
Generation of primary and secondary

gravitational waves in the early universe

A project report

submitted in partial fulfillment for the award of the degree of

Master of Science

in

Physics

by

Tamal Mukherjee

under the guidance of

Dr. L. Sriramkumar

Department of Physics

Indian Institute of Technology Madras

Chennai 600036, India

May 2022



CERTIFICATE

This is to certify that the project titled Generation of primary and secondary gravitational

waves in the early universe is a bona fide record of work done by Tamal Mukherjee to-

wards the partial fulfillment of the requirements of the Master of Science degree in Physics

at the Indian Institute of Technology, Madras, Chennai 600036, India.

(L. Sriramkumar, Project supervisor)



ACKNOWLEDGEMENTS

Firstly, I would like to thank IIT Madras for giving us this great opportunity to work on a

year-long project. I am thankful to Dr. L. Sriramkumar for his guidance, encouragements,

motivation and giving me mental support during the tough COVID situation. Without his

support, it wouldn’t have been possible to complete the project. I would also like to thank

Dr. Shiv Sethi for valuable discussions on cosmological perturbations. I would also like to

thank Suvashis Maity, Sagarika Tripathy and Saurav Mishra for continuous support and pre-

cious discussions. I am also grateful to my parents for always encouraging and supporting

me to successfully complete my M.Sc. thesis.



ABSTRACT

The inflationary paradigm is the most promising scenario to generate perturbations in the

early universe. A strong prediction of inflation is the generation of primordial gravitational

waves (GWs). Over the past few years, the study of the primordial GWs has become a

popular interest among the astrophysicists and cosmologists. Direct detection of such GWs

background can open a new window to the physics of the very early universe. This project

is aimed to understand the generation and evolution primordial GWs. In this report, we

have studied the generation of primary GWs from first order tensor perturbations during

inflation and their evolution during later epochs. We have found that primary GWs spec-

trum generated in the α−attractor model of inflation can indeed be detected by forthcoming

GWs observatories. Apart from these, secondary GWs of detectable amplitudes can also

be generated due to the second order scalar-induced tensor perturbations. Considering an

ultra-slow-roll model of inflation, we have concluded that the spectrum of secondary GWs

can also be detected by some future GWs observatories.
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Chapter 1

Introduction

Gravitational waves (GWs) are plane waves created from the disturbances in the curvature

of spacetime, mainly generated by the accelerated masses. These plane waves propagate

at the speed of light. GWs were detected (first direct detection) by the LIGO/Virgo collab-

oration in 2015 [1]. In the past few years, the detections of GWs from binary black hole

mergers by LIGO [2] have encouraged the community to come up with experimental pro-

posals to observe GWs over a wide frequency range. It has also sparked an interest to detect

GWs of primordial origin. The proposed ground-based and space-based GWs observato-

ries are advanced LIGO (10–103 Hz) [3], Einstein Telescope (ET) (1–104 Hz) [4]-[5], the Big

Bang Observer (BBO) (10−3–10 Hz) [6]-[8], the Deci-hertz Interferometer Gravitational wave

Observatory (DECIGO) (10−3–1 Hz) [9]-[11], the Laser Interferometer Space Antenna (LISA)

(10−5–1 Hz) [12]-[14], and Square Kilometer Array (SKA) (10−9–10−6 Hz) [15].

1.1 Astrophysical versus primordial

There are different sources and types of GWs. Fig. 1.1 illustrates some typical amplitudes

and wavelengths of different GWs sources and the sensitivities of some observational probes

of GWs (see ref. [16]). While the green portions describe different sources, the violet and red

curves are some ongoing and future observational probes of GWs respectively. Different

sources and types of GWs can be classified as follows:

1. GWs from binary mergers [17]: Black Hole Binaries (BHB), Neutron Star Binaries (NSB),

Super-Massive Black Hole Binaries (SMBHB), White Dwarf Binaries (WDB) , Extreme-Mass-

1



1.2. GWS: PROBE OF THE EARLY UNIVERSE?

Ratio Inspirals (EMRI) etc.

2. GWs from spinning Neutron Star (NS): These are known as continuous GWs.

3. Stochastic background of GWs [18]: Apart from these sources mentioned above, there

are stochastic backgrounds of GWs, which can be created by large number of independent

sources. Astronomers presume that these GWs are passing by all the time and we can get

stochastic signals from every direction. A stochastic signal arise from thousands of binary

systems which are continuously emitting GWs (at long wavelengths, i.e. > 1014 m) in over-

lapping frequency bands.

It is also believed that another stochastic signal may originate from the very early

universe. These relic background of GWs with cosmological origin are known as primordial

GWs [19].

Figure 1.1 : Characteristic strain vs wavelength plot for different GWs sources and

observational probes (figure from [17]).

1.2 GWs: probe of the early universe?

Electromagnetic (EM) radiation, neutrinos and GWs are used to study universe. Among

them, GWs are the best to probe the very early universe. One and only reason is the weak-

ness of gravity. Since gravity is the weakest fundamental force, GWs decouple immediately

upon production and propagate freely (without being reflected, absorbed and refracted) ,

giving us a clear view of the very early universe. As we know, if the particle interacts very

2



1.2. GWS: PROBE OF THE EARLY UNIVERSE?

weekly, then it drops out of thermal equilibrium at a very high energy scale. Therefore, GWs

can carry unique information about their origin and the state of the universe at very early

epochs and very high energy scales which are unreachable by any other means.

There are studies in the literature about the specific high-energy processes (quan-

tum fluctuations during inflation, particle production [20] during reheating, phase transi-

tion [21] and cosmic defects) in the early universe which can generate GWs and determine

specific properties of the shape of GWs spectrum. In this work, we have considered the

generation of GWs due to the quantum fluctuations during inflation.

Figure 1.2: GWs from the early universe. 1

The inflationary scenario offers the most attractive mechanism for the generation

of the primordial perturbations which can indeed lead to the formation of primordial GWs.

The tensor perturbations generated due to the quantum vacuum fluctuations, are amplified

during inflation, which then evolve through the subsequent epochs of the universe before

reaching the GW detectors today. Therefore, primordial GWs spectrum today carrys the in-

1Figure is taken from Dr. Daniel Figueroa’s lecture slides from a lecture given at ICTS Bangalore
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1.3. A BRIEF OUTLINE OF THE REPORT

formation about their origin as well as evolutionary dynamics.

1.3 A brief outline of the report

In Inflationary scenario, Inflation is assumed to be driven by scalar fields (known as infla-

ton). In high energy physics, we often deal with scalar field models. Scalar fields can easily

achieve the necessary condition that leads to accelerated expansion of the universe. It is also

studied that after inflation ends, the universe is reheated through the decay of the inflaton

into radiation (known as epoch of reheating), which leads to the beginning of radiation-

dominated epoch.

Understanding of the various epoch of the Universe are considerably improved by

cosmological observations over past the years [22]-[24]. But due to the lack of direct observa-

tions, we don’t have any complete information about such an epoch of reheating. The effects

of reheating on the dynamics of GWs have already been studied In some standard cosmo-

logical scenario (see, Refs. [25]-[27]) and in certain non-standard scenarios (see, for example,

Refs. [28]-[30]), the impacts the reheating epoch on the spectrum of GWs have already been

studied. In this project, we shall examine the generation of primary GWs from first order

tensor perturbation and shall study the impacts of reheating on the spectrum of GWs over

different scales. In this project, we have considered two reheating scenarios: i) reheating de-

scribed by an averaged equation of state (EoS) parameter ωφ, in which case transition from

inflaton to radiation happens instantaneously, ii) perturbative reheating, in which case the

transition happens gradually through the perturbative decay of inflaton. Finally, we shall

analyse our results with the recent GWs observations by the North American Nanohertz

Observatory for Gravitational Waves (NANOGrav) [31]. We shall also briefly discuss the

secondary phase of reheating and shall explicitly show that the GWs spectrum arises in this

scenario can account for the recent NANOGrav observations.

Now, at the second order, tensor perturbations are sourced by first order scalar per-

turbations. On small scales, an enhancement in the amplitude of the scalar power spectrum

can generate secondary GWs when these modes reenter the Hubble radius during radiation

dominated epoch. The secondary GWs can also be detected by ongoing and forthcoming

GWs observatories like LIGO/Virgo, Pulsar Timing Arrays (PTA) [32]-[33], LISA, BBO, DE-

4
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CIGO and ET.

1.4 Organization of the report:

This thesis is organized as follows. In chapter 2, we shall discuss the motivation for inflation

and cosmological perturbation theory and the generation of primary gravitational waves

from tensor perturbation. In chapter 3, we shall briefly talk about the epoch of reheating.

In chapter 4, we shall discuss the evolution of tensor perturbations during the reheating

and radiation dominated epochs. We shall also evaluate the dimensionless energy density

of primary GWs today considering the instantaneous reheating scenario. In chapter 5, we

shall consider a typical model of inflation and plot the spectrum of primary GWs. We shall

also discuss the observational constraints from the forthcoming GWs observatories. We

shall discuss the generation of secondary gravitational waves from scalar induced secondary

tensor perturbations in chapter 6 and also evaluate the spectrum of secondary GWs today

in an ultra-slow-roll model of inflation. We shall explicitly show that spectrum of secondary

GWs generated in this model can be detected by future GWs observations. Finally, we shall

conclude with a summary of our results. We shall also add two appendices for related

derivations.

Notations and conventions:

In this report, we shall work with natural units ~ = c = 1, and shall define the reduced

Planck mass M
Pl

= (8 π G)−1/2. We shall work in (3 + 1)-spacetime dimensions and use the

metric with signature (−,+,+,+). The overdot implies derivative with respect to cosmic

time (t) and the overprime implies derivative with respect to conformal time (η). The Greek

indices (run from 0 to 3) denote spacetime coordinates and the Latin indices (run from 1 to

3) denote spatial coordinates.
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Chapter 2

Generation of primary GWs

The hot big-bang model is the existing theory about the origin and the evolution of our

universe. The model describes the expansion of the universe from an initial state of high

temperature and density. It can explains a wide range of observed phenomena like light

elements abundance, the cosmic microwave background (CMB) radiation , and Hubble-

expansion. But there are few shortcomings of the hot Big-Bang model. The inflationary

scenario provides a graceful resolution to the shortcomings of the hot Big-Bang model, such

as the horizon problem and flatness problem ([34]-[36]). Inflation is a period of acceler-

ated expansion of the universe. Besides solving the mentioned problems, it also provides

an mechanism to generate initial seeds of all observed structures in the Universe and CMB

anisotropies. We can develope a perturbation theory using the theory of General Relativ-

ity, which indeed leads to the density perturbation in the Universe. Apart from that, it

also generates tensor perturbations which can describe GWs . We begin this chapter with a

summary of the hot Big Bang model, Inflationary paradigm and cosmological perturbation

theory. Then we move towards considering quantum aspects of first order tensor perturba-

tions, and explicitly show how the generation of primary GWs.

2.1 Hot big bang cosmology

The basic picture of big bang cosmology describes a hot, dense expanding universe which

cools down at late times. This is a very successful model and the success lies on the three

significant observations. The first among these is obviously the expansion of the universe.

It was discovered that most of the galaxies outside our own Milky Way were continuously

6



2.1. HOT BIG BANG COSMOLOGY

receding from us. Moreover, the velocities of these galaxies turn out to be proportional to

their distances. This is well approximated by Hubble’s law. In a homogeneous, isotropic

expanding universe, at (d . 50 MPc),

vH = H0d (2.1)

where H0 is the Hubble constant which determines the present expansion rate of the uni-

verse, vH is the local "Hubble flow" velocity of a source, and d is the proper distance to the

source. The best current estimate of the Hubble constant from the Planck measurements of

the CMB anisotropies is H0 = (67.4± 0.5) km s−1 Mpc−1.[37]

The second most important observation is the existence of an exceedingly isotropic

(to about one part in 105 ) background radiation of relic photons, known as the CMB ra-

diation. The CMB has an almost perfect black body spectrum, and it has a temperature of

2.725 K today [38]. As the energy density of radiation falls faster than matter with the ex-

pansion of the universe, the above two observations suggest that the universe was radiation

dominated at early times.

Another significant observation which supports the hot big-bang model is the pri-

mordial abundances of the light elements which are compatible with the predictions from

the theory of big-bang nucleosynthesis (BBN) (see, for instance, Ref. [39] [40]). The abun-

dances of all the light elements depend on the ratio of the number density of baryons to the

photons in the universe which does not change with time. Thus the value of this ratio allows

us to determine the density of baryon at a given epoch.

2.1.1 The FLRW line element

From observations, we can infer that the universe is homogeneous and isotropic on large

scales (∼ 100Mpc) [41]-[44]. The general relativistic description of a homogeneous and

isotropic universe is described by the Friedmann-Lemaitre-Robertson-Walker (FLRW) line

element, and is given by

ds2 = −dt2 + a(t)2

[
dr2

1−Kr2
+ r2

(
dθ2 + sin2θdφ2

)]
(2.2)

where a(t) denotes the scale factor and t is the cosmic time. The K represents the constant

spatial curvature. The universe is spatially flat if K = 0, closed if K > 0, and open if K < 0.

7



2.1. HOT BIG BANG COSMOLOGY

So, K describes the spatial geometry. Apart from the cosmic time, we shall use another time

variable known as the conformal time η:

η =

∫
dt

a(t)
(2.3)

Let ρ(t) and p(t) denote the time dependent energy density and the pressure of a

matter field or a perfect fluid that is driving the expansion of the universe. The stress-energy

tensor of such a perfect fluid is given by

T µν = (ρ+ p)uµuν + pδµν = diag(−ρ, p, p, p) (2.4)

where

uµ = (1, 0, 0, 0)

is the four-velocity of the fluid described in a comoving coordinate system. Then, the Ein-

stein’s equations (Gµν = 8πG
c4
Tµν) corresponding to the Friedmann line element lead to the

following two Friedmann equations describing the evolution of the scale factor a(t):

H2 =

(
8πG

3

)
ρ− K

a2
(2.5)

ä

a
= −4πG

3
(ρ+ 3p) (2.6)

where H = ȧ/a is the Hubble parameter which indicates the rate of expansion of the uni-

verse at any epoch. Now, from the conservation of stress-energy tensor (∇µT
µν = 0), we can

arrive at the following time evolution equation for the energy density of the matter field or

fluid:

ρ̇+ 3H(ρ+ p) = 0 (2.7)

Another key assumption of the the standard cosmology is that the pressure of the

matter content of the universe, described by a perfect fluid is directly proportional to the

energy density

p = wρ (2.8)

where w is the equation of state. Using equation (2.8) and integrating equation (2.6) we get

the following relation,

ρ(t) ∝ a(t)−3(1+w) (2.9)

8



2.1. HOT BIG BANG COSMOLOGY

Table: FLRW solutions for the flat universe dominated by radiation, matter or cosmo-

logical constant (Λ) ( [45]):

Model Universe w ρ(a) a(t) a(η)

Radiation Dominated 1
3

a−4 t1/2 η

Matter Dominated 0 a−3 t2/3 η2

Λ Dominated −1 a0 eHt −η−1

We can see that the energy density of radiation falls faster than that of matter with the ex-

pansion of the universe. This immediately points to the fact that the universe has expanded

from a hot and dense early radiation dominated phase. From now on-wards, we shall re-

strict ourselves to the spatially flat (K = 0) universe.

2.1.2 Shortcomings of the model

Apart from these remarkable success of the hot big bang model, it has some serious short-

comings too. It is unable to provide a satisfactory explanation to a few cosmological prob-

lems like horizon problem, flatness problem, relic density problem, entropy problem etc.

We shall discuss only the horizon and flatness problem in this section because these two are

arguably the most significant.

1. Horizon Problem:

The horizon problem is the problem of determining the statistical homogeneity and isotropy

of the universe on large scales. In other words, why is the temperature of the CMB seen in

the opposite directions of the sky almost the same? In the standard hot big bang cosmology,

assuming that the universe was radiation dominated all the way from the time of big bang

until decoupling, these opposite directions in the sky would have been much larger than

the Hubble radius, say, dH = H−1 = (ȧ/a)−1 at the time of decoupling. Therefore, these

antipodal points would not have been in causal contact before this epoch and, hence, there

is no way to establish thermal equilibrium over such a length scale. On the other hand, ob-

servations indicate that the CMB has roughly the same temperature in different directions of

the sky. The horizon problem is, therefore, the lack of an explanation as to why such a large

number of (about 106) causally disconnected volumes had nearly the same temperature at

the time of decoupling.

9



2.1. HOT BIG BANG COSMOLOGY

The horizon is defined as the physical radial distance travelled by a light ray from

the big bang at t = 0 up to a given time t. It describes the size of the causally connected

regions. The horizon size is given by [46]:

h(t) = a(t)

∫ t

0

dt̃

a(t̃)
(2.10)

If one assumes the universe to be dominated by non-relativistic matter from the epoch of

decoupling tdec until today t0, and dominated by radiation form 0 < t < tdec, then the linear

dimensions of the backward and forward light cones denoted by lB and lF respectively are

given by

lB(t0, tdec) = adec

∫ t0

tdec

dt̃

a(t̃)
' 3(t2dect0)1/3 (2.11)

and,

lF (tdec, 0) = adec

∫ tdec

0

dt̃

a(t̃)
= 2tdec (2.12)

where adec denotes the value of the scale factor at the epoch of decoupling and we have used

the observational fact that t0(' 1010 years)� tdec(' 105 years) [47].

Then we can find the ratio of the linear dimensions of the backward and the for-

ward light cones at decoupling to be [47]

R ≡ lB
lF

=
3

2

(
t0
tdec

)1/3

' 70 (2.13)

From the above equation, we can conclude that at the epoch of decoupling, the linear di-

mension of the backward light cone is about 70 times larger than the forward light cone.

But, it turns out that the CMB is almost isotropic inspite of having no causal connections

before decoupling. This is knows as horizon problem. We can state the horizon problem in

a different way(as shown in fig. 2.1), in terms of the evolution of the physical wavelength

associated with the perturbation.

10



2.1. HOT BIG BANG COSMOLOGY

Figure 2.1 : The physical length scales λ1 and λ2 (λP = a/k) and the Hubble radius dH are

plotted as a function of the scale factor a on a log log plot during the radiation and the matter

dominated epochs. In the standard hot big bang cosmology, all the modes are outside the

Hubble radius and, hence, there was no causal contact at very early times. However, the

temperature of the CMB is almost the same in different directions, even in the anti-podal

points. (Figure from [47])

2. Flatness Problem:

Another drawback of the standard hot big bang model is the flatness problem. It is also

referred as cosmological fine-tuning problem. The Friedmann equation viz. Eq. (2.5) can be

rewritten as

Ω− 1 =
K

a2H2
(2.14)

where the density parameter Ω is defined as

Ω ≡ ρ

ρc
with ρc ≡

3H2

8πG
(2.15)

We can read from the equation (2.14) that Ω = 1 at all the times if the universe is perfectly

flat (K = 0). Again, the time dependence of (Ω− 1) will be quite different in the presence of

a small curvature term. During radiation dominated epoch, we have H2 ∝ ρr ∝ a−4 and

Ω− 1 ∝ 1

a2a−4
∝ a2 (2.16)

11



2.2. INFLATIONARY PARADIGM

During matter dominated epoch, we have H2 ∝ ρm ∝ a−3 and

Ω− 1 ∝ 1

a2a−3
∝ a (2.17)

So, in the standard big-bang cosmology, (Ω− 1) decreases when we go backwards with time

in both epochs. This means that Ω tends to evolve away from unity with the expansion of

the universe. However, since present observations suggest that Ω is within a few percent of

unity today (See, for instance [48]), Ω is forced to be much closer to unity in the past.

For example, we can deduce the value of (Ω − 1) at tPl (the time at which the

temperature of the universe is TPl ∼ 1019GeV ),

|Ω− 1|T=TPl

|Ω− 1|T=T0

≈ a2
Pl

a2
0

≈ T 2
0

T 2
Pl

≈ O(10−64) (2.18)

where T0 ∼ 10−13 GeV is the temperature of the CMB radiation today and a0 is the scale

factor today.

During epoch of nucleosynthesis when light elements were formed, at TN ∼ 1 MeV,

we get [49]
|Ω− 1|T=TN

|Ω− 1|T=T0

≈ a2
N

a2
0

≈ T 2
0

T 2
N

≈ O(10−16) (2.19)

Thus, in order to get an accurate value of (Ω0 − 1) ∼ 1 at present epoch, the value of (Ω −
1) at early epochs have to be fine-tuned to values close to zero. These initial conditions

except these extremely fine tuned ones will eventually lead to either a closed universe that

recollapses soon, or to an open universe that quickly enters the curvature dominated regime.

This is known as flatness problem.

2.2 Inflationary paradigm

As we discussed above, the hot big-bang model had some serious shortcomings. Almost

four decades ago, it was realized that a phase of an accelerated expansion of the universe

at very early times can indeed provide a solution to the various problems of the standard

hot big bang cosmology. Such a period of an extremely rapid accelerated expansion of the

universe is known as "Inflation" which proposed by Alan Guth in 1980 [50].

The length scales of cosmological interest today (say, 1 . λ0 . 104Mpc), were

outside the Hubble radius at earlier times prior to their reentry during radiation or matter

12



2.2. INFLATIONARY PARADIGM

domination. These length scales should be inside the Hubble radius (i.e.λP < dH) in the

early times to ensure causal connections which are indeed responsible for the origin of in-

homogeneities. Thus, we consider an inflationary epoch in the early universe during which

these length scales decreases faster than the Hubble radius [51] , i.e.

− d

dt

(
λP
dH

)
< 0 (2.20)

This definition translates to an equivalent condition that the scale factor of the universe is

accelerating during inflation:

ä > 0 (2.21)

In Fig. 2.2, the physical wavelength of two different modes and the Hubble radius

have been plotted as a function of the scale factor during inflation and the radiation dom-

inated epochs [47]. In plotting the figure, we have assumed that the inflationary phase is

described by a power law expansion of the form a ∝ tq where q > 1. Considering this, we

can find that λP ∝ a during all the epochs and the Hubble radius dH behaves as 1
q

and a2

during inflation and the radiation dominated epochs respectively. The evolution of physical

length scales in this plot gives straight lines with unit slope. The slopes of the straight lines

describing the inflationary and the radiation dominated epochs will be

During INFLATION: log(dH) =
1

q
log(a) =⇒ Slope� 1 when q � 1 (2.22)

During radiation domination: log(dH) = 2log(a) =⇒ Slope = 2 (2.23)

13



2.2. INFLATIONARY PARADIGM

Figure 2.2: : Evolution of the physical length scales (in green) and the Hubble radius (in

blue) are plotted as a function of the scale factor a(t) on a log-log plot during the inflation

and the radiation dominated epochs (Figure from [47])

It is then clear from the above figure that, inflation is needed in order to bring all the

modes inside the Hubble radius and thus making causal connections.

2.2.1 Solution to the horizon problem

To solve the horizon problem, the forward light cone must be at least as large as the back-

ward light cone. For simplicity, we assume that the universe undergoes exponential infla-

tion, say, from time ti to tf , during the early stages of the radiation dominated epoch. A

period of the universe during which p = −ρ is called the de Sitter universe [52]. In a de

Sitter universe,

ρ = Constant and HI = Constant (2.24)

where HI is the constant Hubble parameter during inflation. So we have

a = a0e
HI(tf−ti) (2.25)
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2.2. INFLATIONARY PARADIGM

Let, A denotes the factor by which the scale factor increases during the inflation. In such a

case, the size of the horizon at decoupling due to de Sitter inflation is,

lI(tdec, 0) = adec

∫ tdec

0

dt̃

a(t̃)
'
(
adec
HI

)(
tdec
tf

)1/2

A (2.26)

where we have set ti = H−1
I . In such a case, if we choose HI ' 1013 GeV, then the ratio of the

forward and the backward lightcones at the epoch of decoupling is given by [47]

RI =
lI
lB
' A

1026
(2.27)

We can clearly see that RI = 1 if A ' 1026.

The amount of expansion from an initial time ti to a time t is generally expressed

in terms of the number of e-folds defined as follows:

N =

∫ t

ti

dtHI = ln

[
a(t)

ai

]
(2.28)

Thus, we have

N = lnA = ln

(
af
ai

)
' 60 (2.29)

where af is the scale factor at the end of inflation. Thus, we require at least 60 e-folds (N &

60) to overcome the horizon problem.

2.2.2 Solution to the flatness problem

Inflation also elegantly solves the flatness problem. As the Hubble rate is assumed to be

constant during inflation, from equation (2.14), we can see that

Ω− 1 ∝ 1

a2
(2.30)

On the other end, the condition (2.18) suggests that to get a value of (Ω0−1) of order of unity

today, its value at the beginning of the radiation dominated phase must be |Ω − 1| ∼ 10−60.

Now, in the standard hot big-bang cosmology, the beginning of the radiation dominated

phase can be identified with the end of the inflation.

In order to solve the flatness problem, we then require

|Ωf − 1| . 10−60 (2.31)
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2.3. INFLATION WITH SCALAR FIELDS

just after the end of inflation. Here, Ωf is the value of Ω at the end of inflation (i.e. t = tf ).

We can write the ratio of (Ω − 1) between the initial and final phases of inflation, which is

given by
|Ωf − 1|
|Ωi − 1|

.

(
ai
af

)2

= e−2N (2.32)

If we assume |Ωi − 1| is of the order unity, then the number of e-folds is required to be

N & 60 in order to solve the flatness problem. From Eq. (2.32), we can infer that, if inflation

lasts longer than 60 e-folds, the value of Ω0 will be equal to unity with a higher precision.

Therefore, one can say that

INFLATION =⇒ Ω0 ' 1 (2.33)

2.3 Inflation with scalar fields

In the previous section, we have seen how inflation, or accelerated expansion in the de

Sitter approximation, solves the horizon and flatness problems of the standard Big Bang

cosmology. However, a question still arises: What is driving this accelerated expansion of

the universe ? In order to have an inflationary epoch in the early universe, it turns out that

one needs to have a matter source with negative pressure as neither radiation nor matter

allow for such a behavior of the scale factor. From the second Friedmann equation (2.6), it is

evident that, for accelerated expansion, we require

(ρ+ 3p) < 0 (2.34)

Now one may think off Einstein’s cosmological constant Λ (vacuum energy) which has nega-

tive pressure, but a universe dominated by Λ remains the same for the infinite future (eternal

inflation), and we can never see a radiation-dominated phase. Again, it can be shown that

Λ can not induce metric fluctuations (see ref. [47]).

Therefore, we need a different form of energy which can drive inflation. We shall

consider a homogeneous canonical single scalar field φ (inflaton) to describe the dynamics

of the inflation. Inflaton is described by a potential V (φ). It can be any fundamental scalar

field like the Higgs field or any composite field.

The action for the inflation field reads

S =

∫
d4x
√
−gL =

∫
d4x
√
−g
[
−1

2
(∂µφ∂

µφ)− V (φ)

]
(2.35)
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2.3. INFLATION WITH SCALAR FIELDS

where (
√
−g = a3) for FLRW metric. From the Euler-Lagrange equation

1√
−g

∂µ

(√
−g ∂L

∂(∂µφ)

)
=
∂L
∂φ

(2.36)

we obtain the equation of motion for the homogeneous inflaton

φ̈+ 3Hφ̇+ Vφ = 0 (2.37)

where Vφ = dV/dφ. The associated stress-energy tensor for inflaton is given by

T µν = ∂µφ∂νφ− δµνL (2.38)

The homogeneity and isotropy of the FLRW background imply that the scalar field will be

time-dependant only. Hence, the corresponding stress-energy tensor will be diagonal. In

such a case, the energy density ρ and the pressure p associated with the scalar field can be

obtained as

T 0
0 = −ρ = −

[
φ̇2

2
+ V (φ)

]
(2.39)

T ij = pδij =

[
φ̇2

2
− V (φ)

]
δij (2.40)

Using the above expressions, one finds that the condition for inflation, viz. Eq. (2.34) can be

written as

φ̇2 < V (φ) (2.41)

This implies that the inflation can be achieved if the inflaton is potential dominated. We

can rewrite the Friedmann equations (2.5) and (2.6) in terms of the energy density and the

pressure associated with the inflaton as

H2 =
1

3M2
Pl

[
φ̇2

2
+ V (φ)

]
, (2.42)

Ḣ = −
(

1

2M2
Pl

)
φ̇2 (2.43)
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2.3. INFLATION WITH SCALAR FIELDS

2.3.1 Slow roll inflation

The conventional approximation which guarantees inflation is known as the slow roll ap-

proximation [53]. Under this approximation, the kinetic energy of the inflaton is neglected

as compared to its potential energy when the field rolls slowly down the potential, i.e.

φ̇2 � V (φ) (2.44)

Also, in order to lead to the required amount of inflation, the acceleration term is also ig-

nored when compared to the Hubble friction term in Eq. 2.37.

φ̈� 3Hφ̇ (2.45)

Hence we require a sufficiently flat potential for the inflaton which ensures slow roll for a

sufficiently long time in order to achieve enough inflation. Upon using these two slow-roll

conditions, we arrive at the following equations

H2 ' 1

3M2
Pl

V (φ), (2.46)

3Hφ̇ ' Vφ (2.47)

Given a potential V (φ), we can define two dimensionless parameters describing the slow-

roll inflation as [47]:

εV =

(
M2

Pl

2

)(
Vφ
V

)2

and ηV = M2
Pl

(
Vφφ
V

)
(2.48)

where Vφφ = d2V/dφ2 and these parameters have to be much smaller than unity. These are

known as potential slow- roll parameters. In the slow-roll approximation,

εV � 1 and ηV � 1 (2.49)

There are another set of parameters known as Hubble slow-roll (HSR) parameters

which can be defined in terms of the derivatives of the Hubble parameter. These are defined

as follows [47]:

εH = 2M2
Pl

(
Hφ

H

)2

= −

(
Ḣ

H2

)
(2.50)
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2.3. INFLATION WITH SCALAR FIELDS

δH = 2M2
Pl

(
Hφφ

H

)
= εH −

(
˙εH

2HεH

)
(2.51)

These parameters satisfy the following conditions:

εH � 1, δH � 1, and O(ε2H , δ
2
H , εHδH)� εH (2.52)

It turns out that the HSR parameters can be a better choice to describe the slow roll approx-

imation ( see, Ref. [47]; also see Ref. [53]).

For a given slow-roll parameter εn, we can define higher order slow-roll parameters

as follows:

εn+1 =
dln|εn|
dN

(2.53)

where N is the number of e folds.

2.3.2 Quadratic potential : background evolution

In this section, we shall consider a quadratic potential and evaluate all the background quan-

tities corresponding to the dynamics of inflation. Let us consider the following quadratic

potential :

V (φ) =
1

2
m2φ2 (2.54)

where m is the mass of the inflaton φ. Using the first Friedmann equation, Eq.(2.42) in Eq.

(2.37), we get

dφ̇

dφ
= −

√
12πG(φ̇2 +m2φ2)φ̇+m2φ

φ̇
(2.55)

The behaviour of the solution to the above equation is shown in figure 2.4, which shows the

attractor solution [54] given by the equation

3Hφ̇ = −m2φ =⇒ φ̇atr ≈ ±
m√

12πG
= ±mMPl√

3/2

Here (+) sign corresponds to φ < 0, φ̇ > 0 and the (−) sign corresponds to φ > 0, φ̇ < 0..
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Figure 2.3: Plot of V (φ) = 1
2
m2φ2 vs φ where m = 7× 10−6

Figure 2.4: The phase space diagram which shows the attractor solutions.

We can easily find that the equation of motion for the inflaton field (see equation (2.37)) can

be written in terms of the number of e folds N as

d2φ

dN2
+

[
3− 1

2

(
dφ

dN

)2
]
dφ

dN
+

[
6−

(
dφ

dN

)2
]

1

2V (φ)

dV (φ)

dφ
= 0 (2.56)

The Hubble parameter can be written as

H(N) =

[
2V (φ)

6−
(
dφ
dN

)2

]1/2

(2.57)
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We can write the first slow-roll parameter ε1 as

ε1(N) =
1

2

(
dφ

dN

)2

(2.58)

where we have set MPl = 1 for all the equations. We numerically solve the equation (2.56)

and plot φ(N), H(N) and ε1(N).

Figure 2.5: Numerical estimate of the scalar field φ as a function of N for the quadratic

potential.
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Figure 2.6: Numerical estimate of the Hubble parameter H as a function of N .

Figure 2.7: Numerical estimate of the first slow-roll parameter ε1 as a function of N for the

quadratic potential.
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2.4. LINEAR COSMOLOGICAL PERTURBATION THEORY

2.4 Linear cosmological perturbation theory

Apart from solving the problems of hot big-bang cosmology, inflation provides a mechanism

to generation primordial fluctuations that can evolve and amplified with the expansion of

the universe and form the large scale structures observed today ([55], [54], [53]). From CMB

observations we know that the anisotropies at the epoch of decoupling are about one part

in 105 which are very small. So, these were even smaller in earlier epochs. Therefore, we

can study the linear perturbation theory until structure-formation. The theory was devel-

oped by Lifshitz [56]. Significant progress in the understanding cosmological perturbations

was achieved by Bardeen [57], who proposed a gauge-invariant formalism for cosmological

perturbation. In this section, we shall briefly describe the generation of primordial pertur-

bations. We shall then discuss the quantization of these perturbations and define power

spectra, which can be constrained by observations.

2.4.1 Classifications of perturbations

The theory of cosmological perturbation can be studied upon expanding the Einstein equa-

tions to linear order about the background metric. The first step in the analysis is to classify

metric fluctuations according to their transformation properties under local spatial rotations

on hypersurfaces of constant time. The metric perturbations in the homogeneous FLRW

background can be decomposed into scalar, vector and tensor perturbations. In the linear

theory, each fluctuation modes evolve independently.

We begin by expanding the metric about the FLRW background g
(0
µν [58]

gµν = g(0)
µν (t) + δgµν(~x, t) (2.59)

where δgµν denotes perturbation in the metric tensor. Since the metric is a symmetric tensor,

there are 4(4+1)
2

= 10 degrees of freedom in δgµν at first sight.

There are four degrees of freedom associated with the scalar metric fluctuations

δg(scalar)
µν = a2(η)

[
−2A B,i

B,i 2(−ψδij + E,ij)

]
(2.60)

where A,ψ,B and E are four scalar functions describing the scalar perturbation (comma

denotes ordinary partial derivative and δij is the Kronecker delta.)
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There are also four degrees of freedom associated with the vector metric fluctua-

tions,

δg(vector)
µν = a2(η)

[
0 Si

Si −(Fi,j + Fj,i)

]
(2.61)

where Si and Fi are two divergence-less (∇iS
i = ∇iF

i = 0) vector functions.

Finally, there are two degrees of freedom corresponding to tensor metric perturba-

tion,

δg(tensor)
µν = a2(η)

[
0 0

0 hij

]
(2.62)

where hij � 1 is a symmetric, transverse (∇ih
ij = 0) and traceless (hii = 0) tensor.

So, we have three types of metric perturbations. Scalar perturbations are respon-

sible for the inhomogeneities and the anisotropies in the universe. In our work, we are in-

terested in the tensor perturbations which describe gravitational waves. Interestingly, GWs

can be generated even in the absence of sources [59].

Gauge transformation:

In discussing cosmological perturbations, one has to deal with two spacetimes - the physical,

perturbed spacetime and an unperturbed background spacetime, here described by FLRW

metric. Points in background spacetime are labelled by coordinates xµ. A gauge transfor-

mation induces a small amplitude transformation in the coordinates of physical spacetime.

We can define gauge transformation as

xµ → x̃µ = xµ + ξµ (2.63)

where ξµ � 1. The componentξ0) contributes to a scalar metric fluctuation. We can decom-

pose the spatial three-vector ξi as follows

ξi = ξitr + γijξ,j (2.64)

where γij is the spatial background metric, ξitr is the transverse component with two degrees

of freedom, which lead to the vector perturbations. The second term (given by gradient of

a scalar ξ) capitulate scalar perturbations. To summarize, there are two scalar gauge modes

given by ξ0 and ξ and two vector gauge modes given by the transverse three vector ξitr. There

exist no tensor type gauge transformation. Thus, finally there remain two scalar, two vector

and two tensor fluctuation modes.
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Gauge choices: We often use two approaches to deal with gauge degrees of freedom in the

cosmological perturbation theory. The first approach is to pick a gauge, i.e, to pick condi-

tions in the coordinates which completely eliminate gauge freedom. The second is to con-

struct gauge invariant quantities. For our project, we shall work with a fixed-gauge. There

are many different gauge choices. Two well-motivated choices for gauges in scalar pertur-

bations are the synchronous gauge and the conformal-Newtonian (longitudinal) gauge.

1. Synchronous gauge: Synchronous gauge is determined by δg0µ = 0. They correspond

to the gauge choice A = 0 and B = 0. But, this does not fix the coordinates uniquely (for a

detailed discussion, see [54]).

2. Longitudinal (conformal-Newtonian) gauge: Longitudinal gauge is defined by the

choices: B = 0, E = 0. These conditions fix the coordinate system uniquely [54].

In this report, we shall work in the longitudinal gauge. First, we will consider the scalar

perturbation. The choice of gauge corresponds toA = Φ, ψ = Ψ, B = E = 0. The Friedmann

line element in this gauge is given by [47]

ds2 = −(1 + 2Φ)dt2 + a2(t)(1− 2Ψ)dx2 (2.65)

We have two independent scalar degrees of freedom (Φ,Ψ). Neglecting anisotropic stresses,

we can obtain the perturbed stress-energy tensor as

δT 0
0 = −δρ; δT 0

i = −∇iδσ; δT ij = δpδij (2.66)

where δρ, δσ and δp denote the fluctuations in the energy density, momentum flux, and

pressure, respectively. We can then use the above expressions in the perturbed first order

Einstein’s equations, viz. δGµ
ν = 8πGδT µν , we obtain

δG0
0 = 6H(Φ̇ +HΦ)− 2

a2
∇2Φ = −8πGδρ (2.67a)

δG0
i = −2∇i(Φ̇ +HΦ) = −8πG∇iδσ (2.67b)

δGi
j = 2[Φ̈ + 4HΦ̇ + (2Ḣ + 3H2Φ)]δij = 8πGδpδij (2.67c)
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where we have set Φ = Ψ in the absence of anisotropic stresses.

The amplitude of scalar perturbations Φ, also known as the Bardeen potential [57],

is interestingly a gauge-invariant quantity. The Eqs. (2.67a) and (2.67c) can be combined to

obtain the equation governing the evolution of the Bardeen potential [54] given by

Φ
′′

+ 3(1 + c2
s)HΦ′ − c2

s∇2Φ + [2H′ + (1 + 3c2
s)H2]Φ = 4πGa2τδS (2.68)

whereH = a′

a
is the conformal Hubble parameter, cs =

√
p′

ρ′
is the adiabatic speed of pertur-

bations and δS is the entropy perturbation which can be written in terms of the non-adiabatic

pressure perturbation δpNA as [54]

τδS = δpNA (2.69)

where τ can be written as τ = c2sρ
S

. So we can write total pressure perturbation considering

entropy perturbation as

δp = c2
sδρ+ τδS (2.70)

Let us consider the following gauge-invariant quantity which is a combination of

Bardeen known as curvature perturbation defined as [47]

R = Φ +

(
2ρ

3H

)(
Φ′ +HΦ

ρ+ p

)
(2.71)

This quantity is proportional to the local scalar curvature on the spatial hypersurface. Using

equation (2.68), in the fourier space, we have,

R′k =

(
H

H2 −H′

)
[4πGa2δpNAk − c2

sk
2Φk] (2.72)

Now, on super-Hubble scales, i.e k
H � 1, it can be easily seen that curvature perturbationRk

remain conserved.

We shall now consider the vector perturbations. In this case, the Friedmann line element

would be

ds2 = −dt2 + a2(t)[δij + (∇iFj +∇jFi)]dx
idxj (2.73)

The perturbed Einstein tensor can be obtained as

δG0
0 = 0 (2.74a)
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δG0
i = −1

2
∇2Ḟi (2.74b)

δGi
j =

1

2

[
3H(∇iḞj +∇jḞi) + (∇iF̈j +∇jF̈i)

]
(2.74c)

We must have δG0
i = 0 and δGi

j = 0 in the absence of source (as in the case of inflation driven

by scalar fields). We can see from the above equations that Fi also vanishes in that case. So,

there will be no vector perturbations in the absence of sources with vorticity.

Finally, we consider the tensor perturbations. In this case, Friedmann line element can

be written as

ds2 = a2(η)[−dη2 + (δij + hij]dx
idxj (2.75)

where hij is the symmetric, transverse, traceless 2nd rank tensor which has two degrees of

freedom. Tensor perturbations is important for our discussions as we shall see later, these

two degrees of freedom of hij correspond to the two polaizations of gravitational waves.

The perturbed Einstein tensor can be obtained as

δG0
0 = 0 (2.76a)

δG0
i = 0 (2.76b)

δGi
j =

1

2

(
ḧij + 3Hḣij −

1

a2
∇2hij

)
(2.76c)

In the absence of anisotropic stresses, in first order, one can arrive at the following differ-

ential equation for tensor perturbation

h
′′

ij + 2Hh′ij −∇2hij = 0 (2.77)

where we have expressed the equation in conformal time coordinate for later use. This

differential equation admits non-trivial solutions even in the absence of a source term which

implies that, on quantization, tensor perturbations can be generated even in the absence of

sources.
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2.4.2 Quantization of scalar perturbations and scalar power spectrum

In this section, we shall consider the quantum fluctuations associated with the inflaton,

which act as seed of inhomogeneities in the early universe. We can define tiny perturba-

tions in the inflaton δφ as

φ(perturbed) = φ+ δφ (2.78)

where φ is the homogeneous background inflaton. These tiny fluctuations evolve with the

expansion of the universe and leave their imprints as the anisotropies in the CMB. As we

know, on super-Hubble scales, curvature perturbations are proportional to Bardeen poten-

tial Φk, which determines anisotropies in CMB. So, we are interested in the spectrum of

curvature perturbations generated during inflation. At the linear order, the components of

the perturbed stress-energy tensor associated with the inflaton can be expressed as

δT 0
0 = −φ̇ ˙δφ+ φ̇2Φ− Vφδφ = −δρ (2.79a)

δT 0
i = −∇i(φ̇δφ) = −∇i(δσ) (2.79b)

δT ij = (φ̇ ˙δφ− φ̇2Φ− Vφδφ)δij = δpδij (2.79c)

In these equations, we have set Φ = Ψ as the scalar field does not possess any anisotropic

stress. Using the above expressions, we can easily obtain the equation governing the

Bardeen potential can be written as

Φ
′′

+ 3(1 + c2
s)HΦ′ − c2

s∇2Φ + [2H′ + (1 + 3c2
s)H2]Φ = (1− c2

s)∇2Φ (2.80)

Upon comparing this equation with equation (2.68), we can express the non-adiabatic com-

ponent of the pressure perturbation associated with the inflaton as

δpNA =

(
1− c2

s

4πGa2

)
∇2Φ (2.81)

As we know that the primordial perturbations are expected to generate from quan-

tum fluctuations, therefore we can write the corresponding quantum operator R̂ of the clas-

sical curvature perturbations and can express it in the homogeneous background universe

as

R̂(η,x) =

∫
d3k

(2π)3/2

[
âkRk(η)eik·x + â†kR

∗
k(η)e−ik·x

]
(2.82)
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where the creation and the annihilation operators âk and â†~k obey the standard commutation

relations.

Substituting equation (2.81) in equation (2.72) and differentiating further, we get the differ-

ential equation for curvature perturbation in Fourier space

R′′k + 2

(
z′

z

)
R′k + k2Rk = 0 (2.83)

where the "pump field" z is defined as z = aφ̇
H

= aφ′

H . Now upon using Mukhanov-Sasaki

variable ([60]-[61] vk = Rkz, we can rewrite the above differential equation as

v
′′

k +

[
k2 −

(
z′′

z

)]
vk = 0 (2.84)

The power spectrum of the curvature perturbation, i.e. scalar power spectrum,

denoted by PS(k) is the statistical property of the scalar perturbations which are described

by the two-point function of the quantum field R̂. It can be expressed as follows〈
0
∣∣∣R̂k(η)R̂k′(η)

∣∣∣0〉 =
(2π)2

2k3
PS(k)δ(3)(k + k′) (2.85)

where |0〉 is the vacuum state, i.e, âk|0〉 = 0 for all k. Using equation (2.82), we get the form

of scalar power spectrum as

PS(k) =
k3

2π2
|Rk|2 =

k3

2π2

(
|vk|
z

)2

(2.86)

We can evaluate the RHS of the above equation on super-Hubble scales when curvature

perturbation approaches a constant value. Inflation generally predicts a power law form for

PS(k), i.e.

PS(k) ∝ k(ns−1) (2.87)

where ns is the scalar-spectral index, which is an important inflationary parameter that can

be constrained by observations. Recent observation suggest that [37] ns = 0.9649± 0.0042.

2.4.3 Quantization of tensor perturbations and GWs

Inflaton does not generate vector perturbations as it is a scalar source. Tensor perturbations,

which described GWs, can be generated even in the absence of source. Primordial GWs

generated from these tensor perturbations also leave their imprints on CMB [62]. We can

29



2.4. LINEAR COSMOLOGICAL PERTURBATION THEORY

similarly quantize the tensor perturbations as well. On quantization, the tensor perturba-

tions ĥij can be decomposed in terms of the Fourier modes hk as follows:

ĥij(η,x) =

∫
d3k

(2π)3/2
ĥkij(η)eik·x

=⇒ ĥij(η, ~x) =
∑
λ=+,×

∫
d3k

(2π)3/2

[
âλkε

λ
ij(k)hk(η)eik·x + âλ†k ε

λ∗
ij (k)h∗k(η)e−ik·x

]
(2.88)

where ελij is the polarization tensor. The index λ denotes the two polarization (i.e. +,×) of

the gravitational waves. The polarization tensor obeys the relations δijελij(k) = 0 (traceless)

and kiελij(k) = 0 (transverse), and the normalization condition is εij λ(k)ελ
′ ∗
ij (k) = 2δλλ

′ .

In the absence of sources with anisotropic stresses, The Fourier mode hk satisfies

the following differential equation

h
′′

k + 2
a′

a
h
′

k + k2hk = 0 (2.89)

where we have considered the anisotropic stress to be zero. We now define the Mukhanov-

Sasaki variable for the tensor pertrubations as uk = ahkMPl/
√

2. In terms of this variable, the

above equation can be written as

u
′′

k +

[
k2 −

(
a′′

a

)]
uk = 0 (2.90)

The tensor power spectrum PT (k) can be expressed using the two-point function〈
0
∣∣∣ĥkij(η)ĥk

′

mn(η)
∣∣∣0〉 =

(2π)2

2k3

Πk
ij,mn

4
PT (k)δ(3)(k + k′) (2.91)

where |0〉 is again the vacuum state (i.e. âk|0〉 = 0 for all k and λ) and

Πk
ij,mn =

∑
λ

ελij(k)ελ∗mn(k) (2.92)

From the above decomposition, we get

PT (k) = 4
k3

2π2
|hk|2 = (2.93)

Another observable inflationary parameter is the tensor-to-scalar ratio

r =

(
PT
PS

)
(2.94)
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We do not have any direct observation of primordial tensor power spectra yet. But there is

an observational uper bound on the tensor-to-scalar ratio [63] ’r’, which is r < 0.036. Tensor

power spectrum will be nearly scale invariant in the slow roll approximation (see Appendix

A),

PT (k) '
(

2H2

π2M2
Pl

)
k=aH

(2.95)

We shall now assume the de Sitter approximation for slow-roll inflation in which

the scale factor in conformal time is given by

a(η) =
1

1−HIη
(2.96)

, where HI is the constant Hubble parameter during inflation, as we discussed before. In

such a case, we have
a′′

a
=

2H2
I

(1−HIη)2
(2.97)

In order to solve equation (2.90), which is a second order differential equation, we need

initial conditions. The well-motivated initial conditions for primordial perturbations which

are available in the literature is known as Bunch-Davies initial conditions on sub-Hubble

scales,

lim
k
H→∞

(uk(η))→ 1√
2k
e−ikη (2.98)

As the modes remain well inside the Huuble-radius (i.e k
H � 1), they do not feel the ex-

pansion of the universe (do not feel the curvature of spacetime). Thus, solutions to these

modes take the Minkowskian form: e±ikη. So, initially, the modes start in the vacuum which

requires that uk are positive-frequency modes on sub-Hubble scales and therefore they have

the above asymptotic form (i.e equation (2.98)).

Imposing the Bunch-Davies initial conditions, we have the solution to the equation

(2.89), in de Sitter approximation,

uk(η) =
1√
2k

[
1 +

iHIa(η)

k

]
e−ikη (2.99)

Equivalently, we have

hk(η) =

√
2

MPl

uk
a

=

√
2

MPl

1√
2k

[
1 +

iHIa(η)

k

]
e−ikη (2.100)
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Using the form of scale factor in equation (2.96), we can write

hk(η) = hk(a) =

√
2

MPl

iHI√
2k3

[
1− ik

HIa(η)

]
e−ik/HIeik/HIa(η) (2.101)

Let af = a(ηf ), where af is the scale factor at the end of the inflation and ηf is the conformal

time at the end of inflation such that 0 < ηf < H−1
I . Upon using the above solution, the

tensor power spectrum at the end of the inflation can be obtained as

PT (k) =
2H2

I

π2M2
Pl

(
1 +

k2

k2
f

)
(2.102)

where kf = afHI is the mode which leaves the Hubble-radius at the end of the inflation. In

the limit k � kf , the power spectrum reduces to

PT (k) ' 2H2
I

π2M2
Pl

(2.103)

which is scale-invariant and this scale-invariance is valid only for k � kf since the de Sitter

form of the scale factor would not hold true near the end of inflation. therefore, we shall

mostly restrict ourselves to the modes with wave numbers k < 10−2kf Though, the tensor

power spectrum will contain a small spectral tilt in the slow-roll approximation but we shall

ignore this for our discussions. In a later chapter, we shall show how tensor power spectrum

can be used to obtain the present day GWs spectrum.

2.5 Dimensionless Energy Density of GWs

In order to obtain the expression for the dimensionless energy density of GWs, we start with

the action governing the tensor perturbations. At quadratic order in hij , tensor perturbations

in the absence of anisotropic stress are governed by the action [64]

S =

∫
d4x
√
−gL =

∫
d4x
√
−g
[
−gµν

64πG
∂µhij∂νhij

]
(2.104)

where gµν and g is the inverse and determinant of the unperturbed background metric gµν
respectively. We can use this action to compute the stress-energy tensor

Tαβ = −2
δL
δgαβ

+ gαβL (2.105)
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2.5. DIMENSIONLESS ENERGY DENSITY OF GWS

Then, the energy density of GWs at any given time (η) is given by

ρGW (η) = −T 0
0 =

M2
Pl

8a2

(
1

2

〈
ĥ
′2
ij

〉
+
〈
|∇ĥij|2

〉)
(2.106)

We can also define energy density per logarithmic interval, say, ρGW (k, η) through the rela-

tion

ρGW (k) =

∫ ∞
0

d lnk ρGW (k, η) (2.107)

Upon using the above equation and equation (2.88), we get ρGW (k, η) to be

ρGW (k, η) =
M2

Pl

2a2

k3

2π2

(
|h′k(η)|2 + k2|hk(η)|2

)
(2.108)

The observable quantity is the dimensionless energy density ΩGW (k, η), which is

defined as

ΩGW (k, η) =
ρGW (k, η)

ρc(η)
=
ρGW (k, η)

3H2M2
Pl

(2.109)

where ρc(η) is the critical energy density as defined in equation (2.15). The quantity of our

interest is the present day dimensionless energy density of GWs (i.e. ΩGW (k)). Frequency, f

can be written in terms of the wave number k of the tensor modes as

f =
k

2π
= 1.55× 10−15

(
k

1 Mpc−1

)
Hz (2.110)

We shall often refer ΩGW (f) as the spectrum of GWs today.
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Chapter 3

Epoch of Reheating

It is assumed that during inflation, radiation does not interact with scalar field (inflaton).

As we had discussed earlier, the factor by which the scale factor increases during the infla-

tionary epoch, i.e A ' 1026. As the temperature T behaves as inversely proportional to the

scale-factor, (i.e. T ∝ 1/a), the universe cools down rapidly during inflation. In order to

rescue the standard hot big-bang scenario after inflation, the universe has to go through an

epoch during which the universe must be heated back to the same temperature as it was be-

fore inflation. This epoch is known as the epoch of reheating. This process of reheating the

universe can be achieved by the coherent oscillation of inflaton about the minimum of the

potential followed by the coherent inflaton decays and the transfer of energy from inflaton

to radiation ([65]).

3.1 Oscillations of the inflaton

Inflation ends when the field approaches the minimum of the potential and begins to oscil-

late about it. This is a coherent oscillation, the phase being the same at all points in the large

homogeneous region that inflation creates. A typical inflationary potential is shown in the

figure 3.1 which shows the oscillation of inflaton about the minimum of the potential.
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3.1. OSCILLATIONS OF THE INFLATON

Figure 3.1: A typical example of inflationary potential. Inflaton oscillates about the mini-

mum of the potential during the epoch of reheating (figure from [66]).

This oscillation of inflaton can last for some period if there are no rapid decays

of particles. Thus the particle decay time still may be much longer than the Hubble time.

This type of situation can be described by looking at the time-averaged behaviour of the

inflaton. Upon using the form of energy density and pressure from equation (2.39) and

(2.40) and putting these in equation (2.7), we can easily obtain the time evolution equation

of the energy density of inflaton as

ρ̇φ = −3Hφ̇2 (3.1)

which can further be written as

ρ̇φ = −6H[ρφ − V (φ)] (3.2)

Taking the time average of this equation over a period of oscillation of the inflaton,

and making use of the fact that the Hubble parameter remains almost constant over a period

of the oscillation, we obtain

〈ρ̇φ〉 = −〈6H[ρφ − V (φ)]〉 ' −6H 〈ρφ − V (φ)〉 (3.3)

Let φm be the value of the inflaton when the amplitude of oscillation is maximum. We shall

now assume that, over one period,

〈ρφ ' V (φm)〉 = Vm = Constant (3.4)
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Considering this, we can easily arrive at the following equation

〈ρφ − V (φ)〉 ' ᾱ 〈ρφ〉 (3.5)

where ᾱ is given by [67]

ᾱ =

∫ φm

−φm
dφ

√
1− V (φ)

Vm

 dφ√
1− V (φ)

Vm

−1

(3.6)

Thus, we have

〈ρ̇φ〉 = −3Hα 〈ρφ〉 (3.7)

where we have set α = 2ᾱ. The above equation can easily be integrated to obtain following

expression:

ρφ = ρ0

(
a

a0

)−3α

(3.8)

Now, in the large-field model (i.e. V (φ) ∝ φn), it can be shown that [68], α = 2n/(n + 2).

Then from the above equation, it can be seen that, in a quadratic potential (i.e. n = 2),

the average energy density ρφ of inflaton behaves as nonrelativistic matter. Whereas, for a

quartic potential (i.e. n = 4), it behaves as radiation.

3.2 Coherent inflaton decays: transferring energy to radia-
tion

We shall now consider multicomponent fluid containing both scalar field (inflaton) and radi-

ation. The decay of inflaton will happen once Hubble time reaches the decay time. In order

to achieve the transfer of energy from inflaton to radiation, we need to account for the the

interactions between inflaton and radiation too. If we allow the transfer of energy between

components, then we can write the the covariant derivative of the stress-energy tensor as

follows:

∇µT
µν
(φ) = Qν

(φ) and ∇µT
µν
(R) = Qν

(R) (3.9)

where Qν
(φ) and Qν

(R) are four vectors denoting the transfer of energy-momentum from radi-

ation to the inflaton and vice-versa and T µν(φ) and T µν(R) are the stress-energy tensor for inflaton
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3.2. COHERENT INFLATON DECAYS: TRANSFERRING ENERGY TO RADIATION

and radiation respectively. Now from the conservation of the total stress-energy tensor, we

can easily see

∇µ[T µν(φ) + T µν(R)] = 0 =⇒ Qν
(φ) +Qν

(R) = 0 (3.10)

We have denoted ρφ and pφ as the energy density and pressure of inflation respec-

tively. Denoting ρR and pR as the energy density and pressure of radiation, we have the total

energy density and pressure of the two-components system as follows:

ρ = ρφ + ρR and p = pφ + pR (3.11)

The time-component (µ = 0) of the conservation equation (3.10) leads to

ρ̇φ = −3H(ρφ + pφ) +Qφ (3.12)

ρ̇R = −3H(ρR + pR) +QR (3.13)

Now, from equation (3.10), we have Qφ = −QR, using this we obtain

ρ̇ = ρ̇φ + ρ̇R = −3H(ρ+ p) (3.14)

If we now chooseQφ = −(Γφφ̇
2) where Γφ is the inflaton-decay rate [68]. For now, we assume

Γφ to be constant. In such a case, the conservation equation (3.12) is given by

ρ̇φ = −3H(ρφ + pφ)− Γφφ̇
2 = −(3H + Γφ)φ̇2 (3.15)

where we have used ρφ + pφ = φ̇2. Now using equation (2.39), we can further write it as

ρ̇φ = −2(3H + Γφ)[ρφ − V (φ)] (3.16)

Again, using equation (2.39) and writing ρφ in terms of φ and V , we can easily arrive at the

following modified equation of motion for inflaton [viz. Eq (2.37)]:

φ̈+ (3H + Γφ)φ̇+ Vφ = 0 (3.17)

If we now return to the situation wherein inflaton oscillates about the bottom of the

potential, then assuming the interaction between inflaton and radiation, we obtain (from Eq

(3.16) the evolution of time averaged density (averaging over oscillations) [viz. Eq (3.3)]:

〈ρ̇φ〉 = −(3H + Γφ)α 〈ρφ〉 (3.18)
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We can easily integrate the above equation (considering de Sitter approximation) to arrive

at the energy density of inflaton

ρφ(t) = ρ0

(
a

a0

)−3α

e−Γφα(t−t0) (3.19)

where, t0 denotes the time at which the inflaton begins to oscillate. This equation essentially

implies that the coupling between inflaton and radiation leads to an exponential decay of

the inflaton energy density. As we shall see soon, this energy is transferred to radiation,

reheating the universe.

We can similarly get the evolution equation for the energy density of radiation as

ρ̇R = −(4HρR + Γφαρφ) (3.20)

where we have used pR = ρR/3. On substituting the solution ρφ [viz. Eqn (3.19)] into this

equation and integrating, we get [67]

ρR(t) = ρ0(αΓφ)

(
a

a0

)−4 ∫ t

t0

[
a(t̃)

a0

](4−3α)

e−[αΓφ(t̃−t0)] (3.21)

Considering a domain in which the inflaton still dominates the energy density, we get the

evolution of the scale factor as
a(t)

a0

= (t/t0)β (3.22)

where β = 2/(3α). In such case, as 2 ≤ n < ∞, we have (5/3) ≥ (4β − 1) > (1/3). Then,

it can be easily seen [for a detailed discussion, see ref. [67] ] that ρR first starts to increase.

After reaching a maximum value, it starts decreasing.
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Chapter 4

Evolution of primary GWs

In the 2nd chapter, we discussed tensor perturbations generated during inflation. We ar-

rived at the tensor power spectrum at the end of the inflation and also showed how the

strength or the energy density of GWs are related to the amplitude of tensor perturbations.

Now, it is obvious that the dimensionless energy density of GWs observed today (ΩGW (k))

not only depends on the amplitude of the tensor perturbations at the end of the inflation,

but also it depends on their evolution through later epochs. In this chapter, we shall discuss

the evolution of primary GWs during reheating and radiation dominated epochs and shall

finally arrive at the analytical expression for ΩGW today.

4.1 Evolution during reheating

In order to understand the evolution of tensor perturbations after inflation, we shall intro-

duce a quantity known as the tensor transfer function, χk. The Fourier amplitude of the

tensor perturbations in the post inflationary epochs can be written as [64]

hk(η) = hPk χk(η) (4.1)

where hPk denotes primordial amplitude tensor perturbations at the end of the inflation.

Interestingly, χk and hk obeys same equation of motion. Using equation (2.100), we can

write hPk as

hPk = hk(af ) =

√
2

MPl

iHI√
2k3

[
1− ik

kf

]
e−ik/HIeik/kf (4.2)

where kf = afHI as defined earlier. In this section, we shall discuss the evolution of χk
during the reheating epoch. From now onwards, we shall work with a re-scaled scale factor
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A = a/af as the independent variable. It can be found that the evolution equation of transfer

function χk is given by [69]

d2χk
dA2

+

(
4

A
+

1

H

dH

dA

)
dχk
dA

+
(k/kf )

2

(H/HI)
2χk = 0 (4.3)

Note that, the evolution of χk depends on the behaviour of Hubble parameter.

Now, the goal is to solve the above differential equation for the transfer function during the

epoch of reheating. In order to do that, we need initial conditions for χk and dχk/dA at the

end of the inflation when A = 1, i.e. a = af . Clearly, we have from equation (4.1),

χIk(A = 1) = 1 (4.4)

Upon using equation (2.101) and the expression for hPk , we can find that

dχIk(A = 1)

dA
= − (k/kf )

2

1− i
(
k
kf

) ' 0 (4.5)

where the second equality holds only for k � kf .

In this section, we shall consider two reheating scenarios:

1. Reheating described by an averaged equation of state parameter (wφ), which is associated

with the coherent inflaton oscillations around the minimum of the inflationary potential, as

discussed in the previous chapter. In this case, transition from inflaton to radiation happens

instantaneously.

2. Perturbative reheating scenario, in which transfer of energy from inflaton to radiation

happens gradually.

In the following two sub-sections, we shall discuss the evolution of transfer function in these

two scenarios.

4.1.1 Instantaneous reheating

In this sub-section, we shall consider the epoch of reheating described by an averaged equa-

tion of state (EoS) parameter, wφ. In such a case, energy density of inflation behaves as [viz.

Eq (2.9)], ρφ ∝ a−3(1+wφ). Then the Hubble parameter can be written as

H2 = H2
IA
−3(1+wφ) (4.6)
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Thus, we have
1

H

dH

dA
= −3

2
(1 + wφ)

1

A
(4.7)

Upon using these two equations in equation ( 4.3), the evolution equation for transfer func-

tion becomes
d2χk
dA2

+ (5− 3wφ)
1

2A

dχk
dA

+
(k/kf )

2

A(1−3wφ)
χk = 0 (4.8)

The general solution to this differential equation can be expressed in terms of Bessel func-

tions as follows:

χRHk (A) = A−ν
[
CkJ−ν/γ

(
k

γkf
Aγ
)

+DkJν/γ

(
k

γkf
Aγ
)]

(4.9)

where Jα(z) is the Bessel function of order α, and ν and γ are given by

ν =
3

4
(1− wφ) ; γ =

1

2
(1 + 3wφ) (4.10)

We can then find dχRHk
dA

as follows

dχRHk
dA

=
k

kf
A−1+γ−ν

[
CkJ−(ν/γ)−1

(
k

γkf
Aγ
)

+DkJ(ν/γ)+1

(
k

γkf
Aγ
)]

(4.11)

The coefficients Ck and Dk can be determined from the initial conditions for χk and dχk/dA

at the end of inflation. It can be shown [69]

Ck =
πk

2γkf

 1

1− i
(
k
kf

)
[ k

kf
Jν/γ

(
k

γkf

)
−
(

1− ik

kf

)
Jν/γ+1

(
k

γkf

)]
cosec

(
πν

γ

)
(4.12)

Dk = − πk

2γkf

 1

1− i
(
k
kf

)
[ k

kf
J−ν/γ

(
k

γkf

)
+

(
1− ik

kf

)
J−(ν/γ)+1

(
k

γkf

)]
cosec

(
πν

γ

)
(4.13)

We shall explicitly make use of the above solution and these coefficients to arrive at the

present day spectrum of primary GWs.

4.1.2 Perturbative reheating

Now, we shall discuss the other reheating scenario, known as perturbative reheating (see,

refs. [70], [71]). In last chapter, we discussed how the energy density of inflaton gradu-
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ally decayed and transferred to radiation. In such a case, the effective EoS parameter (wφ)

becomes time dependent. But for simplicity, we assume it to be constant1 during reheating.

We define two dimensionless variables which describe the comoving energy densi-

ties of inflaton and radiation

X(A) =
ρφ
m4
φ

A3(1+wφ) and R(A) =
ρR
m4
R

A4 (4.14)

Now, using the conservation equation for ρφ and ρR [viz. Eq (3.15) and (3.20)], and writting

the derivatives of ρφ and ρR with respect to re-scaled variable A, we can easily arrive at the

Boltzmann equations governing the evolutions of energy densities [69]

dX

dA
+

√
3MPlΓφ
m2
φ

(1 + wφ)
A1/2X(

X

A
3wφ

+ R
A

)1/2
= 0 (4.15)

dR

dA
−
√

3MPlΓφ
m2
φ

(1 + wφ)
A3(1−2wφ)/2X(
X

A
3wφ

+ R
A

)1/2
= 0 (4.16)

In order to arrive at the Hubble parameter at the end of reheating, we numerically

solve the above Boltzmann equations with the following initial conditions at the end of the

inflation

ρφ(A = 1) = ρf = 3Vf/2, ρR(A = 1) = 0 (4.17)

where Vf is the value of the inflationary potential at the end of the inflation. Now, it is

assumed that the phase of perturbative reheating ends when the decay rate is equal to the

Hubble parameter, i.e. H = Γφ. So, when reheating is achieved, we require

H2(Are) =
1

3M2
Pl

[ρφ(Are, ns,Γφ) + ρR(Are, ns,Γφ))] = Γ2
φ (4.18)

where Are = are
af

, with are denoting the scale factor at the end of reheating and ns is the

scalar spectral index, as defined in the 2nd chapter. The end of reheating indicates to an

epoch when the rate of transfer of the energy from the inflaton to radiation is maximum.

Now, from the energy density of radiation ρR, we can determine the associated reheating

temperature Tre, which is [72]

Tre =

(
30

π2 gr,re

)1/4

ρ
1/4
R (Are, ns,Γφ) (4.19)

1This assumption is valid only when the oscillation time scale of inflaton is much smaller than the Hubble
time scale.
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4.2. EVOLUTION DURING RADIATION DOMINATION

where gr,re is the number of relativistic degrees of freedom associated with the reheating.

We shall see later, that in order to arrive at the spectrum of GWs today, we need to fix these

parameters also along with the parameters describing the inflationary potential. We shall

fix the value of Tre, and hence determine the value of decay constant Γφ considering the

condition H = Γφ at the end of reheating.

4.2 Evolution during radiation domination

In this scetion, we shall discuss the evolution of the tensor transfer function during radiation

dominated epoch and arrive at the present day spectrum of primary GWs. In terms of the re-

scaled scale factors, the evolution of the Hubble parameter during the radiation dominated

epoch can be written as

H2 = H2
re

A4
re

A4
(4.20)

where Hre and Are denote the Hubble parameter and re-scaled scale factor at the end of

reheating, respectively. We can easily obtain the evolution equation transfer function during

the radiation dominated epoch, viz. Eq[4.3]

d2χk
dA2

+
2

A

dχk
dA

+
(k/kre)

2

(Are)2
χk = 0 (4.21)

where kre = areHre is the mode which reenters the Hubble radius at the end of the reheating.

By solving the above differential equation, we can obtain the general solution

χRDk =
1

A

[
Eke

−i(k/kre)( A
Are
−1) + Fke

i(k/kre)( A
Are
−1)
]

(4.22)

We can then match this solution and its derivative with the solution χRHk and its derivative

[viz. Eq (4.9) and (4.11)] at the end of the inflation (i.e. A=1) to determine the coefficients Ek
and Fk, which can be expressed as

Ek =
Are
2

[(
1 +

1kre
k

)
χRHk (Are) +

ikre
k
Are

dχRHk
dA

(Are)

]
(4.23)

Fk =
Are
2

[(
1− 1kre

k

)
χRHk (Are)−

ikre
k
Are

dχRHk
dA

(Are)

]
(4.24)

We can see that Ek and Fk are functions of χRHk and dχRHk
dA

and thus depend on the dynamics

of reheating and will be different for two reheating scenarios accordingly.

43



4.2. EVOLUTION DURING RADIATION DOMINATION

Now, considering the evolution of tensor perturbations post inflation (hk = hPk χk),

we can arrive at the energy density of GWs (ρGW (k, η)), which is given by [cf. Eq(2.108)]

ρGW (k, η) =
M2

Pl

2a2

k3

2π2
|hPk |2

(
|χRD ′k (η)|2 + k2 |χRDk (η)|2

)

=⇒ ρGW (k, η) =
M2

Pl

8a2
PT (k)

(
|χRD ′k (η)|2 + k2 |χRDk (η)|2

)
(4.25)

If we now substitute the solution χRDk [Eq (4.22)] in the above expression, we obtain

ρGW (k, η) to be

ρGW (k, η) =
M2

Plk
2

8a2
fA

4
PT (k)

{
(|Ek|2 + |Fk|2)

[
2 +

(
kreAre
kA

)2
]

+EkF
∗
k

[(
kreAre
kA

)2(
1 +

2ik

kre

A

Are

)]
e−2i k

kre
[ A
Are
−1]

+E∗kFk

[(
kreAre
kA

)2(
1− 2ik

kre

A

Are

)]
e2i k

kre
[ A
Are
−1]
}

(4.26)

We shall then be interested in the modes which re-enter the Hubble radius during reheating

or radiation dominated epochs. So, during radiation domination, i.e. A � Are, the above

expression for ρGW simplifies to

ρGW (k, η) =
M2

Plk
2

4a2
fA

4
PT (k) (|Ek|2 + |Fk|2) (4.27)

Hence, the dimensionless energy density of GWs (viz. Eq (2.109)) takes the form

ΩGW (k, η) =
k2

12a2
fH

2A4
PT (k) (|Ek|2 + |Fk|2) (4.28)

We shall now introduce two new quantities [69] Ek andFk, and write them in terms

of Ek and Fk respectively.

Ek = −i 2

Are

k

kre
Ek

Fk = i
2

Are

k

kre
Fk

(4.29)

In terms of these new quantities, we can write ΩGW (k, η) as

ΩGW (k, η) =
k2
reA

2
re PT (k)

48 a2
fH

2A4
(|Ek|2 + |Fk|2) (4.30)
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Upon using equation (4.20), kre = areHre and Are = are/af in the above equation, we obtain

ΩGW (k, η) =
PT (k)

48
(|Ek|2 + |Fk|2) (4.31)

In case of instantaneous reheating, we have Are = 1 and kre = kf . If we recall the initial

conditions (see Eq.[4.4,4.5]), then we have

χRHk (Are = 1) = 1 and
dχRHk (Are = 1)

dA
= − (k/kf )

2

1− i
(
k
kf

) (4.32)

Substituting these in Eq (4.23) and (4.24) and writing in terms of Ek and Fk, we get

Ek =
1− 2i(k/kf )− 2(k/kf )

2

1− i(k/kf )
; Fk =

1

1− i(k/kf )
(4.33)

As we discussed earlier that we are interested in the limit k � kf . In this limit, Ek = Fk ' 1,

which lead to

ΩGW (k, η) =
PT (k)

24
=

H2
I

12π2M2
Pl

(4.34)

where we have used the scale-invariant form of tensor power spectrum [viz. Eq (2.103)].

We can see that energy density of primary GWs behaves similarly as the energy

density of radiation (i.e. 1/a4). This is due to the fact that modes of our interest are well

inside the horizon at late times during radiation domination. Finally, we can express the

dimensionless energy density of primary GWs today in terms of present day dimensionless

energy density of radiation as

ΩGW (k)h2 '
(
gr,0
gr,eq

)
ΩRh

2ΩGW (k, η) (4.35)

where gr,eq and gr,0 represent the number of relativistic degrees of freedom at the epoch

of radiation-matter equality and today, respectively. The Hubble parameter today can be

expressed as H0 = 100h km s−1 Mpc−1

4.3 Spectrum of primary GWs in instantaneous reheating

In this section, we shall discuss the exact effect of the averaged EoS on the spectrum of GWs

today by choosing appropriate initial conditions in the two domains k < kre and k > kre.
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4.3. SPECTRUM OF PRIMARY GWS IN INSTANTANEOUS REHEATING

We can write equation (4.23) and (4.24) in terms of quantities Ek and Fk as

Ek =

[(
1− ik

kre

)
χRHk (Are) + Are

dχRHk
dA

(Are)

]
Fk =

[(
1 +

ik

kre

)
χRHk (Are) + Are

dχRHk
dA

(Are)

] (4.36)

Now, during radiation domination, we have H2A4 = H2
reA

4
re and upon using kf = afHI ,

kre = areHre, and Are = are/af , we can easily obtain the following relation

Are =

(
kf
kre

)1/γ

(4.37)

If we put this in equation (4.9), i.e in χRHk (Are) solution , we get

χRHk (Are) = A−νre

[
CkJ−ν/γ

(
k

γkre

)
+DkJν/γ

(
k

γkre

)]
(4.38)

From the above equation, it is clear that the Bessel functions depends on (k/kre) whereas Ck
and Dk depend only on (k/kf ). Now, for small z (z � 1), Bessel function Jα(z) behaves as

[73]

Jα(z) ' 1

Γ(1 + α)

(z
2

)α
(4.39)

As wφ ranges from 0 ≤ wφ ≤ 1, the quantities ν and γ both are positive.

Jν/γ(z) ∝ zν/γ Dominant

J−ν/γ(z) ∝ z−ν/γ Sub-dominant
(4.40)

So, we can write

χRHk (Are) ' A−νre DkJν/γ

(
k

γkre

)
(4.41)

where the coefficient Dk is given by

Dk ' −
π

Γ
(
− ν
γ

) ( k

2γkf

)−ν/γ
cosec

(
πν

γ

)
(4.42)

1. First domain (k � kre): Using expression (4.39) for the Bessel function Jν/γ
(

k
γkre

)
, we can

reqrite the solution χRHk (Are) as

χRHk (Are) ' −A−νre
π

Γ
(
− ν
γ

) 1

Γ
(

1 + ν
γ

) ( k

2γkf

)−ν/γ (
k

2γkre

)ν/γ
cosec

(
πν

γ

)
(4.43)
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4.3. SPECTRUM OF PRIMARY GWS IN INSTANTANEOUS REHEATING

Now using the property of the gamma function,

Γ(z)Γ(1− z) =
π

sin(πz)
(4.44)

we obtain that χRHk (Are) ' 1 and dχRHk
dA

(Are) ' 0. We can also find that, under the condition

k � kre, we get Ek = Fk ' 1. So, we get the spectrum of GWs today in this domain as

ΩGW (k)h2 '
(
gr,0
gr,eq

)
ΩRh

2PT (k)

24
' ΩRh

2 H2
I

12π2M2
Pl

(4.45)

2. Second domain (k � kre): Since we are interested all the time in k � kf limit, Dk

continues to dominate. So we can write the same previous expression for χRHk (Are). Now

for large argument (z � 1), the Bessel function behaves as [73]

Jα(z) '
√

2

πz
cos
[
z − (πα/2)− π

4
)
]

(4.46)

Therefore, χRHk (Are) and dχRHk (Are)

dA
behave as [see Appendix (B)]

χRHk (Are) '
1√
π

(
k

2γkre

)−(ν/γ)−(1/2)

Γ

(
1 +

ν

γ

)
cos
(

k

γkre
− πν

2γ
− π

4

)
(4.47)

Are
dχRHk (Are)

dA
' − 2γ√

π

(
k

2γkre

)−(ν/γ)+(1/2)

Γ

(
1 +

ν

γ

)
sin
(

k

γkre
− πν

2γ
− π

4

)
(4.48)

Putting these two equations in equation (4.36), we get

Ek ' F∗k ' −
2iγ√
π

(
k

2γkre

)−(ν/γ)+(1/2)

Γ

(
1 +

ν

γ

)
exp i

(
k

γkre
− πν

2γ
− π

4

)
(4.49)

so that,

|Ek|2 = |Fk|2 =
4γ2

π
Γ2

(
1 +

ν

γ

)(
k

2γkre

)nGW
(4.50)

where

nGW = 1− 2ν

γ
= −2(1− 3wφ)

1 + 3wφ)
(4.51)

Therefore, we obtain

ΩGW (k, η) =
PT (k)

48
(|Ek|2 + |Fk|2) ' PT (k)

24
|Ek|2 (4.52)

If we substitute these in equation (4.35), we obtain the present day spectrum of GWs in the

k � kre limit as follows:

ΩGW (k) ' ΩRh
2 H2

I

12π2M2
Pl

4γ2

π
Γ2

(
1 +

ν

γ

)(
k

2γkre

)nGW
(4.53)

where nGW is the spectral index of GWs today which is given by the equation (4.51).
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Chapter 5

Results and comparison with observations

In the last chapter, we have arrived at the analytical expression for the present day spectrum

of GWs. Now to illustrate the results obtained in the previous chapter, we shall consider a

typical inflationary model in this chapter and plot those results obtained in the last chapter.

Finally we compare these with the ongoing and forthcoming GWs observations.

5.1 A typical inflationary model

In this section, we shall consider a typical inflationary model which, of course, permits the

slow-roll inflation. If φ is the canonical scalar field (inflaton) which drives inflation, then the

inflationary potential is given by

V (φ) = Λ4
0

[
1− exp

(
−
√

2

3α

φ

MPl

)]2n

(5.1)

This is known as α− attractor model of inflation. The scale Λ0 determines the energy scale

of inflation which can be constrained by observations of CMB anisotropy. We can express

Λ0 in terms of the amplitude of scalar power spectrum AS , nS and r as follows:

Λ0 = MPl

(
3π2rAs

2

)1/2
[

2n(2n+ 1) +
√

4n2 + 6α(1 + n)(1− nS)

4n(1 + n)

]n/2
(5.2)

We can use the constraints on the inflationary parametersAs, nS and r from Planck [37],and,

using the above relation, we can suitable choose a set of values for the parameters describing

the potential which are consistent with the CMB observations.

This model accounts for a large number of inflationary potentials []. We should

mention that, this model with α = 1 and n = 1 reduces to the well-known Higgs-Starobinsky
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5.2. EVOLUTION OF HUBBLE PARAMETER AND TRANSFER FUNCTION

model of inflation [74]. Our potential contains a plateau region at suitably large values of

the field, which is indeed compatible with the CMB data [37].

As we saw in the previous chapter that to evolve the background beyond infla-

tion, we need the value of the energy density of inflaton at the end of the inflation (recall

Eq [4.17]), which can be expressed in terms of the value of the potential at the end of the

inflation, i.e. (ρf = 3
2
Vf ). We can easily obtain Vf for our potential as

Vf = V (φf ) = Λ4

(
2n

2n+
√

3α

)2n

(5.3)

For our discussions hereafter, we shall choose α = 1.

5.2 Evolution of Hubble parameter and transfer function

In this section, we numerically solve the differential equation [Eq (4.15) and (4.16)] govern-

ing the evolution of inflaton and radiation energy densities, that we obtained in the last

chapter. Using these solutions on equation (4.18), we have plotted (see Figure 5.1) the Hub-

ble parameter as a function of A on log scales over the domain 1 ≤ A ≤ Are. We have also

solved the evolution equation of tensor transfer function numerically in the case of pertur-

bative reheating and plotted it as function of A (see figure 5.2) over the same domain. In

plotting these quantities, we have set wφ = 0 and set the reheating temperature Tre = 103

GeV.

Taking log on both side of the equation H2 = H2
IA
−3(1+wφ), we can find that

logH = logHI − (3/2)logA (5.4)

So the slope of the graph logH vs logA is (−3
2
). We can see the slope of straight line describ-

ing H(A) on Figure 5.1 is indeed (−3
2
) which is compatible with wφ = 0. We can also see that

the slope changes when A approaches Are, which indicates the transition from inflaton to

radiation implying the beginning of the radiation dominated epoch.
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5.2. EVOLUTION OF HUBBLE PARAMETER AND TRANSFER FUNCTION

Figure 5.1: Evolution of Hubble parameter during perturbative reheating.

Figure 5.2: Evolution of tensor transfer function during perturbative reheating.

The vertical red line in Figure 5.2 indicates the time when the mode reenters the Hubble

radius during reheating. Here we can see that transfer function is constant on super Hubble

scales but it starts oscillating when the mode reenters the Hubble radius during reheating.
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5.3 Spectrum of primary GWs today

In this section, we shall consider only the case of instantaneous reheating described by an

averaged EoS parameter wφ, to plot the spectrum of GWs today. In the previous chapter

we obtained the present day spectrum of primary GWs analytically in the instantaneous

reheating scenario. In the figure 5.3, we have plotted the dimensionless energy density of

primary GWs today, viz. ΩGW (f) over the wide range of frequencies.

Figure 5.3: Plot of spectrum of primary GWs today, ΩGWh
2 as function of frequencies f on

log scales.

In plotting the above spectrum, we have considered the α−attractor model of inflation as

defined in the last chapter. We have chosen a set of values for inflationary parameter n

and illustrated the spectra for each n values. We have chosen n = (1, 2, 3, 5), which corre-

spond to EoS parameter wφ = (0, 1
3
, 1

2
, 2

3
). We have chosen this parameters such that Tre = 3

GeV in all the cases. If we use equation (4.51) to calculate the spectral index of GWs, i.e.

nGW = −2(1−3wφ)

1+3wφ)
for the set of wφ values, then we get the spectral index of GWs to be

nGW = (−2, 0, 2
5
, 2

3
), as expected. As we can see, this figure illustrates the same features

in the domains k � kre and k � kre, as we discussed in the last chapter:

1. The spectrum of GWs is strictly scale-invariant for f < fre = kre
2π

.
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2. The spectrum has a red tilt for wφ < 1
3

and a blue tilt for wφ < 1
3

in the large frequency

limit.

In the above figure, we have also included the sensitivity curves of the some of

the present and proposed GW observatories. We find that for a set of values of inflationary

parameter n and reheating parameter wφ, the spectra of GWs intersect with the sensitivity

curves of some GWs observations. Moreover, interestingly we find that the spectrum corre-

sponding to wφ = 2/3 crosses the BBN bound of ΩGWh
2 ≤ 10−6 at large frequencies (∼ 1010

Hz). These features of this figure suggest that observations of GWs today can prove the

inflationary paradigm as well as these lead to interesting constraints on the physics of the

very early universe.

5.4 Secondary epoch of reheating and spectrum of primary
GWs

In the previous chapter, we had discussed the evolution of GWs during primary epoch of

reheating followed by a primary radiation dominated epoch. We had also considered that

the entropy conservation from reheating to today. We used that fact to relate the reheating

temperature Tre at the end of reheating to the temperature today T0.

Apart from these primary phases discussed earlier, there may be a short secondary

phase of reheating [75] can arise after the primary radiation dominated epoch (as illustrated

in Figure 5.4). This modified scenario are also compatible with observations [76], [77]. A

secondary phase of reheating can occur due to the decay of another scalar field σ. This decay

leads to entropy production in the universe. In this section, we shall discuss the evolution

of GWs during this secondary phase of reheating. We shall see that , this secondary phase

of entropy production leads to specific imprints on the present day spectrum of GWs. We

shall also discuss constraints from the recent NANOGrav observation.

In order to calculate the temperature Tre associated with the secondary phase of

reheating, we assume entropy conservation during the first radiation dominated epoch.

Hence, we can find the relation between the temperature at the end of the first phase of

reheating (Tre) and the temperature at the beginning of the secondary phase of reheating

(TσR) as follows:

gs,re a
3
re T

3
re = gs,σR a

3
σR T

3
σR (5.5)
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where gs,re and gs,σR denote the relativistic degrees of freedom related to entropy production.

Note that are and aσR denote the scale factor at the end of primary reheating phase and at

the start of the second phase of reheating respectively. We can now express the original

reheating temperature Tre in terms of the temperature TσR at the beginning of the secondary

phase of reheating. Upon using the above relation, we get

Tre =

(
gs,σR
gs,re

)1/3

eN
(1)
RDTσR (5.6)

where N (1)
RD = ln (aσR/are) denotes the number of e-folds during first epoch of radiation

domination . Upon demanding the entropy conservation, we can similarly express the tem-

perature at the end of the secondary phase of reheating, say, Tσ, in terms of the temperature

T0 today as

Tσ =

(
43

11 gs,σ

)1/3(
a0

aeq

)
eN

(2)
RDT0 (5.7)

where aeq is the scale-factor during radiation-matter equality. The factor a0/aeq can be ex-

pressed in terms of the quantity a0/ak through the relation

a0

aeq
=

(
a0

ak

)
e−[Nk+Nre+N

(1)
RD+Nsre+N

(2)
RD] (5.8)

where ak denotes the scale factor when the mode with the wave number k leave the Hubble

radius during inflation. Nk represents the number of e-folds from the time corresponding

to ak to the end of inflation. The quantities Nre, Nsre and N
(2)
RD denote the number of e-

folds during the first phase of reheating, second phase of reheating and second phase of

radiation domination, respectively. Setting k to the pivot scale k∗, we can finally arrive at the

expression for the primary reheating temperature Tre in terms of the parameters associated

with the modified scenario of entropy production [69]:

Tre =

(
43

11 gs,σ

)1/3(
a0 HI

k∗

)
F−1/3 e−(N∗+Nre) T0 (5.9)

where F is the ratio of entropy calculated at the end and at the beginning of the secondary

phase of reheating. It can be expressed as [69]

F =
s(Tσ)a3

σ

s(TσR)a3
σR

(5.10)

where s(T ) is the entropy at temperature T .
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Considering the secondary phase of reheating described by averaged EoS wσ, we

can obtain the relation between Hubble parameter at the end and at the beginning of the

secondary phase of reheating:

Hσ =

(
γ1 Tσ

γ2 F 1/3 TσR

)3(1+wσ)/2

HσR (5.11)

where γ1 =
(
gr,re
gr,σR

)1/4

and γ2 =
(
gs,re
gs,σ

)1/3

. Similarly, we can arrive at the relation between

the temperature at the end and at the beginning of the secondary phase of reheating:

Tσ =

(
γ1

γ2 F 1/3

) 3(1+wσ)
1−3wσ

(
gr,σR
gr,σ

) 1
1−3wσ

TσR (5.12)

The quantity of our interest is the factor F , which decides the extent of entropy produced at

late times.

Figure 5.4: A schematic diagram describing the evolution of the Hubble radius in a

scenario with a secondary reheating phase . (Fig. from [69])

In this figure, we have highlighted all the relevant scales in this modified scenario. k∗ is the

CMB pivot scale; kσR and kσ are wave numbers associated with the modes which re-enter the

Hubble radius at the beginning and at the end of secondary phase of reheating respectively.
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We shall now discuss the spectrum of GWs arises due to this modified scenario.

Similar to the case of primary reheating, we can describe the secondary epoch of reheating

by an averaged EoS parameter wσ. In order to arrive at the present day GWs spectrum, we

shall follow the same calculations as we discussed in the last chapter for the case of primary

reheating. Before plotting the spectrum, we shall briefly describe the shape of the spectrum

in the modified scenario.

For k < kσ : These modes with wave numbers k < kσ re-enter the Hubble radius during

the secondary radiation dominated epoch. So, prior to their re-entry, there are on super-

Hubble scales which indeed implies that these modes are not affected by the dynamics of

background during earlier epochs. Hence, spectrum of GWs remains scale-invariant (nGW =

0).

For kσ < k < kσR : As we have mentioned kσR denotes the wave number which reenters the

Hubble radius at the beginning of the secondary reheating phase. Similar to the case when

modes re-enter the Hubble-radius during primary epoch of reheating, we expect nGW to be

non-zero over this range of wave numbers. The spectrum of GWs exhibits a spectral tilt and

nGW depends on the EoS parameter wσ as

nGW =
2(3wσ − 1)

3wσ + 1
(5.13)

So, it is clear that the spectrum has a blue tilt when wσ > 1/3 and a red tilt when wσ < 1/3.

Then, for these range of wave numbers, ΩGW (k) behaves as

ΩGW (k) ∝ knGW ∝ k
2(3wσ−1)
3wσ+1 (5.14)

For kσR < k < kre : These modes re-enter the Hubble radius during the first epoch of radia-

tion domination. Thus, the spectrum of GWs should be scale invariant (nGW = 0) over this

range. The amplitude of the spectrum over this range will depend on the value of the EoS

parameter wσ, which characterizes the secondary reheating phase.

For kre < k < kf : This corresponds to the case that we had discussed in the previous chap-

ter where the corresponding modes re-enter the Hubble radius during the primary phase of

reheating. So, the spectrum of GWs will behave as

ΩGW (k) ∝ knGW ∝ k
2(3wφ−1)

3wφ+1 (5.15)
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Figure 5.5: Plot of present day spectrum of primary GWs, ΩGW (f) in the modified scenario

with a secondary epoch of reheating.

1. Tre = 10 GeV, F = 10−8, wσ = 0.99; 3. Tre = 103 GeV, F = 10−6, wσ = 0.99;

2. Tre = 102 GeV, F = 10−7, wσ = 0.99; 4. Tre = 1011 GeV, F = 102, wσ = 0;

5. Tre = 1012 GeV, F = 103, wσ = 0.

From the above figure, we can see the effects on ΩGW (f) over the frequency range f < fre

due to the late time entropy production. I have plotted the spectra by appropriately choosing

reheating temperature Tre, F and EoS parameter wσ. We have also set scalar spectral index

nS = 0.9624 and TσR = 1 GeV. Now, recent NANOGrav observations suggest a stochastic

GWs background with an amplitude of ΩGWh
2 ' 10−11 around the frequency of 10−8 Hz

[31] which lies in the domain f < fre. It is also important to recognize the fact that, to be

compatible with the NANOGrav observations, the reheating temperature Tre has to be less

than 103 GeV in the modified scenario with late time entropy production. It implies a low

decay width for the inflaton. Apart from the constraints from NANOGrav, we can see from

figure 5.5 that the primary spectrum in the modified scenario can also be detected by some

proposed future GW observatories such as DECIGO, BBO, SKA and LISA.
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Chapter 6

Generation of secondary GWs

Till now, we have discussed the generation of GWs from first order tensor perturbations,

and their evolution and present day spectrum. As we mentioned earlier, these are known

as primary gravitational waves. Now at the second order in perturbation theory, the tensor

perturbations are sourced by first order scalar perturbations ([78], [79]). These secondary

tensor modes can generate secondary GWs. It is numerically studied that the present day

spectrum of secondary GWs (on small scales) is accessible to proposed GWs observations

like the Big Bang Observer (BBO) [6]. Recent studies show that inflationary potentials with

inflection points can lead to a phase of ultra-slow-roll (for a detailed discussion, see for

instance [80]), which indeed leads to the enhancement of the primordial curvature pertur-

bations on small scales. This rise in the scalar power spectrum on small scales leads to the

formation of primordial black holes (PBHs) as well as the secondary GWs with detectable

amplitudes [81]. In this chapter, we shall discuss the generation mechanism and calculate

the spectrum of secondary GWs induced by scalar perturbations at second order.

6.1 Second order tensors from first order scalars

In chapter 2, we had discussed the fact that the scalar, vector and tensor modes evolve in-

dependently in the first-order perturbation theory. But, at the second-order, scalar, vector

and tensor modes are not independent. Interestingly, at the second order, secondary tensor

modes h̃ij depends on the first-order scalar metric perturbation. We are interested in these

scalar-induced tensor perturbations. To compute the second order tesnor modes, we begin
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with the perturbed metric

ds2 = a2(η)

[
−
(
1 + 2Φ(1) + 2Φ(2)

)
dη2 + 2V

(2)
i dηdxi +

{
(1− 2Ψ(1) − 2Ψ(2))δij +

1

2
h̃ij

}
dxidxj

]
(6.1)

where Φ and Ψ are the Bardeen potentials (see section (2.4)) describing the scalar perturba-

tions at the first order and (1) and (2) indicates the order of perturbation. The second-order

Einstein tensor and energy-momentum tensor can be written as [82]

G
(2)i
j = a−2

[
1

4

(
h̃i
′′

j + 2Hh̃i ′j −∇2h̃ij

)
+ 2Φ(1)∂i∂jΦ

(1) − 2Ψ(1)∂i∂jΦ
(1) + 4Ψ(1)∂i∂jΨ

(1)

+ ∂iΦ(1)∂jΦ
(1) − ∂iΦ(1)∂jΨ

(1) − ∂iΨ(1)∂jΦ
(1) + 3∂iΨ(1)∂jΨ

(1)

+
(

Φ(2),Ψ(2), V
(2)
i terms

)
+ (diagonal part) δij

(6.2)

and

T
(2)i
j =

(
ρ(0) + p(0)

)
v(1) iv

(1)
j + p(0)Π

(2) i
j + p(1)Π

(1) i
j + p(2)δij (6.3)

where ρ, p, vi and Π are energy density, pressure, velocity and anisotropic stress, respectively.

Upon acting the projection tensor T̂ lmij on the spatial components of the Einstein equations,

we get

T̂ lmij G
(2)
lm =

1

M2
Pl

T̂ lmij T
(2)
lm (6.4)

Projection tensor T̂ lmij extracts the transverse, traceless part of any tensor. It also eliminates

the terms involving the second-order perturbations, i.e. Φ(2), Ψ(2), V (2)
i , p(2), Π

(2) i
j . We have

the first-order equations

p(1) = c2
sρ

(1) (6.5)

ρ(1) = −2M2
Pl

a2

[
3H
(

Φ(1) −Ψ(1)′
)

+∇2Ψ(1)
]

(6.6)

v
(1)
i = − 2M2

Pl

a2 (ρ(0) + p(0))
∂i

(
Ψ(1)′ +HΦ(1)

)
(6.7)

Π
(1)i
j = − M2

Pl

a2p(0)

(
∂i∂j −

1

3
δij∇2

)(
Φ(1) −Ψ(1)

)
(6.8)
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6.1. SECOND ORDER TENSORS FROM FIRST ORDER SCALARS

Using these first-order equations in (6.4) , we get the evolution equation

h̃i
′′

j + 2Hh̃i ′j −∇2h̃ij = −4 T̂ lmij Slm (6.9)

In order to arrive at the above equation, we have neglected the tensor part of Π
(2)i
j and

defined Sij as

Sij = 2Φ∂i∂jΦ− 2Ψ∂i∂jΦ + 4Ψ∂i∂jΨ + ∂iΦ∂jΦ− ∂iΦ∂jΨ− ∂iΨ∂jΦ + 3∂iΨ∂jΨ

− 4

3(1 + w)H2
∂i

(
Ψ
′
+HΦ

)
∂j

(
Ψ
′
+HΦ

)
− 2c2

s

3wH2

[
3H(HΦ−Ψ

′
) +∇2Ψ

]
∂i∂j(Φ−Ψ)

(6.10)

where we have used w = p(0)

ρ(0)
and Φ(1) ≡ Φ; Ψ(1) ≡ Ψ.

Secondary tensor perturbations can also be decomposed in terms of the Fourier

modes, say, h̃k and the polarization tensor ελij , as we did in the case of primary tensor pertur-

bations (see equation (2.88)). The projection tensor can be written in terms of the polarization

tensor as

T̂ lmij Slm =

∫
d3k

(2π)3/2
eik·x

[
eij(k)elm(k) + ēij(k)ēlm(k)

]
Slm(k) (6.11)

where

Slm(k) =

∫
d3x′

(2π)3/2
e−ik·x

′Slm(x′) (6.12)

One can find that the equation governing h̃k can be written as

h̃λ
′′

k + 2Hh̃λ′k + k2 h̃λk = Sλk (6.13)

We shall now assume that the anisotropic stresses are absent, i.e. Φ = Ψ. Then, considering

the source term Sλk as a convolution of two first-order scalar perturbations at two different

wavenumbers k and k̃ , we get [82]

Sλk(η) = −4 elm(k) Slm(k)

= 4

∫
d3k̃

(2π)3/2
eλ(k, k̃)

{
2Ψk(η) Ψk−k̃(η) +

4

3(1 + w)H2

[
Ψ
′

k̃
(η) +HΨk̃(η)

] [
Ψ
′

k−k̃(η) +HΨk−k̃(η)
]}

(6.14)

If we consider that the scales of our interest re-enter the Hubble radius during radiation

dominated epoch, then w = 1/3 andH = 1/η.
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6.2. SPECTRUM OF SECONDARY GWS

6.2 Spectrum of secondary GWs

In the previous section, we have arrived at the evolution equation of secondary tensor per-

turbations sourced by primary scalar perturbations [viz. (6.13)]. In this section, our moti-

vation is to calculate the secondary tensor power spectrum and arrive at the spectrum of

secondary GWs. During radiation dominated epoch (when scales of interest re-enter the

Hubble radius), we can express the Fourier modes of Bardeen potential, Ψk, in terms of the

Fourier modesRk of curvature perturbation using the relation

Ψk(η) =
2

3
χ̃(k, η) Rk (6.15)

where χ̃ is the transfer function (it is different from χ defined in the chapter 5), which is

given by

χ̃(k, η) =
9

(kη)2

[
sin
(
kη/
√

3
)

kη/
√

3
− cos

(
kη/
√

3
)]

(6.16)

Using the Green’s function corrresponding to the tensor modes during radiation

domination, we can write the in-homogeneous contribution to h̃λk as

h̃λk(η) =
4

9k2η

∫
d3k̃

(2π)3/2
eλ(k, k̃) RkRk−k̃

[
Ic

(
k̃

k
,
|k− k̃|
k

)
cos(kη) + Is

(
k̃

k
,
|k− k̃|
k

)
sin(kη)

]
(6.17)

where thre quantities Ic(x, y) and Is(x, y) can be obtained as (see ref. [81])

Ic(x, y) = − 27π

4x3y3
Θ(x+ y −

√
3)(x2 + y2 − 3)2 (6.18)

Is(x, y) = − 27π

4x3y3
(x2 + y2 − 3)

[
4xy + (x2 + y2 − 3) log

∣∣∣∣3− (x− y)2

3− (x+ y)2

∣∣∣∣] (6.19)

where Θ(z) is the theta function. From equation (6.17), we can see that h̃λk involves product

of Rk and Rk−k̃. Then, it is evident that the secondary tensor power spectrum will involve

product of four such variables. Now, considering the fact that Rk is a Gaussian random

variable, we can express the four point functions in-terms of the two-point functions which

are evidently the inflationary scalar power spectrumPS(k). As a result, the secondary tensor

power spectrum takes the form

Ph(k, η) =
4

81k2η2

∫ ∞
0

dx

∫ 1+x

|1−x|
dy

[
4x2 − (1 + x2 − y2)2

4xy

]2

PS(kx) PS(ky)

× [Ic(x, y) cos(kη) + Is(x, y) sin(kη)]2 (6.20)
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6.3. RESULT AND OBSERVATIONAL CONSTRAINTS

We can see thatPh(k, η) involves trigonometric functions. So, it is convenient to take average

ofPh(k, η) over small time scales to replace the trigonometric functions by their time average

and we get time averaged secondary tensor power spectrum as

Ph(k, η) =
2

81k2η2

∫ ∞
0

dx

∫ 1+x

|1−x|
dy

[
4x2 − (1 + x2 − y2)2

4xy

]2

PS(kx) PS(ky)

×
[
I2
c (x, y) + I2

s (x, y)
]2 (6.21)

The energy density of secondary GWs associated with a Fourier mode correspond-

ing to the wave number k at a conformal time η is given by

ρGW (k, η) =
M2

Pl

8

(
k

a

)2

Ph(k, η) (6.22)

Using the definition in equation (2.109), corresponding dimensionless energy density of sec-

ondary GWs can be written as

ΩGW (k, η) =
ρGW (k, η)

ρc(η)
=

1

24

(
k

H

)2

Ph(k, η) (6.23)

When the modes are inside the Hubble-radius during radiation dominated epoch, energy

density of GWs decay just as the energy density of radiation does. Quantity of our interest

is the dimensionless energy density of secondary GWs today, which can be written in terms

of ΩGW (k, η) as

ΩGW (k) =

(
g∗,k
g∗,0

)−1/3

ΩR h
2ΩGW (k, η)

ΩGW (k) h2 ' 1.38× 10−5
( g∗,k

106.75

)−1/3
(

ΩR h
2

4.16× 10−5

)
ΩGW (k, η) (6.24)

where ΩR h2 is the dimensionless energy density of radiation today and g∗,0 is the number

of relativistic degrees of freedom today.

6.3 Result and observational constraints

6.3.1 A typical inflationary model (ultra-slow-roll)

We shall consider an inflationary potential which allows the existence of inflection points

that lead to an ultra-slow-roll (USR) phase. The potential is given by [81]

V (φ) = V0

{
tanh

(
φ

MPl

)
+ A sin

[
tanh

[
φ/(
√

6MPl)
]

fφ

]}2

(6.25)
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6.3. RESULT AND OBSERVATIONAL CONSTRAINTS

with the values of the parameters: V0/M
4
Pl = 2 × 10−10, A = 0.130383, fφ = 0.129576, and

φi = 6.1MPl where φi denotes the initial value of the inflaton. Upon choosing these values

for the parameters, we can find that the point of inflection occurs at φ0 = 1.05 MPl.

Figure 6.1: USR potential

6.3.2 Secondary GWs spectrum

We shall now plot the spectrum of secondary GWs in the USR model described by the po-

tential (6.25). In order to do that, we numerically evaluate the scalar power spectrum for this

model. We can use the expressions Ic and Is from Eq. (6.18) and (6.19), and the scalar power

spectrum together in Eq. (6.21) to get the time averaged secondary tensor power spectrum

in our model. Using these in Eq. (6.24), we have plotted the dimensionless energy density

of secondary GWs in Fig. (6.2). We have also added the sensitivity curves of ongoing and

forthcoming GWs observations.
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6.3. RESULT AND OBSERVATIONAL CONSTRAINTS

Figure 6.2: The dimensionless energy density of secondary GWs generated in USR model is

plotted as function of frequency f .

From the above figure, we can see that the spectrum lies above the sensitivity curves of

some future GWs observatories. It indeed suggests that we can detect the GWs generated

in this USR model of inflation by some of the forthcoming GWs observatories like DECIGO,

BBO and LISA.
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Chapter 7

Conclusions

In this chapter, we shall briefly summarize the report and mention future implications of our

work. The work that we have done and presented in this report is largely a review of the

slow-roll inflation, cosmological perturbation theory and primordial gravitational waves.

We have reproduced some results already available in recent literature.

We have introduced different sources and types of GWs in the first chapter. We have

mentioned about a stochastic signal (relic background) of GWs from the very early universe.

We have also pointed out the fact that GWs decouple immediately upon production due to

the weakness of gravity and we can get a clear view of the very early universe.

In the second chapter, we have briefly discussed the successes and the drawbacks of

the hot big-bang model and their solutions considering an inflationary paradigm. We have

mentioned that we need scalar fields (known as inflaton) to drive inflation and briefly dis-

cussed the dynamics of inflation with particular focus on the slow-roll approximation. Then,

we discussed in brief the linear cosmological perturbation theory and upon quantizing per-

turbations, we defined power spectra. Considering the first order tensor perturbations, and

assuming de Sitter approximation, we discussed the generation of the primary GWs. Finally,

we ended that chapter by defining the dimensionless energy density of GWs.

In the third chapter, we briefly described the dynamics of reheating. Considering

the coupling between inflaton and radiation, we have shown how the energy density of

inflaton decays exponentially and how this energy is transferred to radiation ,thus initiating

a radiation-dominated epoch.

We have discussed the evolution of primary GWs through the epoch of reheating

and radiation domination in chapter 4. We have mainly considered the instantaneous re-
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heating scenario. We also briefly mentioned the case of perturbative reheating. Upon solv-

ing the evolution equations of tensor transfer function during instantaneous reheating and

radiation-dominated epochs, we have finally obtained the spectrum of primary GWs. We

have also discussed the spectrum of GWs in the modified scenario with a secondary phase

of reheating.

In chapter 5, we have presented our results. Considering α−attractor model of in-

flation, we have plotted the spectrum of primary GWs.

Table 1:

Wave number (k) Index of primary GWs spectrum (nGW )

k � kre 0

k � kre
2(3wφ−1)

1+3wφ

We have shown the index of primary GWs spectrum for different range of wavenumbers

in table 1. We have found that the spectrum can indeed be detected by forthcoming GWs

observatories like DECIGO and BBO.

Table 2:

Wave number (k) Index of primary GWs spectrum (nGW )

k < kσ 0

kσ < k < kσR
2(3wσ−1)

1+3wσ

kσR < k < kre 0

kre < k < kf
2(3wφ−1)

1+3wφ

We have shown the index of primary GWs spectrum for different range of wavenumbers

in table 2 in the modified scenario. We found that the strength of spectrum generated in this

scenario can account for recent NANOGrav observations.

In chapter 6, we have discussed the generation of secondary GWs form the second

order tensor perturbations, induced by first order scalar perturbations. We have numeri-

cally evaluated the secondary GWs spectrum in USR model of inflation. We have shown

that spectrum lies above the sensitivity curves of some forthcoming GWs observatories like

DECIGO, BBO and LISA which indeed reflects the possibility of detection. This study can

further be extended to different inflationary models.
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Appendix A

Evaluation of tensor power spectrum in
slow-roll inflation

In sec. 2.3.1, we defined Hubble slow-roll parameters εH and δH , viz. Eq (2.50) and (2.51).

Now, differentiating the conformal Hubble parameter with respect to conformal time, H =

a′/a, we get

H′ = aa′′ − a′2

a2
=
a′′

a
−
(
a′

a

)2

⇒ H′ = a′′

a
−H2

(A.1)

From the definition of εH , we can write

2− εH =
H2 +H′

H2
(A.2)

Combining Eqs. (A.1) and (A.2), we get

a′′

a
= H2(2− εH) (A.3)

Again, from the definition of εH ,

1

εH − 1
d

(
1

H

)
= dη as,

d

dη

(
1

H

)
= −H

′

H2

⇒ η = −
∫

1

1− εH
d

(
1

H

)
⇒ η = − 1

1− εH
1

H
+

∫
d

dN

(
1

1− εH

)
dN

H

⇒ η = − 1

1− εH
1

H
+

∫
dεH
dN

(
1

1− ε2H

)
dN

H

66



We can neglect dεH/dN term as it is quadratic in slow-roll parameters (� 1). We get,

η = − 1

1− εH
1

H
=⇒ H = −

[
1

(1− εH)η

]
(A.4)

Substituting the above equation in Eq. (A.3), we get

a′′

a
=

1

(1− εH)2 η2
(2− εH)

⇒ a′′

a
' (1 + 2εH)(2− εH)

η2
(neglecting higher order terms in εH)

We obtain,
a′′

a
' 2 + 3 εH

η2
(A.5)

Now recall, Mukhanov-Sasaki equation for tensor perturbations, i.e. Eq. (2.90). Substituting

the above equation in Eq.(2.90), we obtain

u
′′

k +

[
k2 − 2 + 3 εH

η2

]
uk = 0 (A.6)

It can be rewritten as

u
′′

k +

[
k2 − ν2

T − 1/4

η2

]
uk = 0 (A.7)

Upon comparing Eq. (A.6) and (A.7), we find

ν2
T =

9

4
+ 3εH

⇒ ν2
T ' (

3

2
+ εH)2

⇒ νT '
3

2
+ εH (A.8)

The general solution of the Eq. (A.7) can be written as

uk(kη) = c1

√
−kη H(1)

νT
(−kη) + c2

√
−kη H(2)

νT
(−kη) (A.9)

where H(1)
νT and H

(2)
νT are the Hankel functions of first and second kind. Now, imposing the

Bunch-Davies initial condition, we can find

c1 '
1

2

√
π

k
ei(νT+ 1

2
)π/2 and c2 = 0 (A.10)
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So we can write the solution

uk(kη) =
1

2

√
−π η ei(νT+ 1

2
)π/2 H(1)

νT
(−kη) (A.11)

In the super-Hubble limit (k/aH � 1), we can write the small argument limit of Hankel

function:

H(1)
νT

(x)
x→0−−→ 1

Γ(νT + 1)

(x
2

)νT
− i

π
Γ(νT )

(
2

x

)νT
(A.12)

So, in the k|η| → 0 limit, only second term matters and we get

H(1)
νT

(−kη) ' − i
π

Γ(νT )

(
− 2

kη

)νT
(A.13)

upon using this in Eq. (A.11), we finally obtain

uk(kη) =
i

2

1√
πk

2νT ei(νT+ 1
2

)π/2 Γ(νT )(−kη)
1
2
−νT (A.14)

Now, substituting the above equation in the definition of tensor power spectrum, viz. Eq.

(2.93), we get

PT (k) =
4

16 π2 M2
Pl

(
k

a

)2 ∣∣∣∣ Γ(νT )

Γ(3/2)

∣∣∣∣2 (−kη)1−2νT 22νT (A.15)

where we have used Γ(3/2) =
√
π/2. It can be further expressed in terms of the values of

quantities at Hubble exit where −kη = (1− εH)−1.

PT (k) =
2H2

π2M2
Pl

∣∣∣∣ Γ(νT )

Γ(3/2)

∣∣∣∣2 2(2νT−3) (1− εH)(2νT−1) (A.16)

We can then easily see that, at the leading order in slow-roll approximation, the amplitude

of tensor power spectrum takes the form

PT (k) '
(

2H2

π2M2
Pl

)
k=aH

(A.17)
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Appendix B

Analytical derivation of the present day
spectrum of primary GWs (ΩGW (k) h2)

In chapter 4, see the solution of χRHk from the Eq. 4.43,

χRHk (Are) ' −A−νre
π

Γ
(
− ν
γ

) 1

Γ
(

1 + ν
γ

) ( k

2γkf

)−ν/γ (
k

2γkre

)ν/γ
cosec

(
πν

γ

)
(B.1)

Now, we know from the property of gamma function that, Γ(z) Γ(1 − z) = π
sin(πz)

. Usin this

we can write,

χRHk (Are) ' −A−νre
π

π/sin
(
−πν

γ

) ( kf
kre

)ν/γ
1

sin
(
π ν
γ

)
⇒ χRHk (Are) ' A−νre

(
kf
kre

)ν/γ
(B.2)

From Eq. 4.37, we have

Aνre =

(
kf
kre

)ν/γ
(B.3)

Thus we obtain,

χRHk (Are) ' A−νre A
ν
re ' 1 (B.4)

So, from the above equation, we can write,

dχRHk (Are)

dA
' 0 (B.5)

Now, under the condition, k � kre, we had, Ek = Fk ' 1. Thus, from Eq. 4.31, we obtain

ΩGW (k, η) =
PT (k)

24
=

H2
I

12π2M2
Pl

(B.6)
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In the case of k � kre, we can still write the expression

χRHk (Are) ' A−νre DkJν/γ

(
k

γkre

)
(B.7)

Now, in the large argument limit (z � 1),

Jα(z) '
√

2

πz
cos
[
z − (πα/2)− π

4
)
]

(B.8)

Then, we have

χRHk (Are) ' −A−νre
π

Γ(−ν/γ)

(
k

2γ kf

)−ν/γ
1

sin
(
π ν
γ

)√2γ kre
πk

cos

[
k

γ kre
− π ν

2 γ
− π

4

]
(B.9)

Using the property of gamma function, Γ(1− z) = π
sin(πz)

, we can write

χRHk (Are) ' A−νre

(
k

2γ kf

)−ν/γ
Γ

(
1 +

ν

γ

)
1√
π

(
k

2 γ kre

)−1/2

cos

[
k

γ kre
− π ν

2 γ
− π

4

]
(B.10)

Now, using Eq. (4.37), we obtain

χRHk (Are) '
(

k

2γ kre

)(−ν/γ −1/2)

Γ

(
1 +

ν

γ

)
1√
π

cos

[
k

γ kre
− π ν

2 γ
− π

4
)

]
(B.11)

Then,
dχRHk (Are)

dA
' − k

kf
A−1+γ−ν
re Dk Jν/γ +1

(
k

γ kf
Aγre

)

⇒ dχRHk (Are)

dA
' k

kf
A−1+γ−ν
re

π

Γ
(
− ν
γ

) ( k

2γ kf

)−ν/γ
1

sin
(
π ν
γ

) Jν/γ +1

(
k

γ kre

)
(B.12)

In the limit, k � kre, we can similarly express the large argument limit of the following

Bessel function,

Jν/γ +1

(
k

γ kre

)
'
√

2 γ kre
πk

cos

[
k

γ kre
− π ν

2 γ
− π

2
− π

4
)

]
(B.13)

Using this expression, we obtain,

⇒ dχRHk (Are)

dA
' − k

kf
A(−1+γ−ν)
re Γ

(
1 +

ν

γ

)
1√
π

(
k

2γ kf

)−ν/γ (
k

2 γ kre

)−1/2

× cos

[(
k

γ kre
− π ν

2 γ
− π

4

)
− π

2
)

]
(B.14)

70



Thus, we can write

Are
dχRHk (Are)

dA
' − 2 γ√

π
Γ

(
1 +

ν

γ

)(
k

2 γ kre

)− ν
γ

+ 1
2

sin

[
k

γ kre
− π ν

2 γ
− π

4
)

]
(B.15)

Putting χRHk (Are) and Are
dχRHk (Are)

dA
in Eq. (4.36) we obtain

Ek ' −
2i γ√
π

Γ

(
1 +

ν

γ

)(
k

2 γ kre

)− ν
γ

+ 1
2
[
cos

(
k

γ kre
− π ν

2 γ
− π

4
)

)
− i sin

(
k

γ kre
− π ν

2 γ
− π

4
)

)]
(B.16)

Ek ' −
2i γ√
π

Γ

(
1 +

ν

γ

)(
k

2 γ kre

)− ν
γ

+ 1
2

exp

[
−i
(

k

γ kre
− π ν

2 γ
− π

4
)

)]
(B.17)

We can similarly find that, Ek ' F∗k . Therefore, we get

|Ek|2 = |Fk|2 =
4γ2

π
Γ2

(
1 +

ν

γ

)(
k

2γkre

)nGW
(B.18)

where

nGW = 1− 2ν

γ
= −2(1− 3wφ)

1 + 3wφ)
(B.19)

Therefore, we obtain

ΩGW (k, η) =
PT (k)

48
(|Ek|2 + |Fk|2) ' PT (k)

24
|Ek|2 (B.20)
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