG

3
(ρ+ 3p) . (2.17)
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The Friedmann equation combined with the equation of state describing the ideal fluid is

used to arrive at the scale factor a.

The Friedmann equation (2.15) can be written in term of critical density ρc(t) and density

parameter Ω(t). Rearranging Eq. (2.15) we get

κ

a2
=
ȧ2

a2

[
ρ

3H2/8πG
− 1

]
. (2.18)

Using the definitions:

ρc(t) =
3H2

8πG
and Ω(t) =

ρ

ρc
, (2.19)

we arrive at
κ

a20
= H2

0 (Ω− 1). (2.20)

Now for ordinary matter we have (ρ + 3p) > 0. Differentiating the Friedmann equation

(2.15) we arrive at the following expression

d

dt
(ρa3) = −pda

3

dt
, (2.21)

which can be further simplified using the equation (2.16) as

d

da
(ρa3) = −(3a2p). (2.22)

If we now consider a equation of state of the form p = wρ where w is a constant, then

equation (2.22) can be solved to arrive at the following behavior for energy the density

ρ ∝ a−3(1+w). (2.23)

Depending on the value of w, which specifies the equation of state governing the dynamics

of the universe, it could be specified if the universe was radiation or matter dominated and

consequently the dependence of density parameter ρ on the scale factor a in these eras can be

obtained. If we consider the universe to be flat, which is strongly supported by observations,

then κ = 0 , and the Friedmann equation reduces to(
ȧ

a

)2

=
8πG

3
ρ. (2.24)

In the following section we will find out how the scale factor depends of time as we change

the value of w.
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2.3 Different epochs

From the previous section, we have seen that for the spatially flat universe, we have the

following equation governing the scale factor:

ȧ2

a2
∝ a3(1+w), (2.25)

Integrating this equation leads to:

a(t) ∝ t
2

3(1+w) . (2.26)

1.When w = 0; the equation of state p = 0, corresponds to non relativistic matter. Solving

Eq. (2.22) using equation w = 0 we get

ρNR =
ρ0
a3
, (2.27)

and setting the value w = 0 to Eq. (2.26), we obtain

a ∝ t
2
3 (2.28)

2. When for w = 1
3
; the equation of state is given by p = ρ/3 and we have the radiation

dominated epoch in such a case. Solving Eq. (2.22) we obtain the dependence of the density

parameter on the scale factor during the radiation dominated era to be

ρrad ∝
ρ0
a4
, (2.29)

And the corresponding scale factor is obtained using Eq. (2.26) to be

a ∝ t
1
2 . (2.30)

3. Certain other values of w are also of special importance. For instance, when w = −1,

Eq. (2.23) yields ρ = constant and the pressure p = −ρ is negative, as we must have ρ > 0.

On solving Eq. (2.25) we get the so called de sitter universe with the scale factor varying as

a(t) ∝ eλt.



Chapter 3

Drawbacks of the hot big bang model

The hot big bang model has been very successful in explaining various observational results.

However, in spite of its success there are certain major drawbacks where the model fails

to match up with observations. For instance, observations suggest that the CMB photons

reaching us from diametrically opposite ends of the sky have almost identical temperature.

But, in contrary, the theory indicates that the photons from widely separated direction of

the sky could not have interacted at the time of decoupling. In this chapter, we shall discuss

these issues in detail and subsequently build up the platform for a new paradigm that has

to be added to the big bang model.

3.1 The horizon problem

The horizon problem of the standard big bang model identifies that different regions of the

sky could not have been causally connected because of the finite speed at which information

can travel. However observation from the CMB reveals that regions sufficiently separated

have identical temperature and physical properties. To understand this problem we shall

start with the following spatially flat, i.e. κ = 1, FRW line element :

ds2 = dt2 − a2(t)[dr2 + r2(dθ2 + sin2θdφ2)]. (3.1)

Now if we insert the condition of the radial null geodesic, viz.

ds2 = dθ2 = dφ2 = 0, (3.2)

10
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into Eq. (3.1), we arrive at

dr =
dt

a(t)
. (3.3)

We then go on to define the horizon, as the physical distance traveled by light from the big

bang singularity at t = 0, till the present day corresponding to time t. In term of scale factor

we have

h(t) = a(t)

∫ t

0

dt

a(t)
. (3.4)

We now use this definition of the horizon to calculate the dimensions of the backward

and the forward light cones. We define the forward light cone as the distance traveled by

light from the big bang singularity at t = 0 till the era of the decoupling denoted as t = tdec

. Similarly, we define the backward light cone as the distance spanned by light from the

present epoch to decoupling. We further assume that the universe was radiation dominated

before decoupling, so that the linear dimension of the horizon at the decoupling turns out

to be

hf (tdec, 0) = a(t)

∫ tdec

0

dt

a(t)
. (3.5)

For radiation dominated epoch, the scale factor is given by Eq. (2.30). Upon substituting the

quantity in the above expression, we get

hf (tdec, 0) =

(
tdec
t0

) 1
2
∫ tdec

0

t0dt

t
= 2tdec. (3.6)

If the universe is dominated by non relativistic matter from the time of decoupling to the

present epoch, the horizon represents the size of the region on the surface of the last scatter-

ing from which we receive the CMB. It is given by the following expression

hb(t0, tdec) = a(t)

∫ t0

tdec

dt

a(t)
, (3.7)

with the scale factor for the matter dominated universe given by the Eq. (2.28). Upon evalu-

ating the above integral we obtain the backward light cone to be

hb(t0, tdec) = adect
2
3
o

∫ t0

tdec

dt

t
2
3

' 3(t2dect0)
1
3 . (3.8)

We now consider the ratio, say R, of the linear dimensions of the backward and the

forward light cone, we find that

R =
hb
hf

=
3

2

(
to
tdec

) 1
3

. (3.9)
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We take into account the observational value of to to be of the order 1010 and the correspond-

ing tdec of the order 105, then on substituting this in the above expression we obtain [8]

R =

(
3

2

)
10

5
3 ' 70 (3.10)

In other words, the dimension of the backward light cone is about 70 times more than that

of the forward light cone at the time of the decoupling, which necessarily implies that every

point of the sky is not causally connected. But this clearly contradicts the fact that observa-

tion from the CMB is nearly isotropic. This is the statement of the horizon problem [5].

This very issue can be analysed from a different perspective. In a power law expansion ie.

a(t) ∝ tf , the Hubble radius which is defined as dH = H−1 = ( ȧ
a
)−1 takes the form dH ' t−1,

or it goes as a
1
f . However the physical wavelength λp always grows as the scale factor a,

i.e. λp ∝ a. Thus, as we go back in time, the physical wavelength grows faster than the

corresponding Hubble radius dH in both radiation and matter dominated epoch, as shown

in the Figure 3.1, for which the f value are 1/2 and 2/3 respectively. Thus the perturbation

in the early universe must be correlated on scales larger than the Hubble radius so as to lead

to the anisotropies that are observed in the CMB.

3.2 The flatness problem

Another essential drawback of the hot big bang model is the flatness problem [10] which is a

cosmological fine tuning issue. It can be illustrated using Eq. (2.20). In standard cosmology

we describe the scale factor as a ∝ tf , where f is equal to 2/3 and 1/2 for the matter and

the radiation dominated eras respectively. As a consequence, we have for the radiation

dominated era

(Ω− 1) ∝ t, (3.11)

and for the matter dominated era

(Ω− 1) ∝ t
2
3 . (3.12)

Thus, it is evident that |(Ω− 1)| will diverge with time. But the present cosmological obser-

vations suggest that the density is very close to one. Since the total density departs rapidly

from this critical value with time, the universe in the early times must have a density even
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Figure 3.1: The Hubble radius dH is plotted as the function of the scale factor a on the log-
arithmic scale for both the radiation and matter dominated epochs. The behavior of the
physical wavelength λ1 and λ2 is also shown, where λ = a/k. It is evident that the physical
modes enter the Hubble radius during the radiation or the matter dominated era and as one
goes back in time these are outside the Hubble radius and there is no causal contact at early
times.

closer to critical value. Effectively this demands extreme fine tuning of Ω such that it is very

close to 1 in the early phase.



Chapter 4

The inflationary paradigm

As we have seen in the previous section, the hot big bang model suffers many drawbacks

which lacks satisfactory solutions. The horizon problem is arguably the most significant

of all. The inflationary model aids in resolving these issues and come up with a proper

explanation for these puzzles. In the subsequent section we shall discuss how inflation

resolves the horizon problem and then we shall go on to analyse how scalar fields can be

used to achieve inflation. Finally we will discuss the slow roll inflationary scenario.

4.1 Resolving the horizon problem

It should be evident from the discussion in previous chapter, that the physical modes are

outside the Hubble radius at sufficiently early times and enters the Hubble radius only dur-

ing the radiation or matter dominated epochs. In this context see Figure 3.1. However for

the inhomogeneities that we observe in the CMB sky to be causally connected these length

scales must be inside the Hubble scales. For this to happen, the physical wavelength should

grow slower than the corresponding Hubble radius at early times, or in other words, we

should have [11]

− d

dt

(
λp
dH

)
< 0. (4.1)

For dH = a/ȧ and λ ∝ a this expression reduces to

ä > 0. (4.2)

Thus in order to have a causal connection between the primordial perturbations which are

essentially responsible for the generation of the anisotropies in the CMB, the universe needs

14
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to have a phase of accelerated expansion during the early part of the radiation dominated

epoch.

In Figure 4.1, the physical wavelength for different modes and the Hubble radius during

the inflation and the radiation era are plotted against the scale factor a. Both the axes are in

log scale. As mentioned previously, in the power law expansion the scale factor a goes as tf

, and during inflation f > 1. The physical wavelength λp ∝ a in all the epochs, whereas dH
behaves as a

1
f and a2 during the inflation and the radiation dominated epoch respectively.

There the straight lines of the physical wavelength always have unit slope while the Hubble

radius dH is less than unity and 2 for the inflationary and the radiation dominated eras

respectively. Thus it it evident from the Figure 4.1, that λp leaves the Hubble radius in the

early phase of the radiation dominated phase and will only be inside the Hubble radius in

the early phase if there is a period of inflation.

Figure 4.1: The evolution of the Hubble radius dH and the physical wavelength λ1 and λ2 is
plotted as the function of the scale factor a on the logarithmic scale for inflationary and the
radiation dominated epochs. As discussed in the text the physical modes enters the Hubble
radius during inflation as the slope of the Hubble length is much less than unity during
inflation. Thus inflation helps to bring the modes into causal contact at early times
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4.2 Driving inflation with scalar fields

The Einstein equation corresponding to the line element Eq. (2.10) and the stress energy

tensor Eq. (2.13) results in the following Friedmann equations

H2 =

(
8πG

3

)
ρ, (4.3)(

ä

a

)
= −

(
4πG

3

)
(ρ+ 3p). (4.4)

These equations are obtained from Eq. (2.15) and Eq. (2.16), by making use of the relation

H = (ȧ/a) and the condition that the Friedmann universe is flat, i.e. κ = 0. In order to satisfy

condition (4.2), (ρ + 3p) must be negative. However ordinary matter, for which p = 0 and

for radiation p = ρ/3, the condition for inflation is not achievable. Thus we need to look for

alternative sources in order to achieve inflation.

We will go on to consider a scalar field φ called the inflaton, which is governed by the

action [5]

S[φ] =

∫
d4x
√
−gL =

∫
d4x
√
−g
[

1

2
∂µφ∂

µφ− V (φ)

]
. (4.5)

The symmetries of the Friedmann background suggest both homogeneity and isotropy

which implies that the scalar field φ is independent of the spacial coordinates. Using the

Euler Lagrangian equation

∂µ
∂(
√
−gL)

∂∂µ
− ∂(

√
−gL)

∂φ
= 0, (4.6)

the equation of motion of the scalar field φ in the Friedmann background can be obtained to

be

φ̈+ 3Hφ̇+ Vφ = 0, (4.7)

where Vφ = dV/dφ, and in the FRW metric
√
−g = a3. Further, the general expression for the

stress energy tensor is [10]

T µν = ∂µφ∂νφ− δµν
[

1

2
∂λφ∂

λφ− V (φ)

]
. (4.8)

Using the symmetry condition of the FRW background, the energy density and the pressure

associated with the scalar field are defined as T 0
0 = ρ and T ij = −pδij and thus we obtain [12]

ρ =

[
φ̇2

2
+ V (φ)

]
, (4.9)
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p =
φ̇2

2
− V (φ). (4.10)

Using the expression of the energy density and pressure the condition for the inflation, viz.

(ρ+ 3p) reduces to

φ̇2 < V (φ). (4.11)

This is precisely the condition, where the potential energy of the scalar field dominates the

kinetic energy, to achieve inflation. Using the expression (4.9) and (4.10) the Friedmann

equations can be rewritten in terms of the scalar field φ and its corresponding potential V (φ)

H2 =
1

3M2
p

[
φ̇2

2
+ V (φ)

]
, (4.12)

Ḣ = − 1

2M2
p

φ̇2, (4.13)

where we have set M2
p = 1/8πG. The above equations can be further simplified to express

the scalar field φ and the potential V (φ) as a function of cosmic time as follows [5, 3]

φ(t) =
√

2Mp

∫
dt

√
(−Ḣ), (4.14)

V (t) = M2
p (3H2 + Ḣ). (4.15)

4.3 Slow roll inflation

It is seen previously that the condition for the inflationary universe model is based upon

the possibility of slow evolution of some scalar field φ in a given potential V (φ), given by

the Eq. (4.11). In the present literature two different types of slow-roll-approximation exists.

The first form called the potential slow roll (PSR) approximation which places restriction on

the form of the potential and requires the additional condition of slow evolution of the scalar

field along the attractor solution. The other form, known as the Hubble slow-roll parame-

ters (HSR) places conditions on the evolution of the Hubble parameter during inflation. The

(HSR) parameters have distinct advantage over the PSR parameters. In the following sec-

tions, we shall go onto discuss the Hamilton-Jacobi formulation of inflation and then discuss

both PSR and HSR approximations in some detail.
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4.3.1 The equation of motion

Here we derive a very useful alternative form of Eq. (4.12). We rewrite Eq. (4.13) in a slightly

different form, as we change the time derivative of the Hubble parameter into derivative

with respect to the scalar field φ and arrive at the equation

Hφ = − φ̇

2M2
p

. (4.16)

Substituting this expression of φ̇ in Eq. (4.12) we arrive at the so called Hamilton-Jacobi

equation for inflation [13], viz.

H2
φ =

3H2

2M2
p

− V

2M4
p

. (4.17)

4.3.2 The potential slow roll parameters

For a given potential V (φ), the slow roll condition can be realised with the following condi-

tion on these two dimensionless parameters:

εv � 1 and ηv � 1, (4.18)

where the quantity εv and ηv are referred to as the Potential Slow Roll (PSR) parameters

[13, 5] and are defined as

εv =
M2

p

2

(
Vφ
V

)2

, (4.19)

ηv = M2
p

(
Vφφ
V

)
, (4.20)

and Vφφ = (d2V/dφ2). The smallness of these PSR parameters are equivalent to neglecting

the kinetic energy term in the Friedmann equation (4.12) and the acceleration term in the

equation of motion of the scalar field (4.7). The PSR parameters only restrict the form of the

potential V but not the properties of the dynamical solutions. The smallness of εv and ηv

does not restrict the value of the φ̇, which essentially governs the size of the kinetic energy

term. Thus is addition to the smallness of the PSR parameters these require the additional

condition that the scalar field evolves slowly along the attractor solution, determined by the

equation

φ̇ ' −Vφ
3H

. (4.21)
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4.3.3 The Hubble slow roll parameters

If H(φ) is considered as the primary quantity, then the Hubble Slow Roll (HSR) parameters

[13, 5] are a better choice, than the PSR parameters, to describe the slow roll approximation,

as they do not require any additional condition. The dimensionless HSR parameters εH and

ηH are defined as follows:

εH = 2M2
p

(
Hφ

H

)2

, (4.22)

ηH = 2M2
p

(
Hφφ

H

)
. (4.23)

where Hφφ = d2H/dφ2. By using Eqs. (4.3) and (4.16) these two relations can be expressed as

εH =
6M4

pH
2
φ

ρ
=

(
3φ̇2

2ρ

)
= −

(
d lnH

d ln a

)
, (4.24)

ηH = −

(
φ̈

Hφ̇

)
= −

(
d lnH ′

d ln a

)
. (4.25)

The condition that εH � 1 is exactly the the condition required to ignore the kinetic energy

term in the total energy of the scalar field and the second condition. The condition ηH � 1

corresponds to neglecting the acceleration term in the equation of motion of the scalar field

(4.7).

Finally the inflationary condition is ä > 0 is precisely satisfied by εH < 1. Thus it is

evident that all the necessary dynamical information is expressed in the HSR parameters

and it need not be supplemented by additional assumptions.

4.3.4 Solution in the slow roll approximation

The equation of motion (4.7) of the scalar field φ can be rewritten as

3Hφ̇

(
1− φ̈

3Hφ̇

)
= −Vφ. (4.26)

Upon using Eq. (4.24) in the above expression, we get

3Hφ̇
(

1− ηH
3

)
= −Vφ. (4.27)
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Now the smallness of the HSR parameter ηH � 1 , reduces this equation, at the leading

order, to

3Hφ̇ ' −Vφ. (4.28)

Similarly the Friedmann Eq. (4.3) can be written as

H2

[
1− 1

3

(
3φ̇2

2ρ

)]
=
V (φ)

3M2
p

, (4.29)

and using Eq. (4.24) in this expression we arrive at

H2

[
1− 1

3
εH

]
=
V (φ)

3M2
p

. (4.30)

Again, the smallness of the other HSR parameter εH � 1 , reduces this Friedmann equation,

at the leading order, to

H2 ' V (φ)

3M2
p

. (4.31)

In what follows, we shall discuss the solution of the above differential equations to obtain

the expression for the evolution of the scalar field in the slow roll limit [12, 5]. We introduce

the large field model which is defined as

V (φ) = Voφ
n (4.32)

here Vo is a constant and V (φ) is positive for all values of n as we consider only positive scalar

field φ. This is called the large field model because the conditions for the slow roll inflation

(4.18) are satisfied only when the value of the field φ is much larger than Mp. We will now

obtain the solution to the scalar field in this limit for the large field model. Substituting Vφ,

when n 6= 4, in the differential Eq. (4.28) and using Eq. (4.31) we get

φ̇ = −
√
V oφ

n
2
−1Mp√
3

(4.33)

On integrating this equation with the condition, that at initial time ti the value of the scalar

field is φi, we arrive at

φ(2−n
2 )(t) ' φ

(2−n
2
)

i +Mp(t− ti)
√
Vo
3

[
n(n− 4)

2

]
. (4.34)
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Similarly solving the differential Eq. (4.28) and using Eq. (4.31), but this time for n = 4, we

arrive at

φ̇ = −
√
V oφ4Mp√

3
. (4.35)

Again integrating with the same initial conditions, one finds

φ(t) ' φiexp

[
−
√
Vo
3

(4Mp)(t− ti)

]
. (4.36)

In the slow roll approximation, the number of e-folds in the inflationary regime can be ex-

pressed as

N = ln

(
a

ai

)
' −

(
1

M2
p

)∫ φ

φi

dφ

(
V

Vφ

)
, (4.37)

where we have made use of the relation obtained by dividing Eq. (4.31) by Eq. (4.28). For

the large field model (4.32) the evolution of the scalar field is obtained in terms of the e-folds

to be:

φ2(N)− φ2
i (N) = −(2M2

pn)N (4.38)

4.4 The slow roll attractor

Many inflationary models permits attractor solution. In this section we will illustrate this

phenomenon with a specific example. For a scale factor a the amount of expansion during a

small interval of time, dt, can be expressed in terms of e-folds and can be defined as

dN = Hdt (4.39)

With the above relation one can show that, φ̇ = HφN . Further φ̈ = HHNφ+H2φNN .

Replacing the above relations in the equation of motion for the scalar fields φ (4.7) we

get:

φNN +

(
HN

H

)
φN + 3φN +

(
Vφ
H2

)
, (4.40)

Using Friedmann Eq. (4.12) we get

H2

(
3− φ2

N

2

)
= V. (4.41)

and
HN

H
= −φ

2
N

2
. (4.42)
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Substituting these expressions in the Eq. (4.40), we arrive at the equation of motion for the

scalar field to be

φNN +

(
3 +

φ2
N

2

)(
Vφ
V

+ φN

)
= 0. (4.43)

Now for V = 1
2
m2φ2 the above equation reduces to

φNN +

(
3 +

φ2
N

2

)(
2

φ
+ φN

)
= 0. (4.44)

The phase diagram, arrived at numerically, is presented in the Figure 4.2

Figure 4.2: The Figure represents the phase space diagram of the inflaton field φ for the
potential V = 1

2
mφ2 .The field oscillates around the origin and finally goes to zero.The plots

are generated for different initial conditions



Chapter 5

Cosmological perturbation theory

5.1 Introduction to perturbations

Cosmological principle assumes that the universe is homogeneous and isotropic. But a quick

glance around us clearly suggests that this is not really true. However, CMB data indicates

deviations from isotropy and homogeneity are small, i.e. 1 part in 105, in the early stages of

the universe. Thus we shall use perturbative techniques to understand the generation and

evolution of such anisotropies in the early universe.

To begin our discussion we redefine the background metric [12] by introducing pertur-

bations

gµν = g(0)µν (t) + εg(1)µν (t, x) + ε2g(2)µν (t, x) + .... (5.1)

Here g(o)µν (t) is the standard background FRW metric and g
(1)
µν (t, x) is the 1st order perturbed

metric. The quantity ε is just a bookkeeping parameter to specify the order of perturbation.

The dependence of g(1)µν (t, x) on spatial coordinate shows the deviation from the cosmological

principle. Now, since the amplitude of inhomogeneity is small in the early epoch, pertur-

bation is considered only in the linear order. The metric perturbation can be decomposed

based on the local rotation of the spacial coordinates on the hypersurface of constant time.

Thus perturbations can be classified as scalars, vectors and tensors [10].

The vector perturbations are generated from rotational velocity fields and are essentially

spin 1 modes. Tensor perturbations corresponds to gravitational waves and can exist even

in vacuum. Finally, the scalar perturbations are essentially responsible for the generation of

anisotropies and inhomogeneities in the universe. These remain invariant under rotations

and thus have zero spin.

23
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5.1.1 Decomposition theorem

It is evident that the perturbed metric can be decomposed into different types of perturba-

tions. In order to determine the evolution of the perturbed quantities we need to take into

account the perturbed Einstein equation and equate both sides of same order. Therefore, we

may expand the Einstein tensor and the stress energy tensor as [12]

Gµν = G(0)
µν + εG(1)

µν Tµν = T (0)
µν + εT (1)

µν . (5.2)

Then we may identify the terms of the same order as follows

G(0)
µν = 8πGT (0)

µν G(1)
µν = 8πGT (1)

µν . (5.3)

The source of the metric perturbation, i.e. stress-energy tensor can be classified into scalar,

vector and tensor perturbations as well. For example, the perturbed inflaton δφ are scalar

sources but the velocity fields with vortices are the vector sources. The decomposition theo-

rem states that at the linear order the different types of the metric perturbations are affected

only by the source of same type. The scalar, vector, tensor metric perturbations are affected

by scalar, vector and tensor sources, respectively, and thus these perturbations can be stud-

ied independently.

5.1.2 The number of independent degrees of freedom

The perturbed metric tensor g1µν(t, x) can be decomposed as [5]

g(1)µν (t, x) = g
(1)
00 + g

(1)
0i + g

(1)
ij . (5.4)

Here g(1)00 is scalar and can be termed as A. According to the Helmholtz theorem any vector

vi can be decomposed as gradient of a scalar and a divergence free vector, vi = ∂iv+ui where

ui is a divergence free vector, i.e. ∂iui = 0 and v is some scalar. In the similar fashion g(1)0i can

be decomposed as

g
(1)
0i = ∂iB +Qi. (5.5)

whereB is a scalar and ∂iQi = 0. Similarly the tensor perturbation of the spatial components

of the metric tensor, viz. g(1)ij , can be decomposed as

g
(1)
ij = ψδij + (∂iDj + ∂jDi) +

[(
1

2

)
(∂i∂j +j ∂i)−

(
1

3

)
δij∂

k∂k
]
E +Hij, (5.6)
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where once again Di is a divergence free vector and and E is a scalar. The function Hij is a

symmetric tensor satisfying the conditions, δijH
j
i = 0 , ∂jHij = 0.

Thus it is evident that the decomposition of the perturbed metric results in four unknown

scalar function: A, B, ψ and E. It also depends on two divergence free vectors Qi and Di and

a transverse and traceless tensorHij .

Having decomposed the metric we will now calculate the degrees of freedom of the

perturbed symmetric metric tensor g(1)µν (t, x). If we generalise this discussion for (N + 1)

spacetime dimension then we find that the two divergence free spatial vectors Qi and Di,

each having N spatial degrees of freedom, have [2(N − 1)] degrees. The four scalars men-

tioned above add up to 4 degrees of freedom. Lastly the tensorHij , which being symmetric

has N(N + 1)/2 degrees of freedom, but on imposing the traceless (which corresponds to

1constraint) and the transverse condition (Nconstraints) the independent degrees reduce to

N(N + 1)

2
− (N + 1) =

(N + 1)(N − 2)

2
. (5.7)

Upon adding degrees of all the individual components we get [5]

4 + 2(N − 1) +
(N + 1)(N − 2)

2
=

(N + 1)(N + 2)

2
(5.8)

which is essentially the degrees of freedom associated with the perturbed metric g(1)µν (t, x) in

(N + 1) spacetime dimensions.

Let us now understand the degrees of freedom associated with the coordinate transfor-

mations. For the perturbed metric the (N + 1) coordinate transformation can be explicitly

expressed in terms of scalars, say, δt and δx as [5]

t→ t+ δt and xi → xi + ∂iδx. (5.9)

In the same manner there could a coordinate transformation in terms of a divergence free

vector δxi as

t→ t and xi → xi + δxi. (5.10)

Again, let us count the number of independent degrees of freedom associated with the per-

turbed metric tensor, but this time incorporating the coordinate degrees of freedom and

subtracting them from the total number of degrees. Along with the four independent scalar

functionsA,B, ψ and E in the perturbed metric there exist two scalar degrees associated with
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the coordinate transformation. Thus the effective scalar degree reduces to (4− 2) = 2. Also,

the divergence free vector δxi introduced through the coordinated transformation Eq. (5.10)

has (N − 1) degrees. This, when subtracted from the 2(N − 1) degrees of the two diver-

gence free spacial vectors Qi and Di of the perturbed metric, leads to (N − 1) true degrees

of freedom. Adding to this the number of degrees of the tensor perturbation Eq. (5.7) we

obtain

2 + (N − 1) +
(N + 1)(N − 2)

2
=
N(N + 1)

2
(5.11)

which is actually the number of degrees describing the perturbed metric.

5.2 Scalar perturbations

In order to derive the equations governing the evolution of each of the perturbations it is

convenient to work in a particular gauge. In the remaining section we will work in the

longitudinal gauge which essentially corresponds to A ∝ Φ, ψ ∝ Ψ and the other two scalar

are set to zero, i.e. B = E = 0. In this particular gauge, the Friedmaan line element is given

by [10]

ds2 = (1 + 2Φ)dt2 − a2(t)(1− 2Ψ)δijdx
idxj. (5.12)

We can rewrite the metric in terms of the conformal time coordinate as

ds2 = a(η)2[(1 + 2Φ)dη2 − (1− 2Ψ)δijdx
idxj]. (5.13)

The perturbed metric can be represented as

g(1)µν = a2

[
(1 + 2Φ) 0

0 −(1− 2Ψ)δij

]
. (5.14)

Now in order to obtain the inverse metric ie gµν at the linear order we need to solve the

equation

(g(0)µβ + g(1)µβ)(g
(0)
νβ + g

(1)
νβ ) = δµν . (5.15)

where g(0)µβ is the unperturbed Friedmann metric:

g(0)µν =
1

a2

[
1 0

0 −δij

]
. (5.16)
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Substituting this is in Eq. (5.15) and restricting oneself to the linear order, we finally arrive

at the perturbed metric tensor to be

g(1)µν =
1

a2

[
(1− 2Φ) 0

0 −(1 + 2Ψ)δij

]
. (5.17)

In order to arrive at the Einstein equation we shall evaluate the perturbed components of

the Ricci scalar and the scalar curvature, at the linear order, to obtain the expression of the

perturbed Einstein tensor, viz. G(1)µ
ν [8, 10] The perturbed Ricci scalars, considering only

the first order variation is given by

R
(1)
00 = 3

a′

a
Ψ′ + 3

a′

a
Φ′ + ∂i∂iΦ + 3Ψ′′, (5.18)

R
(1)
0i = 2

a′

a
∂iΦ + 2∂iΨ

′, (5.19)

R
(1)
ij =

[
−a
′

a
Φ′ − 5

a′

a
Ψ′ − 2

a′′

a
Φ− 2

(
a′

a

)2

Φ− 2
a′′

a
Ψ

−2

(
a′

a

)2

Ψ−Ψ′′ + ∂k∂kΨ

]
δij + ∂i∂jΨ− ∂i∂jΦ.

(5.20)

The background values of the Ricci scalars are

R
(0)
00 = −3

a′′

a
+ 3

(
a′

a

)2

, (5.21)

R
(0)
ij =

[
a′′

a
+

(
a′

a

)2
]
δij. (5.22)

The perturbed value of the scalar curvature is

R(1) =
1

a2

(
6Ψ′′ + ∂i∂iΦ + 6− a′

a
Φ′ + 18

a′

a
Ψ′ + 12

a′′

a
Φ− ∂i∂iΨ

)
. (5.23)

The background value of the scalar curvature is

R(0) = − 6

a2
a′′

a
. (5.24)

Finally, the Einstein tensor can be evaluated at the first order in the perturbations to be

G(1)0
0 = − 6

a2
H (HΦ + Ψ′) +

(
2

a2

)
∂i∂

iΨ, (5.25)
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G(1)0
i =

2

a2
∂i (HΦ + Ψ′) , (5.26)

G(1)i
j = −

(
2

a2

)[
Ψ′′ +H(2Ψ′ + Φ′) + (2H′ +H2)Φ

+∂i∂
i(Φ−Ψ)

]
δij +

1

a2
∂i∂j(Φ−Ψ),

(5.27)

whereH = a′/a.

5.2.1 The perturbed stress energy tensor

From the previous section we have seen that the stress energy tensor for the inflaton field φ

is given by the expression Eq. (4.8). The corresponding expressions for the background are

also given by Eqs. (4.9) and (4.10)

The perturbed stress energy can be expressed as

T (1)
µν = ∂µδφ∂νφ+ ∂νδφ∂µφ− δgµν

[(
1

2

)
gαβ∂αφ∂βφ− V (φ)

]
−gµν

[(
1

2

)
δgαβ∂αφ∂βφ+ gαβ∂αδφ∂βφ− Vφ(φ)δφ

]
.

(5.28)

In the following section, we shall consider scalar fields and perfect fluids as the only source

of perturbation. The perturbed stress energy tensor associated with the scalar field φ for the

metric Eq (5.13) can be represented as

T (1)0
0 =

1

a2
(φ′δ′φ+ a2Vφδφ− φ′2Φ) = δρ, (5.29)

T (1)0
i =

1

a2
∂i(δφφ

′) = ∂iδσ, (5.30)

T (1)i
j = − 1

a2
(φ′δ′φ− a2Vφδφ− φ′2Φ)δij = −δpδij. (5.31)

Here we have arrived at the mixed form of the stress energy tensor for convenience. The

quantities δρ, δσ and δp are the scalar quantities representing the perturbation in the energy

density, the momentum flux , and the pressure, respectively.

5.2.2 Equation of motion

The scalar field φ does not possess any anisotropic stress. Hence in such a case we have,

Φ = Ψ. Upon imposing this condition on the Einstein tensor, G(1)i
j , we arrive at the corre-

sponding Einstein’s equation, viz. G(1)µ
ν = 8πGT (1)µ

ν , which subsequently leads to the equa-

tion governing the perturbation. The three Einstein equations can be expressed in terms of
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the scalar quantities as

−
(

3

a2

)
H (HΦ + Φ′) +

(
1

a2

)
i

∂iΦ = 4πGδρ, (5.32)

(
1

a2

)
∂i (HΦ + Φ′) = 4πG(∂iδσ), (5.33)(

1

a2

)[
Φ′′ + 3HΦ′ + (2H′ +H2)Φ

]
= 4πGδp. (5.34)

Eqs. (5.32) and (5.34) can be combined to arrive at the following equation governing the

evolution of the Bardeen potential Φ

Φ′′ + 3H(1 + c2A)Φ′ − c2A∂i∂iΦ + [2H′ + (1 + 3c2A)H2]Φ = (4πGa2)δpNA (5.35)

where we have made use of the standard expression

δp− δpNA = c2Aδρ (5.36)

Here δpNA is the non adiabatic pressure perturbation while c2A ≡ p′/ρ′ represents the adia-

batic speed of the perturbation.

5.2.3 Curvature perturbation at super-Hubble scales

At super-Hubble scales the physical wavelengths associated with the perturbations are

much larger than the Hubble radius, which implies that k/H � 1. Here k refers to the

wavenumber of the Fourier modes of the perturbations. We introduce a quantity referred as

the curvature perturbation which is a function of the Bardeen potential and its time deriva-

tive [15, 14]:

R = Φ +

(
2

3

)
H−1Φ′ + Φ

(1 + w)
(5.37)

where w = p/ρ.

Eq. (5.35) can be rewritten in terms of the curvature perturbation defined above. We

make use of the background Friedmann equations (2.15) and (2.16) so as to arrive at [5]

R′k =

(
H

H2 −H′

)[
(4πGa2)δpNA − c2ak2Φk

]
(5.38)
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As stated earlier, on the super-Hubble scales k/H � 1, and thus the c2ak2Φk term in the above

expression can be ignored. Further in the absence of non-adiabatic pressure perturbation,

i.e. δpNA = 0, Eq (5.38) reduces to

R′k = 0. (5.39)

Thus the curvature perturbationRk is conserved in the super-Hubble scales when the modes

are outside the Hubble radius and in the absence of non-adiabatic perturbation.

5.2.4 Equation of motion for the curvature perturbation

The perturbed Einstein equations, viz. Eqs. (5.32), (5.33) and (5.34) can be rewritten using

the expressions of the perturbed stress energy tensor Eqs. (5.29), (5.30) and (5.31) as

−
(

3

a2

)
H (HΦ + Φ′) +

(
1

a2

)
i

∂iΦ =
1

a2
(φ′δ′φ+ a2Vφδφ− φ′2Φ), (5.40)

(
1

a2

)
∂i (HΦ + Φ′) =

1

a2
∂i(δφφ

′), (5.41)(
1

a2

)[
Φ′′ + 3HΦ′ + (2H′ +H2)Φ

]
= − 1

a2
(φ′δ′φ− a2Vφδφ− φ′2Φ). (5.42)

For convenience, let us express the equation of motion of the scalar field Eq. (4.7),and the

energy Eq. (4.9) and pressure density Eq. (4.9) during inflation in terms of the conformal

time coordinates as follows

φ′′ + 2Hφ′ + a2Vφ = 0, (5.43)

ρ =
φ′2

2a2
+ V (φ), (5.44)

p =
φ′2

2a2
− V (φ). (5.45)

We then simplify the perturbed Einstein equations using the above expressions to arrive at

the following equation for the Bardeen potential:

Φ′′ + 3H(1 + c2A)Φ′ − c2A∂i∂iΦ + [2H′ + (1 + 3c2A)H2]Φ = (1− c2A)∂i∂
iΦ. (5.46)

On comparing the this equation with the more general expression for the evolution of the

Bardeen potential Eq. (5.35) we arrive at the relation of the inflaton with the non-adiabatic

pressure perturbation

δpNA = (1− c2A)

(
∂i∂

iΦ

4πGa2

)
. (5.47)
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With this condition, Eq. (5.38) can be simplified to

R′k =

(
H

H2 −H′

)
k2Φk. (5.48)

Now we introduce a quantity z as

z =

(
aφ′

H

)
. (5.49)

On differentiating Eq (5.48) with respect to the conformal time and then simplifying using

the background Friedmann equations (2.15) and (2.16), the Bardeen Eq. (5.46) and the de-

fined quantity z one arrives at the following equation of motion describing the evolution of

the Fourier modes of the curvature perturbation, due to the scalar field φ :

R′′k + 2

(
z′

z

)
R′k + k2Rk = 0. (5.50)

Further on introducing the so called Mukhanov-Sasaki variable v, which is defined as v =

Rz, the above equation reduces to the following differential equation for the Fourier modes

of the variable vk ,

v′′k +

(
k2 − z′′

z

)
vk = 0. (5.51)

5.2.5 The Bardeen potential at super-Hubble scale

In this section, we intend to understand the evolution of the Bardeen potential Φ on the

super-Hubble scales during the radiation and matter dominated epochs. We have seen that,

in the absence of anisotropic stress the Bardeen potentials Φ and Ψ are equal. With this

assumption we are able to arrive at the single equation (5.35) governing the evolution of the

Bardeen potential. This equation can be modified to get a better physical understanding of

the evolution at different epochs. Let us define the variables

u =
a2θ

H
Φ, θ =

(
1

a

)[
H

H2 −H′

] 1
2

. (5.52)

Differentiating both the expressions twice and after suitable manipulations the Bardeen

equation (5.35), in the Fourier space, reduces to

u′′k +

(
c2Ak

2 − θ′′

θ

)
uk = 0. (5.53)
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where we have assumed that the non adiabatic pressure perturbations is absent, i.e. δpNA =

0 . In the super-Hubble limit, i.e. when k2 � θ′′/θ, Eq. (5.53) will have two solutions as

follows

uk(η) ∝ θ(η) and uk(η) ∝ θ(η)

∫ η dτ

θ2(τ)
. (5.54)

Thus at the leading order the general expression is

uk(η) ' Ag(k)θ(η)

∫ η dτ

θ2(τ)
+ Ad(k)θ(η). (5.55)

Here Ag and Ad are arbitary constants associated with the growing and the decaying modes.

These constants are functions of k and their values depend on the initial conditions imposed

at the early epochs. From the above solution of uk and using Eq (5.52), the expression for the

Bardeen potential Φk is given by [12]

Φk(η) ' Ag(k)

(
H
a2

)∫ η dτ

θ2(τ)
+ Ad(k)

(
H
a2

)
. (5.56)

5.2.6 Evolution of Bardeen potential in power law expansion

Let us consider the power law expansion in the conformal time coordinates. It can be ex-

pressed as [5]

a(η) = a0η
(β+1), (5.57)

where β is a constant defined as

β =
1− 2f

f − 1
(5.58)

For the power law expansion, the variable θ reduces to

θ =
1

a(η)

√
β + 1

β + 2
, (5.59)

where we have made use of the relationsH = (β+ 1)/η. In order to determine the evolution

of the Bardeen potential at super-Hubble scales, we use the above relations in Eq. (5.56) . We

obtain that

Φk(η) ' Ag(k)
(β + 2)

(2β + 3)
+ Ad(k)

β + 1

a20η
(2β+3)

(5.60)

This equation can be further simplified by using the state parameter w [3] defined as

w ≡ p

ρ
(5.61)
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On simplifying the above equation using the background Friedmann Eq (2.15) and (2.16)

and the power law expansion (5.57), one obtains

β =

(
1− 3w

1 + 3w

)
. (5.62)

Replacing the value of β in terms of the equation of state parameter w , we get [5]

Φk(η) ' Ag(k)

[
3(1 + w)

5 + 3w

]
+ Ad(k)

[
2

(3w + 1)a2oη
(2β+3)

]
. (5.63)

The first term is actually a constant and it represents the growing mode, whereas the second

term is the decaying mode.

Let us now go on to analyse the evolution during different epochs. Inflation corresponds

to condition −∞ < η < 0 and β ≤ −2, with β = −2 being exponential inflation. Also, radia-

tion and matter dominated eras correspond to β = 0 and β = 2, respectively. In these cases

the super-Hubble limit represents the early time for which η → 0. Therefore the quantity

η(2β+3) tends to zero and the corresponding decaying mode becomes very large in the early

times. Thus in order to have finite expression the decaying mode in the Eq (5.63) has to be

neglected, so that, on super Hubble scales we have

Φk(η) ' Ag(k)

[
3(1 + w)

5 + 3w

]
. (5.64)

It is evident this quantity is strictly zero for w = −1, which corresponds to the cosmological

constant driven expansion. In other words metric perturbations are not produced by cos-

mological constant. On super-Hubble scales, Φk is a constant and thus from Eq (5.37) we

can express the curvature perturbationRk as

Rk '
[

5 + 3w

3(1 + w)

]
Φk ' Ag(k). (5.65)

We have already seen that the curvature perturbationRk is conserved at super-Hubble scales

and Φk is a constant in power law expansion. The Bardeen potential during the matter and

radiation dominated epochs are given by [10]

ΦM
k (η) ' Ag(k)

[
3(1 + wM)

5 + 3wM

]
=

3

5
Ag(k), (5.66)

ΦR
k (η) ' Ag(k)

[
3(1 + wR)

5 + 3wR

]
=

2

3
Ag(k), (5.67)
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where we have made use of the fact that the state parameter during the matter and radiation

dominated epochs are wM = 0 and wR = 1
3

. Thus, if we consider the transition of the

Bardeen potential at the super-Hubble scales from the radiation to matter dominated era we

see that the potential Φ changes by factor of (9/10). In fact, the pattern of the anisotropies

in the CMB and the large scale structures that we observe today, are essentially determined

by the spectrum of the Bardeen potential when the modes enters Hubble radius during the

matter and radiation dominated epochs.

5.3 Vector perturbations

This section we will arrive at the Einstein equations for the vector perturbation. We will

choose a gauge, such that Qi is zero and Di ∝ Di, so that the corresponding line element

associated with the vector perturbation is given by [5]

ds2 = dt2 − a2(t)(δij + (∂iDj + ∂jDi))dxidxj (5.68)

For this metric, the Einstein tensor can be evaluated to be :

G(1)0
0 = 0, (5.69)

G(1)0
i =

1

2
[∂k∂

kḊi], (5.70)

G(1)i
j = −1

2

[
(∂iD̈j + ∂jD̈i) + 3H(∂iḊj + ∂jḊi)

]
. (5.71)

Thus, it is evident that the non zero components of the Einstein tensor are equal to zero in

absence of vector sources. This implies that the metric perturbation Di is zero and hence

vector perturbations are not generated in the absence of vorticity free sources.

5.4 Tensor perturbations

When the tensor perturbations are included, the FRW metric is described by the line ele-

ment [5]

ds2 = [dt2 − a2(t)(δij + hij)dx
idxj] (5.72)

where hij is a traceless, transverse and symmetric tensor and is proportional toHij . The Ein-

stein tensor can be evaluated corresponding to the above line element in the usual manner.
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The component of the first order Einstein tensor are found to be

G(1)0
0 = 0, (5.73)

G(1)0
i = 0, (5.74)

G(1)i
j = −

(
1

2

)[
(ḧij + 3Hḣij)−

(
1

a2

)
∂k∂

khij

]
. (5.75)

Further, in the absence of anisotropic stresses the non zero Einstein equation can be ex-

pressed in the conformal time coordinate to arrive at the following differential equation of

the gravitational waves of amplitude h:

h′′ + 2H− ∂k∂kh = 0 (5.76)

The two types of polarization associated with the gravitational waves are described by the

two degrees corresponding to the traceless and transverse tensor hij .



Chapter 6

Summary

In this review, we have tried to understand the hot big bang model and the observational

evidence that have led to the development of such a cosmological theory. However like ev-

ery other model this too had many drawbacks which were analysed in detail in chapter 3.

We then went on to introduce the inflationary paradigm to resolve the horizon problem as-

sociated with the hot big bang model. This precisely suggested that the universe needs to go

through a phase of accelerated expansion in the early period of the radiation dominated era

such that the primordial fluctuations are intrinsically causal. Following which we discussed

driving inflation using scalar field φ . We had arrived at the condition φ̇2 < V (φ) for infla-

tion, which demands that the potential energy of the scalar field must dominate the kinetic

energy in order to achieve inflation. However further analysis showed that this condition

was necessary but suddenly not sufficient to guarantee inflation. The field φ needs to roll

slowly to achieve a sufficient duration of inflation in order to resolve the horizon problem.

This requires additional condition φ̈ � 3Hφ̇. These conditions were precisely satisfied by

the smallness HSR parameters which we discussed in detail in chapter 4.

Finally, in the fifth chapter, we had reviewed the cosmological perturbation theory. Based

on the decomposition theorem, we had studied the scalar, vector and tensor perturbations

independently. We had arrived at the equation of motion for the Bardeen potential and

discussed its evolution at the super-Hubble scales.
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