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ABSTRACT

In this project we intend to study a couple of non-perturbative effects in quantum field

theory, specifically, the Vacuum polarization such as the Casimir effect and the Particle pro-

duction such as the Schwinger mechanism. We begin with the study of basic quantum field

theory. Throughout this study, we focus on quantum scalar field, that is, the Klein-Gordon

field. For studying Casimir effect, we first calculate the vacuum fluctuation energy for a

simple system which has one spatial and one time dimension (that is, 1+1 dimensional sys-

tem). This is followed by a more realistic case where we consider a real system which has

three spatial and one time dimension (3+1 dimensional system). To study particle produc-

tion, we consider a scalar quantum field in a classical electromagnetic background. The

vector potential describing the field has spatial time dependence along a single direction.

We quantise the scalar field in this time dependent gauge. We then use special functions

and their properties to calculate the Bogolubov coefficients. From the value of these coef-

ficients we can read off the number of particles produced by the quantum scalar field in a

constant electromagnetic background described by the time dependent gauge.
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Chapter 1

Introduction

We study field theory in the hope that it will shed light on the interactions of the funda-

mental particles of matter. Non-Relativistic quantum mechanics helped us decipher a lot

about atomic physics. However, certain fundamental phenomena, such as the interaction

between atoms and the photon, the anomalous magnetic moment of electrons, pair pro-

duction, spontaneous emission, etc. mark the limitation of this theory. To explain these a

relativistic generalization of non-relativistic quantum mechanics was required.

The relativistic theory of quantum mechanics, though already in existence owing to the

work of Klein and Gordon for scalar fields and Dirac for spinor fields was not sufficient.

The negative energy states and the lack of positive definite probability density proved this.

These were the conditions which demanded a quantum theory of fields.

1.1 Notations

We shall work mostly in (3+1)-spacetime dimensions except for section (2.1) where we con-

sider n-dimensional spacetime and in section (2.2) we work in (1+1) dimensional spacetime.

The metric signature adopted is (+,−,−,−). The Greek indices shall denote the spacetime

coordinates and the Latin indices shall denote the spatial coordinates.

In this notation, the interval between two points in (3 + 1) Minkowski spacetime is

ds2 = dxµdxµ = c2dt2 − dx2 − dy2 − dz2. (1.1)
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1.2. KLEIN-GORDON EQUATION

1.2 Klein-Gordon Equation

Consider a spin 0 particle. The energy-momentum 4-vector of the particle is [1]

pµ = (
E

c
, ~p), (1.2)

where, ~p is the 3-momentum.

The invariant is

p2 = pµpµ =
E2

c2
− ~p.~p = m2c2. (1.3)

Now, as in quantum theory

E −→ i~
∂

∂t
, ~p = −i~~O.

Substituting the operators in equation (1.3), we get in units of ~ = 1, c = 1(
∂2

∂t2
− O2

)
φ(~x, t) +m2φ(~x, t) = 0,

(�+m2)φ(~x, t) = 0, (1.4)

where, � is called the d’Alembertian.

The equation (1.4) is called the Klein-Gordon equation. It is a relativistic version of the

Schroedinger equation. It is also second order in space and time and, therefore, Lorentz

covariant.

1.3 Probability Density

We know that the Klein-Gordon equation is a relativistic equation. So, the probability den-

sity should obey the 4-vector transformation law. So it is defined as,

jµ = (ρ,~j), (1.5)

where ρ is the time component and ~j is the spatial component.

We define, [1]

ρ =
i~
2m

(φ∗(~x, t)
∂φ(~x, t)

∂t
− φ(~x, t)

∂φ∗(~x, t)

∂t
) (1.6)

and
~j = − i~

2m
(φ∗ ~5φ− φ~5φ∗). (1.7)

2



1.4. ENERGY OF THE KLEIN GORDON FIELD

So, from equation (1.5), we get

jµ =
i~
m

[φ∗(~x, t)(
←→
∂0 ,
←→O )φ(~x, t)] =

i~
m
φ∗(~x, t)

←→
∂µφ(~x, t), (1.8)

where,

A
←→
∂µB =

1

2
[A ∂µB − (∂µA)B]. (1.9)

Therefore, we have the continuity equation

∂µj
µ =

i~
2m

[φ∗(~x, t)�φ(~x, t)− φ(~x, t)�φ∗(~x, t)] = 0. (1.10)

The Klein-Gordon equation is a second order differential equation. So, φ(~x, t) and ∂φ(~x,t)
∂t

can be fixed arbitarily at a given time. Hence, ρ as given by equation (1.6) is not positive

definite and can take negative values. So the interpretation of ρ as a probability density and

along with it the interpretation that the Klein-Gordon equation is a single particle equation

with wave function φ(~x, t) also needs to be abandoned. We need to quantise the field and

reinterpret the Klein-Gordon equation as a field equation. [1]

Another problem with the Klein-Gordon equation is that equation (1.3) allows both pos-

itive and negative energy solutions, that is,

E = ±(m2c4 + p2c2)1/2. (1.11)

While the positive solution is as per our expectation, the negative solution for energy bother

us. An interacting particle may exchange energy with its environment and then there is

nothing that can stop it from cascading down to infinite negative energy states, emitting an

infinite amount of energy in the process. [1]

This of course does not happen, and we once again come to the conclusion that the Klein-

Gordon equation cannot be interpreted as a single particle equation.

1.4 Energy of the Klein Gordon Field

In the last section we saw that if we try to interpret the Klein-Gordon equation as a single

particle equation we face difficulties. So let us now consider that the Klein-Gordon equation

describes the field φ(~x, t). Klein-Gordon equation has no classical analogue, so φ(~x, t) is

strictly a quantum field, but, to keep matters simple we treat φ(~x, t) as a classical field. Let

us find the energy of the ’classical’ Klein Gordon field. [1]
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1.5. FIELD QUANTISATION

The energy, is given by

H =

∫
T 00d3x, (1.12)

and the momentum is

Pi =

∫
T 0id3x (1.13)

where

T µν = (∂µφ(~x, t))(∂νφ(~x, t))− gµνL, (1.14)

is the energy momentum tensor and

L =
1

2
(∂µφ(~x, t))(∂µφ(~x, t))− m2

2
φ2(~x, t)

=
1

2
[(∂0φ(~x, t))2 − (~Oφ(~x, t))2 −m2φ2(~x, t)], (1.15)

is the Lagrangian which gives us the Klein Gordon Equation.

Therefore, the HamiltonianH is given by

H =
1

2

∫
d3x[(∂0φ)2 − (~Oφ).(~Oφ)−m2φ2], (1.16)

for a real scalar field φ(~x, t).

So, we can see that in this case the energy, that is, the Hamiltonian is positive definite.

Thus, the scalar field is no longer plagued by the negative energy problem which is present

in the single particle theory.

Now, let us relate the positive definite energy to the energy of the single-particle states.

To do this, we need to quantise the field. Field quantisation forces us to reinterpret the field

as a quantum system instead of a classical system.

1.5 Field Quantisation

We consider the field φ(~x, t) as a Hermitian operator, whose Fourier expansion can be written

as [1]

φ(~x, t) =

∫
d3k

(2π)32ωk
[â(k)e−ikx + â†(k)eikx], (1.17)

where â(k) is called the annihilation operator and â†(k) is called the creation operator and

ωk = (~k2 +m2)1/2.
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1.5. FIELD QUANTISATION

The measure in the integrand is chosen in such a way that it is relativistically invariant.

The quantities k and x are 4-vectors,

k = (k0, ~k)

and

x = (x0, x1, x2, x3).

Here φ(~x, t) plays a role in field theory analogous to that played by the position vector,

~x, in particle mechanics. So, if we define [1]

π(~x, t) =
∂L

∂φ̇(~x, t)
, (1.18)

which is analogous to the momentum operator in particle mechanics, we obtain the relations

[φ(~x, t), π(~x′, t)] = iδ(~x− ~x′),

[φ(~x, t), φ(~x′, t)] = 0,

[π(~x, t), π(~x′, t)] = 0,

(1.19)

called the equal time commutation relations (ETCR), analogous to the commutation relation

in particle mechanics.

So we can write the field expansion equation (1.17) as

φ(~x, t) =

∫
d3k

[(2π)32ωk]1/2
[uk(~x, t)â(k) + u∗k(~x, t)â

†(k)], (1.20)

where

uk(~x, t) =
1

[(2π)32ωk]1/2
e−ikx, (1.21)

are called the positive frequency solutions.

The uk(~x, t) form an orthonormal set [1]∫
u∗k(~x, t)i

←→
∂ 0uk′(~x, t)d

3x = δ3(~k − ~k′). (1.22)

Using equation (1.22), we find the expressions

a(k) =

∫
d3x[(2π)32ωk]

1/2u∗k(~x, t)i
←→
∂ 0φ(~x, t), (1.23)

and

a†(k) =

∫
d3x′[(2π)32ωk]

1/2φ(~x′, t)i
←→
∂ 0uk′(~x

′, t), (1.24)
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1.5. FIELD QUANTISATION

From equations (1.19), (1.20), (1.23) and (1.24) we obtain the commutation relations [1]

[ ˆa(k), â†(k′)] = (2π)32ωkδ
3(~k − ~k′),

[â(k), â(k′)] = 0,

[â†(k), â†(k′)] = 0.

(1.25)

The annihilation and the creation operators â(k) and â†(k) respectively, plays a crucial

role in the particle interpretation of the quantised field theory. We can construct the particle

number operator N̂(k) from the above equations. It has the following form:

â†(k)â(k) = (2π)32ωkδ
3(0)N̂(k). (1.26)

The eigenstate of this operator forms the Fock basis

N̂(k)|n(k)〉 = n(k)|n(k)〉. (1.27)

The commutation relations between the particle number operator and the creation and an-

nihilation operator is as below:

[N̂(k), â†(k)] = [
â†(k)â(k)

(2π)32ωkδ3(0)
, â†(k)]

=
1

(2π)32ωkδ3(0)
([â†(k), â†(k)]â(k) + â†(k)[â(k), â†(k)])

=
1

(2π)32ωkδ3(0)
(2π)32ωkδ

3(0)â†(k)

= â†(k), (1.28)

and,

[N̂(k), â(k)] = [
â†(k)â(k)

(2π)32ωkδ3(0)
, â(k)]

=
1

(2π)32ωkδ3(0)
(â†(k)[â(k), â(k)] + [â†(k), â(k)]â(k))

= − 1

(2π)32ωkδ3(0)
(2π)32ωkδ

3(0)â(k)

= −â(k). (1.29)

Using equations (1.28) and (1.29), we find that,

N̂(k)â†(k)|n(k)〉 = â†(k)N̂(k)|n(k)〉+ [N̂(k), â†(k)]|n(k)〉

= â†(k)N̂(k)|n(k)〉+ â†(k)|n(k)〉

= [n(k) + 1]â†(k)|n(k)〉, (1.30)
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1.5. FIELD QUANTISATION

and

N̂(k)â(k)|n(k)〉 = â(k)N̂(k)|n(k)〉+ [N̂(k), â(k)]|n(k)〉

= â(k)N̂(k)|n(k)〉 − â(k)|n(k)〉

= [n(k)− 1]â(k)|n(k)〉. (1.31)

From the above equations we can conclude that if the fock state |n(k)〉 has eigenvalue n(k),

that is,

N̂(k)|n(k)〉 = n(k)|n(k)〉,

then the state â†(k)|n(k)〉 is an eigenstate of the operator N̂(k) with eigenvalue [n(k) + 1].

Similarly, state â(k)|n(k)〉 is an eigenstate of N(k)with eigenvalue [n(k) − 1]. This justifies

our defining N(k) as the particle number operator or as the density operator.

This also shows us how suitable the name creation and annihilation operator is for â†(k)

and â(k), respectively. From equation (1.30) we can see that the creation operator raises the

particle number by one, that is, it creates a particle. Similarly, from equation (1.31) it is clear

that the annihilation operator lowers the particle number by one, that is, it annihilates a

particle.

If we consider a massless spin 0 particle, then the field energy can be obtained by substi-

tuting equation (1.17) in equation (1.16)

H =

∫
d3k

(2π)32k0

k0
2

[â†(k)â(k) + â(k)â†(k)]

=

∫
d3kk0[N̂(k) +

1

2
], (1.32)

where we have substituted ωk = k0 since m = 0.

And, the field momentum is obtained by substituting equation (1.17) in equation (1.13)

~P =

∫
d3k~k[N̂(k) +

1

2
]. (1.33)

Hence, N̂(k) is clearly the number of particles with momentum ~k and energy k0.

Also,

[â(k) | n(k)〉]†[â(k) | n(k)〉] > 0, (1.34)

as all Hilbert space states must be.

Therefore, evaluating the innerproduct in the above equation, we get,

〈n(k) | â†(k)â(k) | n(k)〉 = n(k)〈n(k) | n(k)〉 > 0. (1.35)
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1.5. FIELD QUANTISATION

So, the number operator eigenvalue n(k) has to be non-negative, that is, positive or zero .

From equation (1.31) we can see that â(k) when acts on state |n(k)〉 reduces it by one.

So continuous application of â(k) on |n(k)〉 will reduce it and can eventually make the state

negative. But as seen from equation (1.35) |n(k)〉 has to be non negative. So, to prevent |n(k)〉
from becoming negative we define a ground state, |0〉, such that,

â(k)|0〉 = 0. (1.36)

As a result,

N̂(k)|0〉 = â†(k)â(k)|0〉 = 0. (1.37)

The ground state, |0〉, also called the vaccum state, contains no particles. Also, the applica-

tion of â†(k) now increases n(k) in steps of 1 starting from 0. So n(k) must be integral.This

provides a complete justification for interpreting N̂(k) as the number operator, and also for

the particle interpretation of the quantised theory.
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Chapter 2

The Casimir Effect

One of the effects arising due to field quantisation is the Casimir effect. It is an experi-

mentally verified prediction of quantum field theory. It is named after the Dutch physicist,

Hendrik Casimir, who formulated the theory in 1948.

The Casimir effect is exhibited when two uncharged conducting plates are placed, a few

nanometers apart, in vacuum. In a classical description, the lack of an external field means

that there is no field between the plates. Therefore, no force should be measured between

them. However, if this field is studied using the QED vacuum of quantum electrodynam-

ics, it is seen that the plates do affect the virtual photons which constitute the field, and

generate a net force, which is either an attraction or a repulsion depending on the specific

arrangement of the two plates. Although Casimir effect can be expressed in terms of virtual

particles interacting with the conducting plates, it is best described and more easily calcu-

lated in terms of the zero-point energy of a quantised field in the intervening space between

the conducting plates. This force has been measured and is a striking example of an effect

captured formally by field quantisation.

2.1 Vacuum energy divergences

Vacuum intutively means the ’absence of anything’ or ’an empty space’. Generally, the vac-

uum state is the state with the lowest possible energy. In case of classical field theory, the

vacuum is a state where the field is absent, that is, φ(~x, t) = 0. However, in quantum field

theory the vacuum state is by no means a simple empty space. It contains virtual particles

that come into existence and then annihilates in a timespan too short to observe. However,
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2.1. VACUUM ENERGY DIVERGENCES

the vacuum state does not contain any physical particles.

Let us calculate the energy and momentum of a quantum field in the vacuum state. For

this purpose, we will consider a n-dimensional spacetime in this section and the vectors are

also n-dimensional.

The momentum of the field in this state is:[2]

〈0|~P |0〉 =

∫
dn−1x〈0|T 0i|0〉 = 0. (2.1)

So, the momentum of the field in the vacuum state is zero. This is as expected, since the lack

of any external field would mean that the net flux is zero.

We also expect it to carry zero energy, as no field quanta are present. However, a simple

calculation shows us that the energy is as follows:[2]

〈0|H|0〉 =

∫
dn−1x〈0|T 00|0〉 =

∑
~k

1

2
ω~k. (2.2)

Now, computing the summation we find that, [2]∑
~k

1

2
ω~k =

1

2
(L/2π)n−1

∫
ω~kd

n−1k

= (L2/4π)(n−1)/2
1

Γ((n− 1)/2)

∫ ∞
0

(k2 +m2)
1
2kn−2dk, (2.3)

which diverges like kn for large k. So, we can see that, the energy of the vacuum state of the

quantum field is not only non zero, rather it is infinite.

The fact that equation (2.3) is divergent apparently indicates that the vacuum contains

an infinite density of energy. The trouble comes from the 1
2
ω~k zero-point energy associated

with each simple harmonic oscillator mode of the scalar field. As ω~k has no upper bound the

zero-point energy can be arbitrarily large. This is a problem which will plague the subject

of quantum fields in curved spacetime throughout. However, in flat spacetime, it is easily

circumvented. Energy as such is not measurable in non-gravitational physics, so we can

rescale or renormalize the zero point energy, even by an infinite amount, without affecting

observable quantities. This may be acomplished by simply neglecting the

1

2

∑
~k

ω~k

10



2.2. CYLINDRICAL TWO-DIMENSIONAL SPACETIME

term in the expression for the Hamiltonian. Or, we can define a normal ordering operation,

denoted by ::, in which one demands that wherever a product of creation and annihilation

operator appears, it is understood that all annihilation operators stand to the right of the

creation operators. Thus, the expression for the Hamiltonian becomes,

: H : =
∑
k

a†kakω~k, (2.4)

and the troublesome 1
2
ω~k term has disappeared. [2]

2.2 Cylindrical two-dimensional spacetime

The simplest generalization of Minkowski space quantum field theory is the introduction of

non-trivial topological structures in a locally flat spacetime. The easiest such generalization

is the R1 × S1 two-dimensional spacetime with closed spatial sections. [2]

x

t

Fig. 1: Two-dimensional spacetime with compact spatial sections (R1×S1). The circumference of the

cylinder is L.

This spacetime has the two-dimensional Minkowski space line element given by

ds2 = c2dt2 − dx2. (2.5)

The spatial points x and x+ L are identical, where L is the periodicity length.

11



2.2. CYLINDRICAL TWO-DIMENSIONAL SPACETIME

In general, the field modes in n-dimension are given by

uk(~x, t) = [2ω(2π)n−1]−
1
2 ei

~k.~x−iωt. (2.6)

So, in this two dimensional spacetime, the field modes are:

uk(x, t) = [2ω(2π)]−
1
2 eikx−iωt. (2.7)

To account for the presence of closed spatial sections, we need to impose the boundary

condition,

uk(x, t) = uk(x+ nL, t). (2.8)

Therefore, the restricted field modes, which is a discrete set, are as follows

uk(x, t) = (2Lω)−
1
2 ei(kx−ωt), (2.9)

where k = 2πn/L, n = 0,±1,±2,±3, .....

Let us restrict our attention to the massless case, that is, ω = |k|. The modes labelled by

positive values of n have the form e[ik(x−t)] and represent waves that move from left to right,

while negative values of n give e[ik(x+t)], which represent waves moving from right to left.

As the field modes are forced into a discrete set, the field energy will be modified. So let

us find the stress-tensor.

In general the stress-tensor operator, Tµν , is given by

Tαβ = φ(~x, t),αφ(~x, t),β − ηαβL

= φ(~x, t),αφ(~x, t),β −
1

2
ηαβη

λδφ(~x, t),λφ(~x, t),δ +
1

2
m2φ2(~x, t)ηαβ, (2.10)

where ’,’ denotes partial derivative. For the massless two-dimensional case, as considered

here, the stress-tensor operator is:

Tαβ = φ(x, t),αφ(x, t),β −
1

2
ηαβη

λδφ(x, t),λφ(x, t),δ. (2.11)

So, in the present two-dimensional case, the Cartesian components of the stress-tensor op-

erator becomes:

Ttt = Txx =
1

2

(
∂φ(x, t)

∂t

)2

+
1

2

(
∂φ(x, t)

∂x

)2

, (2.12)

Ttx = Txt =
∂φ(x, t)

∂t

∂φ(x, t)

∂x
. (2.13)
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2.2. CYLINDRICAL TWO-DIMENSIONAL SPACETIME

Let us define |0L〉 as the vacuum associated with the discrete modes. To find the energy

in the vacuum state, we need to evaluate 〈0L|Ttt|0L〉. Note that, the vacuum state associated

with the discrete modes has the property:

|0L〉 −→ |0〉, (2.14)

as L −→∞ , where |0〉 is the usual Minkowski space vacuum. Now, from equation (2.9)

uk(x, t) = (2Lω)−
1
2 ei(kx−ωt),

and, from equation (1.20),

φ(x, t) =
∑
k

1

(2L|k|)1/2
[âkuk(x, t) + â†ku

∗
k(x, t)], (2.15)

Now, differentiating with respect to t, we obtain

∂φ(x, t)

∂t
=
∑
k

1

(2L|k|)1/2
[âkuk(−iω) + â†ku

∗
k(iω)], (2.16)

Differentiating with respect to x, we obtain

∂φ(x, t)

∂x
=
∑
k

1

(2L|k|)1/2
[âkuk(ik) + â†ku

∗
k(−ik)], (2.17)

Therefore, we find that

Ttt = Txx =
∑
k

|k|
2L

[âkâ
†
k + â†kâk]. (2.18)

So,

〈0L|Ttt|0L〉 =
∑
k

|k|
2L
〈0L|âkâ†k|0L〉

=
1

2L

∑
k

|k|

=
1

2L

n=+∞∑
n=−∞

2πn

L

=
2π

L2

n=∞∑
n=0

n, (2.19)

which is clearly infinite. So, the vacuum state field energy diverges.

Hence, we see that the energy of the R1 × S1 spacetime becomes infinite if we consider all

13



2.2. CYLINDRICAL TWO-DIMENSIONAL SPACETIME

the frequency modes from 0 to ∞. The compactified spatial sections can modify the long

wavelength modes, but the ultraviolet region still diverges.

A similar situation arises in Minkowski spacetime. However, in case of the Minkowski

spacetime while calculating the vacuum energy, the ultraviolet divergence is removed by

normal ordering with respect to the creation and annihilation operators of the Fock space

associated with the modes in equation (2.9). In the case of a general state |ψ〉 in this Fock

space, applying normal ordering we get,

〈ψ| : Tαβ : |ψ〉 = 〈ψ|Tαβ|ψ〉 − 〈0|Tαβ|0〉, (2.20)

so

〈0| : Tαβ : |0〉 = 〈0|Tαβ|0〉 − 〈0|Tαβ|0〉 (2.21)

= 0. (2.22)

Considering Minkowski space as the covering space of R1 × S1, |0L〉 can be considered as a

state in the above Fock space. Hence, the divergence can be removed by applying equation

(2.20) as follows,

〈0L| : Ttt : |0L〉 = 〈0L|Ttt|0L〉 − 〈0|Ttt|0〉

= 〈0L|Ttt|0L〉 − lim
L′−→∞

〈0L′ |Ttt|0L′ 〉. (2.23)

Since both terms on the right-hand side of equation (2.23) are individually divergent, they

cannot be subtracted without careful analysis. So, let us follow a simpler procedure here.

We introduce a cut-off factor e−α|k| into the divergent sums of the type of equation (2.19),

and let α −→ 0 at the end of the calculation. [2]

After introducing the cut-off factor, the sum in equation (2.19) becomes finite and can

be readily performed :

〈0L|Ttt|0L〉 =
2π

L2

∞∑
n=0

ne−α|k| =
2π

L2

∞∑
n=0

ne−
2παn
L . (2.24)

For ease of calculation, let us consider :

2πα

L
= β (2.25)

14



2.3. PARALLEL PLATES IN (3+1) DIMENSIONS

Therefore, the summation in equation (2.24) becomes,

∞∑
n=0

ne−
2παn
L =

∞∑
n=0

ne−nβ = − ∂

∂β

∞∑
n=0

e−nβ

=
1

β2
− 1

12
+
β2

64
+O(β4). (2.26)

Therefore, substituting for β we get,

〈0L|Ttt|0L〉 =
1

2πα2
− π

6L2
+O(α4). (2.27)

A similar expression is obtained for 〈0L′ |Ttt|0L′ 〉 as well. Taking the limit,

lim
L′−→∞

〈0L′ |Ttt|0L′ 〉 =
1

2πα2
. (2.28)

Substituting equation (2.27) and equation (2.28) in equation (2.23) and taking α −→ 0,

we find

〈0L|: Ttt :|0L〉 = − π

6L2
. (2.29)

Since 〈0L|: Ttt :|0L〉 = 〈0L|: Txx :|0L〉, we can write

〈0L|: Txx :|0L〉 = − π

6L2
. (2.30)

Thus, we see that, although 〈Tαβ〉 diverges when evaluated for both states |0〉 and |0L〉,
the difference between the two results is finite. If we require that 〈0|: Tαβ :|0〉 = 0, then

the state |0L〉 contains a finite, negative energy density

ρ = 〈0L|: Ttt :|0L〉 = − π

6L2
, (2.31)

and pressure

p = 〈0L|: Txx :|0L〉 = − π

6L2
. (2.32)

Thus, the cloud of negative vacuum energy is distributed uniformly throughout the

R1 × S1 universe with total energy − π
6L

.

2.3 Parallel plates in (3+1) dimensions

So far we have seen a simple case in (1+1) dimensions, that is, one spatial and one time

dimension. Let us now consider a more realistic case in (3+1) dimensions. To illustrate this,

15



2.3. PARALLEL PLATES IN (3+1) DIMENSIONS

let us consider two large, parallel, perfectly conducting uncharged plates. Let the plates be

squares of size L and let them be placed at a distance a from each other, with a� L.

Now, let us consider the modes inside the volume L2a. Since, the component kz is per-

pendicular to the plate, this component will be quantised, so

kz =
nπ

a
,

where, n = 0, 1, 2, · · · .
The other two components, kx and ky, which are parallel to the plate are continuous. Also,

we should remember that there are two polarization states in general. If, however, kz van-

ishes then only one mode survives.

L

L

Z

x

y

a

Fig. 2: Two parallel plates placed in vacuum a few micrometre apart.

Therefore the zero point energy of the configuration is [3]

E =
∑
k

1

2
~ωk (2.33)

=
~c
2

∑
k

|~kk|

=
~c
2

∫
L2 d

2k‖
(2π)2

[
|~k‖|+ 2

∞∑
n=1

(
k2‖ +

n2π2

a2

)1/2
]
. (2.34)

This expression is infinite. However, we need to subtract the free value which contributes to
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2.3. PARALLEL PLATES IN (3+1) DIMENSIONS

this same volume a quantity,

E0 =
~c
2

∫
L2d2k‖
(2π)2

∫ +∞

−∞

adkz
2π

2
√
k2‖ + k2z . (2.35)

Changing the integration variable from kz to n,

E0 =
~c
2

∫
L2d2k‖
(2π)2

∫ +∞

0

2
a

2π
d
(nπ
a

)
2

√
k2‖ +

(
n2π2

a2

)

=
~c
2

∫
L2d2k‖
(2π)2

∫ +∞

0

2dn

√
k2‖ +

(
n2π2

a2

)
. (2.36)

Therefore, energy per unit surface is the difference between the zero point energy of the

configuration and the free value of the energy divided by the area of the plates, that is,

E =
E − E0

L2
(2.37)

=
~c
2π

∫ ∞
0

d2k‖
(2π)2

([
|~k‖|+ 2

∞∑
n=1

(
k2‖ +

n2π2

a2

)1/2
]
−
∫ ∞
0

2dn

√
k2‖ +

n2π2

a2

)

=
~c
2

∫ ∞
0

2πkdk

(2π)2

(
k + 2

∞∑
n=1

√
k2 +

n2π2

a2
−
∫ ∞
0

2dn

√
k2 +

n2π2

a2

)

=
~c
2π

∫ ∞
0

kdk

(
k

2
+
∞∑
n=1

√
k2 +

n2π2

a2
−
∫ ∞
0

dn

√
k2 +

n2π2

a2

)
. (2.38)

This quantity is apparently still not defined due to ultraviolet (large k) divergences. How-

ever, for wavelength shorter than the atomic size it is unrealistic to use a perfect conductor

approximation. Therefore, let us introduce in the above integral a smooth cut off function

f(k) equal to unity for k . km and vanishing for k � km, where km is of the order of the

inverse atomic size. Let us set u = a2k2/π2, then du = 2 a
2

π2kdk. Therefore,

E =
~c
2π

∫ ∞
0

π2

2a2
du

(
1

2

√
π2u

a2
+
∞∑
n=1

√
π2u2

a2
+
n2π2

a2
−
∫ ∞
0

dn

√
π2u2

a2
+
n2π2

a2

)
f(k)

=
~cπ
4a2

∫ ∞
0

du

(
1

2

√
u

√
π2

a2
+
∞∑
n=1

π

a

√
u+ n2 −

∫ ∞
0

dn
π

a

√
u+ n2

)
f(k)

=
~cπ2

4a3

∫ ∞
0

du

[√
u

2
+
∞∑
n=1

√
u+ n2 −

∫ ∞
0

dn
√
u+ n2

]
f(k)
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2.3. PARALLEL PLATES IN (3+1) DIMENSIONS

=
~cπ2

4a3

∫ ∞
0

du

[√
u

2
f
(π
a

√
u
)

+
∞∑
n=1

√
u+ n2f

(π
a

√
u2 + n2

)
−

∫ ∞
0

dn
√
u+ n2f

(π
a

√
u+ n2

)]
. (2.39)

Let us define,

F (n) =

∫ ∞
0

du
√
u+ n2f

(π
a

√
u+ n2

)
. (2.40)

Therefore, energy per unit surface is

E = ~c
π2

4a3

[
1

2
F (0) +

∞∑
n=1

F (n)−
∫ ∞
0

dnF (n)

]

= ~c
π2

4a3

[
1

2
F (0) + F (1) + F (2) + · · · −

∫ ∞
0

dnF (n)

]
. (2.41)

The interchange of the sum and integral was justified due to the absolute convergence in the

presence of the cutoff function. As n −→∞, F (n) −→ 0. So, we use the Euler-MacLaurin for-

mula to compute the difference between the sum and integral occuring in the above bracket:

[3]

1

2
F (0) + F (1) + F (2) + · · · −

∫ ∞
0

dnF (n) = − 1

2!
B2F

′
(0)− 1

4!
B4F

′′′
(0) + · · · . (2.42)

The Bernoulli numbers Bν are defined through the series

y

ey − 1
=
∞∑
ν=0

Bν
yν

ν!
, (2.43)

with B2 = 1
6
, B4 = − 1

30
, · · · . We have,

F (n) =

∫ ∞
n2

du
√
uf

(
π
√
u

a

)
. (2.44)

Therefore,

F
′
(n) = −2n2f

(πn
a

)
. (2.45)

We assume that f(0) = 1, while its derivatives vanish at the origin, so that F ′(0) = 0,

F
′′′

(0) = −4, and higher derivatives of F are equal to zero. Therefore, all reference to the

cutoff has disappeared from the final result. Hence, energy per unit surface is

E =
~cπ2

a3
B4

4!
= − π2

720

~c
a3
. (2.46)
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2.3. PARALLEL PLATES IN (3+1) DIMENSIONS

So, the force per unit area F is,

F = − π2

240

~c
a4

= − 0.013

(aµm)4
dyn/cm2, (2.47)

where aµm mean that the distance between the two plates is measured in units of micrometre.

The negative sign implies that the force is attractive in nature.

As we can see, the strength of the force varies inversely with the fourth power of the

distance between the plates. So the strength of the force falls off rapidly as the distance

increases. Hence it is measurable when the distance between the plates is extremely small,

say, only a few micrometers. In such range, the force becomes so strong that it becomes the

dominant force between the two uncharged conductors.

To get an estimate of this force let us do an order of magnitude calculation. Let the

distance between the two square plates be 1 µm while the other two dimensions be about

1 cm.

With ~ = 1.055× 10−27gcm2s−1, we get the force per unit area:

F = −(3.142)2 × 1.055× 10−27 × 3× 1010

240× (1× 10−4)4
dyne/cm2

= −0.013dyne/cm2.

Therefore, if two 1 square centimetre conducting plates are placed in vacuum, 1 micrometre

apart, then the force acting between them is about 0.013 dyne and the nature of the force

is attractive. Though this force is pretty small, but it is measurable. In fact, measurement

of this tiny force has been done in the year 1996 by Steven Lamoreaux. His results were in

agreement with the theory to within the experimental uncertainty of 5%. [6]

So to conclude, the Casimir effect is a manifestation of quantum vacuum fluctuation. Ac-

cording to quantum field theory, the vacuum consists of fluctuating electromagnetic waves

of all possible wavelengths which imbue it with a vast amount of energy, normally invis-

ible to us. When two conducting plates are placed parallel to each other in vacuum, then

between the two plates only those unseen electromagnetic waves whose wavelengths fit a

whole number of times into the gap contribute to the vacuum energy. As the gap between

the plates is narrowed, say to a few micrometers, fewer waves can contribute to the vac-

uum energy and so the energy density between the plates falls below the energy density of

the surrounding space. This results into a tiny force between the plates, trying to pull the
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2.3. PARALLEL PLATES IN (3+1) DIMENSIONS

plates together. The force that exists between the two plates is the Casimir force. This force

has been experimentally measured and thus provides proof of existence of the quantum

vacuum.
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Chapter 3

Particle Production

In this section we study particle production in a constant electric field background. Let us

consider two oppositely charged plates placed in vacuum. If σ is the surface charge density

on the plates and d is the separation distance between them, then, a constant electric field

E =
σ

ε0

is produced in the region between them and is directed from the positively charged plate

towards the negatively charged plate. Here ε0 is the permittivity of free space.

Since potential is

V = −
∫ 0

d

~E.d~r,

the electromagnetic potential developed in the empty space between the two plates is

V =
σd

ε0
.

The energy between the two plates can be obtained from the potential as,

E = QV = σAV =
σ2Ad

ε0
,

where A is the surface area of the plates.

Hence, either by increasing the charge density on the plates or by maintaining a greater

distance between the plates or by increasing the surface area of the plates, we can increase

the energy of the field in the space between them. If this energy becomes equal to, say,

2mec
2, where mec

2 is the rest mass energy of an electron, then a virtual electron-positron

pair is created in the vacuum. If the electric field energy is much greater than 2mec
2, then
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3.1. BOGOLUBOV TRANSFORMATION

the virtual electron-positron pair produced will gain kinetic energy from the field and travel

towards the positive and negative plates, respectively. So the particle-antiparticle pair no

longer remain as virtual particles. This is how particle production can take place in vacuum.

3.1 Bogolubov Transformation

We know, the field φ(~x, t) can be expressed as in equation (1.20),

φ(~x, t) =
∑
i

[âiui(~x, t) + â†iu
∗
i (~x, t)]. (3.1)

We can also consider a second complete orthonormal set of modes ūj(~x, t). The field φ(~x, t)

may, then, be expanded in this set as,

φ(~x, t) =
∑
j

[ˆ̄ajūj(~x, t) + ˆ̄a†jū
∗
j(~x, t)]. (3.2)

Corresponding to this decomposition of φ(~x, t) we define a new vacuum state |0̄〉

ˆ̄aj|0̄〉 = 0,∀j (3.3)

and a new Fock space.

As both sets are complete, the new modes ūj(~x, t) can be expanded in terms of the modes

ui(~x, t) in the following manner,

ūj(~x, t) =
∑
i

(αjiui(~x, t) + βjiu
∗
i (~x, t)). (3.4)

Conversely,

ui(~x, t) =
∑
j

(α∗jiūj(~x, t)− βjiū∗j(~x, t)). (3.5)

These relations are known as Bogolubov transformations and the matrices αij , βij are called

Bogolubov coefficients. [2]

The Bogolubov coefficients can be evaluated as:

αij = (ūi, uj) (3.6)

and

βij = −(ūi, u
∗
j). (3.7)
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3.2. PAIR PRODUCTION IN A CONSTANT ELECTRIC FIELD BACKGROUND

3.2 Pair Production in a constant electric field background

In this section, we will study the evolution of a quantum field in a constant electromagnetic

background by the method of normal mode analysis. [4]

We will consider a system, which consists of a complex scalar field φ(~x, t), interacting

with the electromagnetic field having the vector potential Aµ. The action describing the

system is,

S[φ(~x, t), Aµ] =

∫
d4xL(φ(~x, t), Aµ)

=

∫
d4x[(∂µφ(~x, t) + iqAµφ(~x, t))(∂µφ

∗(~x, t)− iqAµφ∗(~x, t))

−m2φ(~x, t)φ∗(~x, t)− 1

4
F µνFµν ], (3.8)

where q and m are the charge and mass associated with a single quantum of the complex

scalar field and Fµν = ∂µAν − ∂νAµ.

We will assume that the electromagnetic field behaves classically, and the complex scalar

field is a quantum field. Therefore, Aµ is just a c-number and φ(~x, t) is an operator valued

distribution.

Varying the action, with respect to the complex scalar field φ(~x, t), we obtain the Klein-

Gordon equation:

(∂µφ(~x, t) + iqAµ)(∂µφ(~x, t) + iqAµ) +m2φ(~x, t) = 0. (3.9)

The electromagnetic background we will consider in this section is a constant electric

field described by the field vector
~E = Ex̂, (3.10)

where, E is a constant and x̂ is the unit vector along the positive x-axis. We will describe this

electromagnetic background using the time dependent vector potential

Aµ1 = (0,−Et, 0, 0). (3.11)

3.3 Bogolubov Coefficients

We will begin by quantising the complex scalar field φ(~x, t) in the time dependent gauge Aµ1 .

Then, we will obtain a complete set of orthonormal solutions which can be identified as pos-
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3.3. BOGOLUBOV COEFFICIENTS

itive and negative frequency solutions in the asymptotic past, that is, at t −→ −∞. We will

identify as positive frequency modes those solutions which have a decreasing phase. In a

similar manner, we can obtain the positive and negative frequency modes in the asymptotic

future, that is, as t −→∞. [4]

Since the vector potential, Aµ1 , is time dependent, a mode which is purely positive fre-

quency in the infinite past will evolve into a combination of positive and negative frequency

modes in the infinite future. This phenomenon can be interpreted as particle production. [4]

Substituting the vector potential in equation (3.11) in the Klein-Gordon equation, equa-

tion (3.9), we obtain that,

(∂µ∂
µ + 2iqAµ∂

µ − q2AµAµ +m2)φ = 0

(∂2t −52 − 2iqEt∂x + (qEt)2 +m2)φ = 0. (3.12)

The mode function for the scalar field φ(~x, t) can be decomposed as uk(t, ~x) ∝ fk(t)e
(i~k.~x), [4]

where ~k ≡ (kx, ky, kz) = (kx, k⊥) The function fk(t) satisfies equation (3.12) :

d2fk
dt2

+ [(k2x + k2⊥) + 2qEtkx + (qEt)2 +m2]fk = 0

d2fk
dt2

+ [m2 + k2⊥ + (kx + qEt)2]fk = 0. (3.13)

For ease of solving, we introduce new variables,

τ =
√
qEt+ (kx/

√
qE) (3.14)

λ = (k2⊥ +m2)/qE (3.15)

ν = −(1− iλ)/2. (3.16)

Substituting these new variables, we get,

d2fk
dτ 2

+ (τ 2 + λ)fk = 0. (3.17)

The solution of a differential equation which has the above form are the parabolic cylinder

function. So, the solutions of equation (3.17) are

Dν∗((1 + i)τ), Dν((1− i)τ), Dν∗(−(1 + i)τ), Dν(−(1− i)τ), (3.18)

where Dν(z) is the parabolic cylinder function. [5]
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From the asymptotic properties of the parabolic cylinder functions, we find that as

τ −→ −∞
Dν(−(1− i)τ) −→ (

√
2|τ |)νe−iπν/4 exp i(τ 2/2) (3.19)

and

Dν∗(−(1 + i)τ) −→ (
√

2|τ |)ν∗e−iπν∗/4 exp−i(τ 2/2). (3.20)

Whereas, as τ −→∞

Dν((1− i)τ) −→ (
√

2|τ |)νe−iπν/4 exp i(τ 2/2) (3.21)

and

Dν∗((1 + i)τ) −→ (
√

2|τ |)ν∗e−iπν∗/4 exp−i(τ 2/2). (3.22)

Since, the positive frequency mode should have a decreasing phase in the τ −→ −∞
limit, it is clear from the asymptotic forms of the parabolic cylinder functions that Dν(−(1−
i)τ) is the positive frequency mode as τ −→ −∞. From the same argument, we can say that

Dν∗((1 + i)τ) is the positive frequency mode in the limit τ −→∞.

Evolving Dν(−(1− i)τ) to τ −→∞, we find that, [5]

Dν(−(1− i)τ) = −

( √
2π

Γ(−ν)

)
eiπ(ν−1)/2Dν∗((1 + i)τ) + eiπνDν((1− i)τ), (3.23)

where Γ(−ν) is the Gamma function.

Therefore, The Bogolubov coefficients are:

α(k) = −

( √
2π

Γ(−ν)

)
eiπ(ν−1)/2 =

(√
2πe−(λ−i)π/4

Γ[(1− iλ)/2]

)
(3.24)

and

β(k) = eiπν = e−(λ+i)π/2. (3.25)

Also,

|α(k)|2 = 1 + exp−(πλ) (3.26)

and

|β(k)|2 = exp−(πλ); (3.27)

Therefore, from equation (3.26) and (3.27) we can clearly see that

|α(k)|2 − |β(k)|2 = 1. (3.28)
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These results imply that the number of particles corresponding to the quantum scalar field

produced by the electric field background is

|β(k)|2 = exp−(π(m2 + k2⊥)/qE). (3.29)

So from equation (3.29) we can see that

β(k) ∝ e−(1/E).

So, when the electric field is zero, the number of particles produced is zero. This is as ex-

pected.
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Chapter 4

Summary

Let us now briefly summarize the content of this report. We started with the interpretation of

the Klein-Gordon equation as a single particle equation, and understood the difficulties that

arises due to such an interpretation. We then quantised the field φ(~x, t) and reinterpreted

the Klein-Gordon equation as a field equation. This was followed by the study of Casimir

effect. To keep matters simple, we first studied Casimir effect by considering a cylinder in

the two-dimensional Minkowski spacetime. From this we saw that the magnitude of the

energy density is proportional to the second power of the circumference of the cylinder.

This study was followed by a more realistic case in (3+1) dimensions. Here, we find that the

magnitude of the force is inversely proportional to the fourth power of the distance between

the two plates. This helps us appreciate the distance scale between the two plates required

to observe the Casimir effect. In both cases, the force is observed to be attractive in nature.

We then studied pair production in a constant electric field background, described by a time

dependent gauge. We begin by quantising the scalar field φ(~x, t) in a time dependent gauge.

We then use special functions and their properties to calculate the Bogolubov coefficients.

From the value of these coefficients we can read off the number of particles produced by

the quantum scalar field in a constant electromagnetic background described by the time

dependent gauge.
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