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ABSTRACT

The 279.6-280.3 nm MgII absorption doublet is found ubiquitously in spectra of distant

quasars. These arise in intervening clouds found mostly in the circumgalactic medium of

galaxies. With the huge number of these absorbers found and catalogued from SDSS, it is

possible to study the distribution of these absorbers along lines of sight of quasars. In this

study, I attempt to use a previously suggested model of gas distribution in dark matter ha-

los to reproduce the observed number density of absorbers in redshift space. Specifically, I

attempt to find the ranges of halo masses that contribute to absorption at different redshifts

between 0.3 and 2.5.
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Chapter 1

Introduction

1.1 Mg II absorbers along QSO sightlines

In the last few decades, there has been a growing number of spectroscopic surveys that have

targeted extremely distant and extremely faint objects. Specifically, the Sloan Digital Sky

Survey (SDSS) has uncovered violently luminous quasi-stellar-objects (QSOs) or quasars at

high redshifts. Upon inspecting these spectra, one finds absorption lines occurring at vari-

ous frequencies. Chiefly, metal ions like Mg+, Fe+ and Si+ [6] from intervening gas clouds

(fig. 1.1) have been found to be ubiquitous in these spectra. Mg II absorption systems are

Figure 1.1: QSOs serve as background continuum sources whose light passes through gas
clouds. Systems of absorption lines are imprinted upon the spectrum at various redshifts
and are detected in spectrometers attached ot telescopes.

known tracers of neutral gas [2][12] and have been found to be associated with the circum-

galactic medium of luminous galaxies [1][15]. Thus, one can indirectly trace out halos of
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CHAPTER 1. INTRODUCTION

bb

Figure 1.2: A typical continuum normalised spectrum observed by the SDSS. Note the metal
ion absorption lines occur at wavelengths very different from their rest frame values because
of the cosmological expansion. Source: R. Srianand, private communication

dark matter by looking at these absorbers. In particular, the Mg II 279.6− 280.3 nm doublet

is of particular interest to the observational community because of its components’ large

oscillator strengths and ubiquity. It is commonly seen in visible and infra-red parts of the

spectrum (fig. 1.2) at redshifts of 0.3-2.5 and thus are popular tools for tracing out gas dis-

tribution around galaxies in that redshift space. The aim of this project is to understand

through modelling the distribution of gas in dark matter halos. Tinker and Chen in their

2008 paper [16] (henceforth TC08) developed models to explain the observed number den-

sity of absorbers and the galaxy-absorber bias. This project takes the so-called Classical

Model from their work and tries to find model parameters that can explain the observed

number density of absorbers in the Zhu-Menard catalogue [19]. Specifically, the aim is to

find the ranges of halo masses that contribute to absorption at each redshift.

This manuscript is thus split into the following sections: Chapter 2 talks about the theory

of cosmological perturbations and formation of structure. This is necessary to understand

the process of halo formation. Chapter 3 discusses the Press-Schechter formalism and cor-

rections to it so as to understand the number density of halos in a given mass range. Chapter

4 describes the data catalogue. Chapter 5 describes the gas distribution model in halos as

proposed in TC08 and finally concludes with the results obtained.
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Chapter 2

Cosmological perturbation theory∗

2.1 Introduction

One of the successes of the general theory of relativity is the explanation of the cosmological

expansion of the universe and the subsequent inference that there was the Big Bang, an event

of unimaginable proportions that "started" the universe. General relativity could describe

cosmological evolution if one could determine the matter distribution of the universe. In

the days before computers, it was very difficult to solve the Einstein equations for a general

case. This did not stop the development of solutions for certain special cases. The uniform,

isotropic universe gives rise to the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric

and subsequently one obtains the Friedmann equations for the evolution of the universe,

specifically, the scale factor a(t). The first Friedmann equation is

H2 = H2
0

[
Ωm0

a3
+

Ωr0

a4
+ ΩΛ0 +

1− Ω0

a2

]
ä

a
= −H2

0

2
[
3P

ρcr0
+ Ω]

(2.1)

Where H is the Hubble parameter, Ωm,Ωr,ΩΛ represent the energy densities in units of the

critical density (ρcr0 = 3H2
0/8πG) of non-relativistic matter, relativistic matter and the cos-

mological constant and Ω = Ωm+Ωr+ΩΛ. The subscripts of 0 indicates the parameters have

been measured at present time.

Observations indicate the universe is indeed homogeneous and isotropic on scales larger

than 100 Mpc. This was fortuitous because then the Friedmann equations could be used

∗This chapter is based on the books by Peebles[10] and Padmanabhan [9] on struture formation in the
universe
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CHAPTER 2. COSMOLOGICAL PERTURBATION THEORY

successfully to describe evolution on such scales. However, on much smaller scales we

do see a lot of inhomogeneity and this requires a different metric. Again, it is possible to

numerically obtain solutions but they are very difficult indeed. Fortunately, observations

come to our rescue here too.

The cosmic microwave background radiation (CMBR) provides very strong evidence

for the big bang model. The CMBR is isotropic to very large extent and the quadrupole

anisotropies have amplitudes of the order of 10 µK as compared to the monopole term of

2.7 K. This means the universe started out with very small anisotropies and thus one can

hope to explore a perturbative approach to describe structure formation in the universe.

2.2 Perturbation theory in the Newtonian Limit

What one would do next would be to write down a perturbed metric in presence of a per-

turbed energy density and proceed to solve Einstein’s equations order by order. This pro-

cess is complicated by the fact that a general coordinate transformation can make the energy

density field arbitrarily large or small. One can work in a specific, presumably physically

well-motivated gauge and solve for all quantities or alternatively, work in a gauge with

simplified equations but make it extremely hard to interpret physically.

Given these seemingly unattractive alternatives, the desperate undergraduate like my-

self is tempted to look for a third. Enter the world of Newtonian perturbation. One needs

to keep in mind that the cosmological structures in mind (like galaxies or clusters) are well

within the Hubble radius (H−1 = 1/100hMpc) the radius of a causally connected sphere in

the universe, and thus cannot be expected to be affected greatly by perturbations in length-

scales larger than the Hubble radius. It is only for these larger lengthscales that general

relativistic effects become important. For within the hubble radius, one can use Newto-

nian perturbation theory without worrying about the concerns of the previous paragraph

because the Newtonian limit defines a unique frame. This also simplifies the equations and

makes it easy to study order by order.

2.2.1 The Newtonian Lagrangian

First we need to define a couple of quantities. Firstly, we need to define our coordinate

system. There is the physical coordinate system where each position is defined by a position

4



2.2. PERTURBATION THEORY IN THE NEWTONIAN LIMIT

vector r and the comoving coordinates r = ax. The density field can be defined as:

ρ(r, t) = ρb(t) + δρ(r, t)

= ρb(t)(1 + δ(r, t))
(2.2)

Here ρb is the background density. This is independent of the spatial coordinates because it

is the solution of the Friedmann equations. δ is defined as the density contrast and is equal

to δρ/ρb.

For any particle in the universe, its physical velocity is u = ṙ where the overdot repre-

sents the total derivative in time. Thus
u = ȧx+ aẋ

= ȧx+ v

Here one can see the distinct components of velocity, the first simply being hubble flow

while the second represents peculiar velocity. For such a particle, the kinetic energy is mu2/2

T =
mu2

2

=
mȧ2x2 +ma2ẋ2 +maȧx.ẋ

2

The lagrangian L = mu2/2−mϕ′ for the scalar potential ϕ′. One can simplify this by recalling

that the equations of motion are invariant under the addition of a total derivative of a scalar

to the lagrangian. Consider the scalar:

Ψ =
maȧx2

2
dΨ

dt
=

mȧ2x2 +maäx2 +maȧx.ẋ

2
The lagrangian is changed to:

L′ = L − dΨ

dt

=
ma2ẋ2 −maäx2

2
−mϕ′

Redefining the potential as ϕ = ϕ′ + aäx2/2

L′ =
mv2

2
−mϕ (2.3)

The Euler Lagrange equations describe the motion of the particles. While deriving them, one

needs to keep in mind that the trajectories must be consistent with the Friedmann equations.

Thus they serve as constraints and one must use Langrange multipliers suitably to obtain

their trajectories.
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CHAPTER 2. COSMOLOGICAL PERTURBATION THEORY

2.2.2 The field equation

The gravitational field is defined by the Poisson equation in the Newtonian limit.

∇2
rϕ

′ = 4πGρ(r, t) (2.4)

Since we’re going to work in comoving coordinates, we need to suitably transform this equa-

tion. These are how the partial derivatives transform:

∇r =
1

a
∇x

∂

∂t r
=

∂

∂tx
−Hx.∇x

(2.5)

Thus the transformed field equation is:

∇2
xϕ

′ = 4πGa2ρ

∇2
x

[
ϕ− aäx2

2

]
= 4πGa2ρ

∇2
xϕ = 4πGa2ρ+ 3aä

(2.6)

2.2.3 In a matter dominated universe

The form of the first Friedmann equation is much simplified if we assume that the universe

is dominated by matter and that the curvature 1 − Ω0 = 0, i.e. a spatially flat universe.

This assumption is justified in the time after radiation domination and before dark energy

domination. Since matter dominance covers a sizeable portion of the universe’s history,

this isn’t a bad assumption at all. In this scenario, the first Friedmann equation reduces to

H2 = H2
0Ωm0/a

3. This implies:

ȧ2

a2
a3 = constant

ȧ2a = constant

2aȧä+ ȧ3 = 0

ä =
−ȧ2

2a

(2.7)

6



2.2. PERTURBATION THEORY IN THE NEWTONIAN LIMIT

The field equation is suitably modified. Substituting 2.7 in 2.6, we get:

∇2
xϕ = 4πGa2ρ− 3

2
ȧ2

= 4πGa2ρ− 3

2

(
a2H2

0Ωm

)
= 4πGa2ρ− 4πGa2ρb

∇2
xϕ = 4πGa2ρbδ

(2.8)

2.2.4 The fluid equations

All the matter present in the universe will behave essentially like a fluid. Thus we can write

the equation of continuity and the Euler equation for it.

∂ρ

∂t r
+∇r.(ρu) = 0 (2.9)

∂u

∂t r
+ (u.∇r)u = −1

ρ
∇rP −∇rϕ

′ (2.10)

As before, we need to recast these equations in terms of comoving coordinates. Using 2.5,

firstly we transform the equation of continuity:

∂ρ

∂t x
−Hx.∇xρ+

1

a
∇x(ρu) = 0

∂ρ

∂t x
−Hρ+

1

a
∇x(ρȧx+ v) = 0

∂ρ

∂t x
+ 3Hρ+

1

a
∇x(ρv) = 0

(2.11)

Then, the Euler equation:

∂u

∂t x
−Hx.∇xu+

(u.∇x)u

a
= −

(
∇xP

ρa
+

∇xϕ
′

a

)
äu+

∂v

∂t x
+

(v.∇x)u

a
= −

(
∇xP

ρa
+

∇xϕ
′

a

)
äu+

∂v

∂t x
+

(v.∇x)(ȧx+ v)

a
= −

(
∇xP

ρa
+

∇xϕ
′

a

)
äu+

∂v

∂t x
+Hv +

(v.∇x)v

a
= −

(
∇xP

ρa
+

∇xϕ
′

a

)
∂v

∂t x
+Hv +

(v.∇x)v

a
= −

(
∇xP

ρa
+

∇xϕ

a

)
(2.12)
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CHAPTER 2. COSMOLOGICAL PERTURBATION THEORY

Notice the replacement of ϕ′ by ϕ in the last step. Henceforth, since we’re working exclu-

sively in the comoving coordinates, we shall drop the subscripts. If we were to recast the

equations in terms of the density contrast, we’d have, in index notation:

∂δ

∂t
+

∂i [(1 + δ)vi]

a
= 0

∂vi

∂t
+Hvi +

vj∂jv
i

a
= −

(
∂iP

aρb(1 + δ)
+

∂iϕ

a

) (2.13)

In obtaining the first equation, we have used the fact that in a matter dominated universe

ρb ∝ a−3 and thus
∂ρb
∂t

+ 3Hρb = 0 (2.14)

One can proceed with further simplification. Multiplying 2.11 by vj and 2.12 with δ and

adding the two, we get:

∂t(ρv
i) + 4Hρvi +

∂j(ρv
jvi)

a
= −1

a
(∂iP + ρ∂iϕ) (2.15)

Here, we are switching to the short-hand notation for partial derivatives. The indices are

representative of spatial coordinates while t stands for differentiation w.r.t. time. It is nice

to note that this is an equation which describes the transfer of momentum per unit volume

in the universe. In fact, if 4Hρvi is brought to the RHS, one can identify the RHS to be some

sort of a source term while the LHS is a total derivative (there is a factor of 1/a extra but that

is because we are working in terms of comoving coordinates). We can recast this in terms of

the density contrast.

∂t[ρb(1 + δ)vi] + 4Hρb(1 + δ)vi +
1

a
[ρb(1 + δ)vjvi] = −1

a
(∂iP + ρb(1 + δ)∂iϕ)

Using 2.14 and 2.13:

H(1 + δ)vi + ∂t[(1 + δ)vi]− ∂tδv
i +

1

a
(1 + δ)vj∂jv

i = − 1

ρba
(∂iP + ρb(1 + δ)∂iϕ)

We can now take its divergence and use 2.13 to obtain:

∂2
t δ + 2H∂tδ =

∇2P

ρba2
+

1

a2
∇.(1 + δ)∇ϕ+

1

a2
∂i∂j[(1 + δ)vivj] (2.16)

This is the exact equation of growth of density perturbations in a flat space, matter domi-

nated universe in the Newtonian limit.

8



2.3. LINEAR PERTURBATION THEORY: THE MESZAROS EQUATION

2.3 Linear perturbation theory: The Meszaros equation

From 2.16 if want to obtain the linear theory, we need to understand the order of different

quantities. From the CMBR, we know the amplitude of the perturbations in the early uni-

verse were of the order of one part in a hundred thousand. Calling this quantity ϵ, we can

see that δ ∝ ϵ in the leading order. This implies ϕ was also linear in the leading order. The

peculiar velocities are also O(ϵ). Thus in 2.16, if one were to collect term only up to a linear

order in ϵ, one would get:

∂tδ +
∇.v

a
= 0

∂2
t δ + 2H∂tδ =

1

a2ρb
(∇2P + ρb∇2ϕ)

Substituting 2.8 in the second equation, we get the Meszaros equation:

∂2
t δ + 2H∂tδ =

1

a2
∇2P

ρb
+ 4πGρbδ (2.17)

Now it is not possible to solve this in the most general case analytically. Therefore, we shall

consider special cases where the solution is tractable.

2.3.1 Solutions to the Meszaros equation

Case 1: P = 0

For this section alone, we shall assume the over-dots represent partial derivatives in time. It

doesn’t really matter in the case of the Hubble parameter or the scale parameter as they are

purely functions of time but the same cannot be said of density contrast.

It is particularly simple to solve the Meszaros equation in the scenario of the background

pressure being zero. Let’s closely examine the equation:

∂2
t δ + 2H∂tδ = 4πGρbδ

Since it is a second order equation, there are two linearly independent solutions. Now, it

is not easy to notice this but H itself turns out to be a solution to this equation. Before we

verify this, we need to keep in mind the second Friedmann equation. In the pressure-less

scenario, it is reduced to:
ä

a
= −4

3
πGρb

9



CHAPTER 2. COSMOLOGICAL PERTURBATION THEORY

Now let us substitute H in the LHS of the Meszaros equation:

= Ḧ + 2HḢ

=
∂

∂t

(
ä

a
− ȧ2

a2

)
+ 2

ȧ

a

(
ä

a
− ȧ2

a2

)
=

...
a

a
− äȧ

a2
− 2ȧä

a2
+

2ȧ3

a3
+

2ȧä

a2
− 2ȧ3

a3

=

...
a

a
− äȧ

a2

=
∂

∂t

(
ä

a

)
= −4

3
πGρ̇b

= −4

3
πG(−3Hρb)

= 4πGρbH = RHS

Now that one solution is obtained, we can obtain the other using the Wronskian. If D were

the other solution,

W = ḢD − ḊH

Ẇ = ḦD − D̈H

= D(4πGρbH − 2HḢ)−H(4πGρbD − 2HḊ)

= 2HW

⇒ W = C/a2

⇒ D = −CH

∫ t

0

da

a3H3

(2.18)

Here C is a constant of integration. Note that we solved a partial differential equation as if it

were an ordinary one. This implies C is really a function of space. However, it is nice to note

whatever the initial spatial dependence of the density contrast, linear perturbation theory

predicts it will be preserved in form and will only get scaled by a function of the scale factor.

The general solution is of course, a linear combination of the two.

10



2.3. LINEAR PERTURBATION THEORY: THE MESZAROS EQUATION

Case II: P ̸= 0

In this case, we can expand the pressure to a linear order in density:

P = Pb +
∂P

∂ρ
(ρbδ)

= Pb + c2sρbδ

⇒ ∇2P = c2sρb∇2δ

cs being the speed of sound here. It is considered to be independent of spatial coordinates

as a zeroth order approximation. Since δ is itself linear, we needn’t consider the fluctuations

in the speed of sound. Putting this in the Meszaros equation:

∂2
t δ + 2H∂tδ =

c2s
a2

∇2δ + 4πGρbδ

This can be solved simply by the use of fourier transform from physical space to momentum

space.

∂2
t δ̃ + 2H∂tδ̃ = δ̃

(
4πGρb − c2s

k2

a2

)
k being the wavevector modulus. This implies each mode evolves independently of the

other. Linearity implies this sort of independence in the fourier space representation. This

equation is now reduced in complexity and one can see the similarity between it and a

damped harmonic oscillator. The key difference being the time dependence of the coefficient

of ∂tδ̃. One would require numerical methods to get the exact solution. However, we can

make guesses regarding the nature of the solution. Key to this lies in the coefficient of δ̃. For

the critical wavelength of

λJ =

√
π

Gρb
cs (2.19)

it would be zero and the solutions would be exponentially growing. This is called the Jean’s

length. It defines a length scale that determines whether or not a perturbation will grow.

All wavelengths above this length scale will experience a growth and all below will oscillate

and get damped in a universe with positive H . The time scale would of course depend on

the value of H itself.

11



CHAPTER 2. COSMOLOGICAL PERTURBATION THEORY

2.3.2 The peculiar velocity

Now that we have solved for the density contrast, the peculiar velocity can be solved for

using the linearised form of the first equation of 2.13.

∂tδ +
∂iv

i

a
= 0

Now δ can be written in terms of the potential as:

δ = − ∇2ϕ

4πGρba2

This implies:

∇.v = ∇.

[
a∂t

(
∇ϕ

4πGρba2

)]
⇒ v = a∂t

(
∇ϕ

4πGρba2

)
+ F where ∇.F = 0

In the regime of linear perturbation, F decays as 1/a. This can be shown by considering

the peculiar acceleration: g = dt(av)/a. The total derivative of v can be replaced with a

partial derivative in time because the term (v.∇)v is second order in v and can be effectively

neglected.

g = ∂tv +Hv = −∇ϕ

a

Now since g itself is curl-less, splitting the equation above into the divergence and

divergence-free parts, we can say:

∂t(aF) = 0

Thus the decay.

2.4 Non-linear perturbations: Spherical collapse

The spherically symmetric case is the easiest to solve for non-linearly. Consider matter at the

boundary of a spherically symmetric, uniformly over-dense region characterised by a den-

sity contrast of δ. If the total mass in the spherical region is M , the gravitational acceleration

experienced by it is:
d2r

dt2
= −GM

r2

12



2.4. NON-LINEAR PERTURBATIONS: SPHERICAL COLLAPSE

Integrating this once give us the statement of conservation of energy.

ṙ2

2
− GM

r
= E (2.20)

The behaviour of matter distribution depends on E. If E is negative, the region is gravi-

tationally bound and if initially expanding, will come to a halt and subsequently contract

eventually. If positive, the sphere continues expanding indefinitely.

To rephrase this condition of collapse, consider beginning at a time when the density

contrast was small. In which case, ṙi ≈ Hiri (the peculiar velocities being very small). The

subscript i here refers to initial conditions. The potential energy per unit mass at this instant

is

U = −4πGρb(1 + δi)r
2
i /3 = −H2

i r
2
iΩi(1 + δi)/2 = −KiΩi(1 + δi)

Where Ki is the initial kinetic energy per unit mass. Thus: E = KiΩi(Ω
−1
i − (1 + δi)). The

condition for collapse, E < 0 becomes: δi > Ω−1
i − 1. In a closed or a flat universe where

Ω ≥ 1, this is satisfied by any over-dense region. In an open universe, there exists a critical

value above which such a condensation will occur.

Consider now, a spherical shell whose maximum radius is rm. Thus,

E = −GM

rm
= − ri

rm
KiΩi(1 + δi)

Or
rm
ri

=
1 + δi

1 + δi − Ω−1
i

The size of rm in units of ri would be very large if the overdensity were just larger than

Ω−1
i − 1. This could mean a very long collapse time.

It is fairly straightforward to integrate 2.20, which we shall do now for the case of nega-

tive E. For the sake of clarity, let’s say E = −A.

ṙ =

√
2GM

r
− 2A

t− ti =

∫ r

ri

√
r′dr′√

2GM − 2Ar′

After substituting r′ = (GM/A) sin2 θ′ and integrating, we get:

t− ti =
GM

A3/2
[(2θ − 2θi)− (sin 2θ − sin 2θi)]

13



CHAPTER 2. COSMOLOGICAL PERTURBATION THEORY

We have a parametric solution. This solution is periodic and one can fix the value of θi

in terms of the initial radius. There are two free parameters, namely the energy and the

initial density contrast. We can re-parametrise these equations in more convenient terms as

follows:

r = X(1− cosΘ), t+ T = Y (Θ− sinΘ), X3 = GMY 2

This is just renaming the constants and setting Θ = 2θ. One can recognise this as the para-

metric equation for a cycloid.

1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

(t+T)/Y

r
/X

Figure 2.1: The temporal evolution of the radius of a spherically symmetric perturbation. The parameter
Θ goes from an arbitrary initial point (2 in this case) to 2π. Of course, if Θ were to exceed that, this would
periodically repeat. One needs to take into account the pressure experienced by matter at larger densities to
effectively halt the gravitational collapse.

In these terms, the maximum radius would be 2X and thus

X =
ri
2

1 + δi

1 + δi − Ω−1
i

Y =
1 + δi

2HiΩ
1/2
i (1 + δi − Ω−1

i )3/2

14



2.4. NON-LINEAR PERTURBATIONS: SPHERICAL COLLAPSE

2.4.1 Flat background universe

In this case, the equations are simplified on the account of Ωi = 1. Thus,

r =
ri
2

(
1 + δi
δi

)
(1− cosΘ)

t+ T =
1

2Hi

1 + δi

δ
3/2
i

(Θ− sinΘ)

At t = ti, cosΘi = (1− δi)/(1+ δi). Going by our assumption that δi ≪ 1, cosΘi ≈ 1− 2δi. Or

Θ2
i ≈ 4δi. This means

Hi(ti + T ) =
2

3
(1 + δi)

Since the background universe in a matter dominated context obeys Hiti = 2/3, it follows

that T = 2δi/3Hi or T/ti = δi ≪ 1.

To understand the evolution of the density contrast, one must understand the evolution

of the background density as well. In the matter dominated universe,

a ∝ t2/3; ρb =
1

6πGt2

∴ 1 + δ =
ρ

ρb
=

3M

4πX3

6πGY 2(Θ− sinΘ)2

(1− cosΘ)2

δ =
9(Θ− sinΘ)2

2(1− cosΘ)3
− 1

(2.21)

In the low Θ limit,

δ =
9

2

(Θ
3

3!
− Θ5

5!
+O(Θ7))2

(Θ
2

2!
− Θ4

4!
+O(Θ6))3

− 1

=

(
1− Θ2

10
+O(Θ4)

)(
1 +

Θ2

4
+O(Θ4)

)
− 1

=
3Θ2

20
+O(Θ4)

t =
YΘ3

6
+O(Θ5)

∴ δ ≈ 3

20

(
6t

Y

)2/3

Since Hi = 2/(3ti) for a flat, matter dominated universe,

δ = δi

[
3

5

(
t

ti

)2/3
]
∝ a
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CHAPTER 2. COSMOLOGICAL PERTURBATION THEORY

This is exactly what one would get if one were to pop H = 2/(3t) in 2.18. Thus this is

consistent with the linear solution in the case where there is no peculiar velocity.

t/Y = 2π corresponds to the case when the spherical overdensity collapses to a single

point. This put in the expression for δ in the linear limit yields δ ≈ 1.69. This defines a

density scale for collapse.

2.4.2 Virialisation

It can be estimated that the density contrast at turn-around would be nearly 4.6. This clearly

lies in the non-linear regime. Now of course, the overdensity won’t collapse to a singularity

because the assumption that the peculiar velocities are negligible would break down at some

point and this would mean the matter would exert a counter-acting pressure and the matter

would come to an equilibrium.

Equilibrium is reached via a process known as violent relaxation. This requires scattering

of particles around small scale fluctuations and reach virial equilibrium in essentially the

dynamical timescale, i.e. the time it takes for a particle to cross the spherical overdensity.

One can compute something called the virial velocity and virial radius, which are de-

fined through the energy equation at virial equilibrium. When the perturbation reached its

maximum radius, all energy was in the form of potential energy. At virial equilibrium,

K = −E

=
3GM2

5rm
2K = −U

Mv2vir =
3GM

5rvir

vvir =

(
6GM

5rm

)1/2

; rvir = rm/2

Once the system is virialised, its density doesn’t change and the density contrast simply

evolves due to the background expansion. The density is:

ρcoll ≈ 23ρm = 8× 5.6ρb(tm) = 170ρb(tcoll)
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Chapter 3

Halo mass function

3.1 Press-Schechter Formalism

In the conventional (by the standards of 1973) theory of cosmological perturbations, struc-

tures arose from condensations of mass from large lengthscales. That is, mass aggregates on

larger length scales before gravitation took it further and made denser and denser objects:

Large clouds condensed to small clouds and yet smaller ones. While this seems to explain

the formation of large objects of the order of 1015M and not on the scales of stars.

The way out of this proposed by Zeldovich [18] was to develop non-linear, pancake-like

structures that then developed shocks and fragmented to form lumpier objects.

Press and Schechter in their 1973 paper [11] proposed a bottom up approach, citing the

possibility of statistical fluctuations of matter density growing in size due to self gravitation.

That is, starting from point masses, fluctuations could grow in size due to matter aggregat-

ing. What they obtained as a result was the distribution of objects with a mass in the range

[M,M + dM ]. This is called the halo mass function.

We saw in the previous section that density contrast of 1.69 or higher leads to gravi-

tational collapse. Press-Schechter formalism predicts the fraction of the volume that has

collapsed as:

fcoll(M(R), z) =

∫ ∞

δc

2√
2πσ(R, z)

e−δ2/2σ2(R,z)dδ (3.1)

This requires some explanation. Firstly, one must realise not all length-scales are similar

when it comes to collapse statistics. The easiest way of seeing that is by considering a density

17



CHAPTER 3. HALO MASS FUNCTION

distribution and smoothing it over a window.

δ(x, R) =

∫
δ(x′)W (x− x′, R)d3x

Many peaks that previously appeared over the critical value will now be below it or are

smoothed out to form fewer peaks. Thus it appears as if more clumps will form on the lower

lengthscale but they will be less massive. The process of smoothing is merely a convolution

with a window function W . This is represented rather simply as a product in the Fourier

space:

δ(k, R) = δ(k)W̃ (kR)

The functional dependence of W̃ on R is made explicit in the statement above. It appears

specifically as a product kR. In 3.1, R is the radius of the smoothing window. M is the mass

enclosed within.

M = γf ρ̄R
3

Where ρ̄ is the density averaged over the volume of the window and γf is a constant that

depends on the shape of the window function. W is normalised such that its integral is 1

over the volume of integration. For example, γf = 4π/3 for a top hat profile (constant within

the spherical window but 0 outside). The variance of the Gaussian integrand is a function

of this radius and also the redshift of interest. Specifically, it is defined as the variance of the

smoothed linear power spectrum.

σ2 =
1

(2π)3

∫
Plin(k)W̃

2(kR)d3k

=
1

(2π)2

∫
Plin(k)W̃

2(kR)k2dk

Of course, there is implicit dependence of redshift in Plin and hence σ. Now one can define

the window function in terms of either the radius or the mass enclosed. So in terms of mass,

the variance can be written as:

σ2
M =

⟨(
M(x, R)− M̄

M̄

)2 ⟩
Where the M is the density convolved with the window function and multiplied by the

window volume. M̄ is the aveagre of M over that volume. Thus, given a particular redshift

and a particular window, the fraction of volume that collapses is given by 3.1. Now this

expression needs to be examined more carefully.
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3.1. PRESS-SCHECHTER FORMALISM

1. Now it is highly dubious that the distribution of inhomogeneities is Gaussian. This

is simply because δ > −1. Even if the mean were high and one could approximate the

distribution to be Gaussian, evolution under the influence of gravity would produce a

lot of underdense regions and a significant tail of overdense regions.

2. The normalisation itself is questionable because of the factor of two in the numerator.

3. The proposed form of σ ignores non-linear effects. There is a huge disagreement in

its value obtained from the linear power-spectrum as compared to the true non-linear

one.

With all these points to be sceptic about, it is surprising that the formalism produces great

numerical results regarding clustering. The factor of two in the normalisation was intro-

duced as a fudge factor by Press and Schechter. Without this factor, the theory would

predict that only half the mass of the universe would be locked up in haloes. There were

more attempts to explain theoretically as to why the P-S formalism works so well. Another

way of expressing 3.1 is in terms of number density of objects within a given mass range

[M,M + dM ].
dn

dM
= −ρm

M

dfcoll
dM

= −ρm
M

dfcoll
dσ

dσ

dM

= −ρm
M

dσ

dM

d

dσ

∫ ∞

δc

2√
2πσ(R, z)

e−δ2/2σ2(R,z)dδ

= −
√

2

π

ρm
M

dσ

dM

δc
σ2

eδ
2
c/2σ

2

= −
√

2

π

ρmδcR

3M2σ2

dσ

dR
eδ

2
c/2σ

2

(3.2)

Here ρm/M is the average number density of such objects. The negative signature essentially

signifies the increasing rarity of more massive objects. The last equation uses the fact that

dM/dR = 3M/R.

Now the critical density was calculated to be 1.69 for the case of the spherically symmet-

ric model. If one were to perform numerical simulations and find out this value by keeping

it a free parameter, it would turn out to be pretty close to 1.69.
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CHAPTER 3. HALO MASS FUNCTION

Figure 3.1: Results of the Millenium Simulation as compared to the PS halo mass function
(in units of ρm/M2). The solid lines are the best fit from Jenkins et al 2001 [5] and the dotted
lines are from PS for redshifts 0 and 10.7. source: Springel et al 2005[14]

3.2 Beyond Press-Schechter

While the Press-Schechter formalism successfully explained the general trend of the halo

mass function, the Millenium simulation showed the flaws in this approach. PS formalism

doesn’t quite match the observed distribution. As seen in Fig 3.1 The flaw in the formal-

ism is assuming that the collapse is spherical. This is a highly unlikely scenario because

peculiar velocities of particles in a small region that forms the halo needn’t be isotropically

distributed in phase space. One can have anisotropy within a halo and thus a better model

would be one of ellipsoidal collapse. In order to account for these discrepancies, a general

fitting function was proposed:

dN

dM
= −f(σ)

ρm
M

d log σ

dM
(3.3)

The PS halo mass function can be accommodate into this definition rather easily. The func-

tion f(σ) is called a fitting function because it’s form is proposed to best fit data from simu-

lations/observations.

Sheth and Tormen in 1999 [13] proposed a form of the fitting function which, Tinker et
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3.2. BEYOND PRESS-SCHECHTER

al. 2008 [17] parametrised in the following fashion:

f(σ) = A

[(σ
b

)−a

− 1

]
e−c/σ2

This is the form I will be using throughout this work. The values of the parameters (and

their redshift evolution) are obtained from Tinker et al. 2008 for the mean halo overdensity

of 200.
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Chapter 4

Data and modelling

The metal ion absorption catalogue [19] has been produced using spectroscopic data from

SDSS DR7. This catalogue includes 30,000 absorbers between redshifts 0.4 and 2.3. Zhu and

Menard had created a search algorithm for finding the Mg II doublet of interest and thus

were able to collect the vast number of absorbers in the SDSS DR7. The survey itself covered

a significant fraction of the sky as shown in fig. 4.1 The survey was of course limited by the

Figure 4.1: All sightlines in the sky included in the metal ion absorber catalogue produced
by Zhu and Menard in 2013

capabilities of the telescope under use. Most importantly, it was limited by luminosity and
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4.1. NUMBER DENSITY OF ABSORBERS IN REDSHIFT SPACE

therefore dimmer sources were likely to be under represented in any sample produced ob-

servationally. This means the sample is not "complete" and therefore, to get the true number

distribution, Zhu and Menard injected simulated absorption lines at various redshifts (dic-

tated by the resolution of the spectrum) in the range 0.3 to 2.5. Then they checked whether

the inserted lines could be detected or not and determined the fraction of lines detected for

each value of rest equivalent width (of 279.6 nm line). This gave them an estimate of the

underlying distribution of absorbers as opposed to the detected one.

4.1 Number density of absorbers in redshift space

1.0 1.5 2.0 2.5 3.0
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W
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d
z
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-
1
)

z
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Figure 4.2: Zhu and Menard’s fitting function for the number density of absorbers for some
values of redshifts

According to Zhu and Menard’s findings, the number density of absorbers ∂2N/∂Wr∂z

could be well explained by an empirical fit of the functional form proposed by them:

∂2N

∂Wr∂z
(z,W ) = g(z)e−W/W ∗(z)

g(z) = g0(1 + z)αg/(1 + (z/zg)
βg)

W ∗(z) = W0(1 + z)αw/(1 + (z/zw)
βw)

They have performed MC curve fits and identified the best fit values for the eight model

parameters (fig 4.2) Notice the increase in number density until around redshift 1.5 and then

a decrease. Thus the modelling that we do should be able to explain this specific redshift
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CHAPTER 4. DATA AND MODELLING

evolution. The fits are reliable upto a rest equivalent width of 0.3 nm but beyond that the

absorbers are few and thus the error bars are large.

Similiar studies previously have also incorporated bias estimates for absorber-galaxy

cross-correlations [16]. In fact it is on the basis of these measurements that TC08 rejects their

Classical model in favour of a Cold-Hot transition model that is inspires by hydrodynamical

simulations which revealed formation of shock fronts in gas clouds in the CGM. However,

for the sake of simplicity, I shall not delve into this model and see whether it suffices to

consider a smooth gas distribution model alone.

4.2 Modelling the absorber distribution

Now that we are familiar with the theory regarding halo formation and distribution, we can

go ahead with modelling the distribution of absorbers.

4.2.1 Dark matter halo profile

The first step in modelling is to first specify the distribution of dark matter in a halo. There

have been numerous density profiles suggested over the years but going by TC08, I have

taken the NFW profile [8]. It is a spherically symmetric, two-parameter model whose den-

sity function goes as:

ρNFW (r) =
ρs

(r/rs)(1 + r/rs)2
(4.1)

There is a scale density ρs and an inner radius rs that paramterise the density profile. Given

a halo is defined to have a mean overdensity of ∆ (usually 200), the mass enclosed is:

M = ∆ρb
4

3
πr3∆

ρs can be expressed in terms of rs because of the definition of r∆:

ρ̄ = ∆ρb =
3

4πr3∆

∫ r∆

0

ρ(r)4πr2dr = 3ρs

∫ 1

0

dxx2

cx(1 + cx)2

ρs =
∆

3
ρb

c3

ln(1 + c)− c/(1 + c)

Where x = r/r∆ and c = r∆/rs (the concentration parameter). The values of c are obtained

by fitting simulated halos with the NFW profile. I am using the results from Dutton-Maccio

2014 [3] for the concentration-mass relation. This is done by using the open-source python

module "halotools" (v0.5) [4].
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4.2. MODELLING THE ABSORBER DISTRIBUTION

4.2.2 Gas distribution model

Model description

Given a halo, one needs to populate it with gas. In the classical model described in TC08,

gas is distributed in an NFW halo in a spherically symmetric fashion The gas has a finite

Figure 4.3: Distribution of gas in a halo according to the classical model proposed by Tinker
and Chen 2008. There is a central gal halo in a dark matter halo. The gas halo is made of
multiple clumps of gas. These are spatially distributed in a specific way and the dark matter
halo has a1

extent Rg and is distributed in clumps. Each clump has a characteristic absorption strength

and cross section. The number density of these absorbers is purely a function of radius and

is given by:

ρg(r) = fgG0/(r
2 + a2h)

Where fg is the gas fraction, ah is the core radius and G0 is a normalisation constant that is

defined as:

G0 =
M(< Rg)/4π

Rg − ah arctan(Rg/ah)
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CHAPTER 4. DATA AND MODELLING

Where M(< Rg) is the mass of dark matter enclosed in the gas halo. Integrating ρg over the

volume of the gas halo gives the gas mass as fgM(< Rg). Initially, the gas radius is assumed

to depend on mass as 80(M/1012h−1M⊙)h
−1kPc as was done by Tinker and Chen.

Probability of absorption

For an absorption to be observed, there needs to be a line of sight that passes through a gas

halo. The strength of absorption depends on the distance that light travels through a halo

of given mass (fig 4.4). One integrates the gas density along the line of sight assuming each

cloud of mass Mcl contributes a certain absorption cross section σcl and produces a width of

W0.

Wr(s|M) = W0

[
2σcl

Mcl

∫ √
R2

g−s2

0

ρgdl

]
= Aw(M)

2G0√
s2 + a2h

arctan

√
R2

g − s2

s2 + a2h

Where Aw = W0fgσcl/Mcl clumps all the degenerate quantities into a single model parameter.

This parameter is found to scale with mass as nearly a power law in TC08and I’m using the

same scaling. First, we begin with the probability of a line of sight passing through the

Figure 4.4: Absorption strength depends on the line of sight through a given halo (of a
certain mass at a specific redshift). The rest equivalent width increases if the line of sight
passes close to the centre as opposed to the fringe of the gas halo. Here the inner (orange,
solid) circle represents the gas halo encapsulated by a dark matter halo (blue, dotted). To
the right, are line profiles that one might obtain from the two lines of sight (dashed black
arrows). Notice the one passing through the centre seems saturated.

gas halo at a radius r. Since the projected position of the LoS on a halo disk is uniformly

26



4.2. MODELLING THE ABSORBER DISTRIBUTION

distributed, this is simply:

P (s|M) =

{
2s/Rg if s ≤ Rg

0 if s > Rg

Now we need to determine the probability of a certain rest equivalent width Wr of absorp-

tion occurring from a halo of given mass. This simply depends on getting a certain com-

bination of line of sight and a halo of required mass. Not all masses of halos contribute

to absorption the same way. It depends on the covering fraction of the gas and also the

amount of gas hosted by a halo. These being degenerate, they will be clubbed together in

one parameter κg. Thus:

P (Wr|M)dWr = κg(M)P (s|M)ds

∴ P (Wr|M) = κg(M)P (s|M)
ds

dWr

= κg
2s

R2
g

ds

dWr

s(Wr|M) is obtained by numerically inverting the relation for Wr. The exact form of κg is a

unknown and Tinker and Chen use a non-parametric curve. They specify its value for four

masses (1010, 1011.33, 1012.66, 1014 h−1M⊙) and linearly interpolate in logarithmic space (i.e. it

is a piecewise power-law). See fig. 4.5. This essentially conveys the fact that most halos

associated with Mg II absorption are in the 1011 − 1013h−1M⊙ range.

Frequency distribution function

The number density of absorbers per unit rest equivalent width range and unit comoving

path length is the integral over halo mass of the product of the halo mass function weighted

by cross-section and probability of detecting an absorber with a certain rest equivalent width

from a halo of given mass. i.e.

f(Wr) =
d2N

dWrdl
=

∫
dM

dn

dM
σg(M)P (Wr|M)

=

∫
dM

dN

dM
πRg(M)2P (Wr|M)

(4.2)

It is a simple matter of converting comoving distance to redshift. For the purposes of these

calculations, I am assuming a cosmology consistent with Planck 13 data. The halo-mass

function was incorporated using the "hmf" python module [7] and the corresponding fitting

function (f(σ)) was taken from Tinker et al 2008 with their best fit parameter values.
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CHAPTER 4. DATA AND MODELLING

Figure 4.5: The form of κg chosen by Tinker and Chen

4.2.3 Results and Conclusions: Redshift dependence of κg

For the purpose of my analysis, I have taken all parameter values for the model from

TC08. I have only changed one parameter Aw0, the value of Aw at 1012h−1M⊙ halos, from

13h nm cm2/g to 9h nm cm2/g so as to reproduce f(Wr) as shown in TC08 at z = 0. This

discrepancy might be because of the cosmological parameters taken and the concentration-

mass relation for the NFW profile being different from TC08’s. I intended to find the nature

of κg for different values of redshift. For this purpose, I have assumed kappag has a peaked

shape, i.e. it has similar piecewise power-law shape as proposed by TC08 but I’m allowing

the representative masses to vary instead of the value of κg. The values are fixed to 0.01 on

the two ends and 1 in between the two inner values. This simplifies things in terms of curve

fitting. I have to vary the four representative masses and find the combination that fits the

observed number distribution well.

I have obtained forms of κg based on visual comparison of the model prediction versus

the observed number density fig. 4.6. There does seem to be a shift towards lower masses
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4.2. MODELLING THE ABSORBER DISTRIBUTION

Figure 4.6: Forms of κg obtained from visual comparison of model prediction and observa-
tion for three redshifts

with increasing redshift up to 1.2. While this might give some idea of the halo-masses con-

tributing to the observed distribution, it is obviously not rigorous by a long shot. I did

attempt to fit it with the least-squares method but the error function seems to be rather

complex in the parameter space under consideration (representative masses confined to the

interval 108 − 1015h−1M⊙). What is required is a full fledged MCMC curve-fitting. I hope

to be able to do this in the near future. What is necessary to be noted is that the visual fits

become more elusive beyond z of around 1.2. This might imply a failure of the model in ex-

plaining the observations at such redshifts. It is possible that the Cold-Hot transition model

put forth in TC08 as the better alternative may be able to fit the data better because of the

additional parameters it brings into play.
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