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ABSTRACT

About a decade and a half ago, observations from a special class of supernovae revealed cer-

tain facts about our universe that came as a surprise to the larger physics community. Until

then, it was commonly believed that, being dominated by matter, the universe was under-

going a phase of deceleration. But, the supernovae observations hinted otherwise, and they

seem to predict that the universe is, in fact, currently accelerating. Since the initial devel-

opments, observations of supernovae at increasingly higher redshifts have corroborated the

original results. Our main aim in this work will be to reanalyze some of the supernovae data

and arrive at the by-now established conclusion that the universe is presently in a state of

accelerated expansion. An accelerating universe, in turn, implies that the universe is domi-

nated by dark energy. While a cosmological constant is found to fit the data quite well, we

also attempt to understand the nature of dark energy by modeling it in terms of scalar fields.
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Chapter 1

Introduction

Cosmology aims to answer questions which have intrigued humankind, such as the birth of

the universe, its evolution and its probable end. Theoretically, Einstein’s general relativity

serves as the bedrock for gaining an understanding of the universe on the largest scales.

The famous discovery of the redshifting galaxies by Hubble suggested that the universe is

expanding. The Cosmic Microwave Background (CMB) points to the fact that the energy

density of radiation during the current epoch is negligible when compared to that of ordi-

nary, non-relativistic matter. In order to describe the universe, one often assumes that it is

homogeneous and isotropic. This crucial assumption is confirmed by the observations of

the distribution of galaxies by surveys such as the two degree Field survey (2dF) and the

Sloan Digital Sky Survey (SDSS) [1, 2].

Had the universe been composed only of matter and radiation, the dominance of matter

during the present epoch would lead to the deceleration of the universe due to the gravi-

tational attraction. But the determination of distances to far away galaxies through obser-

vations of a special class of supernovae have revealed that the universe today is actually

dominated by another type of matter which, in fact, leads to an acceleration of the universe.

This additional component does not interact with matter or radiation, and hence is often

referred to as the dark energy.

1.1 Standard candles, and the role of supernovae

Consider a source which emits light of a given wavelength, say, λe. By the time the light

reaches us, the universe would have expanded. As we shall illustrate, a consequence of
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1.1. STANDARD CANDLES, AND THE ROLE OF SUPERNOVAE

the expansion is the fact that the wavelengths of light from other galaxies are stretched,

and what we actually observe is light of a different wavelength, λo. This phenomenon is

known as redshift, which is characterized by the redshift parameter, z = (λo − λe)/λe. It so

happens that the measurement of the brightness of far away galaxies as a function of the

redshift proves to be as a very effective tool in understanding the composition and, hence,

the dynamics of the universe.

One should appreciate the fact the redshift is an easily measurable quantity. While the

redshift associated with a single spectra line will, evidently, be impossible to determine,

the presence of a wide variety of elements (and at different levels of ionization) results in a

pattern of a large number of lines in the spectra of galaxies. It is the complete pattern that

facilities the determination of the redshift of galaxies.

In contrast, the distance to an astronomical object is tricky to arrive at. While methods

such as trigonometric parallax are sturdy and straightforward, their utility turns out to be

limited when the distances involved are rather great and, hence, the angles involved very

small. It is in this context that the concept of a standard candle comes in useful (for an

extended discussion on this topic, see, for instance, Ref. [3]). By a standard candle one

refers to an astronomical object with a known intrinsic luminosity or brightness. Given the

intrinsic luminosity, the observed brightness then allows us to estimate the distance to the

object. A simple example can illustrate the point. If one is informed that a light bulb emits

100 W of energy, then measuring the flux at our location allows us to arrive at the distance

to the bulb from us. Supernovae are exploding stars, which turn extraordinarily bright at

their peak intensity that they often outshine their host galaxy. Certain types of supernovae—

known as type Ia—exhibit such strong universal characteristics (which is related to the way

they were formed) that their intrinsic, maximum brightness is very closely related to the

pattern of the rise and fall of their intensities with time. The universal characteristic of these

type Ia supernovae allow them to be used as standard candles. Moreover, their high peak

brightness admit us to utilize them to determine distances over cosmological scales. Various

observational missions such as the Supernova Cosmology Project (SCP) [4] and the Super

Nova Legacy Survey (SNLS) [5] have assembled an impressive amount of data, which have

led to interesting implications for our understanding of the universe.
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1.2. THE COMPOSITION OF THE UNIVERSE

1.2 The composition of the universe

The universe is found to be homogeneous and isotropic over suitably large length scales,

roughly of the order of 70 Mpc [1, 2]. The evolution of such a smooth universe is determined

by its matter content through the Einstein’s equations of the general theory of relativity. In

an evolving universe, the distances to far away galaxies determined through their intrinsic

luminosities and observed fluxes depend on the evolution. Therefore, determining the dis-

tances to far objects as a function of time or, equivalently, redshift, allows us to arrive at the

composition of the universe.

Evidently, the universe contains matter and radiation. The universe will currently be go-

ing through a decelerating phase if it had contained no other component of matter. We had

mentioned above that the type Ia supernovae facilitates the determination of the distances

to galaxies very far away. As we shall discuss, interestingly, the data point to the fact that

the universe today is dominated by another component of matter which can be conveniently

referred to as the cosmological constant or, more generally, as dark energy. Moreover, the

dominance of such a component of matter implies that the universe is currently accelerating.

1.3 Scalar fields as models of dark energy

Cosmological constant is called so since, in contrast to other components, it energy density

remains unvarying as the universe evolves. Phenomenologically, a cosmological constant

fits the supernovae data quite well. However, even a component whose energy density

varies mildly with time (such a type of matter is often referred to as the dark energy) leads

to an equally good fit to the data.

The attractive aspect of dark energy is that it allows modeling in terms of scalar fields.

We shall discuss as to how certain types of scalar fields, called quintessence, can act as a

viable alternative to the cosmological constant.

1.4 Notations and conventions

We shall set ~ = c = 1, but shall display G explicitly, and define the Planck mass to be

M
Pl
= (8 πG)−1/2.
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1.4. NOTATIONS AND CONVENTIONS

We shall work in (3 + 1)-spacetime dimensions, and adopt the metric signature

of (+,−,−,−). The Greek and Latin indices shall denote the spacetime and the spatial coor-

dinates, respectively,
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Chapter 2

The Friedmann universe

In this chapter, we shall provide a quick review of the Friedmann model of the universe.

We shall discuss the motivation behind working with this model. We shall first present

the arguments which lead us to consider the Friedmann line element for describing our

universe. We shall then analyze the geometry associated with the Friedmann metric.

2.1 The Friedmann-Robertson-Walker metric

Observations of the CMB suggest that the universe is isotropic to one partial in 105 [6]. This,

in turn, implies that the universe was highly homogeneous at an early epoch when the ra-

diation decoupled from matter. Even though the anisotropies are present, they do not come

into the picture when the large scale structure of the universe needs to be discussed. By ho-

mogeneous, wemean that there exists no uneven distribution of matter in three dimensional

space, and isotropic implies that there is no favored direction. Homogeneity and isotropy in

turn imply that the metric describing the spatial part of the universe should be spherically

symmetric.

Therefore, the spatial part of the line element can be expressed as

dl2 = eλ(r) dr2 + r2
(

dθ2 + sin2θ dφ2
)

= labdx
adxb, (2.1)

where the quantity eλ(r) cannot depend on θ and φ if spherical symmetry needs to be pre-

served. For a space of constant curvature, we can express the Riemann tensor as

Rabcd = κ(laclbd − ladlbc) (2.2)
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2.1. THE FRIEDMANN-ROBERTSON-WALKERMETRIC

for which the Ricci tensor is

Rab = 2κlab (2.3)

On calculating the Ricci tensor associated with Eq. (2.1) and using Eq. (2.3), we arrive at the

following equations
1

r

dλ

dr
= 2κeλ (2.4)

and

1 +
(r

2

)

(

dλ

dr

)

e−λ − e−λ = 2κr2 (2.5)

Hence integrating the above equations , we have,

eλ(r) =
1

(1− κr2)
(2.6)

When r 6= 0, we rescale r and make κ equal to 1 or −1. We will see in the next section that

these values of κ have interesting properties and how κ affects the nature of the three space

associated with the line element. Now the complete metric can be written as

ds2 = g00dt
2 + 2g0idtdx

i + gijdx
i dxj . (2.7)

Isotropy of the expansion implies that all g0i must vanish. A non-zero g0i is related to a three

vector vi which points along the direction specified by the index i. Moreover in a coordinate

system determined by the fundamental observers (to whom the universe appears isotropic),

the spacelike surfaces can be labeled by using the proper time of clocks carried by these

observers. This choice of t implies g00 = 1.

So the metric that describes the spacetime of the universe is given by

ds2 = dt2 − a2(t)

[

dr2

(1− κr2)
+ r2(dθ2 + sin2θdφ2)

]

(2.8)

the factor, a(t) is known as the expansion factor or the scale factor. Note that a cannot

be a function of any other coordinate other than t because the expansion is independent of

position and direction. The above line-element given by Eq. (2.8) is known as the Friedmann

line element.

In the following section, we shall try to understand the geometry of the spatial hypersur-

faces of the Friedmann model. We shall consider the cases with κ = 0,1, −1 and understand

the nature of the three space in each of these cases.

6



2.2. UNDERSTANDING THE GEOMETRY OF THE FRIEDMANNUNIVERSE

2.2 Understanding the geometry of the Friedmann universe

In order to understand the geometry of the Friedmann model, let us introduce a new coor-

dinate, χ ( [7], [8]), where

χ =

∫

dr
√

(1− κr2)
. (2.9)

On integration, we obtain that

χ = sin−1r, r, sinh−1r (2.10)

for κ=1, 0, -1, respectively. The line element now, as a function of χ is given by

dl2 = a2[dχ2 + S2
κ(χ)dΩ

2
2] (2.11)

where dΩ2 denotes the infinitesimal solid angle and

Sκ(χ) =











sinχ for κ = 1,

χ for κ = 0,

sinhχ for κ = −1.

(2.12)

Let us first work with the simplest case, i.e. when κ = 0. This represents a flat three

dimensional space defined by the relation

dx2
1 + dx2

2 + dx2
3 = constant. (2.13)

If we choose our coordinates such that

x1 = aχ sin θ cosφ, x2 = aχ sin θ sin φ, x3 = aχ cos θ (2.14)

we obtain that dl2 = dx2
1 + dx2

2 + dx2
3. This Euclidean space is covered by the coordinate

range 0 ≤ χ < ∞, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. Hence, for κ = 0, we have the spatially flat

universe.

Now let us consider the κ = 1 case. We have r = sinχ. In this case, Eq. (2.11) represents

a three sphere which is embedded in a flat four dimensional Euclidean space described by,

say, the line element

dl2 = dx2
1 + dx2

2 + dx2
3 + dx2

4 (2.15)
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2.2. UNDERSTANDING THE GEOMETRY OF THE FRIEDMANNUNIVERSE

The definition of such a three sphere is given by

x2
1 + x2

2 + x2
3 + x2

4 = a2, (2.16)

where a is the radius of the sphere. Now, if we choose the four coordinates such that

x1 = a cosχ, x2 = a sinχ sinθ cosφ, x3 = a sinχ sinθsinφ, x4 = a sinχ cosθ, (2.17)

then, evidently, we will the be able to satisfy the above constraint.

The metric given by Eq.(2.11) now can be written in terms of θ, φ and the new angle

variable χ.

dl23−sphere = a2(t)
[

dχ2 + sin2χ( dθ2 + sin2θ dφ2)
]

(2.18)

The coordinate range 0 ≤ χ ≤ π, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π covers the entire three space and

has a volume given by

V =

∫ 2π

0

dφ

∫ π

0

dθ

∫ π

0

dχ
√
g = a3

∫ 2π

0

dφ

∫ π

0

sinθ dθ

∫ π

0

sin2χ dχ = 2π2a3 (2.19)

For χ = constant, we have a two sphere with surface area 4πa2sin2χ. The dependence

of the surface area on χ is clear. It increases with χ till χ = π
2
, where it is maximum and

decreases thereafter till χ reaches π. Hence the κ = 1 model is known as the closedmodel.

Let us now investigate the case when the curvature term κ has value −1. In this case,

r = sinhχ; For κ = −1, Eq.(2.11) represents a hyperboloid which is embedded in a four

dimensional Minkowski space. This hyperboloid is defined by the relation

x2
1 − x2

2 − x2
3 − x2

4 = a2 (2.20)

If we choose coordinates such that

x1 = a coshχ, x2 = asinhχsinθcosφ, x3 = asinhχsinθsinφ, x4 = asinhχcosθ (2.21)

we will see that the above constraint (2.20) is satisfied.

We can then write the metric given by Eq.(2.11) in terms of θ, φ and the new variable χ.

dl2hyperboloid = a2(t)[dχ2 + sinh2χ(dθ2 + sin2θdφ2)] (2.22)

The coordinate range to encompass this hypersurface is given by 0 ≤ χ < ∞, 0 ≤ θ ≤
π, 0 ≤ φ ≤ 2π. The surface area for a constant χ is given by 4πa2sinh2χ and it keeps on

increasing with χ. Hence it is also referred to as the openmodel.
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Chapter 3

Kinematics of the Friedmann universe

In this chapter, we shall discuss the kinematical properties of the Friedmann universe. We

shall look at the evolution of the frequency of radiation and the momenta of material par-

ticles with the scale factor of the expanding universe. We define the redshift parameter z.

We shall introduce the Hubble constant and see how it is related to the age of the universe.

Next, we define the concept of luminosity distance in an expanding Friedmann universe.

3.1 Redshift

In order to understand the behavior of motion of photons or particles in the universe, we

need to begin with the concept of geodesics. A geodesic on a surface is the shortest path

between two points. For any spacetime,the geodesic equation is given by [9]

d2xµ

ds2
+ Γµ

αβu
αuβ = 0, (3.1)

where

uα =
dxα

ds
(3.2)

The quantity Γa
bc denotes the Christoffel symbols associated with the metric tensor describ-

ing the spacetime.

For the Friedmann metric, we have from the zeroth component of the geodesic equation

d2t

ds2
+

(

aȧ

1− κr2

)(

dr

ds

)2

= 0 (3.3)

Also for material particles, we have

uµuµ = 1 (3.4)

9



3.2. THE LUMINOSITY DISTANCE IN THE FRIEDMANNUNIVERSE

which comes from the fact pµp
µ = m2c2. On combining the last two equations, we arrive at

the following result

d2t

ds2
+

(

ȧ

a

)

[

(

dt

ds

)2

− 1

]

= 0, (3.5)

Integrating Eq. (3.5) we get the relation

a

[

(

dt

ds

)2

− 1

]1/2

= constant (3.6)

Using Eqs. (3.6) and (3.4), we get

|p|2 ∝ a−2, (3.7)

where, |p| denotes the amplitude of the three momentum of the particle. So, in the Fried-

mann universe, the momentum of a particle goes down as a−1.

Let us now investigate the behavior of photons in the Friedmann universe. Since ds2 = 0

for light rays, they satisfy the relation uµuµ = 0. Now in Eq.(3.3),if we replace the quantity ds

by a parameter say , dλ , where λ is the affine parameter [9] , we will see that the frequency

of a photon satisfies the relation, ω ∝ a−1.

Astronomically, the redshift parameter z is defined as

1 + z =
λo

λe
=

ωe

ωo
(3.8)

Cosmologically, since the redshift occurs because of the expansion of the universe, we can

write

1 + z =
ωe

ωo

=
a(to)

a(te)
, (3.9)

where ωe represents the frequency of light emitted at a certain epoch (te) and ωo represents

the frequency received at the present epoch (to). λe and λo are the corresponding associated

wavelengths [9]. a(to) and a(te) refer to the scale factor of the universe today and at the time

of emission, respectively. In other words, z = 0 corresponds to the present epoch.

3.2 The luminosity distance in the Friedmann universe

For light rays moving radially in a Friedmann universe, we can write,

dt2

a2
=

dr2

(1− κr2)
(3.10)

10



3.2. THE LUMINOSITY DISTANCE IN THE FRIEDMANNUNIVERSE

As the universe expands during the emission time of the photon,te to the receiving time,to,

we have,
∫ to

te

1

a
dt =

∫ 0

rem

1√
1− κr2

dr (3.11)

But using Eq. (3.9), we get
dt

a
=

dt

dz

dz

a

da

da
=

dz

ao
dH(z) (3.12)

with

dH(z) =
a

ȧ
=

1

H(z)
(3.13)

It may be noted that in a spatially flat universe (i.e. when κ = 0), we have

rem(z) =

∫ z

0

dH(z)

ao
dz (3.14)

The luminosity of a source is the energy emitted by it per unit time. The flux received by

an object at a certain distance is the energy received per unit area per unit time. So, if the

distance between the source and the receiver is d1, then, the flux, say, F is given by

F =
L

4πd21
, (3.15)

where L is the luminosity. Hence, the distance , d1 =
√

L
4πF

. We obtain the flux , F from

observations. If we can know L, we will be able to determine the distance between the

source and the receiver. But due to the evolution of the Friedmann universe, we have the

frequency of light , ω decreasing as a−1. Hence

dEem

dErec
=

(ao
a

)

(3.16)

The subscripts em and rec refer to emitted and received energies, respectively. Again as dt is

proportional to (dE)−1, we have,
dtem
dtrec

=
(ao
a

)

(3.17)

Hence the luminosity,

L =
dEem

dtem
=

(ao
a

)2
(

dErec

dtrec

)

=
1

(1 + z)2

(

dErec

dtrec

)

(3.18)

So the received flux is given by

F =
(dErec/dtrec)

4πa2or
2
em(1 + z)2

(3.19)

11



3.3. THE HUBBLE’S LAW

Comparing Eq. (3.15) with Eq.(3.19), we arrive at an expression for luminosity distance in

Friedmann universe in terms of a and z,

d
L
(z) = aorem(1 + z), (3.20)

where ao = a(to)

Hence substituting with Eq.(3.14), we see that Eq.(3.20) gives the required expression for

the luminosity distance in a spatially flat Friedmann universe.

3.3 The Hubble’s law

For sufficiently nearby galaxies, observations show that there exists a linear relation between

the redshift and the distance, a relation which is known as the Hubble’s law [10]. For nearby

galaxies, we can write

a(te) = a(to)

[

1 +

(

ȧ

a

)

to

(te − to)

]

(3.21)

so that
a(te)

a(to)
= 1 +H0 (te − to), (3.22)

where H0 is known as the Hubble constant. Now from Eq. (3.9) we can write

1

1 + z
=

a(te)

a(to)
(3.23)

Expanding the left hand side of this equation up to first order and comparing with Eq.(3.22

we arrive at the relation

z = H0 (to − te) (3.24)

Also, for a nearby galaxy, we can write,

rem =

∫ to

te

dt

a(t)
≃

∫ to

te

dt

ao
≃ 1

ao
(to − te) (3.25)

Therefore, we have, in such a case,

d
L
(z) = aorem(1 + z) ≃ (to − te) (1 + z) ≃ H−1

0 z, (3.26)

where, in arriving at the final expression, we have retained terms only up to first order in

z. So we see that up to first order in z the redshift velocity, v = cz varies linearly with

12



3.3. THE HUBBLE’S LAW

the proper distance, ao rem. Hence if we know the distance, d
L
which can be measured by

measuring the flux of objects of known luminosity, a plot of d
L
(z) with z will help us to

determine H0. This quantity , H0 determines the rate at which the universe is presently

expanding.Observations(see, for instance [9]) have shown that the value of Ho is around

72 km sec−1Mpc−1. It is clear that Ho has dimensions of time inverse.

The quantity, Hubble time is defined as,

tH =
1

H0
= 9.78h−1Gyr, (3.27)

where h ≈ 0.72 and Gyr means 109 years.

The significance of tH is that it gives us a rough estimate of the age of our universe.

We have thus arrived at an expression for the luminosity distance which will be used

later for analyzing the supernovae data. In the next section we will study the dynamics of

the Friedmann universe. We will look at the behavior of the scale factor, a when different

energy densities dominate the universe. We will also plot contours for the age of universe

as functions of different energy densities.
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Chapter 4

Dynamics of the Friedmann universe

4.1 The Friedmann equations and the evolution of the vari-

ous components of matter

Given a stress energy tensor, say, T µν , the dynamics of a given spacetime is governed by the

following Einstein’s equations [8, 9]

Gµν = (8πG)T µν , (4.1)

where G is Newton’s gravitational constant. The quantity Gµν is known as the Einstein

tensor which is defined as

Gµν = Rµν −
1

2
gµνR (4.2)

with R being the scalar curvature.

In case of a perfect fluid, the stress energy tensor is given by [8]

T µν = (ρ+ p)uµuν + pηµν (4.3)

ρ is the energy density associated with the fluid and p is the pressure and uµ is the four

velocity of the fluid.

The homogeneity and isotropy of the Friedmann universe implies that the stress energy

tensor associated with any matter component should be diagonal and of the following form:

T µ
ν = diag. (ρ,−p,−p,−p). Upon making use of this stress energy tensor in the Einstein’s

14



4.1. THE FRIEDMANN EQUATIONS AND THE EVOLUTION OF MATTER

equations (4.1), we arrive at the following Friedmann equations:

(

ȧ

a

)2

+
κ

a2
=

8πG

3
ρ, (4.4)

2
ä

a
+

(

ȧ

a

)2

+
κ

a2
= −(8πG)p. (4.5)

The above equations lead to
ä

a
= −4πG

3
(ρ+ 3p) (4.6)

The universe will have an accelerated expansion if ä > 0. It is clear from Eq.(4.6) to achieve

this, the energy density, ρ must be less than 3p.

The equation of state for a perfect fluid is defined by the relation

p = wρ, (4.7)

where, w is known as the equation of state parameter. The fact that the energy-momentum

tensor has to be conserved leads to the equation

T µ
ν;µ = 0 (4.8)

In a Friedmann universe, the time component of this equation leads to

d

dt
(ρa3) = −p

da3

dt
(4.9)

or
d

da
(ρa3) = −(3a2p) (4.10)

For the case of a perfect fluid described by the equation of state (4.7), upon integrating the

above differential, we obtain that

ρ ∝ a−3(1+w) (4.11)

This result determines the evolution of the density of the different components of the uni-

verse. Now from the relations between energy densities and the scale factor we thus see

ρm(t) ∝ a(t)−3 , ρR(t) ∝ a(t)−4 , ρΛ(t) = constant,

where ρm(t) , ρR(t) , ρΛ(t) are the energy densities of non relativistic matter, radiation and

the cosmological constant , respectively. It is worth noting that when w = −1, ρ becomes in-

dependent of the scale factor, a. Such a component of matter, whose energy density remains

a constant despite the expansion is known as the cosmological constant.
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4.2. THE DIFFERENT EPOCHS OF THE UNIVERSE

The Friedmann line element in terms of cosmic time, t is written as

ds2 = dt2 − a2(t)

[

dr2

(1− κr2)
+ r2(dθ2 + sin2θ dφ2)

]

(4.12)

If we make a change of variable such that t =
∫

a(η) dη, the above line element takes the

following form

ds2 = a2(η)

[

d(η)2 − dr2

(1− κr2)
− r2(dθ2 + sin2θ dφ2)

]

(4.13)

η is called the conformal time.

In the first Friedmann equation, if we substitute κ = 0 and the relation between ρ and a,

we arrive at the dependence of a on time for a universe comprising of a perfect fluid,

a(t) ∝ t2/3(1+w) (4.14)

In terms of the conformal time, thus we have

a(η) ∝ η(2/1+3w) (4.15)

Hence we see,

η = t(
1+3w
3(1+w)

) (4.16)

4.2 The different epochs of the universe

The first Friedmann equation can be written as

κ

a2
=

(

ȧ

a

)2 [(
8πG

3H2

)

ρ− 1

]

(4.17)

where 3H2

8πG
= ρc andH = ȧ

a
with ρc being a quantity that is known as the critical density. The

density parameter, Ω is defined as

Ω =
ρ

ρc
(4.18)

So Eq.(4.17) becomes
κ

a2H2(t)
= Ω(t)− 1 (4.19)

At this stage one should note that for κ = 0, i.e., when the universe is spatially flat, Ω is

always equal to 1.
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4.2. THE DIFFERENT EPOCHS OF THE UNIVERSE

For a flat universe, we have
(

ȧ

a

)2

=
8πG

3
ρ. (4.20)

But ρ ∝ a−3(1+w). Hence using Eq. (4.20) we get

ȧ ∝ a−
1
2
(1+3w) (4.21)

So for w = −1, a(t) ∝ eλt and for w 6= −1, a(t) ∝ t
2

3(1+w)

From the equation of state, we know the following:

1. For non-relativistic matter,w = 0, hence a(t) ∝ t2/3.

2. For radiation, w = 1
3
, hence a(t) ∝ t1/2.

In a universe dominated by a perfect fluid, using Eq.(4.19) and Eq.(4.1), we then arrive at

the following result
dΩ

d(lna)
= a

dΩ

da
(4.22)

We can see that the energy density of radiation decays faster than matter and the cosmolog-

ical constant as the universe expands. Therefore, if we go back in time, the radiation energy

density will start dominating. Hence the very early universe had to be radiation dominated,

then it was matter dominated and the late-time universe is thus supposed to be dominated

by the cosmological constant. So, now we can write

ρ
NR
(t)

ρ
NR
(0)

=
(a0
a

)3

= (1 + z)3 (4.23)

But, since

Ω
NR

=
ρ

NR

ρc(0)
(4.24)

we can write

ρ
NR
(t) = Ω

NR
ρc(0)

(ao
a

)3

(4.25)

The total energy density of the Friedmann universe can be written as

ρtotal(t) = ρ
NR
(t) + ρR(t) + ρΛ = ρc(0)

[

Ω
NR

(ao
a

)3

+ ΩR

(ao
a

)4

+ ΩΛ

]

(4.26)
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4.3. COMPONENTS OF THE UNIVERSE

4.3 Components of the universe

Plugging the value of ρtotal in the first Friedmann equation,viz. Eq.(4.5), we get

H2 +
κ

a2
=

8πG

3
ρc(0)

[

Ω
NR

(ao
a

)3

+ ΩR

(ao
a

)4

+ ΩΛ

]

(4.27)

Using the definition of ρc and the redshift parameter, z we finally have

(

H(z)

H0

)2

=
[

Ω
NR
(1 + z)3 + ΩR(1 + z)4 + ΩΛ − (Ω− 1)(1 + z)2

]

(4.28)

with

Ω = Ω
NR

+ ΩR + ΩΛ (4.29)

If we use the value of H0 = 72 km s−1Mpc−1, then we will get ρc(0) ≈ 10−26kg/m3.

The Cosmic Microwave Background is considered as the most dominant contribution to

the radiation energy density of the universe today [6]. The temperature, T corresponding to

the CMB is obtained from the peak of the Planckian curve. This turns out to be , To ≈ 2.73

K [6]. The radiation energy density follows Stefan’s law,.i.e, ρR = σT 4, where σ is Stefan’s

constant. So we can calculate ΩR today since we know values of the critical density, ρc.

ΩR =
ρR
ρc

(4.30)

Hence from Eq.(4.30), we get,

ΩRh
2 ≈ 2.56× 10−5, (4.31)

where, H0 = 100h kms−1Mpc−1. h = Ho

100

This is a very important result in our analysis. As we shall now show, this will help us to

identify the redshift at which the energy densities of matter and radiation were equal. Let

us call this redshift as zeq.

At zeq, ρNR
= ρR. Hence we can show

(1 + zeq) =

(

Ω
NR

ΩR

)

≈ 3.9× 104(Ω
NR
h2) (4.32)

We will now calculate the temperature of the radiation at this epoch.
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4.4. AGE OF THE UNIVERSE

The energy density of radiation, ρR ∝ a−4. Since radiation also follows Stefan’s law,

ρR ∝ T 4. So using these two arguments we can say

T ∝ a−1 (4.33)

So we have

Teq = To(1 + zeq) ≈ 9.04× (Ω
NR
h2) eV (4.34)

So we find that the universe has cooled down considerably (to 2.73 K) from what it was

during the equality of matter and radiation (around 104 K). Similarly we can also find the

redshift when the non-relativistic matter density and the cosmological constant were equal.

This turns out to be approximately 0.282.

We will now derive expressions for the age of the universe in terms of the parameters

Ω
NR
, ΩR , ΩΛ and h. Next we will plot contours for the age of the universe as functions of

these parameters.

4.4 Age of the universe

From Eq. (4.28), we can write

da

adt
= H0

√

Ω
NR
(1 + z)3 + ΩR(1 + z)4 + ΩΛ − (Ω− 1)(1 + z)2 (4.35)

We can change the variable a to z by using the relation

da = − adz

1 + z
(4.36)

Hence integrating Eq.(4.35) from t = 0 to the present time we get the expression,

tage =

∫

∞

0

dz

100h(1 + z)
√

Ω
NR
(1 + z)3 + ΩR(1 + z)4 + ΩΛ − (Ω− 1)(1 + z)2

(4.37)

So we can evaluate the age of the universe for different functions of the parameters h and

the densities. We are going to use ΩRh
2 = 2.56× 10−5 and Ω = Ω

NR
+ ΩR + ΩΛ.

The plots are obtained in the Ω
NR

− h plane. Each contour corresponds to 109 years.

In the next chapter, we will work with the supernovae data. We will see which energy

component dominates the universe today. We will try to get constraints on the energy den-

sities and the equation of state parameter, w.
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4.4. AGE OF THE UNIVERSE
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Figure 4.1: The age of the universe has been plotted as a function of the parameters Ω
NR

and
h. Given limits on the age of the universe, such as for instance, determined by the oldest
observed object, the above contours allow us to arrive at constraints on the cosmological
parameters. These contours correspond to a spatially flat universe with the radiation energy
density set to zero.
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Figure 4.2: Contours for a non flat Friedmann universe comprising of no cosmological con-
stant but both radiation and pressureless matter.
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Figure 4.3: These contours represent a non flat universe with non zero cosmological constant
and pressureless matter but no radiation.
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Chapter 5

Distant supernovae and the accelerating
universe

In this chapter, after a discussion on the classification of the various types of supernovae,

we shall outline the reasons as to why a special class of the supernovae can act as a standard

candle. Thereafter, we shall make use of the redshift-magnitude data available from SCP

and SNLS to arrive at constraints on some of the cosmological parameters. Specifically,

restricting ourselves to the case of the spatially flat Friedman model (i.e. the case wherein

κ is zero), we shall vary the parameters Ω
NR

and w [cf. Eq. (4.11)] and utilize the standard

chi-square minimization technique to arrive at the best fit values for these parameters from

the data.

5.1 Classification of supernovae

Let us begin with a discussion on the classification of the various types of supernovae and

the reasons behind choosing a certain type of supernovae as a standard candle.

During the final stages of stellar evolution, instabilities occur due to imbalances between

sources of pressure and the gravitational forces in the core of stars. Such imbalances lead

to an explosion if the mass of the star turns out to be much higher than the mass of the

Sun. These explosions prove to be extremely powerful and their brightness remain fairly

constant over an extended period of time (in fact, for tens of days). The term supernova

was coined to describe these exploding stars. It was soon realized there exist two types of

supernovae, which can be distinguished based on their spectra (for a detailed discussion on

the the formation of stars and the evolution of some into supernovae, see Ref. [11])
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5.2. TYPE IA SUPERNOVAE AS A STANDARD CANDLE

The difference between the two types of supernovae is essentially the presence or absence

of hydrogen in their spectra. Supernovae whose spectra do not contain prominent hydrogen

lines are referred to as type I, and the remaining as type II. A careful infra-red analysis of

the spectra later led to two further sub classes of the type I supernovae, which are called as

types Ia and Ib. Type Ib supernovae are those which contain He I lines, while type Ia are

classified as those supernovae which had neither He I nor Si II lines in their spectra. As we

shall discuss in the following section, it is the type Ia supernovae which proves to be very

useful as indicators of distances.

5.2 Type Ia supernovae as a standard candle

Aswe had discussed in the introductory chapter, a standard candle is an astronomical object

whose intrinsic luminosity is largely independent of its location in the universe. Observa-

tionally, onemeasures the apparent luminosity. It is then clear that, if the intrinsic luminosity

is known by other means, then the observed or the apparent luminosity will then allow us

to estimate the distance to the source.

The intrinsic luminosities of the standard candles are arrived in two steps. Typically,

a tight correlation between the apparent luminosity of such sources and another property

(such as the period of variation in, say, variable stars) which is easily measurable is ob-

tained. Then, if the distance to some of these objects are known through other unambiguous

distance indicators (such as the simple trigonometric parallax), a relationship can then be

constructed between the intrinsic luminosity of these sources and the simpler to measure

property. It is this relation that then allows us to estimate the distance to the source.

It is in such a context that the bright and frequent type Ia supernovae come in extremely

handy. Their frequency implies that we have a good opportunity to observe them, while

their brightness allows us to resolve them even at very large distances. A type Ia supernova

is easily identified by the absence of Si absorption feature at 6150 Å in their spectrum (which,

in contrast, is present in type Ib). Further, they exhibit a characteristic light curve, viz. the

rise and the fall of the brightness of the supernovae, which helps us determine their absolute

luminosity (see Ref. [12]; in this context, also see Ref. [13]).

In the following section, using the SCP and the SNLS data and the concept of luminosity

distance that we had defined earlier in Chap. 3, we shall numerically arrive at the constraints
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5.3. ANALYSIS OF THE SCP AND THE SNLS DATA

on the cosmological parameters.

5.3 Analysis of the SCP and the SNLS data

The SCP mission is more a decade old, and it was the first mission dedicated to the observa-

tions of the supernovae, aimed at determining the distances of far away galaxies and thereby

understanding the corresponding implications for cosmology. SNLS is more recent and on-

going mission. It has been specifically designed for observing supernovae between redshifts

of 0.3 and 1 and arriving at their precise characteristics. The main goal of the SNLS team has

been to arrive at stronger constraints (than SCP could) on the cosmological parameters, in

particular, on the equation of state of dark energy and also the value of the corresponding

density parameter.

5.3.1 The redshift-magnitude relation

As we have mentioned, measurements of redshift of distant object is a straightforward exer-

cise and poses no difficulties. The SCP and the SNLS teams actually measure the apparent

magnitude m which is related to the absolute magnitude M and the luminosity distance d
L

[cf. Eq. (3.20)] through the following relation (see, for example, Ref. [16]):

m(z) = M + 5 log10

[

d
L
(z)

1 Mpc

]

+ 25. (5.1)

The absolute magnitude M is arrived at based on the light curves of the supernovae and

the apparent magnitude m. According to the standard candle hypothesis, it is the intrinsic

quantity M which is the same for all type Ia supernovae. Note that d
L
(z) contains the quan-

tity H0. However, we shall choose to work with a quantity Q(z) which is related to d
L
(z) as

follows:

Q(z) = H0 dL
(z), (5.2)

and it is important to mention here that the function Q(z) is independent of the Hubble

parameter H0. In such a case, we have

µ
B
(z) ≡ m(z)−M = 5 log10[Q(z)] + 25 + 5 log10

[

H−1
0

1Mpc

]

. (5.3)
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5.3. ANALYSIS OF THE SCP AND THE SNLS DATA

The data allow us to determine the quantity M to be 19.31 ± 0.03 + 5 log10 h70 [18]. This in

turn leads to

µ
B
(z) = 43.15 + 5 log10[Q(z)]. (5.4)

SCP and SNLS provide us with µ
B
and z for a collection of supernovae. Since the quan-

tity d
L
(z) depends on the cosmological parameters, our goal is to use the data to arrive at

constraints on the parameters. Independent observations from the CMB point to the fact

that our universe is spatially flat to a very good extent (see, for example, Ref. [6]). So,

we shall assume that κ = 0 or, equivalently, Ω = 1. Further, at late times such as today,

the energy density in radiation can be completely ignored. These conditions leave us with

only two cosmological parameters, viz. the non-relativistic matter density parameter (Ω
NR
)

and the equation of state parameter for dark energy (w) to be determined. We shall arrive

at constraints on these parameters using the standard chi-squared technique of comparing

theoretical models with the data.

Before we go on to discuss the results of the comparison, let us say a few essential words

on the χ2 technique.

5.3.2 The χ2 technique and the best fit values

The χ2 technique is a tool to compare theory with experimental or observational data (in this

context, see, for instance, the standard textbook [17]). The less the value of the quantity χ2,

the better is considered the fit of the theoretical model to the observations. The quantity χ2

is defined as

χ2 =
∑

i

[

yi − f(xi)

σi

]2

, (5.5)

where yi is the value of a quantity as obtained from observations or experiments, while

f(xi) is the corresponding theoretical prediction for the quantity. The quantity σi denotes

the error associated with the measurement that yields the value yi. Moreover, f(xi) contains

the parameters for themodel. The best fit values of the theoretical parameters are considered

to be those values which correspond to the smallest χ2.
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5.3. ANALYSIS OF THE SCP AND THE SNLS DATA

5.3.3 The best fit values for the cosmological parameters

We had mentioned that we shall vary the non-relativistic matter density parameter (Ω
NR
)

and the equation of state parameter for dark energy (w) to arrive at the best fit values. In

Figs. 5.1 and 5.2 below, after fixing w to be minus −1 (which corresponds to a cosmological

constant), we have plotted χ2 as a function of Ω
NR
. Clearly, χ2 exhibits a minimum in both

the cases. We find that the minimal value of χ2 corresponds to Ω
NR

≃ 0.25 for the SCP data

and Ω
NR

≃ 0.28 for the SNLS data. In Fig. 5.3 below, we have plotted the theoretical curves

0.0 0.1 0.2 0.3 0.4 0.5 0.6

110

120

130

140

WNR

Χ
2

Plot for SCP data

Figure 5.1: The quantity χ2 has been plotted as a function of Ω
NR

with w = −1 for the SCP
data. The minimum value for χ2 is obtained for ΩNR ≃ 0.25.

and the SNLS data or different values of Ω
NR

with w fixed to be −1. It is evident from the

figure that an Ω
NR

≃ 0.25 fits the data better than the her two cases.

Relaxing the condition on w, in Fig. 5.4 below, we have plotted χ2 as a function of Ω
NR

as well as w for the SNLS data. In such a case, we find that the minimal value of χ2 occurs

when Ω
NR

≃ 0.25 and w ≃ −0.93. In Fig. 5.5 below, we have plotted the theoretical curves

for the luminosity distance and the SNLS data when w ≃ −0.93 for the three cases of Ω
NR

that we had plotted earlier in Fig. 5.3.
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Figure 5.2: The quantity χ2 plotted as a function of Ω
NR

for the SNLS data with w set to −1.
The minimum of χ2 is found to be around Ω

NR
≃ 0.28.

5.3.4 Implications

It is clear from the above discussion the introduction of a non zero cosmological constant

provides (corresponding to ΩΛ ≃ 0.75) leads to an improved fit to the data. It is the fact that

the universe is in fact dominated by the cosmological constant which leads to the inference

that the universe is presently in an accelerating phase.

From the last section, it becomes quite clear from Fig. (5.5) that the presence of both

matter and dark energy provides a much better fit to the data than the cases when only one

component is present. We find that the value of the equation of state parameter, w turns out

to be less than −1
3
. So comparing with Eq.(4.6), we can see that the data indeed corresponds

to an accelerating universe.
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GREEN: WL = 1

RED: WNR = 1

BLUE: WNR = 1; WNR + WL = 1
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Figure 5.3: A plot of the theoretical curves as well as the SNLS data for the luminosity
distance. The black dots with error bars denote the data. The green, the blue and the red
curves are the theoretical predictions corresponding to Ω

NR
of zero, 0.28 and unity, with w

set to be−1. It is visually evident that the blue theoretical curve corresponding toΩ
NR

≃ 0.28
fits the data better than the two curves.
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Figure 5.4: The quantity χ2 for the SNLS data has been plotted as a function of Ω
NR

and w.
While we have varied w from −1 to −0.7, Ω

NR
has been allowed to vary from 0 to 0.5. The

minimum value of χ2 in the Ω
NR
-w plane is found to be located at Ω

NR
≃ 0.25 and w ≃ −0.93.
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Figure 5.5: The theoretical for the luminosity distance plotted for the three different values
of Ω

NR
that we had plotted earlier in Fig. 5.3. Note that, however, we have set w to be −0.93

in arriving at these curves. The blue curve, which corresponds to Ω
NR

≃ 0.25, clearly fits the
data quite well.
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Chapter 6

The nature of dark energy

Aswe have seen in the preceding chapters, the universe has three main components, namely,

the non-relativistic matter density, Ω
NR
, the radiation energy density, ΩR and the term that

was put by hand for better fitting of the data, the cosmological constant, ΩΛ. The presence

of ΩΛ has a striking significance. This is what sources the acceleration of the universe

We now focus on the reasons behind the acceleration. We try to understand whether the

dark energy is actually a constant or varies with time. Is it growing or decaying? A dark

energy density that varies with time is also known as quintessence(for reference, see [20]).

Nowwewill try to arrive at a model for dark energy that drives the late-time acceleration

of the universe. We will work with the scalar field model. The motivation behind this, as we

will see comes from the facts, that firstly it is easy to arrive at conditions for the accelerating

state of the universe using scalar fields. Secondly, for suitable choices of potentials, we

will see that this model satisfies conditions for all the previous epochs the universe went

through,i.e., the radiation and matter dominated epochs.

6.1 Scalar fields in the Friedmann universe

A field is characterized by infinite degrees of freedom. It is the carrier of interaction between

particles. Locally, a field exists everywhere at every instant of time. A scalar field is one

which is characterized by magnitude only,i.e., it does not depend upon directions.

If we do a coordinate transformation such that xµ goes to x′µ, then the scalar will satisfy the

relation φ′(x′µ) = φ(xµ)

The action describing the scalar field comprises of two parts, the kinetic energy and the

32



6.1. SCALAR FIELDS IN THE FRIEDMANNUNIVERSE

potential energy. In a flat spacetime, the quantity d4x acts as the invariant infinitesimal 4-

volume. But when the spacetime is curved, the actual invariant quantity is
√−gd4x, with g

being the determinant of the metric tensor describing the spacetime.Moreover, the equation

of motion for the scalar field should not contain more than second order time derivatives of

the fundamental variable (φ) . These arguments motivate us to write down the action for the

scalar field in the following manner.

S =

∫
[

1

2
gµν∂µφ∂νφ− V (φ)

]√−g d4x, (6.1)

where V (φ) describes the potential energy associated with the scalar field φ.

The equation of motion for the field can be arrived at by varying Eq.(6.1) with respect to

φ, which gives
1√−g

∂ν(
√−ggµν∂µ)φ+

∂V

∂φ
= 0 (6.2)

So for the Friedmann metric, we arrive at the equation of motion for the scalar field which

is given by

φ̈+ 3Hφ̇+ Vφ = 0 (6.3)

V (φ) in Eq.(6.3) denotes derivative w.r.t φ. We can also arrive at the expression for the Stress-

Energy tensor, Tµν associated with the scalar field by varying Eq.(6.1) with respect to the

metric tensor gµν . This will give the following relation:

Tµν = ∂µφ∂νφ+ V (φ)gµν −
1

2
gµν∂

kφ∂kφ (6.4)

We now formulate the components of Tµν , namely, the energy density, ρ and the pressure,

p for the Friedmann universe. Since the universe is homogeneous and isotropic , we can say

that the scalar field, φ doesn’t have spatial dependence but that it only depends on time.

Using this condition and Eq.(4.3) and (6.4), we get the relations

ρφ =
1

2
φ̇2 + V (φ) (6.5)

pφ =
1

2
φ̇2 − V (φ) (6.6)
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6.2. QUINTESSENCE

These are the two most important equations which we will be frequently using in the sub-

sequent sections. Substituting these values in Eq.(4.6), we arrive at the condition for the

accelerating universe,viz.,

φ̇2 < V (φ) (6.7)

In other words the universe dominated by a scalar field will accelerate when the potential

energy dominates over the kinetic energy. We shall also discuss the equation of state param-

eter, w for the scalar field, φ.

w =
p

ρ
=

1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

(6.8)

Clearly from Eq.(6.8), when φ̇2 << V (φ), we find that w ≈ −1. Thus when the potential

energy term dominates the dynamics of the field much more than the kinetic term, the scalar

field seems to behave as the cosmological constant.

In the next section we will work with the Inverse Power Law(I.P.L.) model, where the

potential has an inverse power law dependence on φ. Wewill see how this potential satisfies

conditions for both early-time and late-time universe. We will try to arrive at constraints on

the parameters of this model which can satisfy conditions for late-time scalar field driven

acceleration.

6.2 Quintessence

Potentials of the form φ2 and φ4 also lead to accelerated models of the universe. But these

oscillatory models imply that the acceleration stops after some finite interval of time(because

of the presence of the friction term in Eq.(6.3)). Although these models successfully explain

the inflationary universe, they can’t be used to describe the late time acceleration because

unlike inflation, the late time acceleration is not supposed to be halted by any source of

energy. So we need a model for the dark energy that satisfies conditions of both early and

late time universe.

In the I.P.L. model, the potential energy density of the scalar field, φ takes the following

form

V (φ) = Vo(φ)
−α, (6.9)
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where Vo = m4+α (wherem has dimensions of mass) and α > 0.This model, originally intro-

duced by B.Ratra and P.J.E. Peebles was motivated from the ideas of SUSY and QCD [21].

We will now investigate the dynamics of the universe under the action of such a potential.

Let us first look into the radiation dominated epoch. We have seen in this case, the scale

factor, a(t) ∝ t
1
2 . Hence,H = 1

2t
. The I.P.L. potential when substituted in Eq.(6.3) , gives

φ̈+
3

2t
φ̇− αm4+αφ−α−1 = 0 (6.10)

We thus have a solution for φ given by

φ =

[

α(2 + α)2m4+αt2

6 + α

]
1

2+α

(6.11)

Let us now perturb the field by a small amount, δφ. We can see that this perturbation

satisfies the relation

δ̈φ+
3

2t
δφ̇+ α(α+ 1)φ−α−1δφ = 0 (6.12)

Substituting the expression obtained for φ from Eq.(6.11) in Eq.(6.12) we get

φ̈+
3

2t
δφ̇+

[

(α + 6)(α+ 1)

(2 + α)2t2

]

δφ = 0 (6.13)

Solving the above equation for the perturbation we arrive at the following result

δφ ∝ tγ , (6.14)

where

γ = −1

4
±

√

1

16
− (α + 6)(α + 1)

(2 + α)2
(6.15)

In Eq.(6.15), γ turns imaginary for any α > 0. So we see that the perturbations decay as t−
1
4

with increasing time.Thus Eq.(6.11) is called the tracker solution. It means that any other

solution that comes close to φ will eventually approach it as t increases.Thus if we assume

that φ obeys the tracker solution today, then we may say that this solution is insensitive to

the initial conditions. This has the advantage that then there are only two parameters which

we need to work with, namelym and α.
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From Eq.(6.11) it is evident that both φ̇2 and V (φ) go as t−
2α
2+α .Hence we find that ρR dom-

inates over ρφ in the early universe since ρR ∝ t−2. So we see that the I.P.L. model satisfies

conditions for the early universe.

In the matter dominated epoch, ρ
NR

∝ t−2 and ρR ∝ t−
8
3 .But the tracker solution has the

same behavior as in the radiation dominated epoch and so do V (φ) and φ̇2. So it is clear

that at late times ρφ will dominate over the other components of the universe. Let us now

investigate the dynamics at very late times when the universe becomes dominated by the

scalar field.

At very late times, Eq.(4.5) can be re-written in the form

H2 =
8πG

3
ρφ (6.16)

Thus in the scalar field dominated epoch, the equation of motion becomes

φ̈+
√

24πGρφφ̇− αm4+αφ−α−1 = 0 (6.17)

We have already shown the condition for accelerating universe in Eq.(6.7). Using this we

can say that at very late times, ρφ ≈ V (φ). We can also see this from the fact that the friction

term in the equation of motion will eventually slow the growth of φ and hence V (φ) will

start dominating over the kinetic term. The inertial term, φ̈ will also be small compared to

the other terms in the equation of motion with increasing time. We will show that these

approximations are indeed satisfied by the model. In absence of the inertial and kinetic

terms, Eq.(6.17) becomes

√

24πGm4+αφ−αφ̇− αm4+αφ−α−1 = 0 (6.18)

On solving for φ we get

φ(tl) = m

[

α(2 + α
2
)t√

24πG

]
1

2+α

2

(6.19)

Let us now check the validity of the approximations used to get this solution.From Eq.(6.19),

we see φ̇2 ∝ t
−

2+α

2+α

2 and V (φ) ∝ t
−

α

2+α

2 . Thus at late times, V (φ) >> φ̇2.

To check the approximation related to the inertial term, we see φ̈ ∝ t
−

3+α

2+α

2 and Vφ ∝ t
−1−α

2+α

2 .

So clearly φ̈ << Vφ at late times.So we see that the solution obtained from Eq.(6.18) is valid

for the accelerated universe at very late times.The late time solution, φ(tl) is the asymptotic

limit for the tracker solution,φ(t) (given by Eq.(6.11)) as t → ∞. We have thus shown that
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the I.P.L. potential satisfies conditions for all the epochs the universe has gone through as

well as for the late-time. It is now interesting to note the following cases.

From Eq. (6.9), we can say
dV

dφ
=

−α

φ
V (φ) (6.20)

and
d2V

dφ2
=

α(1 + α)

φ2
V (φ) (6.21)

Thus we see that smaller values of α will lead to more flat potentials which will in turn lead

to a more slowly varying behavior of the scalar field, φ. Hence from Eq. (6.8) we can say

that smaller values of alpha will lead to values of wφ closer to −1.

6.3 Relation between wφ and α for different epochs

We have described the behavior of the scalar field and the associated quantities as functions

of the cosmic time, t. It is preferable to express these behaviors as functions of the scale

factor, a as we shall see that the relations between a and t for different epochs and the ex-

pression for evolution of the density of the quintessence field, ρφ can be used to express wφ

as a function of α in the respective epochs. This can help us to arrive at constraints on the

value of the exponent parameter, α if constraints on w are available from observations.

Let us investigate the radiation dominated epoch. We have seen in Eq. (6.11) that φ ∝
t2/2+α. So ρ ∝ t

−2α
2+α . But we also know that in the radiation dominated epoch, a(t) ∝ t1/2.

Hence in the radiation dominated epoch, we can write

ρ ∝ a
−4α
α+2 (6.22)

Therefore using the above expression and Eq. (4.11), we get the following relation in a

radiation dominated universe

wφ =
α− 6

3(α + 2)
(6.23)

Similarly we can show that for the pressureless matter dominated universe, we will have

the following relation

wφ = − 2

α + 2
(6.24)

In general, the relation between wφ and α is given by

wφ =
wBα− 2

α + 2
, (6.25)
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where wB represents the equation of state parameter for the fluid component which domi-

nates the background of the universe [22]. It is quite clear that when wB = −1, we also have

wφ = −1.
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Chapter 7

Summary

Wehave seen that the introduction of an additional quantity as a component of our universe,

namely the dark energy, was mandatory to explain the supernovae type 1a data. We have

arrived at numerical values for the parameters Ω
NR

and w. We have shown using the data

that the condition ρ + 3p < 0 is satisfied for our universe at the current epoch. This led us

to conclude that we are living in an accelerating universe. The data which we have worked

with has been used from [18] for SNLS and [4] for SCP.

In the second part of the project, we have tried to arrive at a model for dark energy. We

have analytically arrived at the conclusion that the inverse power law scalar field potential

satisfies conditions of both early-time and late-time universe.We have seen how the expo-

nent, α can be constrained using constraints on w. We have also tried to understand the

evolution of dark energy in the expanding universe.
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