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ABSTRACT

We live in a universe where the observed abundances of light elements like helium and deu-

terium cannot be explained by stellar processes. The synthesis of these light elements took

place very early on, about a hundred seconds after the big bang. It is one of the greatest

triumphs of cosmology to account for the present helium and deuterium abundances. Big

bang nucleosythesis is a research area where a lot of theoretical and computational research

has been done yielding experimentally verifiable results, and still research continues to im-

prove accuracy of those results. The aim of this project was to firstly study the basics of

cosmology required to understand the thermal history of the universe and secondly to build

theoretical arguments to explain the presently observed helium abundance.
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Chapter 1

Introduction

1.1 The hot big bang model

The discovery of the cosmic microwave background radiation (CMBR) in 1965 by Penzias

and Wilson led to the acceptance of the big bang theory as the most likely theory of the origin

of our universe. This radiation followed a black-body spectra with a temperature of 2.7 ◦K.

Since this radiation was isotropic (temperature measured in all directions was nearly the

same), its origin could not have been pointed out to a single source, and it is thought to be a

relic of the big bang. Early in the universe, a few seconds after the big bang, photons were in

thermal equilibrium with muons, electrons etc and their anti-particles. Since photons were

strongly interacting with these relativistic particles, the universe would have been opaque

to optical radiation at that time. Only when the universe cooled to temperatures such that

these interactions went out of equilibrium, would photons become free to propagate and the

universe would become transparent. CMBR is thought to be that radiation, only red-shifted.

Based on the relations between cosmological red-shift, the scale factor and temperature of

this radiation, we can conclude that the universe was very hot at the time when radiation

became free to propagate and was even hotter and denser before that.

The importance of giving this information about the hot big bang model is that nucle-

osynthesis took place in a radiation dominated era, in which the most important contribu-

tion to energy density came from photons and other relativistic particles.
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1.2. OUTLINE OF BIG BANG NUCLEOSYNTHESIS (BBN)

1.2 Outline of big bang nucleosynthesis (BBN)

For the purpose of discussing nucleosynthesis, we can start with an initial temperature of

T ' 1012 ◦K, which corresponds to an energy of ∼86 MeV. Since this is very less than the

rest mass of protons and neutrons, these species were already present during this time and

were equally abundant. Equally abundant because the mass difference between them (mn−
mp = 1.293 MeV) is too small compared to the temperature considered and hence energetics

cannot favour protons over neutrons at this temperature.

Till the universe was about a hundred seconds old, neutrons and protons were in equilib-

rium via weak interactions (p+e− 
 n+νe and n+e+ 
 p+νe). The rates of these reactions

are obtained numerically, but in some limit can be approximated as an analytic expression

(see section 3.8). A little later these rates fell below the expansion rate of the universe and

hence ’froze out’. This means that the abundance ratios became fixed as the reactions could

no longer take place. But the abundance of neutron could not remain fixed because of the

mass difference between proton and neutron and hence neutrons started beta-decaying to

protons (n→ p+ e− + νe).

The only thing that could save neutrons was for them to combine with protons and form

nuclei. A big problem called ’deuterium bottleneck’ occurred at that stage (approximately

∼ 180 sec after the big bang). What happened was that, the ’entropy’ (ratio of number

density of photons to the number density of baryons) of the universe was very high and

nucleosynthesis could only proceed via two-body interactions. The only nucleus that could

be formed with two body interactions of proton and neutron was deuteron. The problem is

that the binding energy of deuteron was too low (∼ 2.22 MeV) to survive photo-dissociation.

And unless deuteron formed, the other light nuclei (H3, He3, He4) could not form. Till the

temperature of the universe fell below 0.2 MeV (why not 2.22 MeV is explained in detail in

Chapter 3), deuteron abundance was not large enough to proceed with further nucleosyn-

thesis. This is why this era was termed as ’deuterium bottleneck’. Once deuteron could

form stably (without photo-dissociating), all the remaining neutrons combined to form He4

nucleus (since it is the most stable light nuclei). A little later beryllium and lithium were also

formed. The chain of reactions taking place is as follows :
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1.3. IMPORTANCE OF OBSERVATIONS IN BBN

Figure 1.1: This image has been adapted from ref. [1]

1.3 Importance of observations in BBN

In this section only a very brief outline is provided of the importance of observational tools

in determining the final abundance of light nuclei. For a detailed discussion, see refs. [4]

and [5].

When calculating the abundances of light nuclei, either numerically or analytically, some

parameters have to be specified. These include the lifetime of neutron (τn) and the entropy of

the universe (η) (or baryon density parameter (ΩBh
2)). Another parameter is the relativistic

degrees of freedom (g∗). The observed abundance of helium restricts the number of light

neutrinos to three (see ref. [4]), and hence puts a constraint on g∗. Similarly, observations

of primordial abundances of some light nuclei put a bound on the value of ΩBh
2 and using

that we can arrive at the correct theoretical picture of BBN.

Now, there is a big problem in the determination of primordial abundances of light nu-

clei. Since these elements are also produced in stars, the measured abundance will not be

solely due to BBN, but will have contributions from stellar synthesis. Two things can be

done about this1 : the first is to look at the spectra of very old stellar structures like quasars

1See http : //pdg.lbl.gov/2014/reviews/rpp2014− rev − bbang − nucleosynthesis.pdf
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(which were very abundant in the early universe), so that the spectra of these objects will

allow us to study the abundances of elements in the early universe. The second is to look

at deuterium abundance. This is because the most significant source of deuterium is BBN,

since it is only destroyed inside stars and hence whatever value is obtained for its abundance

will be a lower limit from BBN.

A note on the units : For the purpose of writing this report, natural units were used, i.e

c = ~ = kB = 1.
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Chapter 2

Basic Cosmology

This chapter describes the symmetries and geometry of the Friedmann model which de-

scribes our universe on large scales. It also discusses the evolution of energy density of its

constituents and the various epochs which our universe has gone through. On very large

scales (∼100 Mpc), the universe can be considered to be homogeneous and isotropic. But

this translational invariance is only for the three dimensional space, because the universe is

evolving in time.

As has been observationally confirmed, our universe is expanding. The evolution of the

universe is determined by Einstein’s general theory of relativity. We associate a parameter

called ’scale factor’ with the expansion of the universe. This parameter relates coordinate

distances to physically distances. It is denoted by ’a(t)’.

Another quantity which is directly measurable is defined using the scale factor. It is

called the Hubble parameter and is defined as : H(t) = ȧ(t)/a(t). Hence, H(t) determines

the rate of expansion of the universe. It is a very important quantity in determining the

abundance of various elements in the universe. This is because, for any reaction that is

producing/destroying elements, its rate competes with the expansion rate H(t). The value

of the Hubble parameter today is called the Hubble constant and is denoted by ’H0’. Time

evolution of the Hubble parameter during various epochs can be arrived at by solving the

following equation (the Friedmann equation).

H2(t) =
8πG

3

[
ρ(t) +

ρcr − ρ0
a2(t)

]
(2.1)

Note that, in arriving at the above equation the scale factor today (a0) is taken to be unity. In

the above equation, ρ(t) is the energy density due to all the constituents of the universe at
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2.1. THE FRIEDMANN-ROBERTSON-WALKER (FRW) METRIC

any given time, ρ0 is the energy density today and ρcr is the critical density given by :

ρcr ≡
3H0

2

8πG

Because our universe is dynamic, the energy density ρ(t) continuosly changes in form. There

have been eras of radiation domination and matter domination, where ρ(t) takes different

forms and hence H(t) varies with time. Therefore, ρ(t), in general, is a sum of several differ-

ent components, which may evolve differently with time. Some aspects of cosmology have

been discussed below relevant to BBN.

2.1 The Friedmann-Robertson-Walker (FRW) metric

In this section we will show how the FRW metric can be arrived at purely by symmetry

considerations. Since we have assumed that the universe is homogeneous and isotropic, we

can start by demanding that the universe is spherically symmetric. Since this symmetry is

that of S2, we can write the spatial part of the metric in the following form:

dl2 = λ2(r)dr2 + r2(dθ2 + sin2θdφ2) (2.2)

where an additional parameter called λ(r) is introduced, which depends only on r, so that

later we can use this to arrive at the homogeneity condition. One factor which will make this

metric different from others is that our space-time is not static, it is continously expanding.

Hence the spatial part of the metric should also depend on time. The simplest modification

to Eq (2.2), will be to multiply it’s LHS with a function a2(t), which depends only on time.

This will ensure isotropy and homogeneity at all times.

To arrive at the form of λ(r), we can impose the condition of homogeneity. For a homo-

geneous Universe, the curvature of space should be independent of r. The only scalar which

determines curvature is R (Ricci scalar for the constant time hypersurface), hence we have

to calculate R and demand its independence of r. For the spatial line element above, R is

given by the following:

R =
3

2a2(t)r3
d

dr

[
r2
(

1− 1

λ2(r)

)]
(2.3)

Clearly the only way R can be independent of r is when the LHS is a constant. Hence,

equating it to a constant (say k) and intergrating we get :

r2
[
1− 1

λ2(r)

]
= kr4 + Const.ofIntegration (2.4)
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2.2. GEOMETRY OF THE FRIEDMANN UNIVERSE

Demanding that λ(r) be well behaved at r = 0, we can set the constant of integration to zero.

We then invert the above relation to obtain λ(r) as follows :

λ(r) =
1

1− kr2

the spatial line element then becomes,

dl2 = a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

]
(2.5)

and hence the space-time metric is

ds2 = c2dt2 − a2(t)
[

dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

]
. (2.6)

2.2 Geometry of the Friedmann universe

When written in the above coordinate system (t, r, θ, φ), it is not easy to see from the metric

what values the parameter k should take and what geometry choosing a particular k will

correspond to. Hence, a coordinate transformation of the form is chosen :

χ =

∫
1√

1− kr2
dr

Now the above integration can be performed to give

χ(r) =


sin−1r, if k = 1
r if k = 0
sinh−1r if k = -1

(2.7)

First consider the case in which k = 1. In this case the spatial line element becomes

dl2 = a2(t)[dχ2 + sin2χ(dθ2 + sin2θdφ2)] (2.8)

Hence, k = 1 corresponds to the geometry of spatial hypersurfaces of the Friedmann uni-

verse to be that of S3. Since S3 can be parametrised by three angles and has a finite volume,

such a universe is called closed.

For k = 0, the metric reduces to that of flat space-time and it’s spatial part is given by :

dl2 = a2(t)[dr2 + r2χ(dθ2 + sin2θdφ2)] (2.9)

7



2.3. DYNAMICS OF THE FRIEDMANN UNIVERSE

Now, for k = −1, the spatial metric is given by :

dl2 = a2(t)[dχ2 + sinh2χ(dθ2 + sin2θdφ2)] (2.10)

This has the geometry of a three dimensional hyperboloid and hence has infinite volume and

is termed open.

As has been observationally confirmed by WMAP data, our universe (atleast the observ-

able part) happens to be spatially flat with a 0.4% margin for error (see ref. [9]).

2.3 Dynamics of the Friedmann universe

We can study the evolution of the Friedmann universe by solving the Einstein’s equations

for the metric given by Eq. (2.6) and a given distribution of sources. Since the universe

is homogenous and isotropic, a perfect fluid model is used to desribe the distribution of

matter. Hence the stress energy tensor describing such a model is

T µν = diag[ρ(t),−P (t),−P (t),−P (t)], (2.11)

where ρ(t) is the energy density of the constituents of the universe and P (t) is the pressure.

Einstein’s equations read as follows :

Gµ
ν = 8πGT µν (2.12)

Now from the metric we need to determine Gµ
ν .

2.3.1 Determining Gµ
ν

Gµ
ν is given by

Gµ
ν ≡ Rµ

ν −
1

2
δµνR (2.13)

where Rνα is the Ricci tensor and is defined as:

Rµν ≡ Γλµν,λ − Γλµλ,ν + ΓλλρΓ
ρ
µν − ΓρµλΓ

λ
νρ (2.14)

Using the Friedmann metric (Eq 2.6), the various Christoffel symbols can be calculated

as described below.
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2.3. DYNAMICS OF THE FRIEDMANN UNIVERSE

In general, there will be n2(n+ 1)/2 symbols to be evaluated, but because of the symme-

tries of the space-time, many of these will be zero. In this case of four dimensional space-

time, out of forty Christoffel symbols, only thirteen are non-trivial. These are obtained by

using the following expression for Christoffel symbols :

Γλµν =
gλγ

2
[gγµ,ν + gγν,µ − gνµ,γ] (2.15)

Using this, the following non-trivial Christoffel symbols result (repeated indices to be

summed over and i,j,k run over 1,2,3) :

Γ0
ii =

ȧ

a
gii

Γi0i =
ȧ

a

Γ1
11 =

2kr

1− kr2
Γ1
22 = −r(1− kr2)2

Γ1
33 = −r × sinθ(1− kr2)2

Γ2
21 =

1

r
Γ2
33 = −sinθcosθ

Γ3
13 =

1

r
Γ3
32 = cotθ

(2.16)

Using Eq. (2.14), various components of Rαβ can be calculated as follows :

R00 = Γµ00,µ − Γµ0µ,0 + ΓµµνΓ
ν
00 − Γµ0νΓ

ν
0µ (2.17)

Using the expressions (Eq 2.16 ),

R00 = 0− 3
ä

a
+ 3

(
ȧ

a

)2

+ 0− ȧ

a
Γµ0µ

= −3
ä

a
+ 3

(
ȧ

a

)2

− 3

(
ȧ

a

)2

= −3
ä

a

Now evaluating Rii (We have only shown for R11, the rest will follow similarly):

R11 = Γµ11,µ − Γµ1µ,1 + ΓµµνΓ
ν
11 − Γµ1νΓ

ν
1µ (2.18)
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2.3. DYNAMICS OF THE FRIEDMANN UNIVERSE

Here, simplification is possible because most of the Γ’s vanish, and many others cancel giv-

ing:

R11 = Γ0
11,0 − Γ2

12,1 − Γ3
13,1 + Γ2

21Γ
1
11 + Γ3

31Γ
1
11 − Γ2

12Γ
2
12 − Γ3

13Γ
3
13 (2.19)

Substituting the values for the relevant Γ’s, we get :

R11 = [2ȧ2 + aä+ 2]/(1− kr2)2 (2.20)

Pulling out a factor of a2 and comparing with the metric coefficients, this can be written as :

R11 = −

[
ä

a
+ 2

(
ȧ

a

)2

+ 2
k

a2

]
g11

Similarly this can be shown for the other components also, and the general expression for

Rij then becomes:

Rij = −

[
ä

a
+ 2

(
ȧ

a

)2

+ 2
k

a2

]
gij (2.21)

Now if we try to calculate the Ricci scalarR = gµνRµν , we get the following :

R = −6

[
ä

a
+ 2

(
ȧ

a

)2

+ 2
k

a2

]
(2.22)

Plugging Eqs. (2.21) and (2.22) into Eq. (2.13), we getG0
0 = 3(ȧ2 +k)/a2. And using the value

of G0
0 into Eq. (2.12) and re-arranging, we get the Friedmann equation:(

ȧ

a

)2

=
8πG

3
ρ(t)− k

a2
(2.23)

By defining 3k/8πG as ρcr − ρ0, the above equation becomes the standard Friedmann equa-

tion (Eq. 2.1) . In the same way as k defines the geometry of space, the quantity (ρcr − ρ0)
also defines the geometry of space.

Also using the expression forRij , we can evaluateGi
j and obtain the other three equations

as:

Gi
j =

1

a2
(2aä+ ȧ+ k)δij

2ä

a
+
ȧ2 + k

a2
= −8πGp

(2.24)
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2.4. CONSTITUENTS OF THE UNIVERSE

2.4 Constituents of the universe

Consituents of the observable universe can be divided into two broad categories : Matter

and Radiation. Matter includes non-relativistic particles at any given time. Photons and

other relativistic particles constitute radiation. In the early universe (a few milli-seconds

after the big bang), there were photons, leptons and quarks and their anti-particles. As the

universe expanded and cooled, composite particles started forming (baryons, mesons). All

constituents were in thermodynamic equilibrium with each other initially. The constituents

relevant to the BBN era are : electrons, positron, neutrons, protons, electron neutrinos and

photons.

Neutrons and protons were highly non-relativistic during the BBN, such that their energy

density did not contribute significantly to the total energy density in the Friedmann equation

(see section 2.5.2).

Electrons and positrons were relativistic and contributed to the energy density. They

remained coupled to photons till nucleosynthesis began. As the temperature fell below their

rest mass energy (∼ 0.5 MeV), they annihilated giving their energy to photons.

Neutrinos were ultra-relativistic during BBN, in fact they are relativistic even today,

when the temperature is ∼ 2.7K.

2.5 Evolution of energy density

The reason there is a necessity to discuss the time(or temperature) evolution of energy den-

sity is as follows. As the universe expands, the number density of its constituents is con-

stantly changing. Depending on the temperature of the universe (i.e the temperature of

photons) and their rest mass energies, some particles become non-relativistic, while some

annihilate with their anti-particles to supply energy to the radiation they are interacting with

and others bind together to give complex particles. Another possibility is that of decoupling,

when reactions coupling two or more species go out of equilibrium, and if for a particular

species this was the sole reaction keeping it in equilibrium with the rest of the constituents

of the universe, that species ’decouples’ and its energy density evolves independently of

others.

Hence, energy cannot be simply approximated as a single function of time (temperature)

11



2.5. EVOLUTION OF ENERGY DENSITY

over a large interval of time, but needs to be evaluated for separate time intervals. In general

this requires us to numerically integrate complicated functions of temperature.

Considering a homogenous and isotropic universe, the following relations (between en-

ergy density (ρ), pressure (P )) can be written for the Friedmann model of the universe be-

ginning with the equation of continuity (a small derivation follows) :

The equation of continuity can be derived using the conservation of stress energy tensor

(T µν ). That is, by demanding that it’s covariant derivative vanishes. The covariant derivative

is defined as follows :

T µν;µ = T µν,µ + ΓµαµT
α
ν − ΓανµT

µ
α (2.25)

By setting the covariant derivative of the stress energy tensor to zero, we will arrive at four

equations. The zeroth component gives the continuity equation as :

T 0
0,0 + Γµ0µT

0
0 − Γα0µT

µ
α = 0

∂ρ

∂t
+
ȧ

a
(3ρ+ 3P ) = 0

(2.26)

Multiplying the above equation by a3 and combining it with ρ inside the partial deriva-

tive, we obtain:

a−3
∂(ρa3)

∂t
= −3

ȧ

a
P (2.27)

If we apply this equation to matter, we will obtain the energy density of matter as a function

of scale factor. Since matter effectively exerts no pressure, taking P = 0, we get

∂(ρa3)

∂t
= 0,

implying that

ρm ∝ a−3

Next, applying Eqn (2.27) to radiation and using ρ = 3P , we get

a−3
∂(ρa3)

∂t
= − ȧ

a
ρ

=⇒ ∂ρ

∂t
= −4

ȧ

a

=⇒ ∂(ρa4)

∂t
= 0,

12



2.5. EVOLUTION OF ENERGY DENSITY

which implies that ρ ∝ a−4. Thus the inverse relation between energy density of matter

and radiation with scale factor shows how the energy per particle decreases as the universe

expands.

Now we need to derive the energy density of matter and radiation as functions of tem-

perature. This can be done using principles of equilibrium statistical mechanics. In this, if

we know the distribution function for a particular type of particle, which gives the number

of those particles in any region of phase space, we just need to multiply it with the energy

of particles in that region of phase space and integrate over all momentum values to get the

average energy density :

ρi = gi

∫
d3p

(2π)3
fi(~x, ~p)E(p) (2.28)

We can calculate this expression for different types of particles to obtain the relation between

energy density and temperature.

2.5.1 Radiation

For photons, since they follow Bose Einstein statistics, the distribution function is given by

fγ =
1

e(E−µ)/T − 1

with µ = 0 and because they are massless, they have two degrees of freedom (the two

polarization states), which gives gγ = 2. The energy per photon is simply given as E(p) = p

(in units with c = 1), and the energy density of radiation is evaluated as

ργ = 2

∫
d3p

(2π)3
p

ep/T − 1

which can be evaluated to give :

ργ = gγ
T 4

30
(2.29)

The derivation of the energy density for the case of non-degenerate, relativitic Bose and

Fermi gases is shown below :

The approximations used are :

1. Mass of particle (m) is much less than temperature of universe (T >> m), hence E ' p.

2. In the non-degenerate case, chemical potential of particles may be neglected (µ = 0).

13



2.5. EVOLUTION OF ENERGY DENSITY

The standard expression of energy density (+ sign for fermions and − for bosons):

ρ =
g

2π2

∫ +∞

m

(E2 −m2)1/2E2

exp[(E − µ)/T ]± 1
dE

reduces to the following form under the given approximations :

ρ =
g

2π2

∫ +∞

0

p3

exp[p/T ]± 1
dp (2.30)

We can carry out the bosonic integral using the following trick (perturbative expansion in

e−p/T ) :

1

ep/T − 1
= e−p/T (1− e−p/T )−1

= e−p/T (1 + e−p/T + e−2p/T + ..)

Using this the above inetgral can be converted to a sum over integrals which can be inte-

grated, and the resulting summation turns out to be a Reimann zeta function:

ρ(T ) = Σl
g

2π2
T 4

∫ +∞

0

x3e−(l+1)xdx

= Σl
g

2π2

T 4

(l + 1)4
Γ(4)

=
π2gT 4

30

(2.31)

The fermionic integral need not be evaluated, it is directly obtained from the result of the

bosonic interal usign the following trick. Since,

ζ(n) = 1 +
1

2n
+

1

3n
+ ...

Then, if we are required to evaluate the following summation:

S(n) = 1− 1

2n
+

1

3n
− 1

4n
...

It can be manipulated to arrive at the following :

S(n) =

(
1− 1

2n−1

)
ζ(n)

Since it is S(n) and not ζ(n), that will appear in the fermionic integral, this result is useful.
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2.6. TIME EVOLUTION OF THE SCALE FACTOR

2.5.2 Matter

The contribution to the energy density of non-relativistic particles is exponentially sup-

pressed compared to radiation. It scales as the following :

ρ(t) ∝ e−m/TT 3/2

Hence the energy contribution due to non-relativistic matter can be ignored in comparison

to radiation and relativistic particles.

This form of energy density can be arrived at by the following method. The approxima-

tions used will be:

1. Mass of particle (m) is much greater than the temperature of the universe (m/T >> 1),

hence

(p2 +m2)1/2 ≈ m+
p2

2m

The factor of p2/(2m) is to be retained in the exponential, but neglected otherwise.

2. Maxwell-Boltzmann distribution can be used to describe such particles (because of the

observation : E(∼m) >> T )

The integral to be solved then becomes:

ρ(T ) =
2mg

π
e(−m+µ)/T

∫ +∞

0

p2e−p
2/(2m)dp (2.32)

Which is a straight-forward integral to perform and yields :

ρ(T ) =
mg(mT )3/2

(2π)3/2
e(−m+µ)/T

2.6 Time evolution of the scale factor

We can re-write Eq. (2.23) in the following form

ρa3 =
3

8πG
a((ȧ)2 + k).

Differentiating the above expression we get :

d(ρa3)

dt
=

3

8πG
[ȧ3 + ȧk + 2äȧa] (2.33)
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2.7. DEPENDENCE OF TEMPERATURE ON SCALE FACTOR

Substituting the expression for 2äa from Eq. (2.24) into Eq. (2.33), we obtain:

d(ρa3)

dt
= −3Pa2ȧ

da

da

d(ρa3)

dt
= −3Pa2

da

dt
d(ρa3)

da
= −3Pa2

(2.34)

Hence, in principle, if we know the equation of state (P = P (ρ)), we can solve the above

equation to arrive at the relation between the scale factor (a) and time. Below, for the case of

flat universe (k = 0), using the Friedmann equation, the dependence of a(t) on time is shown

for radiation and matter.

1. Radiation dominated era : The equation of state for photons is : P = ρ/3. Using this

in Eq.(2.34) and using Eq. (2.23), we obtain :

a(t) ∝ t1/2

2. Matter dominated era : The pressure exerted by matter is taken to be zero. Hence the

equation of state is P = 0. Using this we get :

a(t) ∝ t2/3

Another parameter of interest when discussing the evolution of the universe is the density

parameter. It is defined as:

Ω(t) =
ρ(t)

ρcr

Where ρ(t) is the total energy density at any given time and ρcr is the critical density defined

at the beginning of the chapter.

2.7 Dependence of temperature on scale factor

The importance of determining temperature as a function of time or scale factor is realised

in determining the abundances of light nuclei numerically. This is because, the differential

equations that need to be solved for each element are first order in time, but the coefficients

16



2.7. DEPENDENCE OF TEMPERATURE ON SCALE FACTOR

of mass fractions appearing on the LHS (the reaction rates) can only be determined numer-

ically as functions of temperature. Hence a conversion factor is required between time and

temperature.

Once we know the energy density as a function of scale factor and also energy density

as a function of temperature, we can find the dependence of temperature on scale factor. In

the case of radiation (as seen in the preceding section),

ρ(t) ∝ T 4

and

ρ(t) ∝ a−4,

hence

T ∝ a−1.

Now, the key point here is that we do not need to establish the relation between tem-

perature and scale factor for each type of particle present in the universe. This is because

almost all particles (’almost’ because neutrinos decouple very early before nucleosynthesis)

are interacting with radiation and hence almost all constituents (this statement depends on

the era, but for nucleosythesis, the universe is radiation dominated) are in thermal equilib-

rium with photons. But as can be guessed, the fall of radiation energy with temperature

is not strictly 1/T . This is because, whenever particles-antiparticles which were in equilib-

rium with photons annihilate, they supply energy to the photons, thereby slowing the rate

of cooling of photons.

17



Chapter 3

Helium Synthesis

In this chapter arguments leading upto the final abundance of Helium-4(He4) are given. The

first part is a semi-analytic method of arriving at theHe4 abundance and the second part de-

scribes our attempts to arrive at the results purely numerically. Dependance of abundances

of light nuclei on observational constraints is also discussed.

3.1 Broad outline for helium abundance

The analysis starts at an approximate temperature of T ≈ 1012 ◦K. At this temperature neu-

trons and protons would already have been formed ( because T < mpc
2), and were in equi-

librium via the weak interactions n + e+ 
 νe + p and n + νe 
 e− + p. At approximately

109 ◦K, the rate of these reactions falls below the expansion rate of the universe determined

by H = ȧ(t)/a(t). When this happens the reactions cannot proceed fast enough to main-

tain equilibirum and the abundance of neutron and proton is fixed. This abundance is only

changed via the free neutron decay into protons (n
 p+ e− + νe).

As the universe cools, ideally elements should start forming in the decreasing order of

their binding energy (i.e He4 first, then Helium-3 (He3), Tritium (T) and Deuterium (D)).

But due to the low baryon to photon ratio, or the high entropy of the universe, only two

body interactions are energetically favoured and only those interactions proceed with high

enough rates. This means that neutrons and protons cannot directly combine to give a He4

nucleus, but there is a two body interaction network (ref. [1]) which must be followed. The

first step of this synthesis is the formation of the deuteron nucleus. The main contribution

to deuteron abundance is the reaction : p + n 
 d + γ. This reaction stays in equilibrium

18



3.2. SEMI-ANALYTIC DETERMINATION OF HELIUM ABUNDANCE

nearly throughout the nucleosynthesis era, which means that any deuteron produced is sub-

sequently ’photo-dissociated’. Even when the temperature falls below the binding energy

of deuteron, because of the high entropy of the universe, the nucleus is dissociated until the

point at which the temperature drops below nearly a tenth of the binding energy of deuteron

(see section 3.2.2).

Hence around the temperature when deuteron can form, it is possible for the remaining

neutrons at that temperature to become part of the helium-4 nuclei. The aim of this analytic

argument is to deduce that temperature and find the corresponding neturon abundance to

arrive at the lower limit of helium-4 abundance. This argument is semi analytic because the

’freeze-out’ (the temperature at which the weak interactions responsible for neutron-proton

interconversions fall out of equilibrium) mass fraction of neutron is determined numerically.

3.2 Semi-analytic determination of helium abundance

3.2.1 Weak interaction freeze-out and neutron abundance

This section gives the numerical determination of freeze-out temperature and mass fraction

of neutron.
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Figure 3.1: The log scale plot of evolution of neutron abundance (with the decay added)

As can be seen from the second plot, at the onset of freeze-out, the neutron abundance
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Figure 3.2: This plot of neutron abundance showing freeze-out mass fraction (without de-
cay)

in principle becomes fixed at ∼ 0.16, but in reality decays exponentially via beta decay. Its

abundance is determined by the following :

Xn = 0.16e−t/τn (3.1)

where τn ≈ 881 sec. We need to determine the temperature at which deuteron starts forming

stably. Because it is at this temperature, that bound states of neutron and proton do not

dissociate.

3.2.2 Effect of entropy on the temperature at which stable nuclei form

To arrive at the relation between temperature, binding energy and entropy, we have to as-

sume that the reactions coupling concerned nuclei could maintain equilibrium. Since the

temperature concerning nucleosynthesis era is much smaller than the rest mass energy of

nucleons, non-relativistic limit is considered (TNrest ≈ 1014 ◦K and TmaxBBN ≈ 1012 ◦K).

Also, during the nucleosynthesis era, the rates for nuclear reactions should be fast

enough to proceed with the production of light elements, hence nuclear statistical equilib-

rium (NSE) is assumed. In this limit, the number density of a nucleus NA with mass number

A and atomic number Z is given by the following :
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3.2. SEMI-ANALYTIC DETERMINATION OF HELIUM ABUNDANCE

nA = gA ×
(
mAT

2π

)3/2

× e
−(mA−µA)

T

np = 2×
(
mpT

2π

)3/2

× e
−(mp−µp)

T

nn = 2×
(
mnT

2π

)3/2

× e
−(mn−µn)

T

(3.2)

Because the chemical potential is a conserved but unkown quantity for reactions in equi-

librium, the above relation can be inverted to obtain an expression for µA and it can be

eliminated using the following relations :

µA = Z × µp + (A− Z)× µn

⇒ e
µA
T = e

Z×µp+(A−Z)×µn
T

= (e
µp
T )Z × (e

µn
T )A−Z

(3.3)

From Eq. (3.2), substituting the expression for eµA/T , (eµn/T )A−Z and (eµp/T )Z in Eq. (3.3) , we

obtain

nA
gA
×
(

2π

mA × T

)3/2

× eµA/T =

(
np
2
×
(

2π

mp × T

)3/2

× eµp/T
)Z

×(
nn
2
×
(

2π

mn × T

)3/2

× eµn/T
)A−Z (3.4)

For mathematical convenience, we can set mp ≈ mn ≈ mB (since we are only interested

in obtaining the functional dependence of Tnucleosynthesis on BA and η). Also, the binding

energy BA is retained in the exponential but using mA ≈ Zmp + (A−Z)mn ≈ A×mB in the

pre-factors of the exponential and after some algebraic manipulations we obtain :

nA = A3/2 gA
2A
×
(

2π

mBT

)3(A−1)/2

× (np)
Z(nn)A−Z × eBA/T (3.5)

To introduce the baryon to photon ratio, consider the abundance of any nucleus A. XA =

A × nA/nB, where nB is the total baryon number density. And since the baryon to photon

ratio is given by nB/nγ = η, we can write nA = ηnγ XA/A, np = ηnγXp and nn = ηnγXn.

Substituting these expressions for nA, np and nn, we obtain :

XA = A5/2 gA
2A
×
(

2π

mBT

)3(A−1)/2

× (Xp)
Z(Xn)A−Z × (ηnγ)

A−1 × eBA/T (3.6)
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3.3. ARRIVING AT HELIUM ABUNDANCE

Now, substituting the expression for nγ i.e nγ = 2(ζ(3)/π2)T 3, we get :

XA = π(1−A)/2ζA−12(3A−5)/2A5/2 gA
2A
× (

T

mB

)3(A−1)/2 × (Xp)
Z(Xn)A−Z × (η)A−1 × eBA/T (3.7)

Let fA = π(1−A)/2ζA−12(3A−5)/2A5/2 gA
2A

, then the above equation becomes :

XA = fA × (
T

mB

)3(A−1)/2 × (Xp)
Z(Xn)A−Z × (η)A−1 × eBA/T (3.8)

As can be seen, for any A > 1, XA ∝ ηA−1 and η is of the order of 10−10. The only other factor

which can compete with η is eBA/T . This clearly shows that only when the temperature falls

much below BA, will the abundance of the nucleus A, i.e XA be significant enough to affect

nucleosynthesis. The above equation can be expressed in its more common form :

TA ≈
BA

(A− 1)(ln(η−1) + 1.5ln(mB/T ))
(3.9)

And since deuteron formation has to precede the formation of other nuclei, only when

T << 2.2MeV will nucleosynthesis actually begin. After showing the dependence of

Tnucleosynthesis on BA and η, we now have to determine the temperature when deuteron for-

mation rate exceeded its dissociation rate.

3.3 Arriving at helium abundance

According to the binding energy curve, there is no stable element which could be formed

with mass number greater than four during nucleosynthesis era, i.e the elements in the gap

from mass numbers five to eight cannot be synthesised with the high entropy or low baryon

number density during the first three minutes after big bang (The gap is bridged only in

stars, see ref. [3]). This means that around the time when deuteron abundance became high

enough to proceed with nucleosynthesis, almost all free neutrons combined to form the He4

nucleus. This can be seen as :

We know that the mass fraction of any baryon is given as

XA =
nA × A
nB

, (3.10)

where nB is the total baryon number density, nA is the number density for the nucleus A,

and A is the mass number of that particular nuclear species. Also since He4 is the most
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3.3. ARRIVING AT HELIUM ABUNDANCE

stable nucleus formed during BBN, we can assume that all neutrons end up in a helium

nucleus. Thus if the number density of neutrons is nn, then the number density of helium is

proportional to nn/2 (since two neutrons are required to make a helium nucleus). Hence if,

the mass fraction of neutron is

Xn =
nn
nB

, (3.11)

then the mass fraction of helium is :

XHe4 = 4× nHe4

nB
⇒ XHe4 = 4× nn

2nB
⇒ XHe4 = 2Xn (3.12)

Since we know that, before nucleosynthesis began, but after the weak interactions froze-out,

the neutrons were freely decaying into protons and their mass fraction was determined by

the relation given by Eq. (3.1). So, if we determine the temperature at which nucleosynthesis

begins and calculate the neutron abundance at that temperature, we will obtain the helium

abundance.

Now nucleosynthesis will only begin once deuteron abundance is high enough to allow

D + D → p + T and D + D → He3 + n to proceed. This is because the rates of these

reactions depend on the mass fraction of deuteron at any given time. Also the rate of the

only deuteron forming reaction does not depend on its abundance (p + n → D + γ). This

has an important implication. As temperature falls below TD and deuteron can form stably

to increase its abundance, the rates for the two reactions (D + D → p + T and D + D →
n + He3) begin to increase, whereas there is no effect on the rate of production of deuteron

via p+n→ D+γ. This means that as soon as deuteron forms, it is used up in the production

of heavier elements and hence the abundance of deuteron never gets a chance to increase

beyond a certain value (XD ≈ 10−2). The rate per neutron for p+ n→ D + γ is (see ref. [3]):

λD = 2.52 ∗ 104

(
T

1010K

)
(ΩBh

2)sec−1 (3.13)

and equilibrium deuteron abundance is (iff deuteron is in chemical equilibrium, which

it is during the nucleosynthesis era) :

XD = 3
√

2XpXnεe
BD
KBT (3.14)

where ε is given by :

ε = 1.46 ∗ 10−12(
T

1010K
)3/2(ΩBh

2)
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3.4. SENSITITVITY OF ABUNDANCES ON OBSERVATIONAL PARAMETERS

Using ΩBh
2 = 0.02, we can see that 10−13 < XD < 10−3 when 1010 ◦K < T < 109 ◦K, and only

when XD ≈ 10−3−10−2 can Λ be large enough to compete with expansion. At the same time

we need to consider the expansion of the universe. This is determined by the Friedmann

equation (Eq. 3.26). Using Eqs. (3.27) and (3.28), we get :

H(t) =
1

2t

The cross sections for DDpT and DDnHe3 are experimentally determined quantities and

the rates per deutron is given as follows :

〈σ(d+ d→ T + p)v〉 ≈ 1.8× 10−17cm3/sec

〈σ(d+ d→ He3 + n)v〉 ≈ 1.6× 10−17cm3/sec

Using Weinberg’s notation, let the total rate for these two reations be denoted by Λ, then

Λ = (〈σ(d+ d→ T + p)v〉+ 〈σ(d+ d→ T + p)v〉)XDnN

Λ ' 1.9× 107

(
T

1010K

)
(ΩBh

2)XDsec
−1 (3.15)

Since the total rate Λ is proportional to XD, it is increasing. There is a very subtle point to

note here. In general, reaction rates are functions of temperature and as the temperature

falls, the rates decrease, finally becoming equal to the expansion rate, and freeze out occurs.

But here, the rates for nucleosynthesis beginning reactions i.e. DDNHe3 and DDPT are

already below the expansion rate because of its dependence on XD.

As the temperature falls below TD, and deuteron starts forming, this rate actually in-

creases, because Xd increases exponentially with falling temperature. For a brief moment, Λ

becomes equal to H(t) and this marks the beginning of nucleosynthesis.

The temperature at which this happens is ∼ 109 ◦K, which according to Eq. (3.28), hap-

pens at t = 168 seconds. Plugging this into Eq. (3.1), we obtain Xn ≈ 0.132. Hence, the

helium abundance is 2 ∗Xn ' 0.2644. This value is in close agreement with recent observa-

tional estimates which say that helium abundance is around ∼ 0.25 (see ref. [10]).

3.4 Sensititvity of abundances on observational parameters

As expained in Chapter 1 (section 1.5), there are parameters which enter in the BBN light

element abundances calculations. These are : the neutron lifetime (τn), relativistic degrees of
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3.5. ATTEMPTS AT NUMERICAL NUCLEOSYNTHESIS

freedom (g∗) and the entropy of the universe (η). It turns out that the dependence of all light

elements on these parameters is not the same. Here, we will only discuss the dependence of

He4 abundance on these parameters.

1. τn dependence : The rate of the weak interactions keeping neutrons and protons in

equilibrium is inversely proportional to τn. This means that if τn is larger, these rates

will fall below the expansion rate earlier, and freeze out will occur at a higher tempera-

ture. If this happens, then the Xn/Xp ratio will be larger at freeze out. This will lead to

higher mass fraction of He4 finally. So there is a sensitive dependence of XHe4 on τn.

2. g∗ dependence: The expansion rate of the universe H(t) ∝ g∗. Hence, higher g∗ leads

to higher expansion rate, which again causes freeze-out to occur earlier and the same

analysis as above follows.

3. η dependence : In contrast to the dependence of other elemental abundances on η (Eq.

3.9),He4 is not so much effected by the high entropy of the universe. This is because,

at the time of nucleosynthesis, it was the most stable light element, and almost all

neutrons combined to give He4, irrespective of η.

3.5 Attempts at numerical nucleosynthesis

In this section, the processes involved in the BBN and the approximations and assumptions

used for coding are discussed. The set of simultaneous differential equations to be solved

are also listed. There were many computational difficulties while trying to integrate these

equations. Some of these were related to the fact that different elements were in equilibrium

at different time intervals, and for these particular time gaps, subtractive cancellation was

occuring and giving erroneous results. This couldn’t be overcome in Mathematica in any

easy way, because the software didn’t allow the user to manipulate time steps involved in

numerically solving differential equations. There were other issues like convergence issues

because of the presence of some nested numerical integrations.
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3.6. PROCESSES AND REACTION RATES

3.6 Processes and reaction rates

The abundance of all nuclei are calculated in terms of mass fraction defined as :

Xi =
Aini
ρbNA

such that ΣiXi = 1. Here ρb is defined in cgs units as : ρb = 0.93 × 10−3Ωbh
2T 3

9 The neu-

tron abundance curve can be arrived at by using an analytic expression for the rate of weak

reactions, when only the weak reactions were important and only the neutron and proton

abundance was important. The derivation and approximations used are given in the subse-

quent sections.

The relativistic degrees of freedom (g∗) take different values before and after the temper-

ature falls close to or below 1 MeV, since the electron degrees of freedom cannot be counted

as relativistic after T ≈< 1MeV . The neutron and proton curves are obtained in a separate

file starting from T = 130 MeV till T ≈ 3 MeV, using g∗ = 10.75. The program tries to simu-

late BBN from T ≈ 3 MeV onward, using g∗ = 3.36.

This means that the initial adundance for neutron is taken as 0.16, which is its freeze out

value, and decay is added to the differential equation.

The reactions included till now are:

p+ n→ D + γ

p+D → He3 + γ

n+D → T + γ

n+He3 → p+ T

p+ T → He4 + γ

n+He3 → He4 + γ

D +D → n+He3

D +D → p+ T

D +D → He4 + γ

D +He3 → He4 + p

D + T → He4 + n

He3 +He3 → He4 + p+ p

T + T → He4 + n+ n

He3 + T → p+He4 + n
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3.6. PROCESSES AND REACTION RATES

He3 + T → He4 +D

The rates of these reactions in terms of the variable x (discussed in section 3.9) are given

below. The notation used is such that for a reaction 1 + 2 → 3 + 4, [1234] denotes the rate

for forward reaction and [3412] for the backward reaction. Here symbols represent usual

elements, α is for He4.

[pnDγ] = 2.5× 104ρb

[Dγnp] = 2.716× 1011 × [pnDγ]× ρ−1b x−3/2e−1.72233x

[pDHe3γ] = 366.785× ρb(x)x2/3e−1.508x[1 + 0.27616x−1/3 + 20.55x−2/3 + 39.726x−1]

[γHe3pD] = 9.46× 1011 × [pDHe3γ]× ρ−1b x−3/2e−4.25x

[nDTγ] = ρb[75.5 + 18739.1x−1]

TγnD] = 9.46× 1011 × [nDTγ]× ρ−1b × x−3/2e−4.894x

[DDnHe3] = 6.4× 107 × ρb × x2/3e[−1.72768x
1/3] × [1 + 0.24x−1/3 + 3.90x−2/3 + 6.59x−1]

[nHe3DD] = 1.73× [DDnHe3]× e[−2.53x] = [DDpT ]

[pTDD] = 1.73× [DDnHe3]× e[−3.12x]

[He3pT ] = 7.06× 108ρb

[pTnHe3] = [He3pT ]× e[−0.59x]

[pTγa] = 4720.51× e−1.56x1/3 × ρb × x2/3 × [1 + 0.27x−1/3 + 2.83x−2/3 + 5.27x−1 + 11.09x−1/3 +

52.49x−5/3]

[γαPT ] = e[−15.33x] × [pTγa]ρ−1b × x−3/2 × 1.5× 1012

[nHe3αγ] = 89947.8x−1 × ρb
[αγnHe3] = [nHe3αγ]ρ−1b × e[−15.93x] × x−3/2 × 1.51× 1012

[DDαγ] = 3.96ρbx
2/3 × e[−1.73x1/3] × [6.1x−2/3 + 10.27x−1 + 5.62x−4/3 + 24.15x−5/3]

[αγDD] = [DDαγ]ρbx
−1x−3/2e[−18.46x] × 2.61× 1012

[DHe3αp] = 4.48× 107ρbx
3/2 × e[0.1995x]

[αpDHe3] = 5.5× [DHe3αp]× e[−14.21x]

[DTnα] = 2.37× 107 × x3/2 × e[−0.049x]

[αnDT ] = 5.5× [DTnα]× e[−13.61x]

[He3He3αpp] = 1.765× 107 × ρbe−4.968x
1/3 × (1 + 0.083835x−1/3)x2/3

[TTαnn] = 1.81× 108 × ρbe−1.975x
1/3 × (1 + 0.21x−1/3)x2/3

[He3Tαpn] = 8.3× 106 × ρbe−3.13x
1/3 × (1 + 0.133x−1/3)x2/3

[He3TαD] = 5.75× 106 × ρbe−0.1716x
1/3 × (1 + 0.2698x−1/3)
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3.6. PROCESSES AND REACTION RATES

The equations to be integrated are as follows:

dXn

dx
= 1.6x(−(λdXn + [pnDγ]XpXn +

1

2
[nDTγ]XnXD +

1

3
[nHe3αγ])+

1

4
[DDnHe3]XDXD +

1

6
[DTnγ]XDXT )

(3.16)

dXp

dx
= 1.6x(−([npDγ]XnXp +

1

2
[pDHe3γ]XpXD +

1

3
[pTαγ]XpXT+)

+ λdXn +
1

3
[nHe3pT ]XnXHe3 +

1

4
[DDpT ]XDXD +

1

6
[DHe3pα]XDXHe3)

(3.17)

dXD

dx
= 1.6x(−([Dγnp]XD + [pDHe3γ]XdXp + [nDTγ]XnXD +XDXD([DDnHe3]+

[DDpT ])
1

2
[DDαγ]XDXD +

1

3
[DHe3αp]XDXHe3 +

1

3
[DTαn]XDXT ) + 2[pnDγ]XpXn+

2

9
[He3TDα]XHe3XT )

(3.18)

dXT

dx
= 1.6x(−([pTαγ]XpXT +

1

2
[DTαn]XDXT +

1

3
[He3TαD]XHe3XT+

1

3
[TTαnn]XTXT ) +

3

2
[nDTγ]XnXD + [nHe3pT ]XnXHe3 +

3

4
[DDpT ]XDXD)

(3.19)

dXHe3

dx
= 1.6x(−([nHe3pT ]XHe3Xn + [nHe3αγ]XnXHe3 +

1

2
[DHe3αp]XDXHe3+

1

3
[He3He3αpp]XHe3XHe3 +

1

3
[He3Tαpn]XHe3XT +

1

3
[He3TαD]XHe3XT )+

3

2
[pDHe3γ]XpXD +

3

4
[DDHe3n]XDXD)

(3.20)

dXα

dx
= 1.6x(

4

3
[pTαγ]XpXT +

4

3
[nHe3αγ]XnXHe3 + [DDαγ]XDXD+

2

3
[DHe3αp]XDXHe3 +

2

3
[DTαn]XDXT +

4

9
[He3He3αpp]XHe3XHe3+

4

9
[TTαpp]XTXT +

4

9
[He3Tαpn]XHe3XT +

4

9
[He3TαD]XHe3XT )

(3.21)

The differential equation for deuteron cannot be solved directly. This is because deuteron

follows its equilibrium abundance given by :

XD ≈ 10−20 ×XnXpe
1.717x × x3/2
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3.7. APPROXIMATIONS

Hence, it either needs to be solved simultaneously as an algebraic equation using this form

of XD, or by the method given in Wagoner (see ref. [1]), which is to equate
dXD

dt
= 0,

and solve for XD algebraically.

The initial conditions can be taken as (if starting temperature is ≈ 3MeV) : Xn ≈ 0.17,

Xp ≈ 0.83, XHe3 ≈ 10−23, XT ≈ 10−27, Xα ≈ 10−32.

3.7 Approximations

Rates for the weak interactions (n→ p and p→ n interconversions) can either be calculated

by numerical integration of rate given in the above section or by approximating the integral

by an analytic equation under the assumptions of :

1. Non degeneracy of electrons and neutrinos which enables us to use the MB distribu-

tion instead of FD,

2. Mass of electron was neglected under the ultra-relativistic assumption.

Even though temperatures in BBN go below 0.5 MeV, assumption (2) is not violated since it

was only used to derive the freeze-out mass fraction of neutrons and protons which occurred

at 1 MeV. Beyond that neutrons can freely decay into the protons, which is later prevented

by formation of heavy nuclei. Both the rates (actual and approximated) were calculated

and deviations studied. They only differed at low temperatures, clearly showing where the

approximations broke down.

3.8 Derivation of the analytic expression for the n → p and
p→ n rate

The entire derivation is done in natural units because the algebra is messy. The Boltzmann

equation

1

a3
d(na3)

dt
=

∫ +∞

−∞

1

2E1

d3p1

∫ +∞

−∞

1

2E2

d3p2

∫ +∞

−∞

1

2E3

d3p3

∫ +∞

−∞

1

2E4

d3p4 × (2π)4×

δ(E1 + E2 − E3 − E4)× δ3(p1 + p2 − p3 − p4)×

|M|2 × {f3f4(1± f1)(1± f2)− f1f2(1± f3)(1± f4)}

(3.22)
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3.8. DERIVATION OF THE ANALYTIC EXPRESSION FOR THE N → P AND P → N RATE

can be approximated as

1

a3
d(na3)

dt
=

∫ +∞

−∞

1

2E1

d3p1

∫ +∞

−∞

1

2E2

d3p2

∫ +∞

−∞

1

2E3

d3p3

∫ +∞

−∞

1

2E4

d3p4 × (2π)4×

δ(E1 + E2 − E3 − E4)× δ3(p1 + p2 − p3 − p4)× e−(E1+E2)/T ×

{
n3n4

n
(0)
3 n

(0)
4

− n1n2

n
(0)
1 n

(0)
2

}
× |M|2

(3.23)

when the distributions are taken as Maxwell Boltzmann, where, using f(E) → e
µ
T e

−E
T and

the factor

f3f4(1± f1)(1± f2)− f1f2(1± f3)(1± f4)

was written as

e−(E1+E2)/T ×

{
n3n4

n
(0)
3 n

(0)
4

− n1n2

n
(0)
1 n

(0)
2

}
Now, defining a quantity called ’thermally averaged cross-section’ (〈σv〉) as follows :

〈σv〉 =
1

n
(0)
1 n

(0)
2

∫ +∞

−∞

1

2E1

d3p1

∫ +∞

−∞

1

2E2

d3p2

∫ +∞

−∞

1

2E3

d3p3

∫ +∞

−∞

1

2E4

d3p4 × (2π)4×

δ(E1 + E2 − E3 − E4)× δ3(p1 + p2 − p3 − p4)× e−(E1+E2)/T |M|2
(3.24)

Under the approximations we have taken, the rates for both the processes : n+ e+ 
 νe + p

and n + νe 
 e− + p are the same, hence we only need to solve for 〈σv〉 using the above

equation for any one of them. Let us perform the calculation of rate for n+ νe 
 e−+ p. The

rate in this case is defined as : λnp = n
(0)
νe 〈σv〉

Also, under the approximations taken, in the highly non-relativistic limit, E1 ≈ mn and

E2 ≈ pν and mn ≈ mp = m. Similarly we can also take the proton to be non-relativistic and

E4 ≈ mp. Now if we perform the hearvy particle integrals, one over the δ3 function and the

other as it is, we will arrive at a factor of n(0)
n in the numerator which will cancel the n(0)

n in

the denominator of 〈σv〉 and we will be left with :

λnp =
π

4m2

∫
dpν

(2π)3 × 2pν
× |M|2∫

dpe
(2π)3 × 2pe

δ(mn −mp + pν − pe)
(3.25)
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3.9. A NOTE ON INTEGRATION VARIABLE USED

Using the standard expression for |M|2 = 32GF
2(1 + 3gA

2)mp
2pνpe from literature and per-

forming the δ integral over pe, the integral that remains (with respect to pν) is the following:

K ×
∫

dpνpν
2(pν

2 +Q2 + 2Qpν)e
−pν/T

Where K is a factor containing the temperature T and the lifetime of neutron (τn) . It is

trivial to perform this gamma function integration between the limits zero and Q, to yield

the following result:

λnp =
255

τnx5
(12 + 6x+ x2)

where x = Q/T. This result was in reasonable agreement with the results obtained from

numerical integration of reaction rate and was used for the numerical integration purposes.

3.9 A note on integration variable used

Since the rate equations are generally of the form : d(X)
dt

= λ1(T )Y − λ2(T )X , where λ’s are

given as functions of temperature and the integration variable is time, another variable - x,

is used, which is related to T as: x = Q
T

. Time and temperature are related via the Friedmann

equation:

H2(t) =
8πG

3

[
ρ(t) +

ρcr − ρ0
a2(t)

]
Considering the universe to be flat, ρcr = ρ0. Then the Friedmann equation becomes :

H2(t) =
8πG

3
ρ(t) (3.26)

with

ρ(T ) =
π2

30
g∗T 4.

Now, writing H(t) = ȧ/a and a = T0/T , we obtain ȧ/a = −Ṫ /T . Substituting all these

relations in eqn 3, after taking the square root, realising that Ṫ /T < 0, we get

Ṫ

T
= −

(
8π3Gg∗

90

)1/2

T 2 (3.27)

solving which we get (since we are working in natural units (c = ~ = 1), G ≈ 0.015−2sec−2

MeV −4),

t =
1.34

T 2
(3.28)
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3.9. A NOTE ON INTEGRATION VARIABLE USED

and
d

dt
=

1

1.6x
× d

dx
(3.29)

The factor 1.6 is for g∗ = 3.36, which is assumed after weak interactions fall out of equilib-

rium. And since the rates in Wagoner’s paper (ref. [1]) were given in terms of T9 (109◦ K),

these were also converted to x, by the relation T9 = 11.5942 ∗Q/x.
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Chapter 4

Summary

We shall now briefly summarize the contents of this report. We started with understand-

ing the Friedmann Model of the universe and the evolution of energy density. We also

derived the dependence of the scale factor on time during the different epochs of radiation

and matter domination. From this we learnt the expansion rate of the universe. We then

argued about what particles will constitute the universe at any given time (temperature)

and whether they will be relativistic or not. Then a basic chain of reactions was studied to

be able to arrive at the helium abundance. This included deriving the rates of weak inter-

actions that coupled neutrons and protons, and numerically establishing the approximate

’freeze-out’ temperature of these reactions and the abundances of neutrons and protons at

the time of freeze-out. Then the main phenomena which prevented nucleosynthesis from

happening earlier was discussed. This was the ’deuterium bottleneck’ problem. The effect

of the high entropy of the universe on light element abundances was then discussed and us-

ing the arguments of stability of the helium nucleus, its final abundance was deduced. The

dependence of this result on obervationally determined parameters like entropy, relativistic

degrees of freedom and neutron lifetime was discussed. One of the attempts at arriving at

the light element abundances numerically was then briefly discussed.
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