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Kamionkowski and Prof. Jérôme Martin – for endowing me with the priceless opportu-
nity of working with them. I have benefited greatly from my interactions with them. I
would also like to thank Dr. Christophe Ringeval and Dr. Vincent Vennin for insightful
discussions.

I am grateful to Dr. Rajeev Kumar Jain – my research collaborator – for his assistance
and counsel.

I am thankful to Sreenath – my collaborator and erstwhile office mate – for his indis-
pensable help, especially during the initial stages of my research career. I am indebted to
him for being exceedingly supportive and helpful at all times.

I would like to thank my colleagues – Jaffino, Rathul, Ragavendra, Sagarika, Debot-
tam, and Rahul – for always being considerate and cooperative. I have immensely en-
joyed the time spent in their company and shall cherish these memories forever.

I am tremendously grateful to my friends – Arpita, Sutapa, Ushasi di, Anupama,
Moulika, and Sreetama – for their companionship and unfaltering support. I would es-
pecially like to thank Arpita and Sutapa for being a constant source of comfort to me.

I thank the Indo-U.S. Science and Technology Forum (IUSSTF), for providing me with
the opportunity to visit and collaborate with Prof. Marc Kamionkowski at the Johns Hop-
kins University, Baltimore, U.S.A.. I would also like to thank the Centre Franco-Indien

i



pour la Promotion de la Recherche Avancée (CEFIPRA), and the Centre for Cosmological
Studies (University of Oxford, United Kingdom), for providing me with opportunities to
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ABSTRACT

KEYWORDS: Inflation, Bouncing scenarios, Non-Gaussianities, Primordial magnetic
fields

Inflation refers to a period of exponentially rapid expansion of the universe in the very
early stages of the radiation dominated era. In this paradigm, we can overcome the vari-
ous difficulties associated with the conventional hot big bang model of the universe, such
as the horizon and the flatness problems. In addition to this, the inflationary scenario also
provides us with a simple mechanism to generate the primordial perturbations, which are
expected to have acted as seeds for the formation of the Large Scale Structure (LSS). The
imprints of the primordial fluctuations can be observed in the form of small anisotropies
in the Cosmic Microwave Background (CMB). The predictions of the plethora of inflation-
ary models can be tested against the increasingly accurate cosmological measurements.
However, the profusion of inflationary models that are consistent with the data at the
level of two-point functions raises the question as to whether a unique model of infla-
tion is attainable. It is expected that with the aid of future high precision experiments, it
may be possible to arrive at tighter constraints at the level of three-point functions, impor-
tantly those involving tensors, which can then lead to a smaller class of viable inflationary
models.

Bouncing scenarios correspond to situations wherein the universe undergoes a phase
of contraction followed by an expanding era, with a bounce connecting the two epochs.
At the bounce, the scale factor describing the universe attains a minimum value. Such
scenarios have been introduced as possible alternatives to the inflationary paradigm as
they can help in overcoming the horizon problem in ways similar to inflation. Certain
bouncing models have been known to generate scale invariant primordial perturbation
spectra, and also lead to a viable tensor-to-scalar ratio. Nevertheless, the characteristics
of the two-point functions alone do not seem sufficient to distinguish between the pre-
dictions of the inflationary and the bouncing scenarios. The behavior of the three-point
functions in these models can be expected to act as a possible discriminator between these
two scenarios.

The advancement in obtaining increasingly precise cosmological data has allowed for
rigorous assessment of models of the early universe. Observational bounds at the level
of two-point functions alone do not appear to be adequate to constrain these models
or to efficiently distinguish between alternative scenarios of the early universe, such as
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inflation and bounces. With the aim to arrive at strongly discriminating observables, the
signatures of which can demarcate between inflationary and bouncing scenarios, in this
thesis, we have investigated three-point functions involving scalar and tensor modes, as
well as cross-correlations between scalar perturbations and primordial magnetic fields. In
what follows, we shall provide a brief outline of the various issues that we have studied
in this thesis.

• The scalar-scalar-tensor three-point function in the axion monodromy model: The
axion monodromy model involves a canonical scalar field that is governed by a linear
potential with superimposed modulations. The modulations in the potential are respon-
sible for a resonant behavior which gives rise to persisting oscillations in the scalar and,
to a smaller extent, in the tensor power spectra. Interestingly, such spectra have been
shown to lead to an improved fit to the cosmological data than the more conventional,
nearly scale invariant, primordial power spectra. The scalar bispectrum in the model too
exhibits continued modulations and the resonance is known to boost the amplitude of
the scalar non-Gaussianity parameter to rather large values. An analytical expression for
the scalar bispectrum had been arrived at earlier which, in fact, has been used to compare
the model with the cosmic microwave background anisotropies at the level of three-point
functions involving scalars. In this work, with future applications in mind, we arrive at a
similar analytical template for the scalar-scalar-tensor cross-correlation. We also analyti-
cally establish the consistency relation (in the squeezed limit) for this three-point function.
We conclude with a summary of the main results obtained.

• The tensor bispectrum in a matter bounce: Matter bounces are bouncing scenarios
wherein the universe contracts as in a matter dominated phase at early times. Such sce-
narios are known to lead to a scale invariant spectrum of tensor perturbations, just as de
Sitter inflation does. In this work, we examine if the tensor bispectrum can discriminate
between the inflationary and the bouncing scenarios. Using the Maldacena formalism, we
analytically evaluate the tensor bispectrum in a matter bounce for an arbitrary triangular
configuration of the wavevectors. We show that, over scales of cosmological interest, the
non-Gaussianity parameter h

NL
that characterizes the amplitude of the tensor bispectrum

is quite small when compared to the corresponding values in de Sitter inflation. Dur-
ing inflation, the amplitude of the tensor perturbations freeze on super-Hubble scales, a
behavior that leads to the so-called consistency condition relating the tensor bispectrum
and the power spectrum in the squeezed limit. In contrast, in the bouncing scenarios,
the amplitude of the tensor perturbations grow strongly as one approaches the bounce,
which suggests that the consistency condition will not be valid in such situations. We
explicitly show that the consistency relation is indeed violated in the matter bounce. We
discuss the implications of the results.

• Scale invariant magnetic fields in bouncing scenarios: Recently, it has been numeri-
cally shown that, for a non-minimal coupling that is a simple power of the scale factor,
scale invariant magnetic fields arise in a class of bouncing universes. In this work, we an-
alytically evaluate the spectrum of magnetic and electric fields generated in a sub-class of
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such models. We illustrate that, for cosmological scales which have wavenumbers much
smaller than the wavenumber associated with the bounce, the shape of the spectrum is
preserved across the bounce. Using the analytical solutions obtained, we also illustrate
that the problem of backreaction is severe at the bounce. Finally, we show that the power
spectrum of the magnetic field remains invariant under a two parameter family of trans-
formations of the non-minimal coupling function.

• Cross-correlations between scalar perturbations and magnetic fields in bouncing uni-

verses: As we have already mentioned, bouncing scenarios offer an alternative to the in-
flationary paradigm for the generation of perturbations in the early universe. Recently,
there has been a surge in interest in examining the issue of primordial magnetogenesis
in the context of bouncing universes. As in the case of inflation, the conformal invari-
ance of the electromagnetic action needs to be broken in bouncing scenarios in order to
generate primordial magnetic fields which correspond to observed strengths today. The
non-minimal coupling, which typically depends on a scalar field that possibly drives the
homogeneous background, leads to a cross-correlation at the level of the three-point func-
tion between the perturbation in the scalar field and the magnetic fields. This has been
studied in some detail in the context of inflation and, specifically, it has been established
that the three-point function satisfies the consistency relation in the squeezed limit. In this
work, we study the cross-correlation between the magnetic fields and the perturbation in
an auxiliary scalar field in a certain class of bouncing scenarios. We consider couplings
that lead to scale invariant spectra of the magnetic field and evaluate the correspond-
ing cross-correlation between the magnetic field and the perturbation in the scalar field.
We find that, when compared to de Sitter inflation, the dimensionless non-Gaussianity
parameter that characterizes the amplitude of the cross-correlations proves to be consid-
erably larger in bouncing scenarios. We also show that the aforementioned consistency
condition governing the cross-correlation is violated in the bouncing models. We discuss
the implications of our results.

• Enhancing the cross-correlations between magnetic fields and scalar perturbations

through parity violation: One often resorts to a non-minimal coupling of the electro-
magnetic field in order to generate magnetic fields during inflation. The coupling is ex-
pected to depend on a scalar field, possibly the same as the one driving inflation. At the
level of three-point functions, such a coupling leads to a non-trivial cross-correlation be-
tween the perturbation in the scalar field and the magnetic field. This cross-correlation
has been evaluated analytically earlier for the case of non-helical electromagnetic fields.
In this work, we numerically compute the cross-correlation for helical magnetic fields.
Non-Gaussianities are often generated as modes leave the Hubble radius. The helical
electromagnetic modes evolve strongly (when compared to the non-helical case) around
Hubble exit and one type of polarization is strongly amplified immediately after Hubble
exit. We find that helicity considerably boosts the amplitude of the dimensionless non-
Gaussianity parameter that characterizes the amplitude and shape of the cross-correlation
between the perturbations in the scalar field and the magnetic field. We discuss the im-
plications of the enhancement in the non-Gaussianity parameter due to parity violation.
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SUMMARY OF NOTATIONS

The notations used in this thesis have been listed below in the order of their appearance
in the thesis.

Notation Description

t Cosmic time

x Position three-vector

η Conformal time

N E-folds

N E-N-folds

a Scale factor describing the universe

~ Reduced Planck’s constant, 1.054× 10−34 J s

c Speed of light, 299792458m s−1

M
Pl

Reduced Planck mass, 2.435× 1018GeV/c2

G Universal gravitational constant, 6.674× 10−11Nkg−2m2

k Wavenumber of perturbations

H Hubble parameter

H0 Hubble constant: value of the Hubble parameter today

h Parameter describing the Hubble constant as: H0 = 100 h km s−1 Mpc−1

K Spatial curvature

ρ Energy density

w Equation of state parameter

p Pressure

Ω Density parameter

ρ
cr

Critical energy density

z Redshift

t0 Present time

Ω0
R

Density parameter due to radiation at present

Ω0
NR

Density parameter due to non-relativistic matter at present

Ω0
Λ Density parameter due to dark energy at present
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Notation Description

Ω0
K

Density parameter due to spatial curvature at present

Ω0
i Density parameter due to species ‘i’ at present

Ω0
b Density parameter due to baryonic matter in the universe at present

Ω0
c Density parameter due to cold dark matter in the universe at present

τ Reionization optical depth

A
S

Amplitude of primordial scalar power spectrum

n
S

Spectral index of primordial scalar power spectrum

t
dec

Time of decoupling

λ
P

Physical wavelength

d
H

Hubble radius

t
i

Time at the beginning of inflation

t
f

Time at the end of inflation

H
I

Value of the Hubble parameter during inflation

φ Scalar field

V (φ) Potential for the scalar field φ

S[φ] Action for the scalar field φ

g Determinant of the metric gµν

∂µ Partial derivative with respect to xµ

Vφ Derivative of the potential V with respect to the scalar field φ

T µ
ν Stress-energy tensor

δµν Kronecker delta in four dimensions

ǫi i-th slow roll parameter

a0 Value of the scale factor at the bounce

η0, 1/k0 Time scale associated with the bounce

r Primordial tensor-to-scalar ratio

Φ Bardeen potential

δT µ
ν Perturbation in stress-energy tensor

∇µ Covariant derivative with respect to xµ

δρ Perturbation in energy density

δσ Perturbation in momentum flux

δp Perturbation in pressure

δGµ
ν Perturbation in Einstein tensor

∇2 Laplacian operator
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Notation Description

H Conformal Hubble parameter

c
A

Speed of adiabatic perturbations

δpNA Non-adiabatic component of the pressure perturbation

R Curvature perturbation

γij Tensor perturbation

δφ Perturbation in the scalar field φ

fk Fourier mode of the scalar perturbations corresponding to the

wavenumber k

vk Fourier mode of the Mukhanov-Sasaki variable for the scalar

perturbations, corresponding to the wavenumber k

〈AB〉 Two-point function involving perturbations of type AB,

where (A,B) = (R, γij)
P

S
(k) Power spectrum of the scalar perturbations

hk Fourier mode of the tensor perturbations corresponding to the

wavenumber k

εsij(k) Polarization tensor of the gravitational waves, with the indices

s = (1, 2) denoting the two states of polarization

uk Fourier mode of the Mukhanov-Sasaki variable for the tensor

perturbations, corresponding to the wavenumber k

P
T
(k) Power spectrum of the tensor perturbations

Πk
ij,mn Sum of products of the polarization tensor of the gravitational waves,

given by
∑

s ε
s
ij(k) ε

s ∗
mn(k)

n
T

Spectral index of primordial tensor power spectrum

k∗ Pivot scale

S3
ABD Third order action involving perturbations of type ABD,

where (A,B,D) = (R, γij)
L2

AB Second order Lagrangian density involving perturbations of type AB,

where (A,B) = (R, γij)
S2
AB Second order action involving perturbations of type AB,

where (A,B) = (R, γij)
〈ABD〉 Three-point function involving perturbations of type ABD,

where (A,B,D) = (R, γij)
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Notation Description

GABD Three-point function in Fourier space involving perturbations of type

ABD, where (A,B,D) = (R, γij)
Ĥ int

ABD Interaction Hamiltonian involving perturbations of type ABD,

where (A,B,D) = (R, γij)
L̂int
ABD Interaction Lagrangian involving perturbations of type ABD,

where (A,B,D) = (R, γij)
GC
ABD The C-th integral contained in the three-point function GABD

involving perturbations of type ABD, where (A,B,D) = (R, γij)
ηi Suitably early conformal time when the modes are inside the

Hubble radius

ηe Conformal time at the end of inflation

n̂ij Component of the unit vector n̂i = ki/ki along the j-spatial direction

kij Component of the wavevector ki along the j-spatial direction

f
NL

Non-Gaussianity parameter corresponding to the scalar bispectrum

CR
NL

Non-Gaussianity parameter corresponding to the scalar-scalar-tensor

three-point function

Cγ
NL

Non-Gaussianity parameter corresponding to the scalar-tensor-tensor

three-point function

h
NL

Non-Gaussianity parameter corresponding to the tensor bispectrum

A(G) Gaussian component of the perturbation A, where A = (R, γij)
k

T
k1 + k2 + k3

RB Constant amplitude of the long wavelength scalar mode in the

squeezed limit

γB

ij Constant amplitude of the long wavelength tensor mode in the

squeezed limit

〈AB〉k Two-point function involving perturbations of type AB, where

(A,B) = (R, γij), in the presence of a long wavelength mode k

〈ABD〉k Three-point function involving perturbations of type ABD, where

(A,B,D) = (R, γij), in the presence of a long wavelength mode k

Sem[A
µ, φ] Electromagnetic action with non-minimal coupling

Aµ Electromagnetic four-vector potential

Fµν Electromagnetic field tensor
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Notation Description

J(φ) Non-minimal coupling function in the electromagnetic action

Ai Electromagnetic three-vector potential

εkλi Polarization vector of the electromagnetic vector potential, where

λ = (1, 2), corresponding to the mode k, along the i-spatial direction

Āk Fourier mode of the electromagnetic vector potential corresponding to

the wavenumber k

Ak Redefined Fourier mode of the electromagnetic vector potential

corresponding to the wavenumber k

ρ̂
B

Operator corresponding to the energy density associated with the

magnetic field

ρ̂
E

Operator corresponding to the energy density associated with the

electric field

P
B
(k) Power spectrum of the magnetic field

P
E
(k) Power spectrum of the electric field

µ, b, f Parameters describing the axion monodromy model

φ0 Slowly rolling part of the inflaton in the axion monodromy model

φ1 Part of the inflaton describing the modulations in the axion

monodromy model

t∗ Time when the pivot scale k∗ leaves the Hubble radius

φ∗ Value of the inflaton at the time when the pivot scale k∗ leaves the

Hubble radius

ǫ01 Contribution to the first slow roll parameter due to the slowly rolling

part of the inflaton in the axion monodromy model

ǫc1 Contribution to the first slow roll parameter due to the modulations

in the axion monodromy model

ǫ∗1 Value of the first slow roll parameter at the time when the pivot scale

k∗ leaves the Hubble radius

δ Redefined slow roll parameter

δ0 Contribution to the redefined slow roll parameter δ due to the

slowly rolling part of the inflaton in the axion monodromy model

δ1 Contribution to the redefined slow roll parameter δ due to the

modulations in the axion monodromy model

xv



SUMMARY OF NOTATIONS

Notation Description

ǫ∗2 Value of the second slow roll parameter at the time when the pivot

scale k∗ leaves the Hubble radius

f±
k Positive and negative frequency scalar de Sitter modes

ck(x) Function describing the non-trivial evolution of the scalar modes

in the axion monodromy model

φk Value of the inflaton at the time when the scale corresponding

to the wavenumber k leaves the Hubble radius

P0
S

Amplitude of the scalar power spectrum which arises in the slow

roll scenario when the oscillations in the potential are absent

n0
S

Scalar spectral index in the slow roll approximation when the

oscillations in the potential are absent

nc
S

First order correction to scalar spectral index in the axion

monodromy model

h±k Positive and negative frequency tensor de Sitter modes

dk(x) Function describing the non-trivial evolution of the tensor

modes in the axion monodromy model

P0
T

Amplitude of the tensor power spectrum which arises in the

slow roll scenario when the oscillations in the potential are

absent

n0
T

Tensor spectral index in the slow roll approximation when the

oscillations in the potential are absent

nc
T

First order correction to tensor spectral index in the axion

monodromy model

Hint Interaction Hamiltonian obtained from the third order

action involving the perturbation in the scalar field and the

electromagnetic field

GδφBB Three-point function in Fourier space involving perturbations
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Chapter 1

Introduction

Mankind has been fascinated by questions related to the origin and evolution of the uni-
verse since time immemorial. Observations of celestial bodies, in particular, spawned a
multitude of propositions about how the universe came into existence. However, for a
long time, such ruminations were merely of philosophical interest, for lack of observa-
tional evidence and a well developed scientific framework. It has only been over the last
century that we have gained access to precise observational data that could lend credence
to one scientific theory over the other contending hypotheses. Cosmology has thereby
gained ground as a precision science.

The Newtonian theory of gravitation is inadequate to describe gravity on the largest
scales and at the greatest strengths [1]. One needs to resort to a relativistic theory of
gravity, such as Einstein’s general relativity, to satisfactorily explain gravitational effects
over these domains. When coupled with observational data, general relativity provides
the most comprehensive framework to study cosmology. The emergence of cosmology as
a scientific discipline can be said to have been heralded by the discovery of the expansion
of the universe (for the original paper, see Ref. [2]), about a century ago. These findings
were initially encoded in the form of an empirical linear relation between the so-called
luminosity distance and redshift, referred to as Hubble’s law (for detailed discussions, see
the standard textbooks [1]). Following the advent of this law, the discovery of the nearly
perfectly thermal Cosmic Microwave Background (CMB) around half a century back (for
more recent observational efforts, see Refs. [3–9]), and the formulation of the theory of
big bang nucleosynthesis (see, for instance, [10]), which explains the formation of light
elements in the early universe, lent further support to the advancement of cosmology.

Theoretically, in order to study our universe, it is convenient to assume that it is homo-
geneous and isotropic on large scales. This presumption of the large scale homogeneity
and isotropy of the universe has been corroborated by observations of the Large Scale
Structure (LSS) (for discussions on observations of the last decade, see Refs. [11, 12]), as
well as the CMB [3–9]. The LSS suggests that the universe is homogeneous on scales
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of the order of 100 Mpc [13]. Additionally, the CMB, which carries signatures of the
early universe, has been observed to be exceedingly isotropic, with the amplitude of the
anisotropies being only of the order of 10−5 [3–9]. The early universe can therefore be
well described by a smooth and homogeneous background, with tiny perturbations lead-
ing to deviations from homogeneity, in concordance with the observations. The origin of
such anisotropies can be attributed to quantum fluctuations in the early universe. The
generation of primordial perturbations will be discussed in due course.

This thesis will be aimed at investigating various aspects of primordial physics. We
shall compare and contrast between two alternative scenarios of the early universe,
namely the inflationary and bouncing scenarios, both of which provide mechanisms for
the generation of primordial scalar and tensor perturbations. By examining results at the
level of two and three-point functions involving the scalar and tensor perturbations, we
shall make efforts towards arriving at observables that can, in principle, be made use of
to discriminate between these alternative scenarios. Furthermore, we shall also study the
generation of primordial magnetic fields, which could act as seed fields for the large scale
magnetic fields observed in the universe today (see, for instance, the reviews [14]). In ad-
dition to examining the origin and evolution of the primordial magnetic fields, we shall
also study their cross-correlations with scalar perturbations.

In this introductory chapter, we shall outline some of the crucial concepts and gather
the essential results that we shall make use of in the rest of the thesis. In Sec. 1.1, we shall
briefly describe the standard model of cosmology and the observational constraints on the
primary parameters describing the model. In Sec. 1.2, after explaining the horizon prob-
lem associated with the hot big bang model, we shall introduce the concept of inflation
and present a brief review of the paradigm. In Sec. 1.3, we shall move on to discuss the
key features of an alternative to inflation, the so-called bouncing scenarios. We shall then
describe the mechanism of generation of primordial perturbations in Sec. 1.4, which shall
apply to both inflation and bounces. We shall also evaluate the resultant power spectra
associated with them, and discuss the constraints on the spectra from cosmological data.
Further, in Sec. 1.5, we shall discuss the evaluation of three-point functions involving
the scalar and tensor perturbations, and the possible non-Gaussian signatures therein.
Sec. 1.6 will be devoted to elucidating the generation of primordial magnetic fields, par-
ticularly in the inflationary scenario. We shall conclude this chapter with Sec. 1.7, wherein
we shall outline the organization of the thesis.

At this stage, let us summarize the notations and conventions that will be followed in
this thesis. We shall consider general relativity as the theory describing gravity and, un-
less otherwise stated, we shall work with the spatially flat (3+1)-dimensional Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) background metric with the signature (−,+,+,+),
given by

ds2 = −dt2 + a2(t) dx2 = a2(η)
(
−dη2 + dx2

)
, (1.1)

where the function a denotes the scale factor, t refers to cosmic time, whereas η =
∫
dt/a(t)
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1.1. THE STANDARD MODEL OF COSMOLOGY

denotes the conformal time coordinate. Additionally, we shall also use two other time
variables, viz. the number of e-folds N and the number of e-N-folds N , the latter of which
will be specifically used to describe bouncing universes. We shall switch between the dif-
ferent time variables according to our convenience. We shall work with units such that

~ = c = 1 and assume the Planck mass to be M
Pl

= (8 πG)−1/2. Greek indices will de-
note the spacetime coordinates, while Latin indices will represent the spatial coordinates
(except for the index k which will be reserved for representing the wavenumber of the
perturbations). An overdot and an overprime will denote differentiation with respect to
the cosmic and the conformal time coordinates, respectively.

1.1 The standard model of cosmology

The knowledge about the characteristics of and the interplay between three of the four
fundamental forces, viz. the electromagnetic, weak, and strong interactions, as well as the
classification of the elementary particles is encapsulated in the standard model of particle
physics (for instance, see the standard textbooks [15]). One of the salient features of the
standard model is the unification of the three fundamental forces alluded to above. This
model was brought about as a result of path-breaking investigations in particle physics
over the latter half of the twentieth century. In a similar manner, over the last two decades,
there has been an unprecedented headway in obtaining precise cosmological data. This
has facilitated the conception of a standard model of cosmology, that encompasses our
present knowledge about the origin and evolution of the universe, while being compati-
ble with the burgeoning wealth of accurate cosmological data [1].

Let us begin our description of the standard model of cosmology, popularly referred to
as the hot big bang model, by introducing various quantities that are used to characterize
the background evolution of the universe. As we have already mentioned before, the
universe has been observed to be expanding. If we envision spacetime as a grid of points,
and consider that the coordinates of each point remain the same with the passage of time,
then it is clear that the distance between the coordinates of any two points, namely the
comoving distance, remains constant in time. However, the physical distance between
two points would increase with the expansion of spacetime. The scale factor, commonly
denoted by a(t) [as introduced in the line element (1.1)], is a monotonically increasing
function of time in an expanding universe. In terms of this quantity, the physical distance
can be expressed as a product of the comoving distance and the scale factor.

A quantity known as the Hubble parameter is defined to describe the rate of change
in the scale factor as follows:

H(t) =
ȧ

a
. (1.2)

The value of the Hubble parameter today, denoted by H0, is known as the Hubble con-
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stant. H0 is also often parameterized using a quantity h as: H0 = 100 h km s−1 Mpc−1. (It
should be noted that this quantity h is distinct from Planck’s constant ~.)

For a generic spatial curvature K, the Einstein’s equations corresponding to the FLRW
background can be written as:

H2 +
K

a2
=

8 πG

3
ρ, (1.3a)

H2 + 2
ä

a
+
K

a2
= −8 πGp, (1.3b)

where H is the Hubble parameter [cf. Eq. (1.2)], ρ denotes the background energy density,
and p denotes the total pressure. These equations are known as the Friedmann equations.
In addition to Eqs. (1.3), we also have another equation arising from the conservation of
the stress-energy tensor, which is given by

ρ̇+ 3H (ρ+ p) = 0. (1.4)

It is useful to note that Eqs. (1.3) and (1.4) are not independent. Therefore, if we in-
troduce a simplifying assumption, viz. an equation of state of the form: p = w ρ, from
Eq. (1.4), we can obtain the energy density to be: ρ ∝ a−3(1+w). It is well known that be-
sides matter, there is also radiation present (such as the CMB, which comprises the most
dominant form of radiation [16]) in the universe. Radiation has the equation of state pa-
rameter w = 1/3, while for pressureless matter, w = 0. Hence, the energy density of
radiation scales as a−4, while that of non-relativistic matter scales as a−3. Using these ex-
pressions and the observational evidence for the expansion of the universe, it is easy to
infer that at very early times, the universe was radiation dominated. The era of radiation
domination was succeeded by a matter dominated epoch. Interestingly, the energy con-
tent of the present universe has been determined to be dominated by an as yet obscure
form of energy, referred to as dark energy, which is driving its current expansion. Us-
ing the observations of the standard candles, viz. astronomical objects having the same
intrinsic brightness, such as distant Type Ia supernovae, it has been well established that
our universe is in fact presently undergoing an accelerated expansion [17, 18]. The sim-
plest model of dark energy, referred to as the cosmological constant, is consistent with the
observations of the supernovae, as well as those of the CMB [19].

Let us now briefly describe the dynamics of the Friedmann universe. We can rewrite
Eq. (1.3a) as

Ω− 1 =
K

a2H2
, (1.5)

where Ω is a quantity known as the density parameter, which is defined as

Ω =
8 πG

3H2
ρ. (1.6)
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Further, we can define a quantity known as the critical density (ρ
cr

) via the relation: ρ
cr
=

3H2/(8 πG). In terms of this quantity, the density parameter can be expressed as: Ω =
ρ/ρ

cr
. Using the above definitions and Eq. (1.5), it is easy to classify the spatial geometry of

the universe as flat, closed or open, which corresponds toK = 0, +1 and −1, respectively.
The energy density in a flat universe can be shown to be equal to the critical energy
density. A closed geometry is characterized by an energy density larger than ρ

cr
, whereas,

in an open geometry, the total energy density is lower than ρ
cr

.

Let us now introduce a quantity known as the redshift, denoted by z, which is a con-
venient observational variable for characterizing the different epochs of the universe. It
is defined as: 1 + z = a(t0)/a(t), with a(t0) denoting the scale factor today (i.e. at t0). In
terms of the redshift, the Hubble parameter can be related to the total energy density of
the universe via Eq. (1.3a) as follows:

H2(z) = H2
0

[
Ω0

R
(1 + z)4 + Ω0

NR
(1 + z)3 + Ω0

Λ − Ω0
K
(1 + z)2

]
. (1.7)

As we have mentioned before, H0 represents the value of the Hubble parameter at the
present time, while Ω0

R
, Ω0

NR
, Ω0

Λ and Ω0
K

are the density parameters corresponding to the
relativistic matter, the non-relativistic matter, the dark energy and the spatial curvature,
respectively. These parameters are defined as: Ω0

i = ρ0i /ρ
0
cr

. The superscripts ‘0’ on all
these quantities denote their value today. The density parameter Ω0

NR
is constituted of

both the baryons as well as the cold dark matter, while Ω0
K

is related to the spatial curva-
ture as: Ω0

K
= Ω0 − 1 = (K/a20H

2
0 ) [cf. Eq. (1.5)]. The quantity Ω0

K
is also referred to as the

spatial flatness parameter. The values of these parameters are constrained by a wide va-
riety of data from sources including the CMB, LSS, as well as supernovae. From Eq. (1.7),
it is clear that we would require to know the temporal evolution of the energy densities
in order to comprehend the behavior of the scale factor over time. For instance, it is use-
ful to note that, for a spatially flat universe (i.e. when K = 0), the scale factor during a
radiation dominated era can be written as a(t) ∝ t1/2 or, equivalently, as a(η) ∝ η. Dur-
ing a matter dominated epoch, the scale factor is given by a(t) ∝ t2/3, which also implies
that a(η) ∝ η2. The behavior of the scale factor suggests that at t = 0 (or, at η = 0), the
energy densities were infinitely high. This domain in time is often referred to as the big
bang, wherein general relativity is expected to fail and quantum gravitational effects are
supposed to take over.

As the CMB is thermal and the energy density of radiation falls as a−4, it is easy to
infer that the temperature of radiation scales as a−1. Since all the relativistic particles
are in thermal equilibrium with the photons at early times, their energy decreases as the
temperature falls in an expanding universe. As the rates of interaction of these relativistic
species drop below the expansion rate, they cannot stay in thermal equilibrium with the
photons and decouple. The CMB that we observe today is constituted of photons that
decoupled from the electrons about 380, 000 years after the big bang, and have traveled
freely through space and time ever since.
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The standard model of cosmology, also popularly known as the hot big bang model,
can be described by the following six parameters: the energy density of baryons Ωb h

2,
the energy density of cold dark matter Ωc h

2, the Hubble parameter H0, the reionization
optical depth τ , the amplitude of scalar fluctuations A

S
and the scalar spectral index n

S
.

These parameters have been constrained by the most recent Planck data to be [8, 9]:

Ω0
b h

2 = 0.02237± 0.00015, (1.8a)

Ω0
c h

2 = 0.1200± 0.0012, (1.8b)

H0 = 67.36± 0.54 km s−1Mpc−1, (1.8c)

τ = 0.0544± 0.0073, (1.8d)

ln
(
1010A

S

)
= 3.044± 0.014, (1.8e)

n
S
= 0.9649± 0.0042. (1.8f)

In the above list of parameters, the quantity Ω0
b h

2 represents the total energy density of
baryonic matter in the universe, which comprises all the known visible matter, including
the large scale structure. Ω0

c h
2, on the other hand, refers to the energy density of cold dark

matter, which indisputably dominates the matter content of the universe. The quantity τ
is the Thomson scattering optical depth of reionized intergalactic medium. The parame-
ters A

S
and n

S
are related to the amplitude of the primordial inhomogeneities, albeit tiny,

whose imprints are observed in the CMB. The quantities A
S

and n
S

and their significance
will be discussed in detail in a later section. It is useful to note that, using the value of the
Hubble constant today as arrived at by the Planck collaboration [8, 9], the critical energy
density can be obtained to be ρ

cr
∼ 10−29 g cm−3, and the age of the universe can be ob-

tained to be approximately 13.7 billion years. Also, upon using the Planck and the Baryon
Acoustic Oscillations (BAO) data, the flatness parameter characterizing the geometry of
the universe is constrained to be |Ω0

K
| = 0.0007 ± 0.0019 [8], so that the universe we live

in can be considered to be essentially flat. Accordingly, in this thesis, we shall work with
the spatially flat FLRW metric [cf. Eq. (1.1)].

1.2 The inflationary paradigm

Inflation has so far been the most successful paradigm to describe the early universe.
In this section, we shall discuss the motivations for introducing the concept of inflation.
We shall show that inflation can provide an efficient mechanism to circumvent some of
the issues associated with the standard model of cosmology. We shall also discuss how
inflation can be easily achieved using scalar fields.
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1.2.1 Drawbacks of the hot big bang model

The hot big bang model, in spite of its various triumphs, has been mired in certain com-
plications, such as the horizon and flatness problems (see the following texts [1] and
reviews [20–22]). The horizon problem, which can be said to be the most severe issue
afflicting the hot big bang theory, refers to the conundrum that the CMB is observed to
have a nearly uniform temperature all over the sky. However, within the hot big bang
scenario, two points separated by more than a few degrees in the sky could not have
been causally connected at the era of decoupling and, hence, the fact that they exhibit the
same temperature at present cannot be explained by any causal mechanism.

The horizon problem can be comprehended easily if we consider the ratio of the di-
mensions of the forward light cone from the big bang to decoupling to that of the back-
ward light cone from the present to the decoupling era. Let us assume that the universe
was dominated by non-relativistic matter from the time of decoupling (say, t

dec
) till today

(say, t0). Then the size of the backward light cone at the time of last scattering of the CMB
photons can be obtained to be

l
B
(t0, tdec) = a(t

dec
)

∫ t0

t
dec

dt̃

a(t̃)
≃ 3 (t2

dec
t0)

1/3, (1.9)

where we have assumed that t0 ≫ t
dec

. Now, if we consider the universe to have been
radiation dominated from big bang till decoupling, the dimension of the forward light
cone at decoupling can be evaluated to be

l
F
(t

dec
, 0) = a(t

dec
)

∫ t
dec

0

dt̃

a(t̃)
= 2 t

dec
. (1.10)

Therefore, the ratio of the sizes of the backward and forward light cones can be estimated
to be

l
B

l
F

=

(
3

2

) (
t0
t
dec

)1/3

≃ 70. (1.11)

Note that we have used the fact that t0 ≃ 1010 years and t
dec

≃ 105 years to arrive at
the final value in the previous equation. Since the backward light cone is about 70 times
larger than the forward light cone, widely separated points in the sky could not have
been in causal contact at decoupling. Therefore, the observation that the temperature is
uniform throughout the CMB sky is irreconcilable with the hot big bang model.

In the preceding section, we had mentioned that according to the most recent bounds
arrived at by Planck, the flatness parameter today has been constrained to be |Ω0

K
| =

0.0007 ± 0.0019 [8], which implies that the universe can essentially be considered to be
spatially flat at the present time. If we make use of Eq. (1.5) within the standard model,
we find that in order for the flatness parameter to be nearly close to zero today, |Ω0

K
| must
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have been of the order of 10−50 at the very early stages of the radiation dominated epoch
(for instance, when the temperature was around 1014 GeV). This seems to necessitate a
tremendous extent of fine tuning of the flatness parameter. Therefore, the flatness prob-
lem too seems to call for a revision or an extension of the standard hot big bang model of
cosmology to conform with the gradually proliferating amount of precise cosmological
data.

1.2.2 Overcoming the horizon problem with inflation

It is evident that the physical wavelength always grows linearly with the scale factor,
i.e. λ

P
∝ a. However, the horizon size and, consequently, the Hubble radius (d

H
= H−1),

in a power law expansion characterized by the scale factor a(t) ∝ tq , with q < 1, scales
as a1/q . Therefore, we have that λ

P
/d

H
∝ a(q−1)/q . In radiation dominated and matter

dominated scenarios, q < 1. Hence the physical wavelength grows faster than the Hubble
radius as we go back in time and, accordingly, the primordial perturbations have to be
correlated on scales larger than the horizon size in order to account for the observations
of the CMB. This behavior has been illustrated in Fig. 1.1. This is essentially a restatement
of the horizon problem that we had discussed above.

In order to avoid invoking an acausal mechanism, it is imperative to have an epoch
in the early universe wherein the physical wavelength would decrease faster than the
Hubble radius as we go back in time, i.e.

− d

dt

(
λ

P

d
H

)

< 0. (1.12)

This directly leads to the condition that ä > 0. Therefore, it is necessary for the universe
to have undergone a period of accelerated expansion at very early times. Such an epoch
of accelerated expansion is referred to as inflation. In order to surmount the horizon
problem, the inflationary phase should last at least long enough so that the sizes of the
backward and the forward light cones at the time of last scattering of the CMB photons
are equal. Let us assume that inflation lasts from ti to tf in the early stages of the radiation
dominated epoch. The size of the horizon at decoupling, incremented during inflation, is
given by

l
I
(t0, tdec) = a(t

dec
)

∫ t0

t
dec

dt̃

a(t̃)
≃
[
a(t

dec
)

H
I

] (
t
dec

tf

)1/2

R, (1.13)

where H
I

is the constant value of the Hubble parameter during exponential inflation, R
quantifies the amount by which the scale factor increases during inflation and, for sim-
plicity, we have set ti = H−1

I
. In this case the ratio of the backward and forward light

cones at decoupling is given by
l
B

l
I

≃ 1026

R
, (1.14)
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λ
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,
ln
|d

H
|
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ln |d
H
|

ln
λ P Radiation

domination

Figure 1.1: This figure illustrates the behavior of the Hubble radius and the physical
wavelengths in the early universe. The blue solid line denotes the behavior of the Hub-
ble radius during inflation, wherein it is nearly constant. The red solid line represents
the Hubble radius during the radiation dominated era, when d

H
∝ a2, while the red dot-

ted line shows the behavior of the Hubble radius in non-inflationary cosmology. The
two green dashed lines denote the behavior of the physical wavelengths, i.e. λ

P
∝ a,

corresponding to two different wavenumbers. The quantity N plotted on the abscissa
is known as the e-folds, and is defined as N = ln [a/a(t

i
)]. It is evident from the figure

that, without an epoch of inflation, it is not possible to bring the modes inside the Hubble
radius at early times.

where, for illustrative purposes, we have chosen H
I
= 1013 GeV. Evidently, for the two

light cones to be equal in size, we must have R ≃ 1026.

Let us introduce another temporal variable known as e-folds N (in this context, also
see the caption of Fig. 1.1), defined as

N =

∫ t

ti

dtH = ln

[
a(t)

a(ti)

]

. (1.15)

Therefore, in order to obtain R ≃ 1026, we must have N ≃ 60, i.e. allowing for at least 60
e-folds of inflation resolves the horizon problem [20–22]. It should be noted that, achiev-
ing 60 e-folds of inflation ensures that the largest observable scale today was inside the
Hubble radius during the early stages of inflation [23]. Furthermore, as should be evident
from Eq. (1.5), if one assumes H to be nearly constant, such an extended phase of infla-
tion also alleviates the flatness problem, because even a very large value of the flatness
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parameter at the beginning of the inflationary era can be exponentially reduced by means
of a sufficient duration of expansion so as to result in the nearly flat spatial geometry that
is observed today.

1.2.3 Driving inflation with scalar fields

Let ρ and p denote the energy density and the pressure of the matter field driving infla-
tion. Recall that, hereafter, we shall be working with a spatially flat FLRW metric. In a
spatially flat, homogeneous and isotropic background, the Friedmann equations can be
written as

H2 =
8 πG

3
ρ, (1.16a)

ä

a
= −4 πG

3
(ρ+ 3 p) . (1.16b)

Note that Eq. (1.16b) has been obtained by combining Eqs. (1.3). Further, the two Fried-
mann equations (1.16) can be combined to arrive at

Ḣ = −4 πG (ρ+ p) . (1.17)

From Eq. (1.16b), it is evident that in order to obtain inflation (i.e. ä > 0), we must have
(ρ+ 3 p) < 0. The energy density and pressure associated with ordinary matter or radi-
ation cannot satisfy this relation. Therefore, one resorts to using scalar fields to achieve
this condition.

Let us consider a canonical scalar field φ described by the potential V (φ). The action
governing this field is given by

S[φ] = −
∫

d4x
√−g

[
1

2
∂µφ ∂

µφ+ V (φ)

]

. (1.18)

Varying the action for the scalar field results in the following equation of motion:

φ̈+ 3H φ̇+ Vφ = 0, (1.19)

where Vφ = dV/dφ. The stress-energy tensor associated with this field can be obtained to
be

T µ
ν = ∂µφ ∂νφ− δµν

[
1

2
∂µφ ∂

µφ+ V (φ)

]

, (1.20)

and the components of this tensor are given by

T 0
0 = −ρ = − φ̇

2

2
− V (φ) , (1.21a)

T i
j = p δij =

[

φ̇2

2
− V (φ)

]

δij , (1.21b)

10



1.2. THE INFLATIONARY PARADIGM

where ρ and p now denote the energy density and the pressure associated with the
scalar field φ. From these two expressions, it is evident that the condition for inflation,
viz. (ρ+ 3 p) < 0, can be rewritten as

φ̇2 < V (φ), (1.22)

i.e. the potential energy of the scalar field must dominate over the kinetic energy in order
to lead to a phase of inflation.

The Friedmann equations (1.16a) and (1.17) for the scalar field can now be written as

H2 =
1

3M2
Pl

[

φ̇2

2
+ V (φ)

]

, (1.23a)

Ḣ = − φ̇2

2M2
Pl

. (1.23b)

Combining these two equations, we obtain

φ(t) =
√
2M

Pl

∫

dt
√

−Ḣ, (1.24a)

V (t) =M2
Pl

(

3H2 + Ḣ
)

. (1.24b)

Knowing the form of the scale factor, these two equations can be used to obtain the cor-
responding inflationary potential. For example, it can be shown that a scale factor cor-
responding to power law expansion, viz. a(t) ∝ tq, with q > 1, can be obtained from an
exponential potential of the form [1, 20–22]

V (φ) = V0 exp

[

−
√

2

q

φ

M
Pl

]

, (1.25)

where V0 is a constant of integration.

The scalar field that drives inflation is commonly referred to as the inflaton. As men-
tioned before, for obtaining inflation, the potential energy of the inflaton must dominate
over its kinetic energy. In order to achieve the requisite 60 or so e-folds of inflation, we
must have the field slowly rolling down the potential such that

φ̇2 ≪ V (φ) (1.26)

and
φ̈≪ 3H φ̇. (1.27)

A hierarchy of the so-called dimensionless slow roll parameters are often introduced to
quantify this behavior. The first of these parameters is defined as [24]

ǫ1 = − Ḣ

H2
. (1.28)

11



CHAPTER 1. INTRODUCTION

The subsequent slow roll parameters are defined as

ǫi+1 =
d ln ǫi
dN

, (1.29)

where i ≥ 1. It is evident from the definition that the condition for inflation corresponds
to ǫ1 < 1 while the condition for slow roll inflation is given by ǫ1 ≪ 1. Under the slow roll
approximation, the first Friedmann equation (1.23a) and the scalar field equation (1.19)
reduce to

H2 ≃ V

3M2
Pl

, (1.30a)

3H φ̇ ≃ −Vφ. (1.30b)

Upon using these equations, the number of e-folds of inflation can be expressed as

N =

∫ t

ti

dtH ≃ − 1

M2
Pl

∫ φ

φi

dφ

(
V

Vφ

)

, (1.31)

where φi and φ are the values of the inflation at ti and t respectively.

As an example, let us consider the case of large field inflation, wherein the potential is
given by: V (φ) = V0 φ

n, where V0 is a constant and n > 0. Using Eq. (1.31), the value of
the scalar field and the Hubble parameter at any e-fold N can be obtained to be

φ2(N) ≃ φ2
i
− 2nM2

Pl
N, (1.32a)

H2(N) ≃ V0M
n−2
Pl

3

[(
φ

i

M
Pl

)2

− 2nN

]n/2

. (1.32b)

These analytical expressions, when compared with the exact numerical solutions of
Eq. (1.19) for the large field potential, are found to be an excellent approximation.

1.3 Classical bouncing scenarios as an alternative to

inflation

Bouncing scenarios, wherein the big bang is replaced by a bounce, are a promising al-
ternative to the inflationary framework. One of the primary aims for studying these sce-
narios in this thesis is to arrive at discriminating observables that can help us distinguish
them from inflationary models. In this section, we shall briefly introduce the key fea-
tures of bouncing scenarios. We shall restrict our attention to classical bouncing scenarios,
wherein the background energy density remains much smaller than the Planckian energy
density at all times, particularly around the bounce, thereby averting the necessity to con-
sider quantum gravitational effects. We shall also consider the specific case of a matter
bounce scenario, and describe its characteristics as an illustrative example.

12
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1.3.1 A brief review of bouncing scenarios

Notwithstanding the prodigious success of the inflationary paradigm [20–22], alterna-
tive frameworks to describe the early universe have been propounded. Such efforts have
been prompted by the dearth of a means to arrive at a unique model of inflation, as well
as apprehensions with regard to its falsifiability (in this context, see Ref. [25]; for a recent
popular account, see Ref. [26]). Among these possibilities, the bouncing scenarios seem to
have garnered substantial attention [27–45]. Broadly speaking, in bouncing models, the
universe undergoes a period of contraction which culminates at a point in time, known
as the bounce, where the scale factor attains a minimum value. Thereafter, the universe
transits to a phase of expansion. As is the case with inflation, these models too provide
a way to overcome the horizon problem, by permitting the imposition of well-motivated
causal initial conditions on the primordial perturbations early on in the contracting phase
(see, for instance, Refs. [30, 32, 33, 37, 38, 42, 46–50]; for reviews, see Refs. [51, 52]). Addi-
tionally, in certain bouncing scenarios, it has also been possible to achieve nearly scale
invariant primordial perturbation spectra consistent with observations (see, for example,
Refs. [37, 49, 50]), which further affirms their footing as an alternative to inflation. As
we have mentioned before, in this thesis, we shall confine our attention to the so-called
classical bounces, wherein the background energy density always remains smaller than
the Planckian energy density, thereby precluding the need to account for possible Planck
scale effects.

1.3.2 Issues associated with bouncing models

The construction of a viable bouncing scenario which leads to predictions in conformity
with CMB observations, while being free of pathologies, has proved to be an intricate task.
Since a bouncing model necessarily involves a contracting phase, perturbations initially
present in the sub-Hubble regime, instead of decaying as in an inflationary expansion, can
grow during contraction. This could conceivably interfere with the requirement of an ini-
tial homogeneous background. Further, such a behavior could cast doubt on the validity
of linear perturbation theory close to the bounce [36, 52, 53]. The contracting epoch may
also expedite the growth of anisotropies, leading to the Belinsky-Khalatnikov-Lifshitz
instability [54]. These issues can be ameliorated to a certain extent in ekpyrotic scenar-
ios [29,35,37] or by a finely tuned choice of initial conditions [31]. Owing to the behavior
of the Hubble parameter, which changes sign from negative during the contracting phase
to positive during the expanding phase, the quantity Ḣ becomes positive for a narrow
range of time around the bounce. In order to obtain such a behavior of Ḣ, it is evident
from Eq. (1.17) that, for a spatially flat case, we must have (ρ+ p) < 0 during the period
when Ḣ > 0. Therefore, the null energy condition ought to be violated in the vicinity of
the bounce. This can precipitate in the divergence of certain gauge invariant quantities
and hinder the smooth evolution of perturbations across the bounce. One may need to

13



CHAPTER 1. INTRODUCTION

adopt a suitable gauge to sidestep these issues [32]. The possible complications due to the
amplification of vector perturbations can be thwarted by assuming the absence of vector
sources in the early universe [36]. There have been intense efforts to construct efficient
bouncing models. In this thesis, we shall mostly restrict our attention to the simpler and
symmetric matter bounce models.

1.3.3 Characteristics of a matter bounce

A matter bounce is a specific class of bouncing scenarios characterized by a scale factor
which, in the early phase of contraction, behaves as in a matter dominated universe. Let
us consider a scale factor of the form:

a(η) = a0
(
1 + η2/η20

)
= a0

(
1 + k20 η

2
)
, (1.33)

where a0 is the value of the scale factor at the bounce, i.e. at η = 0, while η0 or, equivalently,
1/k0, denotes the time scale associated with the bounce1. As we have asserted previously,
matter bounces resolve the horizon problem by bringing the modes inside the Hubble
radius at early times during the phase of contraction. This property has been illustrated
in Fig. 1.2.

Let us now turn to a brief appraisal of the matter bounce scenarios that have been
studied so far. It has been repeatedly asserted that symmetric matter bounces lead to a
large tensor-to-scalar ratio (r) that cannot be reconciled with the constraint of r < 0.064

from the Planck mission [9] (the tensor-to-scalar ratio and related constraints will be dis-
cussed in Subsec. 1.4.2). However, in a recent piece of work, it has been illustrated that
a symmetric matter bounce modeled using two scalar fields can lead to a feasible value
of r [56]. Further, by means of tweaking the initial conditions suitably, it is possible to
obtain a realistic value of the tensor-to-scalar ratio even in asymmetric bounces [32]. It is
straightforward to establish that, in a spatially flat matter bounce, the Hubble parameter
and, consequently, the background energy density vanishes at the bounce. This behav-
ior has been depicted in Fig. 1.3. Since the universe transits from an initially contracting
epoch to an expanding era, the Hubble parameter changes sign from negative to positive
at the bounce. In order to facilitate such behavior, as we have discussed before, the quan-
tity Ḣ must become positive for a short period of time around the bounce. As a result,
from Eq. (1.17), it is clear that within the context of Einsteinian gravity, it is imperative to
violate the null energy condition in order to obtain a matter bounce. This point has also
been illustrated in Fig. 1.4. Evidently, investigating the generation of perturbations and
their evolution in a matter bounce entails meticulous modeling of the background. Sev-
eral methods have been suggested to achieve this purpose, such as introduction of a ghost

1Previously, we have used the subscript ‘0’ to denote the values of various quantities at the present time.
For instance, t0 denotes the time today and a(t0) has been used to refer to the scale factor today. We should
emphasize here that while discussing bounces, a0 will describe the value of the scale factor at the bounce.
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Figure 1.2: This figure illustrates the behavior of the Hubble radius d
H

and the physical
wavelength λ

P
in a symmetric matter bounce. The blue solid line denotes the physical

wavelength, i.e. λ
P
∝ a, and the red solid line represents the Hubble radius during the

matter bounce scenario of our interest. The quantity along the abscissa is known as e-N-
folds and is a convenient time variable for describing bouncing scenarios [55]. In terms
of this variable, the scale factor is defined as: a(N ) = a0 e

N 2/2, wherein a0 is the minimum
value of the scale factor at the bounce, which corresponds to the time when N = 0. Note
that, in order to plot this figure, we only need the value of the parameter k0/(a0MPl

),
which we have set to be k0/(a0MPl

) = 3.3 × 10−8 [56]. It is evident from the figure that
the modes are well inside the Hubble radius at very early times during the contracting
phase. The red spike at N = 0 indicates that the Hubble radius diverges at the bounce.
We had mentioned that 1/k0 is the time scale associated with the bounce. Note that, in
terms of cosmic time t, the duration of the bounce is of the order of a0/k0.

field with negative energy density [32–34], the ghost-condensate mechanism [39, 40], the
matter bounce curvaton scenario [41] and the Galileon Lagrangian [42–44].
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Figure 1.3: The background energy density ρ/M4
Pl

during the matter bounce has been
plotted. This figure has also been plotted for k0/(a0MPl

) = 3.3 × 10−8, as in Fig. 1.2. The
value of the background energy density depends only on this parameter. It is clear from
the plot that ρ vanishes at the bounce, a behavior that arises due to the vanishing of the
Hubble parameter at the bounce. Further, the energy density reaches its maximum value
at two points symmetrically prior to and after the bounce, at times η = ± 1/(

√
3 k0), which

corresponds to N = ± 0.758. The vertical black dotted lines denote the time on either side
of the bounce when the energy density attains maximum value. Beyond this point in
time, the energy density decreases on either side of the bounce. Further, it is important
to note that the background energy density remains much smaller than the Planckian
energy density at all times, as should be the case for a classical bouncing scenario.
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Figure 1.4: The behavior of Ḣ has been plotted for the case of the matter bounce, for
the same values of the parameters as in the previous figures. In the domain wherein the
energy decreases as one approaches the bounce, one finds that Ḣ > 0. The range of time
during which Ḣ > 0 has been bounded by the vertical black dotted lines. As in Fig. 1.3,
the vertical black dotted lines also represent the time on either side of the bounce when
the background energy density attains maximum value. Using Eq. (1.17), we obtain that
(ρ+ p) < 0 during the period when Ḣ > 0, which suggests that the null energy condition
is violated over this domain.
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1.4 Generation of primordial perturbations and power

spectra

Inflation provides a natural mechanism for the generation of primordial perturbations
that can, in the course of time, evolve and amplify to form the large scale structures ob-
served today [1,20–22]. As noted before, from the CMB observations, it has been deduced
that the amplitude of anisotropies in the CMB are only about one part in 105. Owing to the
tiny amplitude of these perturbations, we can study them using linear perturbation the-
ory. In this section, we shall briefly describe the generation of primordial perturbations.
After arriving at the equations of motion governing their evolution, we shall discuss the
quantization of these perturbations and the resultant power spectra, which can be con-
strained by observations. We shall also describe an interesting property of the power
spectra, known as duality invariance. We should emphasize here that the methods we
shall use to describe the origin and evolution of primordial perturbations in this sec-
tion shall apply to inflationary scenarios. The generation of primordial perturbations in
bouncing scenarios often need to be dealt with on a case-by-case basis. We shall discuss
the relevant details of such investigations in due course.

1.4.1 Classification of the perturbations

In the Friedmann background, the metric perturbations can be decomposed into scalar,
vector and tensor perturbations. In the (3 + 1) spacetime dimensions of our interest, one
can show that there are two independent degrees of freedom for each of the scalar, vector
and tensor components of the metric perturbations. The perturbed stress-energy tensor
can also be classified into its scalar, vector and tensor components. At the linear order in
perturbation theory, these components evolve independently.

Let us first consider the case of the scalar perturbations. For convenience, we shall
work in the longitudinal gauge. The Friedmann line element in this gauge is given by [20–
22]

ds2 = − (1 + 2Φ) dt2 + a2(t) (1− 2Ψ) dx2, (1.34)

where Φ and Ψ are functions of space and time that denote the two independent scalar
degrees of freedom describing the inhomogeneities. Neglecting anisotropic stresses (as
we shall be considering scalar field sources which do not possess them), the components
of the perturbed stress-energy tensor are given by

δT 0
0 = −δρ, (1.35a)

δT 0
i = −∇i δσ, (1.35b)

δT i
j = δp δij , (1.35c)
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where δρ, δσ and δp denote the perturbations in the energy density, momentum flux,
and pressure, respectively, and ∇i denotes the covariant derivative. Using the above
expressions in the perturbed first order Einstein’s equations, viz. δGµ

ν = 8 πG δT µ
ν , we

obtain

δG0
0 = 6H

(

Φ̇ +H Φ
)

− 2

a2
∇2Φ = −8 π G δρ, (1.36a)

δG0
i = −2∇i

(

Φ̇ +H Φ
)

= −8 π G (∇i δσ) , (1.36b)

δGi
j = 2

[

Φ̈ + 4H Φ̇ +
(

2 Ḣ + 3H2
)

Φ
]

δij = 8 πG δp δij, (1.36c)

where we have made use of the fact that, in the absence of anisotropic stresses, Φ = Ψ.
The first and the third of the above equations can be combined to obtain the following
equation governing the evolution of the scalar perturbation Φ, also known as the Bardeen
potential:

Φ′′ + 3H
(
1 + c2

A

)
Φ′ − c2

A
∇2Φ +

[
2H′ +

(
1 + 3 c2

A

)
H2
]
Φ =

(
4 πGa2

)
δpNA, (1.37)

where H = a′/a is the conformal Hubble parameter, c
A
=
√

p′/ρ′ is the adiabatic speed
of perturbations, and δpNA is the non-adiabatic component of the pressure perturbation,
defined as

δpNA = δp− c2
A
δρ. (1.38)

Let us now define a quantity known as the curvature perturbation as follows:

R = Φ +
2 ρ

3H

(
Φ′ +HΦ

ρ+ p

)

. (1.39)

Using the above definition in Eq. (1.37), in Fourier space, we obtain

R′
k =

( H
H2 −H′

)
[(
4 πGa2

)
δpNA

k − c2
A
k2Φk

]
, (1.40)

where the subscript k denotes the Fourier modes of the perturbations. Now, on super-
Hubble scales, i.e. when k/aH = k/H ≪ 1, the term c2

A
k2Φk in the above equation can

be neglected. Further, if the non-adiabatic component of the pressure perturbation δpNA

vanishes, we obtain that R′
k ≃ 0 on super-Hubble scales. Therefore, in such cases, the

curvature perturbation is conserved when the modes are well outside the Hubble ra-
dius [20–22].

We shall now consider the case of the vector perturbations. In such a case, the Fried-
mann metric can be written as

ds2 = −dt2 + a2(t) [δij + (∇i Fj +∇j Fi)] dx
i dxj , (1.41)
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where Fi is a divergence free vector that depends on space and time. Using this metric,
the components of the Einstein tensor can be obtained to be

δG0
0 = 0, (1.42a)

δG0
i = −1

2
∇2 Ḟi, (1.42b)

δGi
j =

1

2

[

3H
(

∇i Ḟj +∇j Ḟi

)

+
(

∇i F̈j +∇j F̈i

)]

. (1.42c)

In the absence of vector sources (as in the context of inflation driven by scalar fields), we
must have that δG0

i = 0 and δGi
j = 0. Then the above equations indicate that Fi also

vanishes. Hence, no vector perturbations are generated in the absence of sources with
vorticity.

Lastly, let us consider the tensor perturbations. The Friedmann metric, in this case, can
be written as

ds2 = −dt2 + a2(t) (δij + γij) dx
i dxj , (1.43)

where γij is a symmetric, transverse and traceless tensor having two degrees of freedom
which correspond to the two types of polarization of the gravitational waves. The com-
ponents of the perturbed Einstein tensor can be obtained to be

δG0
0 = 0, (1.44a)

δG0
i = 0, (1.44b)

δGi
j =

1

2

(

γ̈ij + 3H γ̇ij −
1

a2
∇2 γij

)

. (1.44c)

Using the above expressions in the perturbed Einstein’s equations at the first order, we
obtain the following equation:

γ′′ij + 2H γ′ij −∇2 γij = 0. (1.45)

This differential equation admits non-trivial solutions even in the absence of a source
term. This implies that, on quantization, tensor perturbations can be generated even in
the absence of sources.

1.4.2 Quantization of the perturbations and the power spectra

The perturbations in the homogeneous scalar field φ driving inflation and described by
the action (1.18), viz. the inflaton, are denoted by δφ. The components of the perturbed
stress-energy tensor can then be written as

δT 0
0 = −φ̇ ˙δφ+ φ̇2Φ− Vφ δφ = −δρ, (1.46a)

δT 0
i = −∇i

(

φ̇ δφ
)

= −∇i (δσ) , (1.46b)

δT i
j =

(

φ̇ ˙δφ− φ̇2Φ− Vφ δφ
)

δij = δp δij. (1.46c)
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Evidently the scalar field does not possess any anisotropic stress. Using the above expres-
sions, the equation governing the Bardeen potential can be written as

Φ′′ + 3H
(
1 + c2

A

)
Φ′ − c2

A
∇2Φ+

[
2H′ +

(
1 + 3 c2

A

)
H2
]
Φ =

(
1− c2

A

)
∇2Φ. (1.47)

Comparing this equation with Eq (1.37), we can infer that the non-adiabatic pressure
perturbation associated with the inflaton is given by

δpNA =

(
1− c2

A

4 πGa2

)

∇2Φ. (1.48)

Using this expression in Eq. (1.40), we obtain that

R′ =

( H
H2 −H′

)

∇2Φ. (1.49)

Differentiating this equation once and using the background equations and the Bardeen
equation (1.47), we obtain the equation of motion governing the evolution of the curva-
ture perturbation to be

R′′ + 2
z′

z
R′ −∇2R = 0, (1.50)

where we have defined z = a φ̇/H = a φ′/H.

The primordial perturbations are expected to originate from quantum fluctuations in
the early universe. Therefore, we elevate the classical quantity R to a quantum operator
R̂ and express it in the homogeneous Friedmann background as follows:

R̂(η,x) =

∫
d3 k

(2 π)3/2
R̂k(η) e

ik·x, (1.51)

where
R̂k(η) = âk fk(η) + â†k f

∗
k (η). (1.52)

In this equation, the creation and annihilation operators â†k and âk satisfy the standard
commutation relations given by

[âk, âk′] = [â†k, â
†
k′] = 0, [âk, â

†
k′] = δ(3)(k − k′). (1.53)

Also, using Eq. (1.50), it can be obtained that the mode fk and its complex conjugate f ∗
k

satisfy the following equation:

f ′′
k + 2

z′

z
f ′
k + k2 fk = 0. (1.54)

Let us now introduce a quantity known as the Mukhanov-Sasaki variable vk = Rk z,
so that the Fourier modes of this variable satisfy the equation

v′′k +

(

k2 − z′′

z

)

vk = 0. (1.55)
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The power spectrum of the curvature perturbation, denoted by P
S
(k), can be expressed

via the following two-point function:

〈 0|R̂k(η) R̂k′(η)|0〉 = (2 π)2

2 k3
P

S
(k) δ(3) (k + k′) , (1.56)

where |0〉 is the vacuum state corresponding to the annihilation operator âk, i.e. âk |0〉 =
0 ∀k. Using Eq. (1.51), we obtain

P
S
(k) =

k3

2 π2
|fk|2 =

k3

2 π2

( |vk|
z

)2

, (1.57)

where the quantities on the right hand side are to be evaluated on super-Hubble scales
during inflation. For the case of bouncing universes, the power spectra are typically esti-
mated at a suitable time after the bounce, roughly corresponding to the epoch of reheat-
ing. The details of the evaluation of the power spectra of perturbations in a scalar field
will be explained in Chap. 5.

In a similar manner, the tensor perturbations can be quantized as follows:

γ̂ij(η,x) =

∫
d3 k

(2 π)3/2
γ̂kij(η) e

ik·x, (1.58)

where

γ̂kij(η) =
2∑

s=1

[

b̂sk ε
s
ij(k) hk(η) + b̂s †k εs ∗ij (k) h

∗
k(η)

]

. (1.59)

In this equation, the creation and annihilation operators b̂s †k and b̂sk satisfy the standard
commutation relations given by

[b̂sk, b̂
s′

k′ ] = [b̂s †k , b̂
s′ †
k′ ] = 0, [b̂sk, b̂

s′ †
k′ ] = δss′ δ

(3)(k − k′). (1.60)

The quantity εsij(k) represents the polarization tensor of the gravitational waves, with the
indices s = (1, 2) denoting the two states of polarization. The transverse and traceless
nature of the gravitational waves implies that the polarization tensor obeys the relations:
εsii(k) = ki ε

s
ij(k) = 0. We shall choose to work with the normalization εrij(k) ε

s
ij(k) = 2 δrs.

Also, using Eq. (1.45), the mode hk and its complex conjugate h∗k can be found to satisfy
the following equation:

h′′k + 2
a′

a
h′k + k2 hk = 0. (1.61)

Let us define the Mukhanov-Sasaki variable for the tensor perturbations to be uk =

a hkMPl
/
√
2. In terms of this variable, in Fourier space, Eq. (1.61) can be rewritten as

u′′k +

(

k2 − a′′

a

)

uk = 0. (1.62)
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The power spectrum of the tensor perturbation, denoted by P
T
(k), can be expressed via

the following two-point function:

〈 0|γ̂kij(η) γ̂k
′

mn(η)|0〉 =
(2 π)2

2 k3
Πk

ij,mn

4
P

T
(k) δ(3) (k + k′) , (1.63)

where |0〉 is the vacuum state corresponding to the annihilation operator b̂sk, i.e. b̂sk |0〉 =
0 ∀k and s, and

Πk
ij,mn =

∑

s

εsij(k) ε
s ∗
mn(k). (1.64)

Using Eq. (1.58), we obtain

P
T
(k) = 4

k3

2 π2
|hk|2 = 4

k3

2 π2

( |uk|
a

)2

, (1.65)

where the quantities on the right hand side are to be evaluated on super-Hubble scales for
the case of inflation. The details of the evaluation of the tensor power spectra in bounces
will be explained in Chap. 3. The factor of four in the definition of the power spectrum
arises due to the two states of polarization of the gravitational waves.

During inflation as well as in bounces, the initial conditions for the modes are imposed
when they are well inside the Hubble radius, i.e. when k/aH = k/H ≫ 1. In the sub-
Hubble regime, the modes are not affected by the curvature of spacetime and behave
as in Minkowski spacetime. The asymptotic forms of the positive frequency modes on
sub-Hubble scales are given by

lim
(k/H→∞)

(vk(η), uk(η)) →
1√
2 k

e−i k η. (1.66)

The vacuum state |0〉 associated with such modes is known as the Bunch-Davies vacuum.
The modes are allowed to evolve from this initial condition and, as already mentioned,
the power spectra are evaluated in the super-Hubble domain during inflation. We shall
comment on the estimation of power spectra in bounces in Chaps. 3 and 5. As we have
already mentioned before, the power spectra are typically evaluated after the bounce, at a
time roughly corresponding to the epoch of reheating. We can also define spectral indices
for the scalar and tensor power spectra as follows:

n
S
= 1 +

d lnP
S

d ln k
, (1.67a)

n
T
=

d lnP
T

d ln k
. (1.67b)

For scale invariant scalar and tensor spectra, it is evident from the above definitions that
n

S
= 1 and n

T
= 0, respectively. Another quantity that is often used to characterize the
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relative amplitude of the scalar and tensor power spectra is known as the tensor-to-scalar
ratio. It is defined as

r(k) =
P

T
(k)

P
S
(k)

. (1.68)

It follows from the above definition that the tensor-to-scalar ratio is a scale dependent
quantity. However, as we shall describe in the following section, for the case of slow roll
inflation, the scale dependence of r(k) is often ignored (as a first approximation) for the
sake of convenience while comparing with data.

1.4.3 Power spectra in slow roll inflation

Let us evaluate the scalar and tensor power spectra in slow roll inflation. Using the defi-
nitions of the slow roll parameter and the Mukhanov-Sasaki variable, we can write

z = aM
Pl

√
2 ǫ1. (1.69)

At the leading order in slow roll, the conformal Hubble parameter H (which is defined as
H = a′/a) can be obtained to be

H ≃ − 1

(1− ǫ1) η
. (1.70)

Using the above two expressions, at the leading order in slow roll, the quantities z′′/z and
a′′/a in the Mukhanov-Sasaki equation can be written in terms of the slow roll parameters
as [21, 57]

z′′

z
≃ 1

η2

(

2 + 3 ǫ1 +
3 ǫ2
2

)

, (1.71a)

a′′

a
≃ 1

η2
(2 + 3 ǫ1) , (1.71b)

where the slow roll parameters ǫ1 and ǫ2 have been defined in Eqs. (1.28) and (1.29). Then
the solutions to the equations governing the evolution of the Mukhanov-Sasaki variables
vk and uk can be expressed in terms of Hankel functions Hν(x) as follows:

vk(η) =

√

−π η
4

ei (νS+1/2)π/2H(1)
ν
S

(−k η) , (1.72a)

uk(η) =

√

−π η
4

ei (νT+1/2) π/2H(1)
ν
T

(−k η) , (1.72b)

with the quantities ν
S

and ν
T

given by

ν
S
≃ 3

2
+ ǫ1 +

ǫ2
2
, (1.73a)

ν
T
≃ 3

2
+ ǫ1, (1.73b)
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where the subscripts S and T refer to the scalar and tensor perturbations, respectively.
In order to evaluate the power spectra, we expand the Hankel functions in the limit
(−k η) → 0 to obtain [57]

P
S
(k) =

H2
I

8 π2M2
Pl
ǫ1

[

1− 2 ǫ1 − (2 ǫ1 + ǫ2) ln

(
k

k∗

)

− (2 ǫ1 + ǫ2) (γE
+ ln 2− 2)

]

, (1.74a)

P
T
(k) =

2H2
I

π2M2
Pl

[

1− 2 ǫ1 ln

(
k

k∗

)

− 2 ǫ1 (γ
E
+ ln 2− 1)

]

, (1.74b)

where γ
E

is the Euler-Mascheroni constant [58], k∗ is the pivot scale at which the am-
plitudes of the power spectra are quoted, and H

I
is the value of the Hubble parameter

during inflation. Using the above expressions for the power spectra, we can evaluate the
spectral indices to be

n
S
≃ 1− 2 ǫ1 − ǫ2, (1.75a)

n
T
≃ −2 ǫ1. (1.75b)

Therefore, it is evident that the power spectra in slow roll inflation are nearly scale in-
variant. Further, ignoring the scale dependence in the power spectra, the tensor-to-scalar
ratio can be obtained to be

r ≃ 16 ǫ1 = −8n
T
. (1.76)

This expression is known as the inflationary consistency relation.

1.4.4 Duality invariance of the power spectra

It is clear from Eqs. (1.55) and (1.62) that the Mukhanov-Sasaki equation for the scalar and
tensor modes can be generally written as

y′′k +
(
k2 − ξ2

)
yk = 0, (1.77)

where yk = vk or uk, and ξ2 = (z′′/z) or (a′′/a) for the scalar and tensor cases respectively.
Further, from this equation, it is straightforward to establish that identical power spectra
are produced by a two parameter family of solutions for z and a, given by

z(η) → z̃(η) = C1 z(η)

∫ η

η∗

dη′

z2(η′)
, (1.78)

or

a(η) → ã(η) = C2 a(η)

∫ η

η∗

dη′

a2(η′)
, (1.79)

for the scalar and tensor cases respectively, where C1 and C2 are constants of integra-
tion. Both the quantity z and its dual z̃ result in identical ξ2 and hence lead to the same
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form of power spectra. This property is known as duality invariance [48]. While this
phenomenon has been studied for the case of the scalar and tensor power spectra, in this
thesis, we shall establish that it also holds true for the case of the power spectra of primor-
dial magnetic fields. The duality invariance exhibited in such cases and its implications
will be explored in detail in a later chapter.

For instructive purposes, let us consider a power law expansion or contraction charac-

terized by the scale factor a(t) ∝ tq, or, equivalently, a(η) = a0 (η/η0)
(1−2 ν)/2, where

ν =
3

2
+

1

q − 1
. (1.80)

In such cases, the solution to Eq. (1.77) can be expressed in terms of Hankel functions as

yk(η) =
√

−k η
[
y+H

(1)
ν (−k η) + y−H

(2)
ν (−k η)

]
, (1.81)

where y+ and y− are constants that can be fixed from the initial conditions. The corre-
sponding power spectrum can be obtained to be

P
y
(k) =

C2
3(ν) k

2 (−k η)1−2 ν

(2 π)2
, (1.82)

where C3(ν) is a constant given by

C3(ν) =
2ν Γ(ν)

23/2 Γ(3/2)
. (1.83)

Evidently, the power spectrum obtained above is invariant under the transformation ν →
ν̃ = −ν or, equivalently [48],

q → q̃ =
1− 2 q

2− 3 q
. (1.84)

Consequently, inflationary expansion described by a scale factor of power law form
would be indistinguishable from, say, a power law contraction, so long as they are re-
lated by the above expression. Note that the dual to de Sitter inflation (corresponding to
q → ∞) is the matter bounce (q̃ = 2/3). As we shall see, it is for this reason that matter
bounces lead to scale invariant power spectra, similar to de Sitter inflation.

1.4.5 Observational constraints on the power spectra

We had earlier arrived at the power spectra in slow roll inflation [cf. Eqs. (1.74)]. At the
leading order in slow roll, the scalar and tensor power spectra can be reduced to the
following simple forms:

P
S
(k) = A

S

(
k

k
∗

)n
S
−1

, (1.85a)

P
T
(k) = A

T

(
k

k
∗

)n
T

, (1.85b)
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where A
S

and A
T

denote the amplitudes of the scalar and tensor power spectra, n
S

and
n

T
are the corresponding spectral indices [cf. Eqs. (1.75)], and k

∗
is known as the pivot

scale. In order to compare the scalar and tensor power spectra with inflationary mod-
els, the above expressions are often considered as templates. According to the most re-
cent constraints from CMB measurements by Planck, which we have mentioned earlier
[cf. Eqs. (1.8e) and (1.8f)], but nonetheless repeat here for completeness, the amplitude A

S

is given by [8, 9, 59]
ln
(
1010A

S

)
= 3.044± 0.014. (1.86)

Further, joint constraints have been arrived at on the scalar spectral index n
S

and the
tensor-to-scalar ratio r. The Planck collaboration has obtained the value n

S
= 0.9649 ±

0.0042 and the upper limit r0.002 < 0.064, where the subscript 0.002 refers to the conve-
niently chosen value of the pivot scale, i.e. k

∗
= 0.002Mpc−1.

1.5 Beyond power spectra: three-point correlation func-

tions

There have been extensive efforts to constrain models of inflation using the bounds ar-
rived at on the parameters at the level of the power spectra. As delineated previously, the
emergence of a proliferating quantity of precise cosmological data has allowed for strin-
gent tests of the inflationary models with unprecedented accuracy. However, at the level
of the two-point correlation functions, an almost scale invariant power spectrum of the
scalar perturbations, which conforms to observations, can be achieved in most scenarios
of inflation (for instance, see Refs. [7, 9, 60–62]). As a result, even with the latest results
from Planck, an inordinately large number of inflationary models remain in agreement
with the data at the level of the two-point functions. Therefore, constraining the varied
assortment of inflationary models into a smaller, viable class still remains a formidable
target, particularly in the absence of a direct detection of primordial gravitational waves
on cosmological scales. It has been increasingly realized that one of the most efficacious
ways to decisively break the degeneracy among the models would be to look for con-
straints on the three-point functions involving the primordial perturbations. This could,
in principle, lead to more stringent tests for feasibility, thereby ruling out a wider class
of models [63, 64]. In this section, we shall introduce the various three-point functions
involving the scalar and tensor perturbations and illustrate their characteristics by evalu-
ating them in slow roll inflation.

1.5.1 The Maldacena formalism

In the preceding section, we have described the origin and evolution of primordial pertur-
bations, and the evaluation of the two-point functions, viz. the power spectra, generated
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therein. The non-Gaussian signatures, if any, would be encoded in the higher point func-
tions beyond the power spectra. The existence of non-vanishing three-point functions
would therefore be the first hint of non-Gaussianities. The Maldacena formalism is the
most comprehensive approach to study the non-Gaussianities generated during inflation.
In order to evaluate the three-point functions, this formalism entails arriving at the cubic
order action governing the evolution of the scalar and tensor perturbations, using the
Arnowitt-Deser-Misner formalism [65]. With this action in hand, the standard rules of
perturbative quantum field theory can be implemented to arrive at the three-point func-
tions.

At the linear order in perturbation theory, the scalar and tensor perturbations are
known to evolve independently and therefore do not give rise to cross-correlations in
the two-point functions. In contrast, at the level of the third-order action, the scalar and
tensor perturbations affect each other and lead to cross-correlations. As a result, four dif-
ferent three-point functions arise, governed by the following four third-order actions (in
the comoving gauge) [66–76]:

S3
RRR[R] = M2

Pl

∫

dη

∫

d3x

[

a2 ǫ21RR′2 + a2 ǫ21R (∂R)2 − 2 a ǫ1R′ ∂iR ∂iχ

+
a2

2
ǫ1 ǫ

′
2R2R′ +

ǫ1
2
∂iR ∂iχ ∂

2χ+
ǫ1
4
∂2R (∂χ)2

+ aF1(R)
δL2

RR

δR

]

, (1.87a)

S3
RRγ[R, γij] = M2

Pl

∫

dη

∫

d3x

[

a2 ǫ1 γij ∂iR ∂jR+
1

4
∂2γij ∂iχ ∂jχ

+
a ǫ1
2
γ′ij ∂iR ∂jχ+ F2

ij(R)
δL2

γγ

δγij
+ F3(R, γij)

δL2
RR

δR

]

, (1.87b)

S3
Rγγ [R, γij] =

M2
Pl

4

∫

dη

∫

d3x

[
a2 ǫ1
2

R γ′ij γ
′
ij +

a2 ǫ1
2

R ∂lγij ∂lγij

− a γ′ij ∂lγij ∂lχ+ F4
ij(R, γmn)

δL2
γγ

δγij

]

, (1.87c)

S3
γγγ [γij] =

M2
Pl

2

∫

dη

∫

d3x

[
a2

2
γlj γim ∂l∂mγij −

a2

4
γij γlm ∂l∂mγij

]

, (1.87d)

where the quantities F1(R), F2
ij(R), F3(R, γij) and F4

ij(R, γmn) are given by

F1(R) =
1

2 aH

{[

a2H ǫ2R2 + 4 aHRR′ + ∂iR ∂iχ− 1

H
(∂R)2

]
δL2

RR

δR

+
[
∂iR ∂2χ+ ∂2R ∂iχ

]
δij ∂j

[

∂−2

(
δL2

RR

δR

)]

+
1

H
δim δjn ∂iR ∂jR ∂m∂n

[

∂−2

(
δL2

RR

δR

)]}

, (1.88a)
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F2
ij(R) = − 1

a2H2
∂iR ∂jR+

1

a2H
(∂iχ ∂jR+ ∂jχ ∂iR), (1.88b)

F3(R, γij) = − 1

4 aH
γ′ij ∂

−2∂i∂jR, (1.88c)

F4
ij(R, γmn) =

1

aH
γ′ij R. (1.88d)

The quantity χ is given by ∂2χ = a ǫ1R′. Also, L2
RR and L2

γγ are the second order La-
grangian densities corresponding to the following quadratic order actions:

S2
RR[R] =

1

2

∫

dη

∫

d3x z2
[

R′2 − (∂R)2
]

, (1.89a)

S2
γγ [γij] =

M2
Pl

8

∫

dη

∫

d3x a2
[

γ′ij
2 − (∂γij)

2
]

, (1.89b)

respectively, where, recall that, z =
√
2 ǫ1MPl

a, with ǫ1 being the first slow roll param-
eter. These second order actions lead to the equations of motion (1.50) and (1.45) that
we had considered earlier. It can be shown that the terms involving δL2

RR/δR, δL2
γγ/δγij ,

F1(R), F2
ij(R), F3(R, γij), and F4

ij(R, γmn) can be removed by the following field redefi-
nitions [66, 68–70]:

R → R+ F1(R) + F3(R, γij), (1.90a)

γij → γij + F2
ij(R) + F4

ij(R, γmn). (1.90b)

As we shall discuss later, these field redefinitions lead to an additional term in the three-
point function involving the scalar perturbations.

1.5.2 Definitions of the three-point functions

In Fourier space, the scalar bispectrum, the scalar-scalar-tensor three-point function, the
scalar-tensor-tensor three-point function, and the tensor bispectrum, viz.GRRR(k1,k2,k3),
Gm3n3

RRγ (k1,k2,k3), G
m2n2m3n3

Rγγ (k1,k2,k3), and Gm1n1m2n2m3n3
γγγ (k1,k2,k3), evaluated towards

the end of inflation at the conformal time, say, ηe, are defined as [66–75]

〈 R̂k1
(ηe) R̂k2

(ηe) R̂k3
(ηe) 〉 ≡ (2 π)−3/2 GRRR(k1,k2,k3) δ

(3) (k1 + k2 + k3) ,

(1.91a)

〈 R̂k1
(ηe) R̂k2

(ηe) γ̂
k3
m3n3

(ηe) 〉 ≡ (2 π)−3/2 Gm3n3

RRγ (k1,k2,k3) δ
(3) (k1 + k2 + k3) ,

(1.91b)

〈 R̂k1
(ηe) γ̂

k2
m2n2

(ηe) γ̂
k3
m3n3

(ηe) 〉 ≡ (2 π)−3/2 Gm2n2m3n3

Rγγ (k1,k2,k3) δ
(3) (k1 + k2 + k3) ,

(1.91c)

〈 γ̂k1
m1n1

(ηe) γ̂
k2
m2n2

(ηe) γ̂
k3
m3n3

(ηe) 〉 ≡ (2 π)−3/2 Gm1n1m2n2m3n3
γγγ (k1,k2,k3) δ

(3) (k1 + k2 + k3) .

(1.91d)
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In the preceding section, we had discussed the evaluation of scalar and tensor power
spectra in slow roll inflation, which involves only the scalar and tensor modes respec-
tively. However, for the calculation of the different three-point functions, in addition to
the scalar and tensor modes, we would also be required to integrate over the modes and
various background quantities. Here, we shall only provide the essential equations for
the evaluation of these three-point functions. In a later subsection, as an illustrative ex-
ample, we shall discuss the three-point functions generated in slow roll inflation. Further,
we shall evaluate the scalar-scalar-tensor three-point function explicitly for the case of a
particular inflationary model, known as the axion monodromy model, in Chap. 2. We
shall also discuss the tensor bispectrum generated in a matter bounce scenario in Chap. 3.
Nevertheless, it is instructive the study the cases of the scalar bispectrum and the scalar-
tensor-tensor three-point functions as well.

Let us first consider the case of the scalar bispectrum. It can be expressed in terms of
the corresponding interaction Hamiltonian as follows [66]:

〈R̂k1
(ηe) R̂k2

(ηe) R̂k3
(ηe)〉 = −i

∫ ηe

ηi

dη 〈[R̂k1
(ηe) R̂k2

(ηe) R̂k3
(ηe), Ĥ

int
RRR(η)]〉,

(1.92)

where the expectation value has to be calculated in the perturbative vacuum. For a third
order action, it can be shown that Ĥ int

RRR = −L̂int
RRR [66] [cf. Eq. (1.87a)]. Upon using the

above expression and Wick’s theorem, it can be shown that the scalar bispectrum can be
written as [75, 77, 78]

GRRR(k1,k2,k3) ≡
7∑

C=1

G
C
(k1,k2,k3)

≡ M2
Pl

6∑

C=1

{

[fk1(ηe) fk2(ηe) fk3(ηe)] GC

RRR(k1,k2,k3)

+ complex conjugate

}

+ G7(k1,k2,k3), (1.93)

where fk are the Fourier modes, which satisfy Eq. (1.54). The above expression involves
the following six integrals:

G1
RRR(k1,k2,k3) = 2 i

∫ ηe

ηi

dη a2 ǫ21
(
f ∗
k1
f ′∗
k2
f ′∗
k3
+ two permutations

)
, (1.94a)

G2
RRR(k1,k2,k3) = −2 i (k1 · k2 + two permutations)

∫ ηe

ηi

dη a2 ǫ21 f
∗
k1
f ∗
k2
f ∗
k3
, (1.94b)

G3
RRR(k1,k2,k3) = −2 i

∫ ηe

ηi

dη a2 ǫ21

[(
k1 · k2

k22

)

f ∗
k1 f

′∗
k2 f

′∗
k3 + five permutations

]

,

(1.94c)
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G4
RRR(k1,k2,k3) = i

∫ ηe

ηi

dη a2 ǫ1 ǫ
′
2

(
f ∗
k1 f

∗
k2 f

′∗
k3 + two permutations

)
, (1.94d)

G5
RRR(k1,k2,k3) =

i

2

∫ ηe

ηi

dη a2 ǫ31

[(
k1 · k2

k22

)

f ∗
k1
f ′∗
k2
f ′∗
k3
+ five permutations

]

, (1.94e)

G6
RRR(k1,k2,k3) =

i

2

∫ ηe

ηi

dη a2 ǫ31

{[
k21 (k2 · k3)

k22 k
2
3

]

f ∗
k1
f ′∗
k2
f ′∗
k3
+ two permutations

}

.

(1.94f)

These integrals are to be evaluated from a sufficiently early time (ηi), when the modes are
inside the Hubble radius, until very late times, which can be conveniently chosen to be
a time close to the end of inflation (ηe). The seventh term G7(k1,k2,k3) in the expression
for the three-point functions essentially arises due to the field redefinitions (1.90) and is
given by

G7(k1,k2,k3) =
ǫ2(ηe)

2

(
|fk1(ηe)|2 |fk2(ηe)|2 + two permutations

)
. (1.95)

We shall now consider the scalar-tensor cross-correlations. The scalar-scalar-tensor
three-point function can be expressed in terms of the corresponding interaction Hamilto-
nian as follows [66, 76]:

〈R̂k1
(ηe) R̂k2

(ηe) γ̂
k3
m3n3

(ηe)〉 = −i
∫ ηe

ηi

dη 〈[R̂k1
(ηe) R̂k2

(ηe) γ̂
k3
m3n3

(ηe), Ĥ
int
RRγ(η)]〉.

(1.96)

Again, for a third order action, it can be shown that Ĥ int
RRγ = −L̂int

RRγ [66] [cf. Eq. (1.87b)].
The three-point function Gm3n3

RRγ (k1,k2,k3), when evaluated in the perturbative vacuum,
can be written as (see, for example, Ref. [76])

Gm3n3

RRγ (k1,k2,k3) =
3∑

C=1

Gm3n3

RRγ (C)(k1,k2,k3)

= M2
Pl
Πk3

m3n3,ij
n̂1i n̂2j

3∑

C=1

[
fk1(ηe) fk2(ηe) hk3(ηe)

× GC
RRγ(k1,k2,k3) + complex conjugate

]
, (1.97)

where hk are the Fourier modes which satisfy Eq. (1.61), the quantity Πk3

m3n3,ij
is given by

Eq. (1.64), and the quantities GC
RRγ(k1,k2,k3) are described by the integrals

G1
RRγ(k1,k2,k3) = −2 i k1 k2

∫ ηe

ηi

dη a2 ǫ1 f
∗
k1
f ∗
k2
h∗k3 , (1.98a)

G2
RRγ(k1,k2,k3) =

i

2

k23
k1 k2

∫ ηe

ηi

dη a2 ǫ21 f
′∗
k1 f

′∗
k2 h

∗
k3, (1.98b)
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G3
RRγ(k1,k2,k3) =

i

2

1

k1 k2

∫ ηe

ηi

dη a2 ǫ21
[
k21 f

∗
k1 f

′∗
k2 + k22 f

′∗
k1 f

∗
k2

]
h′∗k3 . (1.98c)

Note that for a given wavevector k, n̂ denotes the unit vector n̂ = k/k. Hence, the
quantities n̂1i and n̂2i represent the components of the unit vectors n̂1 = k1/k1 and n̂2 =
k2/k2 along the i-spatial direction.

Similarly, the scalar-tensor-tensor three-point function can be expressed in terms of the
corresponding interaction Hamiltonian as follows [66, 76]:

〈R̂k1
(ηe) γ̂

k2
m2n2

(ηe) γ̂
k3
m3n3

(ηe)〉 = −i
∫ ηe

ηi

dη 〈[R̂k1
(ηe) γ̂

k2
m2n2

(ηe) γ̂
k3
m3n3

(ηe), Ĥ
int
Rγγ(η)]〉.

(1.99)

As before, for a third order action, it can be shown that Ĥ int
Rγγ = −L̂int

Rγγ [66] [cf. Eq. (1.87c)].
The scalar-tensor-tensor cross-correlation Gm2n2m3n3

Rγγ (k1,k2,k3), evaluated in the perturba-
tive vacuum, can be expressed as [67–70, 76]

Gm2n2m3n3

Rγγ (k1,k2,k3) =

3∑

C=1

Gm2n2m3n3

Rγγ (C) (k1,k2,k3)

= M2
Pl
Πk2

m2n2,ij
Πk3

m3n3,ij

3∑

C=1

[
fk1(ηe) hk2(ηe) hk3(ηe)

× GC
Rγγ(k1,k2,k3) + complex conjugate

]
, (1.100)

with the quantities GC
Rγγ(k1,k2,k3) being given by

G1
Rγγ(k1,k2,k3) =

i

4

∫ ηe

ηi

dη a2 ǫ1 f
∗
k1 h

′∗
k2 h

′∗
k3 , (1.101a)

G2
Rγγ(k1,k2,k3) = − i

4
(k2 · k3)

∫ ηe

ηi

dη a2 ǫ1 f
∗
k1 h

∗
k2 h

∗
k3, (1.101b)

G3
Rγγ(k1,k2,k3) = − i

4

∫ ηe

ηi

dη a2 ǫ1 f
′∗
k1

[
k1 · k2

k21
h∗k2 h

′∗
k3
+

k1 · k3

k21
h′∗k2 h

∗
k3

]

.

(1.101c)

We finally consider the case of the tensor bispectrum. In terms of the interaction
Hamiltonian, it can be expressed as [70, 71, 76]

〈γ̂k1
m1n1

(ηe) γ̂
k2
m2n2

(ηe) γ̂
k3
m3n3

(ηe)〉 = −i
∫ ηe

ηi

dη 〈[γ̂k1
m1n1

(ηe) γ̂
k2
m2n2

(ηe) γ̂
k3
m3n3

(ηe), Ĥ
int
γγγ(η)]〉.

(1.102)
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Again, for a third order action, it is found that Ĥ int
γγγ = −L̂int

γγγ [66] [cf. Eq. (1.87d)]. The
corresponding three-point function can be obtained to be [66, 70, 71, 76]

Gm1n1m2n2m3n3
γγγ (k1,k2,k3) = M2

Pl

[
(
Πk1

m1n1,ij
Πk2

m2n2,im
Πk3

m3n3,lj

− 1

2
Πk1

m1n1,ij
Πk2

m2n2,ml Π
k3

m3n3,ij

)
k1m k1l + five permutations

]

×
[
hk1(ηe) hk2(ηe) hk3(ηe)Gγγγ(k1,k2,k3)

+ complex conjugate
]
, (1.103)

where

Gγγγ(k1,k2,k3) = − i

4

∫ ηe

ηi

dη a2 h∗k1 h
∗
k2 h

∗
k3 , (1.104)

and (k1i, k2i, k3i) denote the components of the three wavevectors (k1,k2,k3) along the
i-spatial direction.

1.5.3 Non-Gaussianity parameters

Recall that the scalar and tensor power spectra are parameterized in terms of A
S

and A
T

,
which characterize their respective amplitudes, and n

S
and n

T
, which refer to the scalar

and tensor spectral indices. Similarly, it is often convenient to describe the three-point
functions in terms of non-Gaussianity parameters. With one such parameter defined for
each of the three-point functions, we can define four dimensionless non-Gaussianity pa-
rameters, viz. f

NL
, CR

NL
, Cγ

NL
, and h

NL
, which characterize the amplitude of the various

three-point functions. All these parameters can, in principle, be used to distinguish be-
tween disparate models of inflation, as well as between inflationary and alternative sce-
narios. In terms of these four parameters, the perturbations can be written as

R(η,x) = R(G)(η,x)− 3 f
NL

5

[
R(G) 2(η,x)−

〈
R(G) 2(η,x)

〉]

−CR
NL

R(G)(η,x) γ
(G)
m̄n̄ (η,x), (1.105a)

γij(η,x) = γ
(G)
ij (η,x)− h

NL

[

γ
(G)
ij (η,x) γ

(G)
m̄n̄ (η,x)− 〈γ(G)

ij (η,x) γ
(G)
m̄n̄ (η,x)〉

]

−Cγ
NL
γ
(G)
ij (η,x) R(G)(η,x), (1.105b)

where R(G) and γ
(G)
ij denote the Gaussian quantities, and the overbars on the indices im-

ply that they need to be summed over all allowed values. Note that, in these equations,
the non-Gaussianity parameters have been assumed to be constants. We can introduce
a more general form of these parameters wherein they are essentially expressed as the
three-point functions scaled by products of the power spectra. By making use of these
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definitions along with Wick’s theorem to evaluate the three-point functions, the non-
Gaussianity parameters can be evaluated to be [76, 79]:

f
NL
(k1,k2,k3) = −10

3

1

(2 π)4
[
k31 k

3
2 k

3
3 GRRR(k1,k2,k3)

]

×
[

k31 PS
(k2)PS

(k3) + two permutations

]−1

, (1.106a)

CR
NL
(k1,k2,k3) = − 4

(2 π2)2
[
k31 k

3
2 k

3
3 G

m3n3

RRγ (k1,k2,k3)
]

×
(
Πk3

m3n3,m̄n̄

)−1
{
[
k31 PS

(k2) + k32 PS
(k1)

]
P

T
(k3)

}−1

, (1.106b)

Cγ
NL
(k1,k2,k3) = − 4

(2 π2)2
[
k31 k

3
2 k

3
3 G

m2n2m3n3

Rγγ (k1,k2,k3)
]

×
{

P
S
(k1)

[
Πk2

m2n2,m3n3
k33 PT

(k2) + Πk3
m3n3,m2n2

k32 PT
(k3)

]
}−1

,

(1.106c)

h
NL
(k1,k2,k3) = −

(
4

2 π2

)2
[
k31 k

3
2 k

3
3 G

m1n1m2n2m3n3
γγγ (k1,k2,k3)

]

×
[

Πk1
m1n1,m3n3

Πk2
m2n2,m̄n̄ k

3
3 PT

(k1) PT
(k2) + five permutations

]−1

.

(1.106d)

There are two important aspects to be considered in the behavior of the non-Gaussianity
parameters. While their amplitude evidently points to the extent of non-Gaussianity gen-
erated in the model under study, it is also important to understand their shape [80]. The
shape of the non-Gaussianity parameters alludes to their scale dependence, specifically
with regard to where their amplitude peaks, i.e. where they have the maximum value. The
shape of the non-Gaussianity parameters is used to classify them, as will be described in
a subsequent subsection.

1.5.4 The three-point functions in slow roll inflation

In order to have a grasp on the evaluation of three-point functions generated in inflation-
ary scenarios and their characteristics, it is instructive to examine the three-point func-
tions in slow roll inflation. At the leading order in slow roll approximation, the slow roll
parameters ǫ1 and ǫ2 are assumed to be much smaller than unity and they can be consid-
ered to be effectively constant. Further, the scale factor as well as the scalar and tensor
modes fk and hk can be approximated by their de Sitter forms [66,74]. These are given by
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the following expressions:

a(η) = − 1

H
I
η
, (1.107a)

fk(η) =
iH

I

2M
Pl

√
k3 ǫ1

(1 + i k η) e−i k η, (1.107b)

hk(η) =
iH

I

M
Pl

√
k3

(1 + i k η) e−i k η, (1.107c)

where H
I

is the value of the Hubble parameter during inflation.

Let us first attend to the case of the scalar bispectrum. Up to the leading order in the
slow roll parameters, we find that the dominant contribution to the three-point function
arises from the first three integrals [cf. Eqs. (1.94a), (1.94b), and (1.94c)] and the seventh
term which appears due to field redefinition [cf. Eq. (1.95)]. These terms can be obtained
to be

GRRR (1)(k1,k2,k3) =
H4

I

16M4
Pl
ǫ1

1

(k1 k2 k3)3

×
[

k22 k
2
3

(
1

k
T

+
k1
k2

T

)

+ two permutations

]

, (1.108a)

GRRR (2)(k1,k2,k3) =
H4

I

16M4
Pl
ǫ1

k1 · k2 + k2 · k3 + k3 · k1

(k1 k2 k3)3

×
[

−k
T
+

(k1k2 + k2k3 + k3k1)

k
T

+
k1k2k3
k2

T

]

, (1.108b)

GRRR (3)(k1,k2,k3) =
−H4

I

16M4
Pl
ǫ1

1

(k1 k2 k3)3

×
{[

(k1 · k2) k
2
3 + (k1 · k3) k

2
2

] (
1

k
T

+
k1
k2

T

)

+ two permutations

}

, (1.108c)

GRRR (7)(k1,k2,k3) =
H4

I

32M4
Pl

ǫ2
ǫ21

[
1

k31k
3
2

+
1

k32k
3
3

+
1

k33k
3
1

]

, (1.108d)

where k
T
= k1 + k2 + k3. Upon adding the above expressions, we obtain the total contri-

bution to the scalar bispectrum GRRR(k1,k2,k3) during slow roll inflation. It should be
noted that in arriving at the above equations, we have introduced a small cut-off of the
form eκ k η at very early times (i.e. as k η → −∞), so as to regulate the highly oscillatory
behavior of the integrands in the extreme sub-Hubble domain. Theoretically, this allows
us to make the right choice of the perturbative vacuum [72].

For the case of the scalar-scalar-tensor three-point function, the major contribution in
the leading order in slow roll parameters arises due to the first integral [cf. Eq. (1.98a)].
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This quantity can be obtained to be

Gm3n3

RRγ (1)(k1,k2,k3) =
H4

I

4M4
Pl
ǫ1

k1 k2
(k1 k2 k3)3

Πk3

m3n3,ij
n̂1i n̂2j

×
[

−k
T
+
k1 k2 + k2 k3 + k3 k1

k
T

+
k1 k2 k3
k2

T

]

. (1.109)

On the other hand, for the case of the scalar-tensor-tensor three-point function, all the
three integrals [cf. Eqs. (1.101a), (1.101b), and (1.101c)] contribute at the same order under
the slow roll approximation. These quantities can be evaluated to be

Gm2n2m3n3

Rγγ (1) (k1,k2,k3) =
H4

I

8M4
Pl

k22 k
2
3

(k1 k2 k3)3
Πk2

m2n2,ij
Πk3

m3n3,ij

[
1

k
T

+
k1
k2

T

]

, (1.110a)

Gm2n2m3n3

Rγγ (2) (k1,k2,k3) =
H4

I

8M4
Pl

k2 · k3

(k1k2k3)3
Πk2

m2n2,ij
Πk3

m3n3,ij

×
[

−k
T
+
k1 k2 + k2 k3 + k3 k1

k
T

+
k1 k2 k3
k2

T

]

, (1.110b)

Gm2n2m3n3

Rγγ (3) (k1,k2,k3) = − H4
I

8M4
Pl

1

(k1k2k3)3
Πk2

m2n2,ij
Πk3

m3n3,ij

×
[

(k1 · k2) k
2
3

(
1

k
T

+
k2
k2

T

)

+ (k1 · k3) k
2
2

(
1

k
T

+
k3
k2

T

)]

.

(1.110c)

As in the case of the scalar bispectrum, the above three expressions can be
added to obtain the total contribution to the scalar-tensor-tensor three-point function
Gm2n2m3n3

Rγγ (k1,k2,k3).

Let us finally evaluate the tensor bispectrum. It involves only one integral
[cf. Eq. (1.104)], which can be integrated at the leading order in slow roll to arrive at

Gm1n1m2n2m3n3
γγγ (k1,k2,k3) =

H4
I

2M4
Pl

1

(k1 k2 k3)3

[
(
Πk1

m1n1,ij
Πk2

m2n2,im
Πk3

m3n3,lj

− 1

2
Πk1

m1n1,ij
Πk2

m2n2,ml Π
k3

m3n3,ij

)
k1m k1l

+five permutations

]

×
[

−k
T
+
k1 k2 + k2 k3 + k3 k1

k
T

+
k1 k2 k3
k2

T

]

. (1.111)

It is interesting to observe that all the non-Gaussianity parameters, viz. f
NL

, CR
NL

, Cγ
NL

, and
h

NL
, can be obtained to be scale invariant in both the equilateral and squeezed limits of

the wavenumbers for the case of de Sitter inflation.
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1.5.5 The three-point functions in the squeezed limit and the

consistency relations

An important property of the three-point functions is their behavior in the so-called
squeezed limit [66, 81–84]. The squeezed limit corresponds to the situation wherein one
of the three wavenumbers is much smaller than the other two. In such a limit, under
certain conditions, it is known that all the three-point functions involving the scalars and
tensors generated during inflation can be expressed entirely in terms of the two-point
functions [68–70, 79]. In the context of inflation, these consistency conditions arise es-
sentially because of the fact that the amplitude of the long wavelength scalar and tensor
modes freeze on super-Hubble scales. In this subsection, we shall outline the proof of the
consistency conditions satisfied by the three-point functions during inflation.

Since the amplitude of a long wavelength mode freezes on super-Hubble scales during
inflation, such modes can be treated as a background as far as the smaller wavelength
modes are concerned. Let us denote the constant amplitude of the long wavelength scalar
and tensor modes as RB and γB

ij . In the presence of such a long wavelength mode, the
background FLRW metric can be written as

ds2 = −dt2 + a2(t) e2R
B

[eγ
B

]ij dx
i dxj , (1.112)

i.e. the spatial coordinates are modified according to a spatial transformation of the form
x′ = Λx, where the components of the matrix Λ are given by Λij = eR

B

[eγ
B /2]ij . Un-

der such a spatial transformation, the small wavelength scalar and tensor perturbations
transform as [70, 79]

Rk → det (Λ−1)RΛ−1 k, (1.113a)

γkij → det (Λ−1) γΛ
−1 k

ij , (1.113b)

where det (Λ−1) = 1. Under these conditions, we also obtain that

|Λ−1 k| = [1−RB − γB

ij ki kj/(2 k
2)] k, (1.114)

where ki is the component of the wavevector k along the i-spatial direction and we have
restricted ourselves to the leading order in RB and γB

ij . Moreover, one can show that

δ(3)(Λ−1 k1 + Λ−1 k2) = det (Λ) δ(3)(k1 + k2) = δ(3)(k1 + k2), (1.115)

since det (Λ) = 1.

Upon using the above results, we find that the scalar and tensor two-point functions
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in the presence of a long wavelength mode can be written as

〈R̂k1
R̂k2

〉k =
(2 π)2

2 k31
P

S
(k1) δ

(3)(k1 + k2)

×
[

1− (n
S
− 1) RB −

(
n

S
− 4

2

)

γB

ij n̂1i n̂1j

]

, (1.116a)

〈γ̂k1
m1n1

γ̂k2
m2n2

〉k =
(2 π)2

2 k31

Πk1
m1n1,m2n2

4
P

T
(k1) δ

(3)(k1 + k2)

×
[

1− n
T
RB −

(
n

T
− 3

2

)

γB

ij n̂1i n̂1j

]

, (1.116b)

where n̂1i = k1i/k1 and the long wavelength mode is denoted by the wavenumber k,
while n

S
and n

T
represent the scalar and tensor spectral indices. The corresponding ex-

pressions for the three-point functions can be obtained from the above results to be

〈 R̂k1
R̂k2

R̂k3
〉k3 ≡ 〈 〈 R̂k1

R̂k2
〉k3 R̂k3

〉

= − (2 π)5/2

4 k31 k
3
3

(n
S
− 1) P

S
(k1)PS

(k3) δ
3(k1 + k2), (1.117a)

〈 R̂k1
R̂k2

γ̂k3
m3n3

〉k3 ≡ 〈 〈R̂k1
R̂k2

〉k3 γ̂k3
m3n3

〉

= − (2 π)5/2

4 k31 k
3
3

(
n

S
− 4

8

)

P
S
(k1)PT

(k3)

× Πk3

m3n3,ij
n̂1i n̂1j δ

3(k1 + k2), (1.117b)

〈 R̂k1
γ̂k2
m2n2

γ̂k3
m3n3

〉k1 ≡ 〈 R̂k1
〈 γ̂k2

m2n2
γ̂k3
m3n3

〉k1 〉

= − (2 π)5/2

4 k31 k
3
2

n
T

4
P

S
(k1)PT

(k2) Π
k2

m2n2,m3n3
δ3(k2 + k3),

(1.117c)

〈 γ̂k1
m1n1

γ̂k2
m2n2

γ̂k3
m3n3

〉k3 ≡ 〈 〈 γ̂k1
m1n1

γ̂k2
m2n2

〉k3 γ̂k3
m3n3

〉

= − (2 π)5/2

4 k31 k
3
3

(
n

T
− 3

32

)

P
T
(k1)PT

(k3)

× Πk1
m1n1,m2n2

Πk3

m3n3,ij
n̂1i n̂1j δ

3(k1 + k2), (1.117d)

where k3 has been considered to be the squeezed mode for the case of the scalar bis-
pectrum, the scalar-scalar-tensor three-point function and the tensor bispectrum, while
k1 has been considered to be the squeezed mode for the case of the scalar-tensor-tensor
three-point function. The above relations wherein the three-point functions have been
expressed completely in terms of the power spectra are known as the consistency con-
ditions [70, 79]. Upon substituting these expressions in the definitions for the non-
Gaussianity parameters [cf. Eq. (1.106)], we find that we can express the consistency rela-
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tions in the squeezed limit as follows:

lim
k3→0

f
NL
(k,−k,k3) =

5

12
[n

S
(k)− 1] , (1.118a)

lim
k3→0

CR
NL
(k,−k,k3) =

[
n

S
(k)− 4

4

]
(
Πk3

m3n3,m̄n̄

)−1
Πk3

m3n3,ij
n̂i n̂j , (1.118b)

lim
k1→0

Cγ
NL
(k1,k,−k) =

n
T
(k)

2

(
Πk

m2n2,m3n3

)−1
Πk

m2n2,m3n3
, (1.118c)

lim
k3→0

h
NL
(k,−k,k3) =

[
n

T
(k)− 3

2

] (

2Πk
m1n1,m2n2

Πk3
m3n3,m̄n̄ +Πk

m1n1,m̄n̄ Π
k3
m3n3,m2n2

+ Πk
m̄n̄,m2n2

Πk3
m3n3,m1n1

)−1

Πk
m1n1,m2n2

Πk3

m3n3,ij
n̂i n̂j. (1.118d)

The above expression for h
NL

in the squeezed limit is an important result, as its evaluation
and validity will be discussed in the context of a matter bounce in Chap. 3.

1.5.6 Observational constraints on the three-point functions

In order to compare the amplitude of the three-point functions generated in inflationary
scenarios, it is convenient to assume specific analytical templates for these functions so
as to facilitate their comparison with data. For the case of the scalar bispectrum, the
following templates are often considered [74, 80]:

Glocal
RRR(k1,k2,k3) = f local

NL

6

5

[

(2 π2)
2

k31 k
3
2 k

3
3

]

[
k31 PS

(k2)PS
(k3) + two permutations

]
,

(1.119a)

Gequil
RRR(k1,k2,k3) = f equil

NL

3

5

[

(2 π2)
2

k31 k
3
2 k

3
3

] [

6 k2 k
2
3 PS

(k1)P2/3
S

(k2)P1/3
S

(k3)

− 3 k33 PS
(k1)PS

(k2)− 2 k1 k2 k3P2/3
S

(k1)P2/3
S

(k2)P2/3
S

(k3)

+ five permutations

]

, (1.119b)

Gortho
RRR(k1,k2,k3) = f ortho

NL

3

5

[

(2 π2)
2

k31 k
3
2 k

3
3

] [

18 k2 k
2
3 PS

(k1)P2/3
S

(k2)P1/3
S

(k3)

− 9 k33 PS
(k1)PS

(k2)− 8 k1 k2 k3P2/3
S

(k1)P2/3
S

(k2)P2/3
S

(k3)

+ five permutations

]

, (1.119c)

where the superscripts (local, equil, ortho) refer to the local, equilateral, and orthogonal
shapes respectively. The local form of the bispectrum refers to the case wherein the bis-
pectrum is largely independent of the wavenumbers, while for the case of the equilateral
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form, the bispectrum peaks in the equilateral limit. The orthogonal shape refers to the
case which cannot be represented by either the local or equilateral forms. The local shape
is generated in multi-field models of inflation [85] as well as in certain post-inflationary
scenarios. The equilateral shape can be generated in both canonical and non-canonical
models of inflation [74], and they are considerably enhanced in non-canonical models.
For generating the orthogonal shape, one needs to consider a special class of models
involving higher derivatives of the field [86]. The quantities (f local

NL
, f equil

NL
, f ortho

NL
) are the

non-Gaussianity parameters corresponding to the scalar bispectrum generated in each of
these cases. These parameters are constrained by Planck to be [64]

f local
NL

= 0.8± 5.0, (1.120a)

f equil
NL

= −4 ± 43, (1.120b)

f ortho
NL

= −26 ± 21. (1.120c)

It should be noted here that these constraints are applicable for the particular templates
used to arrive at them, and their values are only suggestive for other cases. The non-
Gaussianity parameters generated in conventional slow roll models of inflation, wherein
f
NL

is of the order of the first slow roll parameter ǫ1, are consistent with the above con-
straints. The amplitude and shapes of the non-Gaussianity parameters are likely to differ
considerably when there are deviations from slow roll behavior, such as for the inflation-
ary scenarios which lead to features in the power spectra (see, for instance, Ref. [78]).
In these cases, the non-Gaussianity parameters have to be constrained directly from the
observational data, with the corresponding shapes taken into account.

1.6 Generation of magnetic fields in the early universe

Magnetic fields have been reported to have been observed in the universe across a large
range of scales and varying strengths. It has been ascertained that such magnetic fields
could not have originated from astrophysical processes alone. Moreover, even the genera-
tion of magnetic fields in stars and galaxies calls for some seed fields that can be amplified
via astrophysical processes. Therefore, it seems indispensable to have some progenitor
fields, conceivably originating in the early universe, that can source the magnetic fields
of the strengths observed today on cosmological scales (for instance, see the recent re-
views [14, 87]). In this section, we shall briefly discuss the generation of these primordial
magnetic fields, a process referred to as magnetogenesis, and illustrate the evaluation of
the power spectra of these magnetic fields in a typical inflationary scenario.
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1.6.1 Observational constraints on magnetic fields

Magnetic fields are ubiquitous in the universe. Coherent magnetic fields have been ob-
served over a wide variety of scales, ranging from astrophysical systems such as stars
and galaxies, to cosmological systems such as the large scale structures (in this context,
see Refs. [88]). More recently, magnetic fields have been observed even in the intergalac-
tic medium [89]. While the strength of magnetic fields observed in galaxies and clus-
ters of galaxies are typically about a few micro Gauss, in the intergalactic medium, the
lower bounds on their strengths have been inferred to be of the order of 10−17 Gauss at 1
Mpc from the Fermi/LAT and HESS observations of TeV blazars (see Refs. [89, 90]). This
should be contrasted with the upper bound of a few nano Gauss which has been arrived
at from the CMB observations (for current constraints from the Planck and POLARBEAR
data, see Refs. [91, 92] and references therein). Similar upper limits have also been ob-
tained independently using the rotation measures from the NRAO VLA Sky Survey [93].
These bounds are broadly in agreement with the limits arrived at from the LSS data, either
alone or when combined with the CMB data (in this context, see Refs. [91, 92, 94]; for im-
proved limits from LSS and reionization, see Refs. [95]. Though astrophysical processes
such as the dynamo mechanism can, in principle, boost the amplitude of magnetic fields
in galaxies, a seed field is nevertheless required for such mechanisms to work. Therefore,
a primordial origin for the magnetic fields seems inevitable to explain their prevalence,
particularly on the largest scales.

1.6.2 Origin of primordial magnetic fields during inflation

The generation of primordial scalar and tensor perturbations and the subsequent eval-
uation of the power spectra associated with them have already been discussed in the
previous sections. It is well known that the standard electromagnetic action leads to the
generation of magnetic fields whose amplitude scales as a−2, with a being the scale factor.
For instance, for the case of an inflationary phase lasting for sixty e-folds, the amplitude
of the magnetic fields would be suppressed by a factor of about e−120. As a result, in an
expanding universe, it would not be possible to produce magnetic fields of the requisite
strength over large scales, so as to be in concordance with observations. Therefore, it
seems imperative to break the conformal invariance of the standard electromagnetic ac-
tion [96]. In this section, we shall describe the generation of primordial magnetic fields via
a non-minimal coupling function, which can depend on, say, the scalar field driving in-
flation, thereby leading to a different evolution of the magnetic fields. We shall introduce
the form of the electromagnetic action and, after choosing to work in a specific gauge, we
shall quantize the electromagnetic vector potential and obtain the equations of motion
governing the same. We shall also define the power spectra corresponding to the energy
densities associated with the magnetic and electric fields. Thereafter, we shall consider a
certain form of the coupling function wherein it can be expressed as a power of the scale
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factor, and analytically evaluate the magnetic power spectra in de Sitter inflation and in a
specific class of bouncing scenarios.

Let us consider the action

Sem[A
µ, φ] = − 1

16 π

∫

d4x
√−g J2(φ)FµνF

µν , (1.121)

where φ denotes a scalar field which, say, drives the background evolution and J(φ) is
the non-minimal coupling function. The electromagnetic field tensor is given by

Fµν = ∇µAν −∇ν Aµ = ∂µAν − ∂ν Aµ. (1.122)

In the above expression, ∇µ denotes the covariant derivative. We shall assume that there
is no homogeneous component to the electromagnetic field. We shall choose to work in
the Coulomb gauge wherein A0 = 0 and ∂i A

i = 0. In such a gauge, at the quadratic order
in the inhomogeneous modes, the action describing the electromagnetic field is found to
be

Sem[Ai, φ] =
1

4 π

∫

d η

∫

d3 x

{

J2 (φ)

[
1

2
A′ 2

i − 1

4
(∂iAj − ∂j Ai)

2

]}

. (1.123)

We can vary this action to arrive at the following equation of motion for the electromag-
netic vector potential:

A′′
i + 2

J ′

J
A′

i −∇2Ai = 0. (1.124)

Note that it is the time dependence of J which leads to a non-trivial evolution of the
electromagnetic vector potential Ai.

For each comoving wave vector k, we can define the right-handed orthonormal basis
(εk1 , ε

k
2 , k̂), where

∣
∣εki
∣
∣
2
= 1, εk1 × εk2 = k̂, and εk1 · εk2 = k̂ · εk1 = k̂ · εk2 = 0. (1.125)

On quantization, the vector potential Âi can be Fourier decomposed as follows2:

Âi (η,x) =
√
4 π

∫
d3 k

(2 π)3/2

2∑

λ=1

εkλi

[

b̂λk Āk(η) e
ik·x + b̂λ†k Ā∗

k(η) e
−ik·x

]

, (1.126)

where the quantities εkλi represent polarization vectors and the summation corresponds
to the two orthonormal transverse polarizations. The Fourier modes Āk satisfy the differ-
ential equation

Ā′′
k + 2

J ′

J
Ā′

k + k2 Āk = 0. (1.127)

2It should be noted that in the expression for the quantization of the vector potential Âi, we have intro-
duced an overbar on the Fourier modes Āk , so as to distinguish them from the vector potential Ai. Also,
the subscript k denotes the wavenumber of the mode under consideration. The quantity εkλi is the polar-
ization vector corresponding to the electromagnetic modes. Recall that we had used εsij(k) to denote the
polarization tensor of the gravitational waves [cf. Eq. (1.59)].

42



1.6. GENERATION OF MAGNETIC FIELDS IN THE EARLY UNIVERSE

The operators b̂λk and b̂λ†k are the annihilation and creation operators satisfying the follow-
ing standard commutation relations3:

[b̂λk, b̂
λ′

k′ ] = [b̂λ†k , b̂
λ′†
k′ ] = 0, [b̂λk, b̂

λ′†
k′ ] = δλλ′ δ(3)(k − k′). (1.128)

Let us now define a new variable Ak = J Āk which, as we shall see, proves to be conve-
nient to deal with. In terms of the new variable, Eq. (1.127) for Āk simplifies to

A′′
k +

(

k2 − J ′′

J

)

Ak = 0. (1.129)

Note that Ak is similar to the Mukhanov-Sasaki variables vk and uk for the scalar and
tensor perturbations, whose evolution is governed by Eqs. (1.55) and (1.62), respectively.
Therefore, the property of duality invariance [48] exhibited by the scalar and tensor per-
turbations, which was discussed in Subsec. 1.4.4, can be expected to hold true for the case
of the magnetic fields as well. This issue will be discussed in further detail in Chap. 4.

Let us now turn to evaluation of the power spectra of the electromagnetic fields gen-
erated in this scenario. Let ρ̂

B
and ρ̂

E
denote the operators corresponding to the energy

densities associated with the magnetic and electric fields, respectively. Upon using the
decomposition (1.126) of the vector potential, the expectation values of the energy den-
sities ρ̂

B
and ρ̂

E
can be evaluated in the vacuum state, say, |0〉, that is annihilated by the

operator b̂λk, i.e. b̂λk |0〉 = 0 ∀ (k, λ). It can be shown that the spectral energy densities of the
magnetic field and the electric field can be expressed in terms of the modes Āk and Ak

and the coupling function J as follows [97, 98]

P
B
(k) =

d〈0|ρ̂
B
|0〉

d ln k

=
J2(η)

2 π2

k5

a4(η)
|Āk(η)|2 =

1

2 π2

k5

a4(η)
|Ak(η)|2, (1.130a)

P
E
(k) =

d〈0|ρ̂
E
|0〉

d ln k

=
J2(η)

2 π2

k3

a4(η)
|Ā′

k(η)|2 =
1

2 π2

k3

a4(η)

∣
∣
∣
∣
A′

k(η)−
J ′(η)

J(η)
Ak(η)

∣
∣
∣
∣

2

. (1.130b)

The spectral energy densities P
B
(k) and P

E
(k) are often referred to as the power spec-

tra for the generated magnetic and electric fields, respectively. A flat or scale invariant
magnetic field spectrum corresponds to a constant, i.e. k-independent, P

B
(k).

We shall now illustrate the generation of primordial magnetic fields using the simple
case of de Sitter inflation, wherein the scale factor is given by Eq. (1.107a). In order to
solve for the electromagnetic modes, we need to choose a form of the coupling function.

3Recall that we had used b̂s
k

and b̂
s†
k

to denote the annihilation and creation operators in the quantization
of the tensor perturbations [cf. Eq. (1.59)].
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In keeping with the expressions for the coupling functions that have been adopted previ-
ously [99–101], we select a coupling function that can be written as a simple power of the
scale factor as follows:

J(η) =

[
a(η)

a(ηe)

]n

=

(
η

ηe

)−n

, (1.131)

where ηe denotes the end of inflation, and n is a constant that can be both positive and
negative. It should also be noted that we have chosen J(η) to be such that at the end
of inflation, i.e. when η = ηe, we obtain J(η) = 1, and thereby recover the standard
electromagnetic action.

The solutions to Eq. (1.129) can then be expressed as [87, 97]:

Ak(η) =
√

−k η
[
C1(k) Jn+1/2(−k η) + C2(k) J−n−1/2(−k η)

]
, (1.132)

where Jν(x) is the Bessel function and the coefficients C1(k) and C2(k) can be fixed from
the Bunch-Davies initial conditions to be

C1(k) =

√
π

4 k

e−i (n−1) π/2

cos(nπ)
, C2(k) =

√
π

4 k

ei n π/2

cos(nπ)
. (1.133)

It is often convenient to write the expression for the mode Ak in terms of Hankel functions
as follows:

Ak(η) =

√

−π η
4

ei(n+1)π/2H
(1)
n+1/2(−kη). (1.134)

Using the behavior of the Bessel functions at late times, i.e. as (−k η) → 0, and the
expression (1.130a), we obtain the magnetic field power spectrum to be

P
B
(k) =

H4
I

8 π
F

I
(m) (−k η)2m+6 , (1.135)

where

F
I
(m) =

1

22m+1 cos2(mπ) Γ2(m+ 3/2)
, (1.136)

with

m =

{

n, if n < −1
2
,

−n− 1, if n > −1
2
.

(1.137)

Note that the spectral index of the magnetic field n
B

can be written as

n
B
=

{

2n+ 6, if n < −1
2
,

4− 2n, if n > −1
2
.

(1.138)

Evidently, in order to obtain a scale invariant power spectrum, we must have either n = 2

or n = −3.
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Similarly, the electric field power spectrum can be evaluated to be

P
E
(k) =

H4
I

8 π
G

I
(m) (−k η)2m+4 , (1.139)

where

G
I
(m) =

1

22m−1 cos2(mπ) Γ2(m+ 1/2)
, (1.140)

with

m =

{

n, if n < 1
2
,

1− n, if n > 1
2
.

(1.141)

The cases n = 2 or n = −3, which lead to scale invariant magnetic power spectra, also
result in electric field power spectra which scale as k2 and k−2, respectively.

1.6.3 The backreaction and strong coupling problems

Since the electromagnetic fields are test fields, their total energy density should always
remain sub-dominant compared to the background energy density ρ

I
that drives inflation,

viz. (ρ
B
+ ρ

E
) . ρ

I
at all times during inflation. If the electromagnetic energy density

becomes larger than the background energy density, inflation cannot proceed. This is
known as the backreaction problem [87, 97]. If we evaluate the energy density contained
in the electric and magnetic fields at any time ηf = (af H)−1, using the expressions for
the electromagnetic spectra obtained before, we find that the case n = 2, which results
in a scale invariant magnetic power spectrum, does not contribute to any backreaction.
However, for the other case which leads to scale invariant magnetic field, viz. n = −3, it
can be shown that it is only possible to achieve about ten e-folds of inflation before it is
interrupted by backreaction [99–101]. Therefore, only the coupling function with n = 2 is
consistent with inflation.

We have considered the case wherein J(η) ∝ an(η). Also, as mentioned before, we
must have J(ηe) → 1, in order to recover the standard electromagnetic action at the end of
inflation. This implies that at the onset of inflation, J(ηi) ∼ [a(ηi)/a(ηe)]

n = e−nN
I , where

N
I

denotes the number of e-folds of inflation. In the scale invariant case of n = 2, for 60 e-
folds of inflation, we must have J(ηi) ∼ e−120. This implies that the model is in a strongly
coupled regime at the beginning of inflation. This is referred to as the strong coupling
problem [99, 102–104]. Therefore, it is desirable to have J(η) & 1 during inflation.

1.7 Organization of the thesis

The remainder of this thesis will be organized as follows. In the following chapter,
we shall arrive at an analytical template for the scalar-scalar-tensor three-point function
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[cf. Eq. (1.97)] arising in the axion monodromy model. This model is interesting to study
because it leads to persistent oscillations in the scalar and tensor power spectra, which,
in turn, result in an improvement in fit to the CMB data when compared with the con-
ventional, nearly scale invariant power spectrum. In Chap. 3, we shall consider a specific
matter bounce scenario, and evaluate the tensor bispectrum [cf. Eq. (1.103)] generated
therein. Further, we shall compare and contrast between the characteristics of the corre-
sponding non-Gaussianity parameter h

NL
[cf. Eq. (1.106d)] generated in the matter bounce

scenario under consideration with the h
NL

evaluated in de Sitter inflation. In Chap. 4, we
shall examine the generation of primordial magnetic fields in a specific matter bounce,
and their subsequent evolution across the bounce. We shall also explicitly illustrate the
phenomenon of duality invariance of the magnetic field power spectrum. In Chap. 5,
we shall evaluate the cross-correlation between perturbations in a scalar field and the
primordial magnetic fields in a matter bounce scenario. We shall also calculate the associ-
ated non-Gaussianity parameter and compare its characteristics with the corresponding
parameter evaluated in de Sitter inflation. In Chap. 6, we shall add a non-minimally
coupled parity violating term to the electromagnetic action and numerically study the
subsequent origin and evolution of helical magnetic fields in de Sitter inflation, as well as
their cross-correlations with the perturbations in a scalar field. We shall also examine how
helicity affects the non-Gaussian signatures generated due to such cross-correlations. We
shall conclude in Chap. 7 with a summary of the work done in the thesis and the scope of
future work.

46



Chapter 2

The scalar-scalar-tensor three-point
function in the axion monodromy
model

2.1 Introduction

Until very recently, inflationary models were compared with the data at the level of
two-point functions, i.e. the inflationary scalar and tensor power spectra were compared
with the angular power spectra of the CMB and the matter power spectrum associated
with the LSS [7, 9, 60, 61, 63, 105]. Over the last decade and a half, it has been realized
that non-Gaussianities in general and the three-point functions in particular can provide
strong constraints on the physics of the early universe. On one hand, there has been
tremendous progress in understanding the generation of non-Gaussianities during infla-
tion [22,66,72–74,106] and the corresponding signatures on the CMB and the LSS [80,107].
On the other hand, the expectation alluded to above has been largely corroborated by
the strong constraints that have been arrived at from the Planck CMB data on the scalar
non-Gaussianity parameter f

NL
[64]. The recent observations seem to suggest that the

primordial perturbations are consistent with a Gaussian distribution.

A nearly scale invariant primordial scalar power spectrum is remarkably consistent
with the observations of the CMB [7, 9, 60, 61, 63, 105]. However, it has been repeatedly
noticed that certain features in the inflationary power spectrum can improve the fit to the
data (for instance, see Refs. [108, 109]). One such type of feature is continued oscillations
in the scalar power spectrum that extends over a wide range of scales [110–113]. Such
a power spectrum is known to be generated by the so-called axion monodromy model,
motivated by string theory [114–116]. The model is described by a linear potential with
superimposed oscillations. The oscillations in the potential give rise to a resonant behav-
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ior which leads to continued modulations in the scalar and tensor power spectra. At the
cost of two or three extra parameters, the resulting power spectra are known to improve
the fit to the CMB data from the Wilkinson Microwave Anisotropy Probe (WMAP) and
Planck by as much as ∆χ2 ≃ 10–20 [110, 111, 115]. Ideally, one would like to carry out
a similar analysis of comparing the model with the CMB data at the level of the three-
point functions as well. But, it proves to be numerically taxing to evaluate the three-point
functions in these models (see, for instance, Ref. [78]). In such a situation, clearly, it will
be convenient if there exist analytical templates for the inflationary three-point functions.
Such a template for the scalar bispectrum has been arrived at earlier [114,117], which has
been utilized towards comparing models leading to oscillatory features with the CMB
data [113].

As we have discussed before, apart from the scalar bispectrum, there exist three other
three-point functions which involve the tensor perturbations [66]. Amongst these three-
point functions, the scalar-scalar-tensor cross-correlation has the largest amplitude after
the scalar bispectrum (in this context, see Refs. [66–68,70,71,76,118,119]). In this chapter,
motivated by the efforts towards arriving at an analytical template for the scalar bispec-
trum in the axion monodromy model, we obtain a similar template for the scalar-scalar-
tensor three-point function for an arbitrary triangular configuration of the wavevectors.
In the case of the scalar bispectrum, in order to determine the dominant contribution due
to the oscillations in the potential, it was sufficient to take into account the effects due
to the changes in the behavior of the slow roll parameters, and one could work with the
simple de Sitter modes for the curvature perturbation. In contrast, to evaluate the scalar-
scalar-tensor cross correlation, we find that apart from the changes in the behavior of the
slow roll parameters, we also need to take into account the modifications to the de Sitter
modes. As in the purely scalar case [81, 120], the other three-point functions involving
the tensors are also known to satisfy the so-called consistency relation in the squeezed
limit [68, 70, 79, 84, 118]. We shall analytically establish the consistency condition for the
scalar-scalar-tensor three-point function in the axion monodromy model.

The remainder of this chapter is organized as follows. In the next section, we shall
introduce the important aspects of the axion monodromy model and arrive at the scalar
and tensor power spectra in the model. In Sec. 2.3, we shall briefly discuss the evaluation
of the scalar bispectrum in the axion monodromy model. In Sec. 2.4, we shall arrive at an
analytical expression for the scalar-scalar-tensor cross-correlation under certain approxi-
mations. To illustrate the extent of accuracy of the approximations, we shall also compare
the analytical result with the corresponding numerical result. Further, in Sec. 2.5, we shall
analytically verify the consistency relation for the three-point function in the squeezed
limit. We shall conclude in Sec. 2.6 with a brief summary of the results obtained.
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2.2 The axion monodromy model

In this section, we shall summarize the essential aspects of the axion monodromy model.
We shall discuss the evolution of the background as well as the evolution of the scalar
and tensor perturbations and also arrive at the corresponding power spectra.

2.2.1 The evolution of the background and the slow roll parameters

The axion monodromy model is described by a linear potential with superimposed oscil-
lations [114, 115]. The potential is given by

V (φ) = µ3 φ+ µ3 b f cos

(
φ

f

)

, (2.1)

where b is a dimensionless quantity and we have ignored a possible phase factor in the
trigonometric function. Throughout this chapter, we shall assume that b is small and at-
tempt to derive all the results at the linear order in b (as we shall discuss in due course, the
constraint from the Planck data suggests that b is indeed small, of the order of 10−2 [111]).
Evidently, this assumption is equivalent to considering the trigonometric modulations as
small departures from the linear potential. We shall also assume that the linear potential
admits slow roll and that the modulations lead to deviations from the monotonic slow
roll behavior [114].

The equation of motion governing the scalar field described by the potential (2.1)
above is given by [cf. Eq. (1.19)]

φ̈+ 3H φ̇+ µ3 − µ3 b sin

(
φ

f

)

= 0, (2.2)

with the Hubble parameter H = ȧ/a being determined by the first Friedmann equa-
tion (1.23a). Since we shall assume that b is small, we can write the background inflaton
as a slowly rolling part plus a part which describes the modulations as

φ = φ0 + b φ1 + . . . . (2.3)

As we mentioned, we shall limit ourselves to terms which are linear in b. At the leading
order, under the slow roll approximation, the equations (1.23a) and (2.2) simplify to

3H φ̇0 ≃ −µ3, (2.4a)

3H2M2
Pl

≃ µ3 φ0. (2.4b)

These equations can be easily integrated to yield the leading order term in the inflaton to
be

φ0(t) =

[

φ3/2
∗ −

√

3µ3

2
M

Pl
(t− t∗)

]2/3

, (2.5)
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where φ0(t∗) = φ∗, with t∗ denoting the time when the pivot scale, say, k∗, leaves the
Hubble radius. It should be noted that, in order to achieve about 60–70 e-folds of inflation,
we shall require that φ∗ ≃ 10M

Pl
.

Let us now consider the behavior of φ1. The differential equation satisfied by the com-
ponent φ1 can be obtained to be

φ̈1 +

√

3µ3 φ0

M
Pl

φ̇1 −
µ3

2φ0
φ1 = µ3 sin

(
φ0

f

)

, (2.6)

where we have made use of the fact that, until the first order in b, under the slow roll
approximation, we can write

H2 ≃ µ3

3M2
Pl

(φ0 + b φ1) . (2.7)

If we make use of the solution (2.5) for φ0, the above equation governing φ1 can be ex-
pressed as

d2φ1

dφ2
0

− 3φ0

M2
Pl

dφ1

dφ0

− 3φ1

2M2
Pl

=
3φ0

M2
Pl

sin

(
φ0

f

)

. (2.8)

This equation can be integrated to arrive at the following solution for φ1:

φ1(φ0) =
3 f 2 φ∗/M

2
Pl

1 + (3 f φ∗/M2
Pl
)2

[

−sin

(
φ0

f

)

+
3 f φ∗

M2
Pl

cos

(
φ0

f

)]

, (2.9)

which can be written as

φ1(φ0) = − 3 f 2 φ∗/M
2
Pl

[
1 + (3 f φ∗/M2

Pl
)2
]1/2

sin

(
φ0

f
− ψ1

)

, (2.10)

where

sinψ1 =
3 f φ∗/M

2
Pl

[
1 + (3 f φ∗/M2

Pl
)2
]1/2

. (2.11)

Note that, when f φ∗/M
2
Pl

is assumed to be small (as we shall discuss later, the constraints
from the recent CMB observations suggest that f φ∗/M

2
Pl

≃ 7.6346 × 10−2 [111]), we can
write

φ1(φ0) = −3 f 2 φ∗

M2
Pl

sin

(
φ0

f

)

. (2.12)

Having understood the behavior of the background inflaton, let us now evaluate the
first and the second slow roll parameters. Recall that the first slow roll parameter is given
by Eq. (1.28). Let us write the first slow roll parameter as ǫ1 = ǫ01 + ǫc1, where ǫ01 is the
contribution due to φ0, while ǫc1 is the correction at the first order in b. As one would
expect, ǫ01 will roughly be constant and will be of the order of ǫ01 = ǫ∗1 ≃ M2

Pl
/(2φ2

∗),
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determined by the linear term in the potential. Upon making use of the solutions we
have obtained above, we can show that, the quantity ǫc1 is given by

ǫc1 = −3 b f

φ∗
cos

(
φ0

f

)

. (2.13)

In arriving at this expression, we have again made the assumption that f φ∗/M
2
Pl

≪ 1.
The second slow roll parameter can be expressed as ǫ2 = ǫ̇1/(H ǫ1) [cf. Eq. (1.29)]. One can
show that ǫ2 = 2 (δ+ ǫ1), where δ = Ḧ/(H Ḣ) = φ̈/(H φ̇). If we write δ = δ0 + δ1, where δ0
corresponds to the case wherein b vanishes, then we can show that δ0 = ǫ∗1 and ǫ∗2 = 4 ǫ∗1.
Also, for small f φ∗/M

2
Pl

, we find that δ1 can be expressed as

δ1 = −3 b sin

(
φ0

f

)

. (2.14)

2.2.2 The evolution of the perturbations and the power spectra

The assumptions and approximations that we have made in the previous subsection en-
able us to analytically explore the evolution of perturbations and calculation of the power
spectra [114]. Let us begin by summarizing a few basic points concerning the scalar power
spectrum. Recall that, upon quantization, the curvature perturbation R can be decom-
posed in terms of the corresponding Fourier modes fk [in this context, see Eqs. (1.51)
and (1.52)]. The modes fk satisfy the differential equation (1.54).

Let us analytically evaluate the scalar power spectrum in the axion monodromy
model [114]. If we choose to work in terms of a new variable x = −k η and use the
exact relation

z′

z
= aH (1 + ǫ1 + δ) , (2.15)

we can rewrite the differential equation (1.54) governing the mode fk as

d2fk
dx2

+ 2 (1 + ǫ1 + δ)

(
aH

−k

)
dfk
dx

+ fk = 0. (2.16)

At the leading order in slow roll, we have [cf. Eq. (1.70)]

aH ≃ −1 + ǫ1
η

. (2.17)

We shall work in the de Sitter approximation when b = 0, which corresponds to ignoring
the contributions due to the ǫ∗1 term. The effects due to the δ1 term dominates the effects
due to the ǫc1 term. Under these conditions, we can write the above differential equation
describing fk as follows:

d2fk
dx2

− 2 (1 + δ1)

x

dfk
dx

+ fk = 0. (2.18)

51



CHAPTER 2. THREE-POINT FUNCTIONS IN THE AXION MONODROMY MODEL

In the slow roll limit determined by the linear potential wherein δ1 can be ignored, the
positive frequency modes satisfying the above differential equation can be written in the
de Sitter form as

f+
k (x) = i f 0

k (1− i x) ei x, (2.19)

where f 0
k = H

I
/(2M

Pl

√
k3 ǫ∗1), with H

I
being given by H2

I
= µ3 φ∗/(3M

2
Pl
). Hence, in the

presence of a non-zero δ1, let us write the modes describing the curvature perturbation
as [114]

fk(x) = f+
k (x) + ck(x) f

−
k (x), (2.20)

where f−
k (x) are the negative frequency modes that are related to the positive frequency

modes by the relation f−
k (x) = f+∗

k (x). Note that the non-vanishing δ1 modifies the stan-
dard de Sitter modes f+

k (x). The non-trivial evolution of the modes is captured by the
function ck(x).

The de Sitter modes f±
k satisfy the differential equation

d2f±
k

dx2
− 2

x

df±
k

dx
+ f±

k = 0. (2.21)

Therefore, upon substituting the expression (2.20) in the differential equation (2.18), we
obtain the following equation governing ck:

d

dx

[(

1− i

x

)

e−2 i x dck
dx

]

+
i

x2
e−2 i x dck

dx
=

2 i δ1
x

. (2.22)

As is well known, the perturbations oscillate when they are well inside the Hubble ra-
dius. In this sub-Hubble regime, the oscillations in the perturbations resonate with the
oscillations in the background quantities. This resonance occurs when x ≃ M2

Pl
/(2 f φ∗),

which proves to be a large quantity for the parameter ranges of our interest (recall that,
we had assumed f φ∗/M

2
Pl

to be small). Therefore, the terms involving inverse powers of
x on the left hand side of the above differential equation can be ignored in the sub-Hubble
regime and, under these conditions, the equation can be easily integrated. We find that
the resulting ck(x) can be expressed as

ck(x) = −3 b f φ∗

2M2
Pl

[

ei (α1+φk/f) e−πM2

Pl
/(2 f φ∗) Γ

(

1 +
iM2

Pl

f φ∗
,−2 i x

)

+e−i (α1+φk/f) eπM2

Pl
/(2 f φ∗) Γ

(

1− iM2
Pl

f φ∗
,−2 i x

)]

, (2.23)

where Γ(a, x) is the incomplete Gamma function [58] and α1 = −Xres ln 2, with Xres =

M2
Pl
/(f φ∗). Note that Xres is a large quantity since we have assumed f φ∗/M

2
Pl

to be small.
In arriving at the above expression, we have expressed φ0 in terms of x as

φ0 = φk +
√

2 ǫ∗1MPl
ln x, (2.24)
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where the quantity φk is given by

φk = φ∗ −
√

2 ǫ∗1MPl
ln

(
k

k∗

)

, (2.25)

with k∗ denoting the pivot scale. Since we have assumed that f φ∗/M
2
Pl
≪ 1, the first term

in Eq. (2.23) is exponentially suppressed and hence can be ignored. Thus, we can express
ck as

ck(x) = −3 b f φ∗

2M2
Pl

e−i (φk/f+α1) eπM2

Pl
/2 f φ∗ Γ

(

1− iM2
Pl

f φ∗
,−2 i x

)

. (2.26)

Note that, in deriving the above solution for ck(x), we had ignored inverse powers of
x on the left hand side of Eq. (2.22). We should emphasize here that this approximation is
strictly valid only at sub-Hubble scales. However, since the complete mode approaches
a constant value at late times, one finds that the largest contribution to the three-point
functions arises from the sub-Hubble domain [114]. Hence, the above solution for ck(x)
proves to be sufficient for evaluating the three-point function of our interest analytically.
As we shall see, these arguments are corroborated by the numerical results we obtain.

The scalar power spectrum can now be obtained from the late time limit (i.e. as x→ 0)
of the modes fk. We find that

ck(0) =
3 i b

√
π√

2Xres

e−i (φk/f+β1), (2.27)

where the phase β1 = Xres lnXres − Xres −Xres ln 2 − π/4. Upon using this result and the
expression (1.57) for the scalar power spectrum, at the order b, we can express the power
spectrum involving the scalar perturbations as [114]

P
S
(k) = P0

S
[1− ck(0)− c∗k(0)] = P0

S

[

1− δn
S
sin

(
φk

f
+ β1

)]

, (2.28)

where P0
S

represents the amplitude of the scalar power spectrum which arises in the slow
roll scenario when the oscillations in the potential are absent and the quantity φk depends
on the wavenumber through the relation (2.25). The quantity P0

S
is given by

P0
S
=

H2
I

8 π2M2
Pl
ǫ∗1
, (2.29)

and, for small f φ∗/M
2
Pl

, the quantity δn
S

can be expressed as

δn
S
=

3 b
√
2π√

Xres

. (2.30)

The sinusoidal term in the power spectrum leads to oscillations that extend over a wide
range of scales. These oscillations result in continued modulations in the scalar spectral
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index n
S

[cf. Eq. (1.67a)], which can be obtained from the expression (2.28) for the scalar
power spectrum. In order to separate the contributions at the zeroth and first order in b,
it is convenient to write the scalar spectral index in the form n

S
= n0

S
+ nc

S
, where n0

S
is the

scalar spectral index in the slow roll approximation when the oscillations are ignored and
nc

S
is the correction at order b. One can show that [cf. Eq. (1.75a)] n0

S
= 1−2 ǫ∗1−ǫ∗2 = 1−6 ǫ∗1.

The first order correction to the scalar spectral index can be evaluated from Eqs. (1.67a)
and (2.28) to be

nc
S
(k) = 3 b

√

2 πXres cos

(
φk

f
+ β1

)

. (2.31)

The power spectrum (2.28) that we have arrived at above has been compared with the
WMAP and Planck data [110,111,115]. As we have discussed earlier, the persistent oscil-
lations in the power spectrum lead to a better fit to the data than the more conventional
nearly scale invariant primordial spectrum. The values of the parameters describing the
axion monodromy model that are found to lead to the best fit to the Planck data are as
follows: (µ/M

Pl
)3 = 2.512×10−10, b = 1.063×10−2, and f/M

Pl
= 7.6346×10−3 [111]. Note

that these values lead to f φ∗/M
2
Pl
= 7.6346×10−2, which in turn corresponds toXres ≃ 13.

It should be mentioned that earlier CMB data had suggested values for f that was smaller
by an order of magnitude or more and hence a suitably larger value of Xres (of the order
of 250 or so). While Xres ≃ 13 is not very large, we find that our analytical results match
the numerical results fairly well over a range of f and b.

Let us now turn to the case of the tensor power spectrum. On quantization, the ten-
sor perturbation γij can be decomposed in terms of the corresponding Fourier modes hk
[in this context, see Eqs. (1.58) and (1.59)]. The modes hk satisfy the differential equa-
tion (1.61). In the axion monodromy model, the tensor modes and the tensor power spec-
trum can be determined in a manner very similar to the scalar case. On substituting the
expression (2.17) in the equation (1.61) governing the evolution of the tensor modes, we
obtain that

d2hk
dx2

− 2 (1 + ǫ1)

x

dhk
dx

+ hk = 0. (2.32)

When the modulations in the potential are ignored, the positive frequency tensor modes
in the slow roll limit are given by

h+k (x) = i h0k (1− i x) ei x, (2.33)

where h0k = H
I
/(M

Pl

√
k3). In the presence of the modulations, let us write the modes

describing the tensor perturbation as

hk(x) = h+k (x) + dk(x) h
−
k (x), (2.34)

where h−k (x) = h+∗
k (x). The de Sitter modes h±k satisfy the differential equation (2.21).

On substituting the expression (2.34) for the tensor modes in Eq. (1.61), we find that the
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quantity dk satisfies the differential equation

d

dx

[(

1− i

x

)

e−2 i x ddk
dx

]

+
i

x2
e−2 i x ddk

dx
=

2 i ǫ1
x

. (2.35)

As in the scalar case, due to the resonance that arises in the sub-Hubble regime (i.e. when
x is large), we can ignore the terms involving the inverse powers of x on the left hand
side of the above differential equation. Upon integrating the above equation under these
conditions, we obtain dk to be

dk(x) = −3 i b f 2

2M2
Pl

[

ei (φk/f+α1) e−πM2

Pl
/(2 f φ∗) Γ

(

1 +
iM2

Pl

f φ∗
,−2 i x

)

−e−i (φk/f+α1) eπM2

Pl
/(2 f φ∗) Γ

(

1− iM2
Pl

f φ∗
,−2 i x

)]

. (2.36)

In the domain fφ∗/M
2
Pl

≪ 1, the first term in the above expression is exponentially sup-
pressed and hence dk simplifies to be

dk(x) =
3 i b f 2

2M2
Pl

e−i (φk/f+α1) eπM2
Pl

/2 fφ∗ Γ

(

1− iM2
Pl

f φ∗
,−2 i x

)

. (2.37)

This expression for dk allows us to evaluate the tensor power spectrum and, we find that
in the limit x→ 0, it can be expressed as [cf. Eq. (1.65)]

P
T
(k) = P0

T
[1− dk(0)− d∗k(0)] = P0

T

[

1− f

φ∗
δn

S
cos

(
φk

f
+ β1

)]

, (2.38)

where P0
T

represents the amplitude of the tensor power spectrum which arises in the slow
roll scenario when the oscillations are absent in the potential and is given by

P0
T
=

2H2
I

π2M2
Pl

. (2.39)

The amplitude of the oscillations in the tensor power spectrum prove to be about f/φ∗

(which is nearly 10−3, for the best fit values) times smaller than the magnitude of the
oscillations in the case of scalars. As in the case of the scalar spectral index, it is conve-
nient to split the contribution to the tensor spectral index into a slow roll part and a part
which is first order in b as n

T
= n0

T
+ nc

T
. The contribution at the zeroth order in b to

the tensor spectral index is given by n0
T
= −2 ǫ∗1, which is the standard slow roll result

[cf. Eq. (1.75b)]. The first order correction to the tensor spectral index can be arrived at
using the tensor power spectrum (2.38) and is found to be [116]

nc
T
= −3 b

√

2 π f

M
Pl

(2 ǫ∗1)
3/4 sin

(
φk

f
+ β1

)

, (2.40)

which reflects the continued oscillations in the tensor power spectrum.
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2.3 The scalar bispectrum in the Maldacena formalism

Our aim in this chapter is to evaluate the scalar-scalar-tensor three-point function gener-
ated in the axion monodromy model. However, for the sake of completeness, we shall
first discuss the behavior of the scalar bispectrum evaluated in this model, especially to
illustrate how the oscillations in the potential boost the scalar non-Gaussianity parame-
ter f

NL
[117]. As we had discussed previously in Subsec. 1.5.4, up to the leading order

in the slow roll parameters, the dominant contribution to the three-point function arises
from the first three integrals and the seventh term [cf. Eqs. (1.108)], which are combined
together to obtain the total contribution to the scalar bispectrum in slow roll inflation. In
contrast, since the axion monodromy model involves deviation from slow roll, the major
contribution to the scalar bispectrum arises from the fourth term [cf. Eq. (1.94d)]. In the
fourth term, it is the presence of the time derivative of ǫ2 which makes this contribution
dominant.

As discussed before, at the linear order in b, we can replace ǫ2 by 2δ1 and ǫ1 by ǫ01 and
use Eq. (2.14) to write

G4
RRR(k1,k2,k3) =

3 bH
I

4M2
Pl
f

(
2

k31k
3
2k

3
3

)1/2 ∫ ∞

0

dx

[

−k1k2k3 + i
∑

i 6=j

k2i kj
x

+
k

T
(k21 + k22 + k23)

x2

]

cos

(
φ0

f

)

e−ix. (2.41)

Now, upon substituting (2.24) in the above equation, we get

G4
RRR(k1,k2,k3) =

3 bH
I

8M2
Pl
f

(
2

k31k
3
2k

3
3

)1/2 ∫ ∞

0

dx

[

−k1k2k3 + i
∑

i 6=j

k2i kj
x

+
k

T
(k21 + k22 + k23)

x2

]{

exp

(
iφk

T

f
+
i
√
2 ǫ∗1
f

M
Pl
ln x− ix

)

+exp

(

−
iφk

T

f
− i

√
2 ǫ∗1
f

M
Pl
ln x− ix

)}

. (2.42)

For small f φ∗/M
2
Pl

, the second term in the curly brackets in the above integrand is expo-
nentially suppressed. Also, the first term in the curly brackets in the integrand becomes
stationary at x = Xres =

√
2ǫ∗1MPl

/f , so that the major contribution to the integral is from
this value of x. Hence, on replacing the x’s in the polynomial expressions in the inte-
grand by Xres’s, up to the leading order in b and a k-independent phase, we can arrive at
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the scalar bispectrum to be [cf. Eq. (1.93)]

GRRR(k1,k2,k3) =
H4

I

32M4
Pl

1

(k1 k2 k3)3
3 b

√
2 π

ǫ∗ 21

(√
2 ǫ∗1MPl

f

)3/2

×
{[

−k1 k2 k3 +
k

T
(k21 + k22 + k23)

X2
res

]

sin

(
φk

f

)

+

[
k21 (k2 + k3) + k22 (k3 + k1) + k23 (k1 + k2)

Xres

]

cos

(
φk

f

)}

. (2.43)

This expression for the bispectrum, when combined with the contribution to the scalar
bispectrum during slow roll inflation [cf. Eqs. (1.108)], gives the complete expression
for the scalar bispectrum in the axion monodromy model. Subsequently, when the non-
Gaussianity parameter f

NL
is evaluated for this model, its amplitude is found to be rather

large [83], which is incompatible with the Planck constraints [cf. Eqs. (1.120)] [64]. How-
ever, it should be noted that, as discussed in Subsec. 1.5.6, the constraints from Planck
on the non-Gaussianity parameters have been arrived at by considering certain partic-
ular shapes for the non-Gaussianities. Since the shape of f

NL
obtained from the axion

monodromy model is quite different from the templates considered by Planck, the earlier
constraints do not apply to this case and the specific shape of f

NL
obtained in this model

has to be compared separately with the data.

Let us now discuss the behavior of the scalar bispectrum in the squeezed limit. In this
limit, where k1 = −k2 = k and k3 → 0, up to a k-independent phase, we obtain,

k3 k33 GRRR(k,−k,k3) =
H4

I

16M4
Pl

3 b
√
2 π

ǫ∗ 21

(√
2 ǫ∗1MPl

f

)1/2

cos

(
φk

f

)

. (2.44)

Let us now verify the consistency relation for the scalar bispectrum. The relation (1.117a)
can be rewritten as

k3 k33 GRRR(k,−k,k3) = −(2 π)4

4
(n

S
− 1) P

S
(k)P

S
(k3). (2.45)

At the linear order in b, the right hand side of this equation can be obtained to be

− (2 π)4

4
(n

S
− 1) P

S
(k)P

S
(k3) ≃ −(2 π)4

4
nc

S
P0

S
(k)P0

S
(k3). (2.46)

Using Eqs. (2.31) and (2.29) to evaluate this expression and comparing with Eq. (2.44),
we find that, up to a k-independent phase factor, the consistency relation for the scalar
bispectrum holds true.
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2.4 Analytical template for the scalar-scalar-tensor cross-

correlation

In this section, we shall first arrive at an analytical expression for the scalar-scalar-tensor
three-point function. Then, in order to illustrate the accuracy of the analytical results, we
shall compare them with the exact numerical results.

2.4.1 Analytical evaluation of the three-point function

Among the three different contributions to the scalar-scalar-tensor three-point function,
the term G1

RRγ(k1,k2,k3) [cf. Eq. (1.98a)] is linear in the first slow roll parameter ǫ1 and
hence it dominates over the other two terms [cf. Eqs. (1.98b) and (1.98c)], both of which are
quadratic in ǫ1. The term G1

RRγ(k1,k2,k3) can be decomposed into a slow roll part, which
is zeroth order in b, and terms involving b. The contribution when b = 0 corresponds to
the standard slow roll result [cf. Eq. (1.109)] and it can be easily evaluated using the de
Sitter modes [79].

Let us now turn to the contributions involving b. As we have discussed, we shall ig-
nore terms which are of higher order in b and focus only on the contributions that are
linear in b. Even amongst the various terms which are linear in b, we shall further restrict
ourselves to terms which are of the leading order in f φ∗/M

2
Pl

. In the case of the scalar
bispectrum, as we have discussed, the dominant contribution arises due to a term depen-
dent on ǫ̇2, which grows to be quite large in the axion monodromy model. This in turn
boosts the scalar bispectrum and the corresponding non-Gaussianity parameter to rather
significant values [117]. Moreover, since ǫ̇2 becomes large, it proves to be sufficient to
work with the de Sitter modes to evaluate the dominant contribution. In contrast, in the
case of the scalar-scalar-tensor cross-correlation, apart from the correction to the slow roll
parameter ǫ∗1 (viz. ǫc1), we have to take into account the modification to the de Sitter modes,
which are quantified by ck and dk. It should be clear that, at the linear order in b, there
arise four contributions due to ck and dk, two from the ck(x) and dk(x) inside the integral
[cf. Eq. (1.98a)] and two others due to the terms ck(0) and dk(0) outside [cf. Eq. (1.97)].
One finds that dk/ck ∼ f/φ∗, which is a small quantity. Therefore, one can actually ig-
nore the terms involving dk and retain only those containing ck. Under these conditions,
at the first order in b, we can write the expression for the scalar-scalar-tensor three-point
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function as

G
1(1)
RRγ(k1,k2,k3) = M2

Pl
Πk3

m3n3,ij
n̂1i n̂2j

{

−2 i k1 k2

[

f+
k1
(0) f+

k2
(0) h+k3(0)

∫ 0

−∞

dη a2

×
(
ǫ∗1 c

∗
k1 f

+
k1
f+∗
k2
h+∗
k3

+ ǫ∗1 c
∗
k2 f

+∗
k1
f+
k2
h+∗
k3

+ ǫc1 f
+∗
k1
f+∗
k2
h+∗
k3

)

+
(
ck1(0) f

+∗
k1

(0) f+
k2
(0) h+k3(0) + ck2(0) f

+
k1
(0) f+∗

k2
(0) h+k3(0)

)

×
∫ 0

−∞

dη a2 ǫ∗1 f
+∗
k1
f+∗
k2
h+∗
k3

]

+ complex conjugate

}

. (2.47)

Let us first consider the term containing ǫc1 in the above expression. At the linear order
in b and f φ∗/M

2
Pl

, we have

G
1(1a)
RRγ(k1,k2,k3) = Πk3

m3n3,ij
n̂1i n̂2j

[

H4
I

8M4
Pl
ǫ∗21

−i k1 k2
(k1 k2 k3)3

∫ 0

−∞

dη

η2
ǫc1

(

1− ik
T
η

− (k1 k2 + k2 k3 + k3 k1) η
2 + i k1 k2 k3η

3

)

ei kT η

+complex conjugate

]

, (2.48)

where we have used the expressions (2.20) and (2.34) for the modes fk and hk in Eqs. (1.97)
and (1.98a). We can use the expressions (2.13) and (2.24) and substitute x = −k

T
η for

performing the above integrals. Each of these integrals are found to be of the following
form:

I1(k1, k2, k3, Xres, f) =

∫ ∞

0

dx q(x) e−i x
{

ei [(φk
T
/f)+Xres lnx] + e−i [(φk

T
/f)+Xres lnx]

}

, (2.49)

where q (x) is some polynomial function of x. The two terms in the above integral can be
expressed in terms of the Gamma functions. However, we find that, for small f φ∗/M

2
Pl

,
the contribution due to the second term is exponentially suppressed when compared to
the first term and hence can be ignored. Under this assumption, we can evaluate the
integrals in Eq. (2.48) to obtain

G
1(1a)
RRγ(k1,k2,k3) = Πk3

m3n3,ij
n̂1i n̂2j

H4
I

4M4
Pl
ǫ∗1

3 b
√
2 π√

Xres

k1 k2
(k1 k2 k3)3

×
{

k
T

1 +X2
res

[

− sin

(
φk

T

f
+ β2

)

+
1

Xres
cos

(
φk

T

f
+ β2

)]

− k
T

Xres
cos

(
φk

T

f
+ β2

)

+
k1 k2 + k2 k3 + k3 k1

k
T

sin

(
φk

T

f
+ β2

)

+
k1 k2 k3
k2

T

[

Xres cos

(
φk

T

f
+ β2

)

+ sin

(
φk

T

f
+ β2

)]}

, (2.50)
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where the phase factor β2 is given by β2 = Xres lnXres −Xres − π/4.

Let us now consider the terms containing ck in Eq. (2.47). We shall consider terms
involving both ck(0) as well as ck(η). We can substitute the expressions for the modes f+

k

and h+k [cf. Eqs. (2.19) and (2.33)] to obtain the contributions due to these terms to be

G
1(1b)
RRγ(k1,k2,k3) = Πk3

m3n3,ij
n̂1i n̂2j

{

iH4
I

8M4
Pl
ǫ∗1

k1 k2
(k1 k2 k3)3

[∫ 0

−∞

dη

η2
c∗k1(η)

×
(

1− i k
T1
η

︸ ︷︷ ︸

I

+ (k1 k2 − k2 k3 + k3 k1) η
2 − i k1 k2 k3 η

3

︸ ︷︷ ︸

II

)

ei kT1
η

+ ck1(0)

∫ 0

−∞

dη

η2

(

1− i k
T
η

︸ ︷︷ ︸

I

− (k1 k2 + k2 k3 + k3 k1) η
2

︸ ︷︷ ︸

II

+ i k1 k2 k3 η
3

︸ ︷︷ ︸

II

)

ei kT η

]

+ complex conjugate

}

+a similar term with k1 and k2 exchanged, (2.51)

where k
T1

= k
T
− 2 k1. Let us first consider the integrals which have been highlighted

as (I) in the above equation. The integrals involving c∗k1(η) are found to diverge as η → 0

[note that ck(η) is given by Eq. (2.26)]. However, as we shall soon see, their complete
contribution to the three-point function proves to be finite in the limit. Therefore, we
initially set the upper limit of the integrals to be, say, ηe (which denotes the conformal time
at the end of inflation), and eventually consider the ηe → 0 limit. We also evaluate the
integrals containing ck1(0) in the same fashion. Thereafter, we combine all the integrals
marked as (I), add the resultant expressions to their complex conjugates, and take the
ηe → 0 limit to finally arrive at the corresponding contribution to the scalar-scalar-tensor
cross-correlation. We find that the contributions due to the terms marked as (I) can be
written as

G
1(1bI)
RRγ (k1,k2,k3) = Πk3
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{
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η) ei kT1

η
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}
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H4
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4M4
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3 b
√
2 π√
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k1 k2
(k1 k2 k3)3

(k2 + k3) sin

(
φk1

f
+ β1

)

, (2.52)

where, to obtain the final result, we have made use of the expression (2.27) for ck1(0).
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We can now consider the integrals which have been indicated as (II) in Eq (2.51). We
switch to the variable x = −k1 η and substitute for ck1(η) from Eq. (2.26). Note that the
expression for ck1(η) involves the incomplete Gamma function [cf. Eq. (2.26)]. These terms
contain integrals of the following form:

I2 (k1, k2, k3, Xres) =

∫ ∞

0

dxu(x) ev(x) Γ (1 + iXres, 2 i x) , (2.53)

where u(x) and v(x) are some polynomial functions of x and Γ (1 + iXres, 2 i x) is the in-
complete Gamma function [58]. We find that these integrals can be evaluated if we make
use of the integral representations for the incomplete Gamma function and interchange
the order of the integrals as follows:

∫ ∞

0

dxu(x) ev(x)
∫ ∞

2 i x

dy yiXres e−y =

∫ ∞

0

dy yiXres e−y

∫ y

0

dp

2 i
u
( p

2 i

)

ev(p/2 i), (2.54)

where we have set p = 2 i x. The complete contribution due to the terms marked as (II) is
found to be
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+a similar term with k1 and k2 exchanged. (2.55)

The sum of the contributions (2.50), (2.52) and (2.55) together with the contribu-
tion (1.109) gives the complete contribution to the scalar-scalar-tensor cross-correlation
under the approximations we have worked with [121].
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2.4.2 Comparison with the numerical results

In order to illustrate the accuracy of our analytical calculations, we shall now compare
our analytical results that have been arrived at under certain approximations with the
exact results obtained numerically. We have obtained the numerical results using a code
developed earlier (for details about the code, see Ref. [76]). In fact, we shall compare
the results for the corresponding non-Gaussianity parameter CR

NL
[cf. Eq. (1.106b)]. In

Fig. 2.1, we have plotted the analytical and the exact numerical results for two sets of
values of the parameters involved. We have chosen values for the parameters such that
the approximations we have worked with are valid.

In these plots, the x-axis corresponds to the ratio of the amplitudes of k3 and k1, while
the y-axis corresponds to the ratio of the amplitudes of k2 and k1. For the case of three-
point functions involving perturbations of similar nature, such as the scalar and tensor
bispectra, due to the symmetrical nature of these three-point functions, it is sufficient to
construct these density plots over the domain 0.0 < k3/k1 < 1.0 and 0.5 < k2/k1 < 1.0.
However, for the cases of three-point functions involving one mode of a nature dissim-
ilar from the other two, such as in the case of the three-point function with two scalar
modes and one tensor mode that we are studying here, we find that the above ranges of
ratios of the wavenumbers do not adequately represent all the various combinations of
wavenumbers that can arise in such a context. Therefore, in Fig. 2.1, we have plotted the
CR

NL
parameter over the ranges 0.0 < k3/k1 < 2.0 and 0.0 < k2/k1 < 1.0. These values of

the ratios of wavenumbers can satisfactorily represent the entire range of triangular con-
figuration of wavevectors of our interest. It is evident from the figures that the analytical
results match the numerical ones quite well.

2.5 The squeezed limit and the consistency relation

In this section, we shall discuss the behavior of the scalar-scalar-tensor three-point func-
tion in the so-called squeezed limit. In the case of the scalar-scalar-tensor three-point
function, when the wavenumber of the tensor mode is considered to be much smaller
than the two scalar modes, it is found that the three-point function can be completely
expressed in terms of the scalar and tensor power spectra through the relation (1.117b).
This condition can essentially be expressed as

k3 k33 G
m3n3

RRγ (k,−k,k3) = −Πk3

m3n3,ij
n̂i n̂j

(2 π)4

4

(
n

S
− 4

8

)

P
S
(k)P

T
(k3), (2.56)

with the limit k3 → 0 kept in mind. In what follows, using the analytical results we have
obtained for the power spectra and the scalar-scalar-tensor cross-correlation, we shall ex-
plicitly show that such a consistency relation is indeed satisfied in the axion monodromy
model.
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Figure 2.1: A comparison of the analytical results (on the left) with the numerical results
(on the right) for the non-Gaussianity parameter CR

NL
(k1,k2,k3) characterizing the scalar-

scalar-tensor three-point function. We have plotted the results for two sets of values of
the parameters involved. We have chosen (µ/M

Pl
)3 = 2.512 × 10−10 in arriving at all

these figures. The results in the top row correspond to b = 1.063 × 10−2 and f/M
Pl

=
7.6346× 10−3, which are values that lead to the best fit to the Planck 2015 data [111]. The
results in the bottom row correspond to b = 5.0 × 10−2 and f/M

Pl
= 7.6346 × 10−4. We

find that the analytical results match the numerical results very well for both these sets of
values. In fact, we find that the match is about 5% over the range of wavenumbers that we
have considered. Note that, as expected, the non-Gaussianity parameter CR

NL
(k1,k2,k3)

exhibits more oscillations for smaller values of f , as is illustrated by the figures in the
bottom row. Also, the strength of these oscillations is more for larger values of b.

Let us now consider the squeezed limit of the three-point function we have arrived at
analytically. In the limit k1 = −k2 = k and k3 → 0, at the leading order in Xres, we find
that the three-point function at the order b [i.e. the sum of the contributions (2.50), (2.52)
and (2.55)] reduces to

k3 k33 G
1(1)
RRγ(k,−k,k3) = Πk3

m3n3,ij
n̂i n̂j

H4
I

8 iM4
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√
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/2 k)]−iXres

1 + (k
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/2 k)

− 1

}

− e−i φk/f

{

[1 + (k
T1
/2 k)]iXres

1 + (k
T1
/2 k)

− 1

})

, (2.57)
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where, recall that, k
T1

= k
T
− 2 k1. Hence, in the squeezed limit, k

T1
→ 0. Therefore, we

can expand the terms (1 + k
T1
/2 k)±iXres in the above equation up to the first order in k

T1

to obtain the following expression for the three-point function:

k3 k33 G
1(1)
RRγ(k,−k,k3) = −Πk3

m3n3,ij
n̂i n̂j

3 bH4
I

√
2 π

8M4
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X1/2
res cos

(
φk

f

)

. (2.58)

We should mention that, in arriving at this expression, we have ignored a k-independent
phase.

Let us now turn to the right hand side of the relation (2.56). Up to the linear order in b,
we can have four combinations of the various terms, given by
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S
(k)P0

T
(k3), (2.59)

where P0
S
(k) and P0

T
(k) and n0

S
are the scalar and the tensor power spectra and the scalar

spectral index, respectively, which arise in the absence of oscillations in the axion mon-
odromy model. Note that Pc

T
(k) involves terms of order dk and, as we have discussed

before, these terms are of lower order when compared to the other terms involving ck.
Hence, for consistency, we can ignore the contribution due to Pc

T
(k) in the above equa-

tion. Therefore, we finally obtain that
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P0
S
(k)P0

T
(k3). (2.60)

The first term in the above expression is the slow roll term for which the consis-
tency relation involving the b = 0 contribution to the scalar-scalar-tensor cross corre-
lation [cf. Eq. (1.109)] can be verified easily [70, 79]. On evaluating the remaining two
terms, we find that the one involving nc

S
is of leading order, as the other term is sup-

pressed relative to this by a factor of Xres. Hence, at the leading order in b, we can replace
[(n

S
− 4) /8] P

S
(k)P

T
(k3) by

(
nc

S
/8
)
P0

S
(k)P0

T
(k3) in Eq. (2.56). Upon making this replace-

ment, the consistency relation at the linear order in b can be written as

k3 k33 G
1(1)
RRγ(k,−k,k3) = −Πk3

m3n3,ij
n̂1i n̂1j

(2 π)4

4

(
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S

8
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P0
S
P0

T
. (2.61)

Now, on substituting the expression for nc
S

[cf. Eqs. (2.31)] and the slow roll amplitudes
for the scalar and tensor power spectra [cf. Eqs. (2.29) and (2.39)] in the above expression,
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we find that the resultant expression is the same as that obtained in Eq. (2.58), up to
a k-independent phase. This implies that the consistency relation is valid in the axion
monodromy model even in the presence of persistent oscillations in the two as well as
the three-point functions [79].

2.6 Discussion

The axion monodromy model is described by a linear potential with small periodic mod-
ulations. The modulations in the potential lead to oscillations in the slow roll parameters.
These oscillations associated with the background resonate with the oscillations of the
scalar and tensor perturbations at sub-Hubble scales for suitable values of the parameters
of the model. This resonance leads to persistent oscillations in the two and three-point
functions. The scalar and tensor power spectra as well as the scalar bispectrum have been
analytically evaluated earlier in the axion monodromy model under certain approxima-
tions.

In terms of their hierarchy, after the scalar bispectrum, the scalar-scalar-tensor cross-
correlation proves to be the most important of the three-point functions. In this chapter,
we have analytically calculated the scalar-scalar-tensor three-point function in the axion
monodromy model in the same approximation under which the scalar and tensor power
spectra and the scalar bispectrum have been evaluated earlier. We find that the analytical
results we have obtained match the corresponding numerical results very well for a range
of the parameters involved. Subsequently, using the analytical results, we have also been
able to explicitly verify the consistency relation governing the three-point function.

The template that we have obtained here can be used to compare the inflationary mod-
els with the CMB data at the level of three-point functions involving the tensor pertur-
bations (in this context, see the recent work, Ref. [122]). Clearly, it will be interesting to
extend our analysis to the scalar-tensor-tensor three-point function as well as the tensor
bispectrum. We find that the tensor bispectrum can be easily evaluated using the methods
adopted here. However, comparison with the corresponding numerical results suggest
that these methods do not prove to be adequate to evaluate the scalar-tensor-tensor three-
point function to the same level of accuracy. Also, for instance, the consistency relation
for the scalar-tensor-tensor three-point function does not seem to hold under the approx-
imations adopted here. These approximations need to be extended in order to evaluate
the scalar-tensor-tensor cross-correlation analytically to a good level of accuracy. We are
currently investigating this issue.
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Chapter 3

The tensor bispectrum in a matter bounce

3.1 Introduction

As we have already discussed in the introductory chapter, bouncing models correspond
to situations wherein the universe initially goes through a period of contraction until the
scale factor reaches a certain minimum value before transiting to the expanding phase.
They offer an alternative to inflation to overcome the horizon problem, as they permit
well motivated, Minkowski-like initial conditions to be imposed on the perturbations
at early times during the contracting phase (see, for instance, Refs. [30, 32, 33, 37, 38, 42,
46–50]; for reviews, see Refs. [51, 52]). Interestingly, certain bouncing scenarios can lead
to nearly scale invariant perturbation spectra (see, for example, Refs. [37, 49, 50]), as is
required by observations [6–9]. For instance, a bouncing model wherein the universe
goes through a contracting phase as driven by matter – referred to as a matter bounce –
is known to lead to an exactly scale invariant spectrum of tensor perturbations as in de
Sitter inflation [47–49]. Clearly, it will be worthwhile to examine if non-Gaussianities can
help us discriminate between such scenarios [45, 123, 124].

The most dominant of the non-Gaussian signatures are the non-vanishing three-point
functions involving the scalars as well as the tensors [66–69, 71, 76]. In order to drive
a bounce, it is well known that one requires matter fields that violate the null energy
condition. Therefore, analyzing the evolution of the scalar perturbations requires suitable
modeling of the matter fields [51, 52]. In contrast, the tensor perturbations depend only
on the scale factor and hence are simpler to study. For this reason, we shall focus on the
tensor bispectrum in this chapter. Further, we shall assume a specific functional form for
the scale factor and we shall not attempt to construct sources that can give rise to such a
behavior.

An interesting aspect of the three-point functions is their property in the so-called
squeezed limit wherein the wavelength of one of the three modes involved is much larger
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than the other two [66, 81–84]. In this limit, under fairly general conditions, it is known
that the three-point functions can be expressed completely in terms of the two-point func-
tions via a relation that is referred to as the consistency condition, as we have discussed
earlier. We should mention that, while the scalar consistency relation has drawn most
of the attention, it has been established that all the four three-point functions involving
scalars and tensors satisfy similar relations under certain conditions [68–70,79]. It is inter-
esting to examine if the three-point functions generated in the bouncing scenarios satisfy
the consistency condition. In the context of inflation, it is well known that the consistency
relations arise due to the fact that the amplitude of the long wavelength mode freezes
on super-Hubble scales. In contrast, in a bouncing universe, it can be readily shown that
the amplitude of the long wavelength mode grows sharply as one approaches the bounce
during the contracting phase. This behavior suggests that the consistency relation may
not hold in bouncing models [123]. The primordial consistency conditions lead to cor-
responding imprints on the anisotropies in the cosmic microwave background (see, for
instance, Refs. [125]; in particular, see Ref. [126] for the signatures of the tensor modes)
and the large scale structure (see, for example, Refs. [127]). It is clear that the consistency
condition, if confirmed by observations, can help us discriminate between models of the
early universe.

The most comprehensive formalism to study the generation of non-Gaussianities in
the early universe is the approach due to Maldacena [66], as we discussed in Sec. 1.5.
In this chapter, we analytically evaluate the tensor bispectrum in a matter bounce using
the Maldacena formalism. To arrive at the tensor bispectrum analytically, apart from the
behavior of the tensor modes, one also needs to be able to evaluate a certain integral
involving the scale factor and the tensor modes. We conveniently divide the evolution
into two domains and use the analytical solutions available in these domains to carry out
the integrals and obtain the tensor bispectrum.

This chapter is organized as follows. In the following section, considering a specific
form for the scale factor, we shall divide the time period of our interest into two domains,
the first corresponding to early times during the contracting phase and the other close to
and across the bounce. We shall describe the analytical solutions for the tensor modes
during these two domains, both before and after the bounce, to arrive at the correspond-
ing tensor power spectrum over wavenumbers much smaller than the wavenumber as-
sociated with the bounce. We shall also compare the analytical solutions for the tensor
modes with the corresponding results obtained numerically. In Sec. 3.3, we shall evalu-
ate the tensor bispectrum using the analytical solutions to the modes and the behavior
of the scale factor in the two domains. We shall calculate the bispectrum for an arbitrary
triangular configuration of the wavevectors. In Sec. 3.4, we shall illustrate the results in
the equilateral and the squeezed limits. We shall also plot the non-Gaussianity parameter
h

NL
that characterizes the tensor bispectrum for an arbitrary triangular configuration of

the wavevectors. We shall show that h
NL

is very small for cosmological scales and that
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the consistency relation is violated in the squeezed limit. We shall conclude with a brief
discussion in Sec. 3.5.

3.2 The tensor modes and the power spectrum

As discussed previously in Chap. 1, we shall assume that the scale factor describing the
bouncing scenario is given in terms of the conformal time coordinate η by the relation

a(η) = a0
(
1 + η2/η20

)
= a0

(
1 + k20 η

2
)
, (3.1)

where a0 is the minimum value of the scale factor at the bounce (i.e. when η = 0) and
η0 = k−1

0 denotes the time scale that determines the duration of the bounce. Note that, at
very early times, viz. when η ≪ −η0, the scale factor behaves as in a matter dominated
universe (i.e. as a ∝ η2) and, for this reason, such a bouncing model is often referred to as
a matter bounce. It should be mentioned that the wavenumbers of cosmological interest
are expected to be 25–30 orders of magnitude smaller than the wavenumber k0.

The tensor modes hk satisfy the differential equation (1.61). If we write hk = uk/a,
then the modes uk satisfy the equation (1.62). The quantity a′′/a corresponding to the
scale factor (3.1) is given by

a′′

a
=

2 k20
1 + k20 η

2
, (3.2)

which has essentially a Lorentzian profile. Note that the quantity a′′/a exhibits a maxi-
mum at the bounce, with the maximum value being of the order of k20. Also, it goes to
zero as η → ±∞. For modes of cosmological interest, one finds that k2 ≫ a′′/a at suitably
early times (i.e. as η → −∞). In this domain, the quantity uk oscillates and we can impose
the standard initial conditions on these modes and study their evolution thereafter.

Let us divide the time period of our interest into two domains, a domain correspond-
ing to early times and another closer to and across the bounce. Let the first domain be
determined by the condition −∞ < η < −α η0, where α is a relatively large number,
which we shall set to be, say, 105. The second domain corresponds to −α η0 < η < β η0,
where β = 102 (the reason for this choice will be explained later). In the first domain, we
can assume that the scale factor behaves as

a(η) ≃ a0 k
2
0 η

2, (3.3)

so that a′′/a = 2/η2. Since the condition k2 = a′′/a corresponds to, say, ηk = −
√
2/k, the

initial conditions can be imposed when η ≪ ηk. The modes hk can be easily obtained
in such a case and the positive frequency modes that correspond to the vacuum state at
early times are given by [47–49]

hk(η) =

√
2

M
Pl

1√
2 k

1

a0 k
2
0 η

2

(

1− i

k η

)

e−i k η. (3.4)
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Let us now consider the behavior of the modes in the second domain, i.e. when −α η0 <
η < β η0. Since we are interested in scales much smaller than k0, we shall assume that
ηk ≪ −α η0, which corresponds to the condition k ≪ k0/α. Therefore, in this domain, for
scales of cosmological interest, the equation governing the tensor mode hk reduces to

h′′k +
2 a′

a
h′k ≃ 0. (3.5)

This equation can be immediately integrated to yield

h′k(η) ≃ h′k(η∗)
a2(η∗)

a2(η)
, (3.6)

where η∗ is a suitably chosen time and the scale factor a(η) is given by the complete ex-
pression (3.1). On further integration, we obtain that

hk(η) = hk(η∗) + h′k(η∗) a
2(η∗)

∫ η

η∗

dη̃

a2(η̃)
, (3.7)

where we have chosen the constant of integration to be hk(η∗). If we choose η∗ = −α η0,
we can make use of the solution (3.4) to determine hk(η∗) and h′k(η∗). Note that, in the
domain of interest, the first term in the above expression is, evidently, a constant, while
the second term grows rapidly as one approaches the bounce. Upon using the form (3.1)
of the scale factor, we find that we can express the behavior of the mode hk in the second
domain as

hk = T1k + T2k g1(k0 η), (3.8)

where the function g1(x) is defined as

g1(x) =
x

1 + x2
+ tan−1 x, (3.9)

while the quantities T1k and T2k are given by

T1k =
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M
Pl
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2 k

1

a0 α2

(

1 +
i k0
α k

)

ei α k/k0 + T2k g(α), (3.10)

T2k =

√
2

M
Pl

1√
2 k

1

2 a0 α2

(
1 + α2

)2
(
3 i k0
α2 k

+
3

α
− i k

k0

)

ei α k/k0 . (3.11)

We should highlight the fact that, whereas the bounce (3.1) is a symmetric one, the
solution (3.8) is asymmetric in η. Moreover, one may have naively expected the amplitude
of the long wavelength modes to freeze once the universe starts expanding. This is largely
true, though not completely so, and the behavior can possibly be attributed to the specific
form of the scale factor (3.1). Note that, after the bounce, while the first term in g1(k0 η)

decays, the second term actually grows, albeit extremely mildly. We shall assume that,
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after the bounce, the universe transits to the conventional radiation domination epoch
at, say, η = β η0, where we shall set β ≃ 102. We should mention that this choice is
somewhat arbitrary and we shall discuss the dependence of the tensor power spectrum
and the bispectrum on β in due course.

In order to understand the extent of accuracy of the approximations involved, it would
be worthwhile to compare the above analytical results for the mode hk with the corre-
sponding numerical results. Clearly, given the scale factor (3.1), it is a matter of integrat-
ing the differential equation (1.61), along with the standard Bunch-Davies initial condi-
tions, to arrive at the behavior of hk. The conformal time coordinate does not prove to
be an efficient time variable for numerical integration, particularly when a large range
in the scale factor needs to be covered. In the context of inflation, it is often the e-fold
N , defined as a(N) = a0 expN , where N = 0 is a suitable time at which the scale factor
takes the value a0, that is utilized to integrate the equations of motion (see, for instance,
Refs. [78,108,128]). Due to the exponential factor involved, a small range in e-folds covers
a large range in time and scale factor. However, since eN is a monotonically increasing
function, while it is useful to describe expanding universes, e-folds are not helpful in
characterizing bouncing scenarios. In order to characterize a bounce, it would be conve-
nient to choose a variable that is negative during the contracting phase of the universe,
zero at the bounce and positive during the expanding phase. We shall choose to perform
the integration using a new variable N , which we call the e-N-fold, in terms of which the
scale factor is defined as a(N ) = a0 exp (N 2/2) [55]. We shall assume that N is zero at
the bounce, with negative values representing the phase prior to the bounce and positive
values after.

In terms of the e-N-folds, the differential equation (1.61) governing the evolution of
the tensor modes can be expressed as

d2hk
dN 2

+

(

3N +
1

H

dH

dN − 1

N

)
dhk
dN +

(
kN
aH

)2

hk = 0, (3.12)

where H = a′/a2 is the Hubble parameter. Given the scale factor (3.1), the corresponding
Hubble parameter can be easily evaluated in terms of the conformal time η. In order to
express the Hubble parameter H in terms of the e-N-fold, we shall require η as a function
of N . Upon using the definition of the e-N-folds and the expression (3.1) for the scale
factor, we obtain that

η(N ) = ± k−1
0

(

eN
2/2 − 1

)1/2

. (3.13)

Since the Hubble parameter is negative during the contracting phase and positive dur-
ing the expanding regime, we have to choose the root of η(N ) accordingly during each
phase. From the expression for the Hubble parameter, we evaluate the coefficients of the
differential equation (3.12) in terms of N . With the coefficients at hand, we numerically
integrate the differential equation using a fifth order Runge-Kutta algorithm. We should
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mention that we have also independently checked the numerical results using Mathemat-
ica [129]. Recall that, the initial conditions are imposed in a domain during the contracting
phase wherein k2 ≫ a′′/a. As is done in the context of inflation, we shall impose the ini-
tial conditions when k = 102

√

(a′′/a) corresponding to, say, the e-N-fold Ni. It should
be pointed out that the initial conditions on the different modes are imposed at differ-
ent times. In terms of the e-N-folds, the standard Bunch-Davies initial conditions can be
expressed as

hk

∣
∣
∣
∣
Ni

=
1

a(Ni)
√
2k
, (3.14a)

dhk
dN

∣
∣
∣
∣
Ni

= − iNi

a2(Ni)H(Ni)

√

k

2
− Ni

a(Ni)
√
2k
. (3.14b)

We impose these initial conditions well before the bounce and evolve the modes until a
suitable time after the bounce. The tensor mode hk evaluated in such a manner has been
plotted for a given wavenumber (such that k/k0 ≪ 1) in Fig. 3.1. The figure also contains
a plot of the analytical results (3.4) and (3.8) for the same wavenumber. As is evident
from the figure, prior to the bounce and immediately after, the analytical results match
the exact numerical results exceedingly well.

The tensor power spectrum after the bounce can be calculated using the solutions we
have obtained. Recall that the tensor power spectrum is defined as in Eq. (1.65), with the
spectrum to be evaluated at a suitable time. If we evaluate the tensor power spectrum at
η = β η0, we find that it can be expressed as

P
T
(k) = 4

k3

2 π2
|T1k + T2k g1(β)|2. (3.15)

Note that, α is a quantity that we have artificially introduced and the actual problem does
not contain α. For k ≪ k0/α and a sufficiently large α (as we had said, for α = 105 or so),
the above power spectrum reduces to a scale invariant form with a weak dependence
on β, if β is reasonably larger than unity. If we further assume that β is large enough
(say, 102), then the scale invariant amplitude is found to be: P

T
(k) ≃ 9 k20/(2M

2
Pl
a20), as

expected [47–49]. In Fig. 3.2, we have plotted the complete tensor power spectrum de-
scribed by the expression (3.15) for a given set of parameters. We should stress that the
power spectrum is actually valid only for modes which satisfy the condition k ≪ k0/α. It
is evident from the figure that the power spectrum is strictly scale invariant over this do-
main. Moreover, we find that the spectrum indeed reduces to the above-mentioned scale
invariant amplitude for small values of the wavenumbers. We have also evaluated the
tensor power spectrum numerically using the method described above. We have com-
puted the spectrum at a given time soon after the bounce (corresponding to β = 102) for
all the modes. We find that, for wavenumbers such that k ≪ k0, the numerical analysis
also leads to a scale invariant spectrum whose amplitude matches the above analytical
result to about 1%.
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Figure 3.1: A comparison of the numerical results (in blue) with the analytical results (in
red) for the amplitude of the tensor mode |hk| corresponding to the wavenumber k/k0 =
10−20. We have set k0/(a0MPl

) = 10−5 and, for plotting the analytical results, we have
chosen α = 105. We have plotted the results from the initial e-N-fold Ni [when k =

102
√

(a′′/a)] corresponding to the mode. While we have illustrated the exact numerical
result till rather late times, we have plotted the analytical results until a time after the
bounce when the power spectrum is evaluated. Evidently, the analytical and numerical
results match extremely well, suggesting that the analytical approximation for the modes
works to a very good accuracy.
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Figure 3.2: The behavior of the tensor power spectrum has been plotted as a function of
k/k0 for a wide range of wavenumbers. In plotting this figure, we have set k0/(a0MPl

) =
10−5, α = 105 and β = 102. We should emphasize that the approximations we have
worked with are valid only over the domain wherein k ≪ k0/α. Clearly, the power
spectrum is scale invariant in this domain. We also find that, at small wavenumbers, the
tensor power spectrum has the expected scale invariant amplitude of P

T
(k) = 4.5× 10−10

corresponding to k0/(a0MPl
) = 10−5.
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3.3 Evaluating the tensor bispectrum

Our aim in this chapter is to evaluate the magnitude and shape of the tensor bispectrum
and the corresponding non-Gaussianity parameter and compare with, say, the results in
de Sitter inflation. Therefore, for simplicity, we shall set the polarization tensor to unity.
In such a case, the expression (1.103) for the tensor bispectrum simplifies to

Gγγγ(k1,k2,k3) = M2
Pl

[
hk1(ηe) hk2(ηe) hk3(ηe) Ḡγγγ(k1,k2,k3)

+ complex conjugate
]
, (3.16)

where the quantity Ḡγγγ(k1,k2,k3) is described by the integral

Ḡγγγ(k1,k2,k3) = − i

4

(
k21 + k22 + k23

)
∫ ηe

ηi

dη a2 h∗k1 h
∗
k2 h

∗
k3 . (3.17)

We shall choose ηi to be an early time during the contracting phase when the initial con-
ditions are imposed on the modes (i.e. when k2 ≫ a′′/a), and ηe to be a suitably late time,
say, some time after the bounce, when the bispectrum is evaluated. If we ignore the fac-
tors involving the polarization tensor, the expression for the non-Gaussianity parameter
h

NL
[cf. Eq. (1.106d)] reduces to

h
NL
(k1,k2,k3) = −

(
4

2 π2

)2
[
k31 k

3
2 k

3
3 Gγγγ(k1,k2,k3)

]

×
[

2 k33 PT
(k1)PT

(k2) + two permutations

]−1

. (3.18)

With the forms of the scale factor and the mode functions [cf. Eqs. (3.4) and (3.8)] at
hand, in order to arrive at the tensor bispectrum, it is now a matter of evaluating the
integral (3.17) in the two domains.

Let us begin by considering the first domain. Upon using the behavior (3.3) of the scale
factor and the mode (3.4) in the first domain, we find that the quantity Ḡγγγ(k1,k2,k3) can
be expressed as

Ḡ1
γγγ(k1,k2,k3) =

−i (k21 + k22 + k23)

4M3
Pl
a0 k

2
0

√
k1 k2 k3

[

Q2(kT
, k0, α) + i

(
1

k1
+

1

k2
+

1

k3

)

Q3(kT
, k0, α)

−
(

1

k1 k2
+

1

k2 k3
+

1

k1 k3

)

Q4(kT
, k0, α)−

i

k1 k2 k3
Q5(kT

, k0, α)

]

,

(3.19)

where the quantities Qm(kT
, k0, α) are described by the integrals

Qm(kT
, k0, α) =

∫ −α/k0

−∞

dη

ηm
ei kT η. (3.20)
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For m > 1, these integrals can be evaluated to yield

Qm+1(kT
, k0, α) = − 1

m

(

−k0
α

)m

e−i α k
T
/k0 +

i k
T

m
Qm(kT

, k0, α), (3.21)

while Q1(kT
, k0, α) is given by

Q1(kT
, k0, α) = i π + Ei(−i α k

T
/k0), (3.22)

where Ei(z) is the exponential integral function [58].

Let us now turn to evaluating Ḡγγγ(k1,k2,k3) in the second domain. Upon using the
behavior (3.1) of the scale factor and the mode (3.8), we find that the quantity can be
expressed as

Ḡ2
γγγ(k1,k2,k3) = −i a

2
0 (k21 + k22 + k23)

4 k0

[

B∗
1k1 B

∗
1k2 B

∗
1k3 J0(α, β)

+
(
B∗

1k1
B∗

1k2
B∗

2k3
+B∗

1k1
B∗

2k2
B∗

1k3
+B∗

2k1
B∗

1k2
B∗

1k3

)
J1(α, β)

+
(
B∗

1k1
B∗

2k2
B∗

2k3
+B∗

2k1
B∗

1k2
B∗

2k3
+B∗

2k1
B∗

2k2
B∗

1k3

)
J2(α, β)

+B∗
2k1

B∗
2k2

B∗
2k3

J3(α, β)

]

, (3.23)

where Jn(α, β) are described by the integrals

Jn(α, β) =

∫ β

−α

dx
(
1 + x2

)2
gn1 (x), (3.24)

with the function g1(x) being given by Eq. (3.9). The integrals J0(α, β) and J1(α, β) can be
readily evaluated to obtain that

J0(α, β) = α +
2α3

3
+
α5

5
+ β +

2 β3

3
+
β5

5
(3.25)

and

J1(α, β) = −1

5
α5 tan−1 α− α4

5
− 2

3
α3 tan−1 α− 4α2

15
+

4

15
ln
(
α2 + 1

)
− α tan−1 α

+
1

5
β5 tan−1 β +

β4

5
+

2

3
β3 tan−1 β +

4 β2

15
− 4

15
ln
(
β2 + 1

)
+ β tan−1 β.

(3.26)

In contrast, the integrals J2(α, β) and J3(α, β) are more involved. The integral J2(α, β)
can be divided into three parts and written as

J2(α, β) = J21(α, β) + J22(α, β) + J23(α, β), (3.27)
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where the integrals J21(α, β) and J22(α, β) can be easily evaluated to be

J21(α, β) =

∫ β

−α

dxx2 =
α3

3
+
β3

3
, (3.28)

J22(α, β) = 2

∫ β

−α

dxx
(
1 + x2

)
tan−1 x

= −α
3

6
+

1

2

(
α2 + 1

)2
tan−1 α− α

2
− β3

6
+

1

2

(
β2 + 1

)2
tan−1 β − β

2
.

(3.29)

The quantity J23(α, β) is given by

J23(α, β) =

∫ β

−α

dx
(
1 + x2

)2 (
tan−1 x

)2
, (3.30)

and, upon setting tan−1 x = y, it reduces to

J23(α, β) =

∫ tan−1 β

− tan−1 α

dy y2 sec6 y. (3.31)

The integral involved can be evaluated to be (see, for instance, Ref. [58])

∫

dy y2 sec6 y =
−y (cos y − 2 y sin y)

10 cos5 y
− 4 y (cos y − y sin y)

15 cos3 y
+

(
11

30
+

8 y2

15

)

tan y

+
tan3 y

30
+

16

15

∞∑

n=1

(−1)n 22n (22n − 1) y2n+1

(2n+ 1) (2n)!
B2n, (3.32)

where B2n are the Bernoulli numbers. Needless to add, this result can be used to arrive
at J23(α, β). We should add that the infinite series in the above expression is convergent,
and we find that it can be expressed as follows [129]:

∞∑

n=1

(−1)n 22n (22n − 1) y2n+1

(2n+ 1) (2n)!
B2n = y

{

ln
[

Γ
(

1 +
y

π

)]

+ ln
[

Γ
(

1− y

π

)]

− ln

[

Γ

(

1− 2y

π

)]

− ln

[

Γ

(

1 +
2y

π

)]}

+ π

{

−ζ ′
(

−1, 1 +
y

π

)

+ ζ ′
(

−1, 1− y

π

)

+
1

2
ζ ′
(

−1, 1 +
2y

π

)

− 1

2
ζ ′
(

−1, 1− 2y

π

)}

,

(3.33)
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where ζ ′(s, a) denotes the derivative of the Hurwitz zeta function ζ(s, a) with respect to
the first argument and Γ(n) is the Gamma function.

Let us now evaluate the last of the integrals, viz. J3(α, β). It proves to be convenient to
divide the integral into four parts as follows:

J3(α, β) = J31(α, β) + J32(α, β) + J33(α, β) + J34(α, β). (3.34)

If we set tan−1 x = y, we find that the integrals J31(α, β), J32(α, β) and J33(α, β) can be
easily evaluated to be

J31(α, β) =

∫ tan−1 β

− tan−1 α

dy tan3 y =
1

2

[
−α2 + ln

(
α2 + 1

)
+ β2 − ln

(
β2 + 1

)]
, (3.35)

J32(α, β) = 3

∫ tan−1 β

− tan−1 α

dy y2 tan y sec4 y

=
1

4

[

−α2 − 2 ln
(
α2 + 1

)
+ 2α

(
α2 + 3

)
tan−1 α− 3

(
α2 + 1

)2 (
tan−1 α

)2

+ β2 + 2 ln
(
β2 + 1

)
+ 3

(
β2 + 1

)2 (
tan−1 β

)2 − 2 β
(
β2 + 3

)
tan−1 β

]

, (3.36)

J33(α, β) = 3

∫ tan−1 β

− tan−1 α

dy y tan2 y sec2 y

=
1

2

[
−2α3 tan−1 α + α2 − ln

(
α2 + 1

)
+ 2 β3 tan−1 β − β2 + ln

(
β2 + 1

)]
.

(3.37)

The integral J34(α, β) is given by

J34(α, β) =

∫ tan−1 β

− tan−1 α

dy y3 sec6 y, (3.38)

which can be evaluated using the result [58]

∫

dy y3 sec6 y = −y
2 (3 cos y − 4 y sin y)

20 cos5 y
− 2 y2 (3 cos y − 2 y sin y)

15 cos3 y

+

(

y +
8 y3

15

)

tan y + ln |cos y|+ y sin y

10 cos3 y
− 1

20 cos2 y

+
8

5

∞∑

n=1

(−1)n 22n (22n − 1) y2n+2

(2n+ 2) (2n)!
B2n. (3.39)
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The infinite series in the above expression is convergent, and it can be expressed as [129]

∞∑

n=1

(−1)n 22n (22n − 1) y2n+2

(2n+ 2) (2n)!
B2n = y2

{

ln
[

Γ
(

1 +
y

π

)]

+ ln
[

Γ
(

1− y

π

)]

− ln

[

Γ

(

1− 2y

π

)]

− ln

[

Γ

(

1 +
2y

π

)]}

+
3

8
ζ(3)

+ π2

[

ζ ′
(

−2, 1 +
y

π

)

+ ζ ′
(

−2, 1− y

π

)

− 1

4
ζ ′
(

−2, 1− 2y

π

)

− 1

4
ζ ′
(

−2, 1 +
2y

π

)]

+ π y

[

ζ ′
(

−1, 1 +
2y

π

)

− ζ ′
(

−1, 1− 2y

π

)

+2 ζ ′
(

−1, 1− y

π

)

− 2 ζ ′
(

−1, 1 +
y

π

)
]

, (3.40)

where, as before, ζ(s) is the Riemann zeta function, ζ ′(s, a) denotes the derivative of the
Hurwitz zeta function ζ(s, a) with respect to the first argument, and Γ(n) is the Gamma
function.

3.4 Amplitude and shape of the non-Gaussianity

parameter

We can now make use of the behavior of the mode hk at ηe = β η0 and substitute the re-
sults we have obtained above in the expressions (3.16) and (3.18) to arrive at the tensor
bispectrum and the corresponding non-Gaussianity parameter h

NL
for an arbitrary trian-

gular configuration of the wavenumbers involved. The resulting expressions prove to be
rather long and, for this reason, we shall illustrate the various results graphically for a set
of suitable values of the parameters. Let us first compare the contributions from the two
domains. Restricting ourselves to the equilateral limit, in Fig. 3.3, we have plotted the
contributions to h

NL
from the two domains that we have considered. It is evident from

the figure that the contribution due to the second domain to the parameter h
NL

turns out
to be larger. We find that the second domain contributes more in the squeezed limit as
well.

It is now a matter of adding the contributions from the two domains to arrive at the
complete tensor bispectrum and the non-Gaussianity parameter h

NL
. In Fig. 3.4, we have

plotted the behavior of the non-Gaussianity parameter h
NL

in the equilateral and the

79



CHAPTER 3. THE TENSOR BISPECTRUM IN A MATTER BOUNCE

10
−30

10
−28

10
−26

10
−24

10
−22

10
−20

10
−18

10
−16

10
−14

10
−12

10
−10

k/k0

10−70

10−66

10−62

10−58

10−54

10−50

10−46

10−42

10−38

10−34

10−30

10−26

10−22

10−18

h
N
L
(k
)

Figure 3.3: The contributions to the non-Gaussianity parameter h
NL

in the equilateral limit
from the first (in blue) and the second (in red) domains have been plotted as a function
of k/k0 for a wide range of wavenumbers such that k ≪ k0/α. We have worked with
the same set of values for the parameters as in the previous figure. Clearly, the second
domain gives rise to a larger contribution to the non-Gaussianity parameter h

NL
.

squeezed limits. Three points concerning the figure require emphasis. To begin with, we
should mention that the non-Gaussianity parameter h

NL
behaves as k2 in both the equi-

lateral and the squeezed limits, with virtually the same amplitude. Secondly, the value
of the parameter h

NL
is very small when compared to the values that occur in, say, de

Sitter inflation wherein 3/8 . h
NL

. 1/2 (in this context, see Ref. [76]). Thirdly, since the
tensor power spectrum is strictly scale invariant for wavenumbers such that k ≪ k0/α,
the amplitude of the non-Gaussianity parameter h

NL
in the squeezed limit over such a do-

main should be equal to 3/8, if the consistency relation holds true (see Eq. (1.118d), also
see Ref. [79]). Whereas, we find that h

NL
is considerably smaller than 3/8 in the squeezed

limit, which unambiguously implies that the consistency condition is violated [130]. Ev-
idently, this behavior can be attributed to the fact that the amplitude of the tensor mode
does not freeze to a constant value at late times. At this stage, we need to discuss the
dependence of the tensor power and bispectra on the parameters α and β that we have
introduced. We find that the tensor power spectrum and the bispectrum do not signifi-
cantly depend on α over a wide range of values, say, 105 . α . 1015. We had mentioned
earlier that the tensor power spectrum has a rather weak dependence on β. Whereas, we
find that the tensor bispectrum grows roughly as β3/2. However, β cannot be allowed
to be too large for two reasons. One may a priori expect that the analytical approxima-
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Figure 3.4: The behavior of the non-Gaussianity parameter h
NL

in the equilateral (in blue)
and the squeezed (in red) limits have been plotted as a function of k/k0 for a wide range of
wavenumbers such that k ≪ k0/α. We have worked with the same set of values as in the
earlier two figures. Clearly, the resulting h

NL
is considerably small when compared to the

values that arise in de Sitter inflation wherein 3/8 . h
NL

. 1/2. Moreover, we find that
h

NL
behaves as k2 in the equilateral and the squeezed limits, with similar amplitudes. The

fact that h
NL

is much smaller than 3/8 in the squeezed limit implies that the consistency
condition is violated [130].

tion (3.8) will remain valid until the time −ηk =
√
2/k after the bounce. We had pointed

out that the evolution of the mode hk is asymmetric in η. Actually, it can be shown that
(using numerical analysis) the analytical approximation (3.8) breaks down much before
−ηk. For this reason, we have chosen β to be smaller than α. Moreover, a transition to the
radiation dominated phase is expected to take place sometime after the bounce. It seems
reasonable to expect that such a transition will occur when the scale factor is a ≃ 104 a0,
which corresponds to β = 102. We find that our main conclusions, viz. that the value of
h

NL
is small over cosmological scales and that the consistency relation is violated in the

squeezed limit, continue to remain valid even if we increase β by, say, a couple of orders
of magnitude. In Fig. 3.5, we have plotted the non-Gaussianity parameter h

NL
for an ar-

bitrary triangular configuration of wavevectors. Clearly, the non-Gaussianity parameter
exhibits a specific shape and the value of h

NL
peaks in the equilateral limit.
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Figure 3.5: The behavior of the non-Gaussianity parameter h
NL

has been plotted for an
arbitrary triangular configuration of wavevectors. We have worked with the same set of
values as in the previous figures. It is evident from the plot that the value of h

NL
peaks in

the equilateral limit.

3.5 Discussion

In this chapter, we have analytically calculated the tensor bispectrum in a matter bounce
using the Maldacena formalism. While the matter bounce leads to a scale invariant ten-
sor power spectrum for scales of cosmological interest as de Sitter inflation does, we have
shown that the non-Gaussianity parameter h

NL
that characterizes the amplitude of the

tensor bispectrum is much smaller than the corresponding values in de Sitter inflation.
We have also shown that, due to the growth in amplitude of the tensor modes as one ap-
proaches the bounce, the consistency condition is not satisfied by the tensor bispectrum
in the squeezed limit. Recall that, in the absence of detailed modeling of the bounce, we
had assumed that k0/(a0MPl

) ≃ 10−5. We should however clarify that, since k ≪ k0 for
cosmological scales, our essential conclusions, viz. that h

NL
is small and that the consis-

tency condition is violated over such scales, will remain unaffected even if we choose
k0/(a0MPl

) to be a few orders of magnitude smaller than the value we have mentioned
above. It will clearly be worthwhile to investigate these issues using a numerical ap-
proach in a wider class of bouncing models.

In the bouncing scenario that we have considered, at very early times, i.e. during the
first domain of our interest, the contribution to the non-Gaussianity parameter h

NL
can be

said to be small because the amplitude of the tensor perturbations themselves are small.
In the second domain, although the scale factor decreases gradually to reach its minimum
at the bounce, the non-Gaussianities become larger as the perturbations grow. After the
bounce, the scale factor increases steadily. Also, the amplitude of the perturbations do
not freeze but grow slowly. Due to these reasons the contribution to the non-Gaussianity
parameter is larger from this regime. However, essentially due to the form of the scale
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factor, one finds that the parameter h
NL

has an overall k2 dependence. Since the scales of
cosmological interest are about 25 to 30 orders below Planck scale, the non-Gaussianity
parameter h

NL
proves to be very small over such scales.

We believe that the results we have obtained have tremendous implications for the
other three-point functions and, importantly, the scalar bispectrum. It seems clear that,
due to the growth during the contracting phase near the bounce, the consistency condi-
tions governing the other three-point functions will be violated as well [123]. This can
possibly act as a powerful discriminator between the inflationary and bouncing scenar-
ios. Within inflation, one requires peculiar situations to violate the consistency condi-
tions [131]. In contrast, in a bouncing scenario, the consistency relations seem to be vi-
olated rather naturally. Notably, situations involving violations of the consistency con-
ditions have been considered as possible sources of spherical asymmetry in the early
universe [68, 69]. These aspects seem worth exploring in greater detail.
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Chapter 4

Scale invariant magnetic fields in
bouncing scenarios

4.1 Introduction

The observations of widely prevalent magnetic fields in the universe over an extensive
range of scales, the origin of which cannot be satisfactorily accounted for by astrophysi-
cal processes alone, has been the principal motivation for looking into the generation of
primordial magnetic fields. As is well known, inflation is currently considered the most
promising paradigm to describe the origin of perturbations in the early universe. Hence,
it seems natural to examine the generation of magnetic fields in the inflationary scenario.
It has been established that the conformal invariance of the electromagnetic field has to
be broken in order to generate magnetic fields of observable strengths in the early uni-
verse [96]. We have described the mechanism for generating such magnetic fields in the
simple de Sitter inflationary scenario in Chap. 1. There exist many inflationary models
which lead to nearly scale invariant magnetic fields of appropriate strength and correla-
tion scales to match with the observations [97,98,102,132–134]. However, most models of
inflationary magnetogenesis typically suffer from the so-called backreaction and strong
coupling problems (see, for instance, Refs. [102–104]).

Under such circumstances, it seems worthwhile to study the generation of magnetic
fields in alternative scenarios of the early universe. A reasonably popular alternative
are bouncing models wherein the universe undergoes a period of contraction until the
scale factor attains a minimum value, after which it begins to expand (see, for instance,
Refs. [27, 28, 30, 32, 38, 46, 49, 135], and the following reviews [51, 52]). As discussed previ-
ously in the introductory chapter, such bouncing scenarios provide an alternative to infla-
tion to overcome the horizon problem. These models allow well motivated, Minkowski-
like initial conditions to be imposed on the perturbations at early times during the con-
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tracting phase. The generation of magnetic fields in such scenarios have been explored
only to a limited extent [55, 132].

In a recent work [55], it was numerically shown that, for non-minimal couplings that
are a simple power of the scale factor, scale invariant magnetic fields can be generated in
certain bouncing scenarios. In this chapter, we shall investigate the problem analytically
in a sub-class of these models wherein the non-minimal coupling is a positive power of
the scale factor. We consider a specific form for the scale factor, leading to a non-singular
bounce, which reduces to a power law form far from the bounce. We find that, in such
situations, we can obtain analytical solutions for modes of the electromagnetic vector po-
tential that are much smaller than the natural scale associated with the bounce. We divide
the time period of our interest into two domains, one that corresponds to very early times
and another closer to and across the bounce. We analytically evaluate the electromagnetic
modes during these domains and arrive at the corresponding power spectra for the elec-
tric and magnetic fields. It can be easily shown that scale invariant magnetic fields can
be generated before the bounce for specific values of the parameters involved. We evolve
these modes across the bounce and calculate the power spectra in the early stages of the
expanding phase after the bounce. We show that the shapes of the spectra are preserved
for scales of cosmological interest as the modes evolve across the bounce.

The remainder of this chapter is organized as follows. In the following section, we
shall introduce the forms of the scale factor and the coupling function that we consider. In
Sec. 4.3, we shall divide the bounce into two domains and evaluate the modes analytically
in each of these domains. We shall evaluate the power spectra prior to the bounce as well
as soon after the bounce and illustrate that the shape of the power spectra are preserved
across the bounce. In Sec. 4.4, we shall study the issue of backreaction using the analytical
solutions for the modes. In Sec. 4.5, we shall illustrate that the power spectrum of the
magnetic field is form invariant under a two parameter family of transformations of the
coupling function. Finally, we shall conclude with a brief discussion in Sec. 4.6.

4.2 Non-minimal coupling in bounces

We shall model the non-singular bounce by assuming that the scale factor a(η) behaves
as follows [55, 130]:

a(η) = a0

(

1 +
η2

η20

)q

= a0
(
1 + k20 η

2
)q
, (4.1)

where a0 is the value of the scale factor at the bounce (i.e. when η = 0), η0 = 1/k0 denotes
the time scale of the duration of the bounce, and q > 0. Note that, as discussed before,
when q = 1, during very early times when η ≪ −η0, the scale factor behaves as in a
matter dominated universe (i.e. a ∝ η2). Therefore, the q = 1 case is often referred to as the
matter bounce scenario. We should mention here that, for certain values of the parameters
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involved, the above scale factor leads to tensor power spectra that are consistent with the
CMB observations (see, for instance, Refs. [130, 136]). However, we should hasten to add
that determining the corresponding scalar power spectra requires a detailed modeling of
the bounce [56].

The scale factor (4.1) above can be achieved, for instance, if we consider that the uni-
verse is composed of two non-interacting fluids with constant equation of state param-
eters. Let the energy densities and pressure of the two fluids be denoted by ρi and pi
respectively, with i = (1, 2). Also, let the equations of state for the two fluids be given
by pi = wi ρi, where wi is a constant. Since the two fluids are non-interacting, the equa-
tion governing the conservation of energy associated with the fluids can be integrated
to yield that ρi = Mi/a

ri , where Mi is a constant. As is well known, the index ri is re-
lated to the equation of state parameter wi by the relation: ri = 3 (1 + wi). It can be
easily shown that the equation of state parameters w1 and w2 are related to the quantity q
through the relations: w1 = (1 − q)/(3 q) and w2 = (2 − q)/(3 q). Further, one can show

that M1 = 12 k20M
2
Pl
a
1/q
0 and M2 = −M1 a

1/q
0 . It is important to note that, while M1 is

positive, M2 is negative. In other words, the energy density of the second fluid is always
negative. This seems inevitable as the total energy density has to vanish at the bounce.
For the specific case of q = 1, which is the matter bounce scenario, the first fluid corre-
sponds to matter. The second fluid behaves in a manner similar to radiation as far as
its time evolution is concerned, but it has a negative energy density. For our discussion,
we shall assume that the evolution of the universe is achieved with the aid of suitable
scalar field(s) which effectively mimic the behavior of the fluids (in this context, see, for
example, Ref. [137]).

Given a scale factor, in order to arrive at the behavior of the electromagnetic modes in
a FLRW universe, we shall also require the form of the non-minimal coupling function J .
We shall assume that, as was done in the case of inflation, the coupling function can be
conveniently expressed in terms of the scale factor as follows:

J(η) = J0 a
n̄(η), (4.2)

where n̄ is a constant. It can be easily argued that the resulting power spectra are in-
dependent of the constant J0 (in this context, see Ref. [55]). As we shall discuss in the
following section, in this chapter, for the problem to be tractable completely analytically,
we shall restrict ourselves to cases wherein n̄ is positive.

4.3 Analytical evaluation of the modes and the power

spectra

Recall that in Chap. 3, we had divided the time period of interest in a bounce into two
domains in order to facilitate analytical evaluation of the tensor modes. In a similar man-
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ner, to arrive at analytical solutions for the electromagnetic modes, let us divide the time
period of our interest into two domains, one far away from the bounce and another closer
to and across the bounce. Let these two domains correspond to −∞ < η < −α η0 and
−α η0 < η < β η0, where α is a relatively large number, say, of the order of 105 or so, and
β = 102.

During the first domain, the scale factor (4.1) reduces to the following power law
form: a(η) ∝ η2 q. In such a case, the non-minimal coupling function J also simplifies to
a power law form and it behaves as J(η) ∝ ηγ̄ , where we have set γ̄ = 2 n̄ q. Under these
conditions, we have J ′′/J ≃ γ̄ (γ̄ − 1)/η2. This behavior is exactly what is encountered
for a similar coupling function in power law inflation. Due to this reason, it is straightfor-
ward to show that the solutions to the modes of the electromagnetic vector potential Āk in
the first domain can be expressed in terms of the Bessel functions Jν(x) [55,97,98,103,132].
One finds that the solutions to Eq. (1.129) can be expressed in terms of the quantity Ak as
follows:

Ak(η) =
√

−k η
[
C1(k) Jγ̄−1/2(−k η) + C2(k) J−γ̄+1/2(−k η)

]
, (4.3)

where the coefficients C1(k) and C2(k) are to be fixed by the initial conditions. On impos-
ing the Bunch-Davies initial conditions at early times during the contracting phase, i.e. as
k η → −∞, one obtains that

C1(k) =

√
π

4 k

e−i π γ̄/2

cos(π γ̄)
, C2(k) =

√
π

4 k

ei π (γ̄+1)/2

cos(π γ̄)
. (4.4)

At this stage, it is also useful to note that

A′
k(η)−

J ′

J
Ak(η) = k

√

−k η
[
C1(k) Jγ̄+1/2(−k η)− C2(k) J−γ̄−1/2(−k η)

]
, (4.5)

an expression we shall require to evaluate the power spectrum of the electric field.

Let us now evaluate the power spectra of the magnetic and electric fields as one ap-
proaches the bounce, i.e. in the limit k |η| ≪ 1. It should be mentioned that, in order
for the solutions we have obtained above to be applicable, we need to remain in the first
domain (i.e. −∞ < η < −α η0) even as we consider this limit. This condition implies
that we have to restrict ourselves to modes such that k ≪ k0/α. The power spectra of
the magnetic and electric fields can be arrived at from the above expressions for Ak and
A′

k − (J ′/J)Ak and the asymptotic forms of the Bessel functions. As is to be expected, the
resulting spectra have the same form as one encounters in power law inflation. One finds
that the spectrum of the magnetic field [cf. Eq. (1.130a)] can be written as [55, 97, 98, 103]

P
B
(k) =

F(m)

2 π2

(
H

2 q

)4

(−k η)4+2m, (4.6)

where H ≃ (2 q/a0 η) (η0/η)
2 q, while m = γ̄ for γ̄ ≤ 1/2 and m = 1 − γ̄ for γ̄ ≥ 1/2.

Moreover, the quantity F(m) is given by

F(m) =
π

22m+1 Γ2(m+ 1/2) cos2(πm)
. (4.7)
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Clearly, the case m = −2 leads to a scale invariant spectrum for the magnetic field, which
corresponds to either γ̄ = 3 or γ̄ = −2. The associated spectrum for the electric field
[cf. Eq. (1.130b)] can be evaluated to be

P
E
(k) =

G(m)

2 π2

(
H

2 q

)4

(−k η)4+2m, (4.8)

where m = 1 + γ̄ if γ̄ ≤ −1/2 and m = −γ̄ for γ̄ ≥ −1/2, while G(m) is given by

G(m) =
π

22m+3 Γ2(m+ 3/2) cos2(πm)
. (4.9)

It should be noted that, when γ̄ = 3 and γ̄ = −2, the power spectrum of the electric field
behaves as k−2 and k2, respectively. These results imply that, in the bouncing scenario,
one can expect these cases to lead to scale invariant spectra (corresponding to wavenum-
bers such that k ≪ k0/α) for the magnetic field before the bounce. Using the analytical
expressions (4.3) and (4.5), in Fig. 4.1, we have plotted the spectra of the magnetic and
electric fields evaluated at η = −α η0 as a function of k/k0, for γ̄ = 3 and a set of values
for the parameters q, k0/(a0MPl

), and α. In the domain k ≪ k0/α where our approxi-
mations are valid, it is evident from the figure that, while the spectrum of the magnetic
field is scale invariant, the spectrum of the electric field behaves as k−2. These are exactly
the asymptotic forms (4.6) and (4.8) that we have arrived at above. The question that
naturally arises is whether these spectra will retain their form as they traverse across the
bounce.

Our analysis until now applies to both positive and negative values of n̄. However, as
we mentioned, we shall hereafter restrict our analysis to the cases wherein n̄ > 0. We shall
illustrate that, in such cases, one can arrive at an analytical expression for the electromag-
netic modes even during the bounce for wavenumbers such that k ≪ k0. When n̄ > 0, J
grows away from the bounce and, hence, it seems natural to expect that J ′′/J will exhibit
its maximum near the bounce. Actually, J ′′/J has a single maximum at the bounce for
indices n̄ and q such that γ̄ ≤ 3. One finds that, for other values of γ̄, there arise two
maxima and a minimum close to the bounce. The minimum occurs exactly at the bounce
and its value proves to be γ̄ k20. These behavior are clear from Fig. 4.2 wherein we have
plotted the quantity J ′′/J for two different values of γ̄. Therefore, when n̄ > 0, for scales
of cosmological interest such that k ≪ k0, k

2 ≪ J ′′/J around the bounce. Hence, near the
bounce, we can neglect the k2 term in Eq. (1.127) [to be precise, we can ignore the k2 term
in Eq. (1.129)] so that we have

Ā′′
k + 2

J ′

J
Ā′

k ≃ 0. (4.10)

This equation can be immediately integrated to yield

Ā′
k(η) ≃ Ā′

k(η∗)
J2(η∗)

J2(η)
, (4.11)
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Figure 4.1: The power spectra of the magnetic (in blue) and electric (in red) fields, evalu-
ated before the bounce at η = −α η0 using the analytical expressions (4.3) and (4.5), have
been plotted as a function of k/k0 for γ̄ = 3, q = 1, k0/(a0MPl

) = 1.14× 10−11 and α = 105.
Also, we should mention that our analytical approximations are valid only for scales such
that k ≪ k0/α. Over this domain, while the spectrum of the magnetic field is strictly scale
invariant, the spectrum of the electric field behaves as k−2, as is suggested by the spec-
tra (4.6) and (4.8) arrived at from the asymptotic forms of the Bessel functions. Needless
to add, the question of interest is whether these power spectra will retain their shape after
the bounce.

where η∗ is a time when k2 ≪ J ′′/J before the bounce. The above equation can be further
integrated to arrive at

Āk(η) ≃ Āk(η∗) + Ā′
k(η∗)

η∫

η∗

dη̃
J2(η∗)

J2(η̃)
= Āk(η∗) + Ā′

k(η∗) a
2n(η∗)

η∫

η∗

dη̃

a2n(η̃)
, (4.12)

where we have set the constant of integration to be Āk(η∗). If we substitute the expres-
sion (4.1) for the scale factor, we find that the integral can be carried out for an arbitrary
γ̄ to obtain

Āk(η) ≃ Āk(η∗) + Ā′
k(η∗)

a2n(η∗)

a2n0

[

η 2F1

(
1

2
, γ̄;

3

2
;−η

2

η20

)

− η∗ 2F1

(
1

2
, ¯̄γ;

3

2
;−η

2
∗

η20

)]

, (4.13)

where 2F1(a, b; c; z) denotes the hypergeometric function [129]. We can now choose η∗ =

−α η0 to arrive at the behavior of Āk(η) and Ā′
k(η) in the second domain. In such a case,
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Figure 4.2: The behavior of η20 J
′′/J , which depends only on η/η0, has been plotted for

γ̄ = 3 (in blue) and γ̄ = 5 (in red). The figure has been plotted over a very narrow range
of η/η0 in order to illustrate the presence of a single maximum for γ̄ = 3 and two maxima
and one minimum for γ̄ = 5.

we can make use of the solution (4.3) in the first domain to determine the values of Āk(η∗)
and Ā′

k(η∗).

In fact, the solutions we have obtained above can be expected to be valid even after
the bounce until the condition k2 ≪ J ′′/J is violated. While the bounce is symmetric, the
solution Āk(η∗) and its time derivative Ā′

k(η∗) are not symmetric [55]. Numerical analysis
suggests that the analytical solutions will cease to be valid well before the condition k2 =
J ′′/J is satisfied after the bounce. For this reason, as was done in the case of the tensor
power spectrum in Chap. 3, we evaluate the electromagnetic spectra after the bounce at
η = β η0, with β chosen to be about 102. This choice of β can be said to roughly correspond
to the time of reheating after the more conventional inflationary scenario [55]. We can
now evaluate the spectra after the bounce at η = β η0 using the analytical expressions for
Āk and Ā′

k we have obtained above [cf. Eqs. (4.12) and (4.11)]. In the scale invariant case
corresponding to γ̄ = 3, the amplitude of the power spectrum for k/(α k0) ≪ 1 can be
determined to be

P
B
(k) ≃

(
45

16 β

)2 (
k0
a0

)4

. (4.14)

For instance, if we choose, k0/(a0MPl
) ≃ 10−7, we find that the above spectrum will lead

to magnetic fields of femto Gauss strengths today. Recall that, while the power spectrum
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of the electric field depends on Ā′
k, the power spectrum of the magnetic field depends on

Āk. Since Ā′
k after the bounce is related to the corresponding Ā′

k at the end of the first
domain only by a time dependent factor [cf. Eq. (4.11)], it is obvious that the shape of
the electric field will not be affected by the bounce. In contrast, the quantity Āk after the
bounce depends on a combination of Āk and Ā′

k evaluated at the end of the first domain
[cf. Eq. (4.12)]. So, it is not immediately evident that the shape of magnetic field will be
preserved across the bounce. In Fig. 4.3, we have plotted these spectra after the bounce.
Upon comparing Figs. 4.1 and 4.3, it is clear that, while the amplitudes of the spectra
change, the shapes of the spectra before and after the bounce are identical [138].

4.4 The issue of backreaction

Note that, as discussed before, since the electromagnetic field is a test field, the energy
density associated with it must always remain much smaller than the energy density that
drives the background evolution. However, in certain cases, it is found that the energy
density associated with the electromagnetic field can grow and dominate the background
energy density [134]. This issue is regularly encountered in the context of inflation [97].
Such a situation is not viable and the energy density associated with the background
must be dominant at all times. It is therefore imperative that we examine the issue of
backreaction in bouncing models. In what follows, with the analytical results at hand, we
shall evaluate the energy density in the generated electromagnetic field and investigate
the issue of backreaction in the bouncing scenario of our interest.

Using the Friedmann equation, the background energy density, say, ρbg, can immedi-
ately be written as

ρbg = 3M2
Pl
H2. (4.15)

Upon using the expression (4.1) for the scale factor, we obtain that

ρbg =
12M2

Pl
q2 η2

a20 η
4
0 (1 + k20 η

2)
2 (q+1)

. (4.16)

The energy density in a particular mode k of the electromagnetic field is given by

ρk
EB

= P
B
(k) + P

E
(k) . (4.17)

For the effects of backreaction to be negligible, the condition ρbg > ρk
EB

must be satisfied
by all modes of cosmological interest at all times. However, we find that this condition
is violated in this scenario, particularly around the bounce. To illustrate this issue, we
have plotted the ratio of the background energy density and the electromagnetic energy
density, viz. rbr = ρbg/ρ

k
EB

. We should mention that we have evaluated the quantity ρk
EB

from the analytical solutions we have obtained in the last section. In Fig. 4.4, we have
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Figure 4.3: The power spectra of the electric (in red) and magnetic (in blue) fields, eval-
uated at η = β η0, with β = 102, have been plotted for the same set of values of the
parameters as in Fig. 4.1. Note that the shape of the spectra generated before the bounce
is retained for scales such that k ≪ k0/α even after the bounce. We should mention that
the values of the parameters we have worked with lead to magnetic fields of observed
strengths today corresponding to a few femto Gauss. It should also be added that the
electric field dominating the strength of the magnetic field is considered to be undesir-
able (see, for instance, Ref. [98]). This seems inevitable for positive n̄ that we are consid-
ering here, but it can be, for example, circumvented by choosing n̄ to be negative (in this
context, see Ref. [55]).

plotted the quantity rbr as a function of e-N-folds. Since the Hubble parameter vanishes
at the bounce, the background energy density also vanishes. Hence, any non-zero amount
of electromagnetic energy density at the bounce would lead to a violation of the condition
rbr > 1. We find that the condition is actually violated even as one approaches the bounce
indicating that the problem is indeed a severe one.

We had mentioned earlier that no vector perturbations arise in the absence of vector
sources. Note that the evolution of metric vector perturbations depends on the behav-
ior of the scale factor [36]. In contrast, the evolution of the electromagnetic modes are
determined by the form of the coupling function J . Evidently, we do not have any vec-
tor sources in the scenario of our interest here and, in fact, the electromagnetic modes
we have considered have a quantum origin. For the form of the coupling function we
have assumed here [J given by Eq. (4.2), with positive n̄], the amplitude of the gener-
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Figure 4.4: The evolution of the ratio of the background energy density to the sum of the
energy densities in the electric and magnetic fields for a given mode (k/k0 = 10−20) has
been plotted against e-N-folds. We should mention that we have assumed the same set of
values for the various parameters as in Figs. 4.1 and 4.3. Evidently, the ratio has to remain
large in order to avoid the backreaction problem. However, we find that the energy in the
generated electromagnetic field rises sharply as one approaches the bounce, indicating
that the problem of backreaction is the most severe at the bounce.

ated modes indeed grows rapidly during the contracting phase close to the bounce [55].
Therefore, in this case, the issue of backreaction can be considered to be a manifestation
of the strong growth of the vector modes that is expected to occur as one approaches the
bounce [36].

4.5 Duality invariance

Let us briefly remind ourselves about the property of duality invariance of the power
spectra of the scalar and tensor perturbations that was discussed in Subsec. 1.4.4. The pri-
mordial scalar and tensor perturbations are governed by the so-called Mukhanov-Sasaki
equations (see, for instance, Refs. [21, 22]). In these cases, it can be shown that the cor-
responding power spectra will remain invariant under a two parameter family of trans-
formations of the homogeneous background quantity that determines the evolution of
the perturbations (viz. the scale factor a in the case of tensor perturbations and a quantity
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often denoted as z in the case of scalar perturbations) [48]. The new forms of the back-
ground quantities obtained as a transformation of the original quantities are called the
dual functions. In this section, we shall extend these duality arguments to the generation
of magnetic fields.

The argument is in fact relatively simple. The equation (1.129) that governs the dynam-
ics of the quantity Ak has the same form as the Mukhanov-Sasaki equations that describe
the scalar and tensor perturbations [cf. Eqs. (1.55) and (1.62)]. Note that the quantity Ak

is determined by J ′′/J . Evidently, the solution to the differential equation (1.129) can be
expected to behave in the same fashion and, hence, lead to the same power spectrum for
the magnetic field if we can construct another coupling function that leads to the same
J ′′/J . Given a coupling function J , its dual function, say, J̃ , which leads to the same J̃ ′′/J̃
is found to be [138]

J(η) → J̃(η) = C J(η)

η∫

η∗

dη̄

J2(η̄)
, (4.18)

where C and η∗ are constants. These constants can be suitably chosen to arrive at a phys-
ically reasonable form for J̃ .

Let us now construct the dual form of the coupling function (4.2) that we had consid-
ered. The corresponding dual solution is described by the integral

J̃(η) =
C

J0
an(η)

η∫

η∗

dη̄

a2n(η̄)
. (4.19)

Let us first consider the behavior at very early times when the scale factor (4.1) reduces
to the simple power law form. Recall that, in such a situation, the coupling function J

behaves as J(η) ∝ ηγ̄ . In such a case, the dual function J̃ can be easily evaluated to be

J̃(η) =
C η−γ̄+1

−2 γ̄ + 1

(

1− η2γ̄−1

η2γ̄−1
∗

)

. (4.20)

We are specifically interested in the cases where γ̄ = 3 and γ̄ = −2, as these lead to scale
invariant spectra for the magnetic field. When γ̄ = 3, we have

J̃(η) = − C

5 η2

(

1− η5

η5∗

)

, (4.21)

and, if we set η∗ → −∞, we obtain that J̃(η) ∝ 1/η2. Also, when γ̄ = −2, we have

J̃(η) =
C η3

5

(

1− η5∗
η5

)

, (4.22)

and, if we can choose η∗ to be some large, but finite positive value, then at very early
times, i.e. as η → −∞, we find that J̃(η) ∝ η3. Therefore, clearly, the coupling functions
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corresponding to γ̄ = 3 and γ̄ = −2 are dual to each other. Given that one of these two
cases leads to a scale invariant spectrum for the magnetic field before the bounce, their
dual nature suggests that the other too will lead to the same spectrum, exactly as we have
seen.

Let us now construct the dual form of the coupling function using the complete scale
factor (4.1), which we had used to model the bounce. On substituting the expression for
the scale factor in Eq. (4.18), we find that we can write the dual coupling function J̃(η) in
terms of the hypergeometric function as follows:

J̃(η) =
C

J0 an0

(

1 +
η2

η20

)γ̄/2 [

η 2F1

(
1

2
, γ̄;

3

2
;−η

2

η20

)

− η∗ 2F1

(
1

2
, γ̄;

3

2
;−η

2
∗

η20

)]

. (4.23)

This expression, though it is exact and is applicable to arbitrary γ̄, does not reveal the be-
havior of the coupling function easily. However, we find that for the cases corresponding
to γ̄ = 3 and γ̄ = −2, J̃(η) can be written in terms of simple functions. When γ̄ = 3 (say,
n = 3/2 and q = 1), the dual form of the coupling function can be expressed as

J̃(η) =
C η0

8 J0 a
3/2
0

(

1 +
η2

η20

)3/2
[

5 (η/η0) + 3 (η/η0)
3

(1 + η2/η20)
2 − 5 (η∗/η0) + 3 (η∗/η0)

3

(1 + η2∗/η
2
0)

2

+3 tan−1

(
η

η0

)

− 3 tan−1

(
η∗
η0

)]

. (4.24)

Note that the power spectrum for the electric field depends on the quantity J ′/J [see
Eq. (1.130b)]. Clearly, we shall require a well behaved J̃ ′/J̃ to ensure that the electric field
evolves smoothly. For this reason, it seems desirable to demand that the dual function J̃
does not vanish over the domain of interest. We find that, if we set η∗ → −∞, then with
a suitable choice of the constant C, we can ensure that the above J̃ remains positive at all
times. We also find that at early times, i.e. as η → −∞, the above J̃ reduces to J̃(η) ∝ 1/η2,
as required. Let us now turn to the case γ̄ = −2 (say, n = −1 and q = 1). In this case, the
dual form of this coupling function is given by

J̃(η) =
C a0 η0
J0

(

1 +
η2

η20

)−1 [
η

η0
− η∗
η0

+
2

3

(
η3

η30
− η3∗
η30

)

+
1

5

(
η5

η50
− η5∗
η50

)]

. (4.25)

We find that, in such a case, if we choose η∗ to be a suitably large positive value (say,
η > β η0), then we can ensure that J̃(η) remains positive over the domain that we are
interested in. Also, we should point out that, at early times, i.e. as η → −∞, the J̃(η)
above reduces to J̃(η) ∝ η3, as required.

In Fig. 4.5, we have plotted the coupling function J and its dual J̃ for the case γ̄ = 3,
with a suitable choice of the parameters. Recall that our original choice for the coupling
function J was symmetric about the bounce. While the dual function J̃ behaves in a
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Figure 4.5: The coupling function J (in blue) and its dual J̃ (in red) have been plotted
as a function of η/η0 for γ̄ = 3 and η∗ → −∞ [cf. Eq. (4.24)]. Also, we have chosen
the constant C to be C/k0 = 5.7 × 1032 so that the dual function J̃ matches the original
coupling function J after the bounce.

similar fashion as J after the bounce (for a suitable choice of the constant C), we find that
the dual function behaves very differently before the bounce. In fact, J̃ is asymmetric
about the bounce. For the case of γ̄ = −2, as we had discussed, η∗ has to be chosen to
be a large positive value in order to ensure that J̃ does not vanish, which seems to pose
difficulties for the evolution of the electric field.

4.6 Discussion

In this chapter, we have analytically studied the generation of primordial electromagnetic
fields in a class of non-singular and symmetric bouncing scenarios. We have assumed that
the electromagnetic field is coupled non-minimally to a background scalar field which is
expected to drive the bounce. Considering specific forms of the scale factor and the cou-
pling function, we have arrived at analytical expressions for the power spectra of the
electric and magnetic fields. We find that a scale invariant spectrum for the magnetic
field arises before the bounce for certain values of the parameters involved, while the
corresponding electric field spectrum has a certain power law scale dependence. Inter-
estingly, we have shown that, as the modes evolve across the bounce, these shapes of
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the power spectra are preserved. However, a severe backreaction due to the generated
electromagnetic fields seems unavoidable close to the bounce. This issue needs to be cir-
cumvented if the scenario has to be viable. We have further illustrated the existence of a
two parameter family of transformations of the original coupling function under which
the spectrum of the magnetic field remains invariant. The dual transformation leads to
asymmetric forms for the coupling function and it seems to be a worthwhile exercise to
explore these new forms. We are currently investigating the generation of magnetic fields
in symmetric bounces with asymmetric coupling functions.

We need to emphasize a few points at this stage of our discussion. One may be con-
cerned by the fact that the presence of radiation prior to the bounce can modify the equa-
tions of motion of the electromagnetic field which would, in turn, affect the process of
magnetogenesis. We had described earlier as to how the class of bouncing models that
we have considered can be driven with the aid of two fluids. We are envisaging a situ-
ation wherein such a behavior is actually achieved with the help of scalar fields. If, in
addition to the scalar fields, radiation is also present before the bounce, its energy den-
sity can dominate close to the bounce, modifying the evolution of the background in the
vicinity of the bounce and altering the form of the scale factor. Therefore, in our discus-
sion, we have assumed that there is no radiation present before the bounce. We believe
that, after the bounce, the scalar fields driving the bounce can decay into radiation via
some mechanism (as it occurs immediately after inflation) and lead to the standard ra-
diation dominated epoch. However, we should add that the phenomenon of reheating
in bouncing scenarios and its effects on the process of magnetogenesis are not yet well
understood.
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Chapter 5

Cross-correlations between scalar
perturbations and magnetic fields
in bouncing universes

5.1 Introduction

In the previous chapter, we had analytically illustrated how scale invariant magnetic
fields can be produced in a certain sub-class of symmetric bouncing scenarios. Using
these analytical solutions, it would be interesting to examine the cross-correlations of
these magnetic fields with scalar perturbations present in the bouncing scenarios. These
correlations have been examined before in the context of inflation [99–101, 139, 140]. The
magnitude of the non-Gaussianities generated through such correlations has been esti-
mated to be quite large for inflation, and the shape of the non-Gaussianities peaks in
the flattened limit, i.e. when the wavenumber of the scalar perturbation is twice the
wavenumber associated with the two modes of the magnetic field. In this chapter, we
shall study the cross-correlations of the magnetic fields produced in bouncing universes
with the perturbations in an auxiliary scalar field. Ideally, it would be more appropriate to
evaluate the cross-correlation between the primordial magnetic fields and the curvature
perturbation. However, as is well known, examining the behavior of the curvature per-
turbations in bouncing models necessitates considerable modeling, often involving more
than one field (see, for instance, Ref. [56]). Therefore, it would be instructive to first inves-
tigate the behavior of the cross-correlation of the magnetic fields with the perturbation in
an auxiliary scalar field and explore its ramifications.

As we have already discussed before, one of the most important characteristics of
three-point functions is their behavior in the squeezed limit of the wavenumbers in-
volved, i.e. when one of the wavenumbers is assumed to be much smaller than the other
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two. In inflation, typically, the amplitude of the mode with the longest wavelength
and, therefore, the smallest wavenumber, freezes on super-Hubble scales. Therefore,
in the squeezed limit, the three-point function can be completely expressed in terms of
the two-point function through a relation referred to as the consistency condition (see
Refs. [66,70,79,81–83,118,119] in the context of three-point functions involving scalar and
tensor perturbations, and Refs. [100,101] for cross-correlations between the scalar pertur-
bation and the magnetic fields). However, in the case of the bouncing models that we
shall study, the amplitude of the scalar perturbations grows strongly as one approaches
the bounce (in this context, see Ref. [56]). This suggests that the consistency relation may
not hold in such scenarios (for a similar effect in the case of the tensor bispectrum, see
Ref. [130]). Therefore, it is of utmost significance to examine whether the consistency re-
lation, which holds true for inflationary magnetogenesis, would be valid in the bouncing
model.

This chapter is organized as follows. In the following section, after briefly revisiting
the calculation of the cross-correlations between the perturbation in the scalar field and
the magnetic fields in the context of inflation, we shall evaluate the corresponding three-
point function in the matter bounce scenario of our interest. In Sec. 5.3, we shall define
a dimensionless non-Gaussianity parameter to characterize the three-point function and
calculate the parameter in both the inflationary and bouncing models. In Sec. 5.4, we shall
evaluate the cross-correlation in the squeezed limit and illustrate that, while the consis-
tency relation holds true in the case of inflation, it is violated in the bouncing scenario.
Finally, we shall conclude with a brief discussion in Sec. 5.5.

5.2 Evaluating the cross-correlations between scalar per-

turbations and magnetic fields

As is evident from the results of Subsec. 1.6.2 and Sec. 4.3, it is possible to obtain scale
invariant magnetic fields of the requisite strength both in the case of inflation as well as in
bouncing scenarios. Therefore, the behavior of the two-point function of the primordial
magnetic fields alone is not adequate to distinguish between the inflationary and bounc-
ing scenarios. It would hence be of utmost importance to study the cross-correlations of
these fields with other fields that are expected to exist in the early universe, particularly
the scalar fields. In this section, we shall arrive at the expression for the three-point func-
tion involving the magnetic field and the perturbation in the scalar field which leads to
the non-minimal coupling. We shall first revisit the case of de Sitter inflation, wherein we
shall consider the perturbation in an auxiliary scalar field and evaluate the three-point
function. Thereafter, we shall calculate the three-point function in the bouncing model of
our interest. We shall analyze the three-point function in these scenarios for two cases –
one which leads to a scale invariant power spectrum for the magnetic field and another
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which results in a blue-tilted power spectrum that scales as the square of the wavenumber
involved. While the former is observationally relevant, the latter case involves simpler
computations and we shall utilize it to illustrate certain points.

We shall consider the non-minimally coupled electromagnetic action (1.123). The ac-
tion at the third order involving the perturbation δφ in the scalar field and the electro-
magnetic vector potential Ai can be easily obtained from the original action (1.123) to be

S3
em[Ai, φ] =

1

2 π

∫

d η

∫

d3 x

{

J
dJ

dφ
δφ

[
1

2
A′ 2

i − 1

4
(∂iAj − ∂j Ai)

2

]}

. (5.1)

The corresponding interaction Hamiltonian can be determined to be [99]

Hint =
1

4 π

∫

d3 x J
dJ

dφ

δφ

M
Pl

[

A′ 2
i +

1

2
(∂i Aj − ∂j Ai)

2

]

, (5.2)

where δφ denotes the perturbation in the scalar field. The cross-correlation between the
perturbation in the scalar field and the magnetic field in real space is defined as
〈

δ̂φ(η,x)

M
Pl

B̂i(η,x) B̂i(η,x)

〉

=

∫
d3k1

(2 π)3/2

∫
d3k2

(2 π)3/2

∫
d3k3

(2 π)3/2

〈

δ̂φk1
(η)

M
Pl

B̂i
k2
(η) B̂ik3

(η)

〉

ei (k1+k2+k3)·x, (5.3)

where the components Bi of the magnetic field are related to the vector potential Ai

through the relation

Bi =
1

a
ǫijl ∂j Al, (5.4)

while δφk and Bi
k denote the Fourier modes associated with the perturbation in the scalar

field and the i-th component of the magnetic field. According to the standard rules of
perturbative quantum field theory, the cross-correlation between the perturbation in the
scalar field and the magnetic field in Fourier space, evaluated at the end of inflation, is
given by [99, 101]
〈

δ̂φk1
(ηe)

M
Pl

B̂i
k2
(ηe) B̂ik3

(ηe)

〉

= −i
∫ ηe

ηi

dη

〈[

δ̂φk1

M
Pl

(ηe) B̂
i
k2
(ηe) B̂ik3

(ηe), Ĥint(η)

]〉

, (5.5)

where Ĥint is the operator associated with the Hamiltonian (5.2) and the square brackets
indicates the commutator.

We have already discussed the quantization of the electromagnetic modes in Sub-
sec. 1.6.2. The perturbation in the scalar field can be quantized in terms of the corre-
sponding Fourier modes, say, fk, as

δ̂φ (η,x) =

∫
d3 k

(2 π)3/2

[

âk fk(η) e
ik·x + â†k f

∗
k (η) e

−ik·x
]

, (5.6)
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where the annihilation and creation operators âk and â†k satisfy the following standard
commutation relations:

[âk, âk′] = [â†k, â
†
k′] = 0, [âk, â

†
k′] = δ(3)(k − k′). (5.7)

As we shall see, in order to achieve the coupling functions (1.131) and (4.2), we shall
assume that the canonical scalar field is governed by a linear potential in the case of
inflation and is free in the case of the bounce. In both these cases, the perturbation in the
scalar field δφ is governed by the equation of motion

δφ′′ + 2H δφ′ −∇2δφ = 0, (5.8)

where H = a′/a is the conformal Hubble parameter. The Fourier modes fk therefore
satisfy the differential equation

f ′′
k + 2H f ′

k + k2 fk = 0. (5.9)

Let us now define
〈

δ̂φk1
(ηe)

M
Pl

B̂i
k2
(ηe) B̂ik3

(ηe)

〉

≡ (2 π)−3/2GδφBB (k1,k2,k3) δ
(3) (k1 + k2 + k3) .

(5.10)

Then, upon using the expression (5.5), along with the form of the interaction Hamilto-
nian (5.2) and Wick’s theorem that applies to the products of the operators Âi

k and δ̂φk,
one can show that the quantity GδφBB (k1,k2,k3) can be expressed as [141]

GδφBB (k1,k2,k3) =
8 π

M
Pl
a2(ηe)

fk1(ηe) Āk2(ηe) Āk3(ηe)

{

2 (k2 · k3) G1
δφBB (k1,k2,k3)

−
[

(k2 · k3)
2

k2 k3
+ k2 k3

]

G2
δφBB (k1,k2,k3)

}

+complex conjugate, (5.11)

where G1
δφBB (k1,k2,k3) and G2

δφBB (k1,k2,k3) are described by the integrals

G1
δφBB (k1,k2,k3) = i

∫ ηe

ηi

dη J
dJ

dφ
f ∗
k1
(η) Ā′∗

k2
(η) Ā′∗

k3
(η), (5.12a)

G2
δφBB (k1,k2,k3) = i k2 k3

∫ ηe

ηi

dη J
dJ

dφ
f ∗
k1
(η) Ā∗

k2
(η) Ā∗

k3
(η). (5.12b)

Given the solutions for the electromagnetic modes Āk and the scalar perturbations fk
[cf. Eqs. (1.127) and (5.9)], the above integrals can be evaluated in the inflationary and
bouncing scenarios to arrive at the three-point function GδφBB (k1,k2,k3).
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5.2.1 The three-point function in de Sitter inflation

Before we go on to evaluate the three-point function in the bouncing scenario, we shall
first revisit its calculation in inflation in order to illustrate a few points. In Subsec. 1.6.2,
when we had considered the evolution of the electromagnetic modes, for simplicity, we
had assumed that the non-minimal couping J(η) is given by Eq. (1.131). In contrast, to
evaluate the three-point function of interest, apart from J , we also need the behavior of
dJ/dφ [cf. Eqs. (5.12)], which requires J(φ). This can be arrived at easily. Let the aux-
iliary scalar field φ that is evolving in de Sitter spacetime characterized by the scale fac-
tor (1.107a) be described by the potential V (φ). In de Sitter spacetime, the homogeneous
scalar field φ satisfies the following equation of motion:

φ′′ − 2

η
φ′ + a2 Vφ = 0, (5.13)

where Vφ = dV/dφ. If we now assume that V (φ) = −3nM
Pl
H2

I
φ, where n is a con-

stant, then it is straightforward to show that, for a suitable choice of initial conditions, the
solution to the above equation governing the scalar field can be written as [99]

φ(η) = −nM
Pl
ln η. (5.14)

Therefore, upon setting J(φ) = J0 exp (φ/M
Pl
), we can arrive at the desired behavior of

J(η) [as given by Eq. (1.131)] that we had worked with. With J(φ) at hand, we can,
evidently, obtain dJ/dφ to be

dJ

dφ
=

J(φ)

M
Pl

, (5.15)

thereby arriving at the required quantities related to the background.

We shall now evaluate the three-point function GδφBB(k1,k2,k3) for two specific val-
ues of n, as it proves to be difficult to evaluate the quantity for arbitrary n. Therefore, we
shall consider the two cases wherein n = 1 and n = 2. The n = 1 case leads to a blue-tilted
power spectrum for the magnetic field with the spectral index n

B
= 2 [cf. Eq. (1.138)].

Whereas, the n = 2 case leads to the desired scale invariant spectrum. Note that the be-
havior of the mode fk depends only on the scale factor [cf. Eq. (5.9)]. As is well known, in
de Sitter spacetime, the mode fk satisfying the standard Bunch-Davies initial condition is
given by

fk(η) =
iH

I√
2 k3

(1 + i k η) e−i k η. (5.16)
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The case of n = 1

When n = 1, the electromagnetic mode Āk and its derivative Ā′
k can be written as

[cf. Eq. (1.134)]

Āk(η) =

√

−π η
4

(
η

ηe

)

eiπH
(1)
3/2(−kη) =

1√
2 k3 ηe

(−i+ k η) e−i k η, (5.17a)

Ā′
k(η) = −k

√

−π η
4

(
η

ηe

)

eiπH
(1)
1/2(−kη) = −i

√

k

2

(
η

ηe

)

e−i k η. (5.17b)

Then, upon using the expressions (1.131) and (5.15) as well as the above modes in the
integrals (5.12), we find that the integrals [viz. G1

δφBB(k1,k2,k3) and G2
δφBB(k1,k2,k3)] can

be evaluated easily to obtain

G1
δφBB(k1,k2,k3) =

iH
I

√
k2 k3e

i k
T
ηe

√

8 k31MPl
k2

T

(−i k1 kT
ηe + 2 k1 + k2 + k3) , (5.18a)

G2
δφBB(k1,k2,k3) =

H
I
k2 k3 e

i k
T
ηe

√

8 k31 k
3
2 k

3
3MPl

{
1

ηe
− k1 k2 k3 ηe

k
T

− i

k2
T

[
k21 (k2 + k3) + k1

(
k22 + 4 k2 k3 + k23

)
+ k2 k3 (k2 + k3)

]
}

,

(5.18b)

where, recall that, k
T
= k1 + k2 + k3. The two corresponding contributions to the three-

point function can then be calculated to be

GδφBB(1)(k1,k2,k3) =
2 πH4

I

M2
Pl

(k1 + k
T
) (k21 − k22 − k23)

k31 k2 k3 k
2
T

, (5.19a)

GδφBB(2)(k1,k2,k3) = − π H4
I

2M2
Pl

1

k31 k
3
2 k

3
3 k

2
T

[
k41 − 2 k21(k

2
2 + k23) + k42 + 6 k22 k

2
3 + k43

]

×
[

k31 + k32 + k33 + 2 k21 (k2 + k3) + 2 k1 (k
2
2 + k2k3 + k23)

+ 2 k22 k3 + 2 k2 k
2
3

]

. (5.19b)

The complete three-point function GδφBB(k1,k2,k3) is evidently arrived at by adding the
above two contributions.

The case of n = 2

Let us now consider the case of n = 2. Since the scalar modes depend only on the scale
factor, they remain the same as in the case of n = 1 [i.e. as given by Eq. (5.16)]. Whereas,

104



5.2. EVALUATING CROSS-CORRELATIONS WITH MAGNETIC FIELDS

the electromagnetic mode and its derivative are given by

Āk(η) =

√

−π η
4

(
η

ηe

)2

e3 i π/2H
(1)
5/2(−kη) =

−1√
2 k5 η2e

(
3 + 3 i k η − k2 η2

)
e−i k η,

(5.20a)

Ā′
k(η) = −k

√

−π η
4

(
η

ηe

)2

e3 i π/2H
(1)
3/2(−kη) =

−η√
2 k η2e

(1 + i k η) e−i k η. (5.20b)

The integrals (5.12) can be evaluated using the above modes to arrive at

G1
δφBB(k1,k2,k3) =

iH
I
ei kT ηe

√

8 k31 k2 k3MPl

[
i

ηe
− i k1 k2 k3 ηe

k
T

+
k21 (k2 + k3) + k1 (k22 + 4 k2 k3 + k23) + k2 k3 (k2 + k3)

k2
T

]

, (5.21a)

G2
δφBB(k1,k2,k3) =

H
I
k2 k3

√

8 k31 k
5
2 k

5
3 MPl

{

3 i k31 [Ei (i kT
ηe) + i π] + ei kT ηe

[

− 3

η3e

− i k2 k3 [3 k
2
1 (k2 + k3) + k1 (3 k

2
2 + 8 k2 k3 + 3 k23) + k2 k3 (k2 + k3)]

k2
T

+
3 [−k21 + k1 (k2 + k3) + k2 k3]

ηe
− k1 k

2
2 k

2
3 ηe

k
T

+
3 i k

T

η2e

]}

.

(5.21b)

It should be mentioned that the integrals have been regulated (as is usually done in this
context) in the η → −∞ limit to arrive at the above results.

Upon eventually taking the limit ηe → 0, one can obtain that

GδφBB(1)(k1,k2,k3) =
18 πH6

I
a2(ηe)

M2
Pl

(k21 − k22 − k23)

k31 k
3
2 k

3
3 k

2
T

[

k31 + 2 k21(k2 + k3)

+ 2 k1 (k
2
2 + k2k3 + k23) + k32 + 2 k22 k3 + 2 k2 k

2
3 + k33

]

, (5.22a)

GδφBB(2)(k1,k2,k3) =
9 πH6

I
a2(ηe)

2M2
Pl

1

k52k
5
3

[
k41 − 2 k21 (k

2
2 + k23) + k42 + 6 k22 k

2
3 + k43

]

×
{

3 γ
E
+ 3 ln (−k

T
ηe)−

k3
T

k31
− 3 [k21 − k1 (k2 + k3)− k2k3] kT

k31

− k2 k3 [3 k
2
1 (k2 + k3) + k1 (3 k

2
2 + 8 k2 k3 + 3k23) + k2 k3 (k2 + k3)]

k31k
2
T

}

,

(5.22b)

where γ
E

is the Euler-Mascheroni constant [58]. Clearly, the complete three-point function
is a sum of the above two contributions.
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A few clarifications need to made regarding the expressions we have arrived at above
in the n = 2 case. To begin with, note that the two contributions in this case explicitly
depend on ηe [cf. Eqs. (5.22)]. The dependence arises through a2(ηe) as an overall fac-
tor and the term ln (−k

T
ηe) that is encountered in the second contribution. While the

first contribution is relatively straightforward to arrive at, the second requires some care
(when considering the ηe → 0 limit), specifically, in order to arrive at the logarithmic
term. Later, in Sec. 5.3, we shall illustrate the amplitude and shape of the dimensionless
non-Gaussianity parameter associated with the three-point function GδφBB(k1,k2,k3).
The non-Gaussianity parameter will involve the ratio of the three-point function and the
power spectra of the magnetic field as well as the perturbation in the scalar field. We shall
see that the overall a2(ηe) term will be canceled by a similar term that arises in the power
spectrum of the magnetic field. Also, we shall find that the logarithmic term considerably
enhances the three-point function in the flattened limit (i.e. when k1 = 2 k2 = 2 k3) leading
to a characteristic shape for the non-Gaussianity parameter [101].

5.2.2 The three-point function in a matter bounce

Let us now turn to the evaluation of the three-point function in the bouncing models. In
this case, we shall assume the canonical scalar field φ to be a free field. This choice is
motivated by the fact that it will lead to a scale invariant spectrum for the perturbation in
the scalar field in the matter bounce scenario (just as in de Sitter inflation) that we shall
focus on [48, 130]. Such a scalar field is governed by the following equation of motion:

φ′′ + 2Hφ′ = 0. (5.23)

This equation can be immediately integrated to arrive at

φ′ =
Cφ

a2
, (5.24)

where Cφ is a constant of integration. Recall that, apart from the form of the coupling
function J [cf. Eq. (4.2)], we require its derivative dJ/dφ to calculate the three-point func-
tion. Upon using the quantity φ′ we have obtained above, dJ/dφ can be expressed as

dJ

dφ
=

dJ

dη

dη

dφ
=

2 J0 n̄ q k
2
0 a

1/q
0

Cφ

η an̄+2−(1/q). (5.25)

In what follows, we shall assume the background to be the matter bounce scenario
wherein q = 1, and we shall consider the cases n̄ = 1 and n̄ = 3/2. Let us now understand
the behavior of the modes. Since the Fourier modes fk of the perturbation in the massless
scalar field depend only on the scale factor [cf. Eq. (5.9)], it can be solved for independent
of the value of n̄. The modes fk can be arrived at by dividing the period of interest into
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two domains (over −∞ < η < −α η0 and −α η0 < η < β η0, where α = 105 and β = 102)
just as we had done in the case of the electromagnetic modes in Chap. 4 as well as in the
case of the tensors in Chap. 3. In the first domain, the mode is given by the following well
known matter bounce form [48, 130]:

fk(η) =
1√
2 k

1

a0 k20 η
2

(

1− i

k η

)

e−i k η. (5.26)

While in the second domain, it can be obtained to be (in this context, see Ref. [130])

fk(η) = S1k + S2k g1(k0 η), (5.27)

where

S1k =
1√
2 k

1

a0 α2

(

1 +
i k0
α k

)

ei α k/k0 + S2k g1(α), (5.28a)

S2k =
1√
2 k

1

2 a0 α2

(
1 + α2

)2
(
3 i k0
α2 k

+
3

α
− i k

k0

)

ei α k/k0, (5.28b)

while the function g1(x) is given by Eq. (3.9). Note that the behavior of the modes fk
is similar to that of the tensor modes hk [cf. Eq. (3.8)] discussed in Chap. 3, since they
obey the same equation of motion. The behavior of the mode fk is plotted in Fig. 5.1 (on
page 112) as a function of so-called e-N-folds N in terms of which the scale factor is given
by a(N ) = a0 exp(N 2/2) [55], where a0 is the value of the scale factor at the bounce. Note
that the modes fk and Āk grow strongly as one approaches the bounce. Such a growth
may lead to large non-Gaussianities in the bouncing scenarios.

The case of n̄ = 1

Let us first consider the case of n̄ = 1, as we had done in the context of inflation. In such
a case, we have

dJ

dφ
=

2 J0 k
2
0 a

2
0

Cφ

η
(
1 + k20 η

2
)2
. (5.29)

Since we now know the background quantities as well as the behavior of the modes, we
have all the information required to evaluate the integrals characterizing the three-point
function [cf. Eqs. (5.12)]. In order to calculate these integrals, evidently, we can divide
the period of interest (i.e. −∞ < η < β η0) into two domains (−∞ < η < −α η0 and
−α η0 < η < β η0) over which we have constructed solutions for the modes.

In the first domain, for the bouncing scenario of our interest, the scale factor can be
approximately written as a(η) ≃ a0 k

2
0 η

2. Therefore, we have [cf. Eqs. (4.2) and (5.25)]

J
dJ

dφ
≃ 2 J2

0 k
8
0 a

4
0

Cφ

η7 = J00 η
7, (5.30)
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where we have set J00 = 2 J2
0 k

8
0 a

4
0/Cφ. Also, when n̄ = 1, the electromagnetic modes (4.3)

and their time derivative reduce to

Āk(η) =
−i√

2 k3 a0 J0 k
2
0 η

3
(1 + ik η) e−i k η, (5.31a)

Ā′
k(η) =

1√
2 k3 a0 J0 k20 η

4

(
3 i− 3 k η − i k2 η2

)
e−i k η. (5.31b)

Now, in order to arrive at the three-point function, we need to evaluate the integrals (5.12).
After writing these equations in terms of the coupling function and the scalar and electro-
magnetic modes, we find that the integrals involved are mainly of the form described in
Eq. (3.20). Therefore, in the first domain, using Eqs. (3.21) and (3.22), the integrals (5.12)
can be written as follows:

G1
δφBB(k1,k2,k3) =

a0 k0 e
−i α k

T
/k0

√
2α3Cφ (k1 k2 k3)3/2 k2T

{

3 i α3 k0 k
3
1 k

2
T
ei α k

T
/k0 Ei

(

−i kT
α

k0

)

+3 k40 k
2
T
+ 3 i α k30 k

3
T
+ 3α2 k20 k

2
T

[
k21 − k1 (k2 + k3)− k2 k3

]

−α3 k0

[

3 π k51 e
i α k

T
/k0 + 6 π k41 (k2 + k3) e

i α k
T
/k0 + i k22 k

2
3 (k2 + k3)

+3 π k31 (k2 + k3)
2 ei α k

T
/k0 + 3 i k21 k2 k3 (k2 + k3)

+ i k1 k2 k3
(
3 k22 + 8 k2 k3 + 3 k23

)
]

+ α4 k1 k
2
2 k

2
3 kT

}

, (5.32a)

G2
δφBB(k1,k2,k3) =

a0 k0 k2 k3 e
−i α k

T
/k0

√
2αCφ (k1k2k3)3/2 k2T

{

k20 k
2
T
+ i α k0

[

k21 (k2 + k3)

+ k1
(
k22 + 4 k2 k3 + k23

)
+ k2 k3 (k2 + k3)

]

− α2 k1 k2 k3 kT

}

. (5.32b)

In the second domain, we have

J
dJ

dφ
= J01 η

(
1 + k20 η

2
)3
, (5.33)

where we have defined J01 = 2 J2
0 k

2
0 a

4
0/Cφ. Also, the modes and their derivatives are

given by the expressions [cf. Eq. (4.13)]

Āk(η) = B1k + B2k g1(k0 η), (5.34a)

Ā′
k(η) =

2B2k k0

(1 + k20 η
2)

2 , (5.34b)

where

B1k = Āk(−α η0) +
1

2 k0
Ā′

k(−α η0)
(
1 + α2

)2
g1(α), (5.35a)

B2k =
1

2 k0
Ā′

k(−α η0)
(
1 + α2

)2
, (5.35b)
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with Āk(−α η0) and Ā′
k(−α η0) being obtained from the corresponding values evaluated

at the end of the first domain [cf. Eqs. (5.31)], while g1(x) is given by Eq. (3.9). On using
the above expressions, we find that the integrals (5.12) in the second domain are of the
following form:

G1
δφBB(k1,k2,k3) = 4 i J01 B∗

2k2
B∗
2k3

k20

∫ β/k0

−α/k0

dη

(
η

1 + k20 η
2

)
[
S∗
1k1

+ S∗
2k1

g1(k0 η)
]
,

(5.36a)

G2
δφBB(k1,k2,k3) = i k2 k3 J01

∫ β/k0

−α/k0

dη η
(
1 + k20 η

2
)3 [S∗

1k1
+ S∗

2k1
g1(k0 η)

]

×
[
B∗
1k2

+ B∗
2k2

g1(k0 η)
] [

B∗
1k3

+B∗
2k3

g1(k0 η)
]
. (5.36b)

These integrals can be evaluated easily in terms of elementary functions. Thereafter, these
two integrals can be combined to arrive at the total contribution to the three-point func-
tion from the second domain.

The case of n̄ = 3/2

For the case of q = 1 and n̄ = 3/2, which is when scale invariant magnetic fields are
generated, we have

dJ

dφ
=

3 J0 k
2
0 a

7/2
0

Cφ

η
(
1 + k20 η

2
)5/2

. (5.37)

In the first domain, for the matter bounce scenario, we therefore have

J
dJ

dφ
≃ 3 J2

0 k
10
0 a50

Cφ
η9 = J10 η

9, (5.38)

where we have set J10 = 3 J2
0 k

10
0 a50/Cφ. In this case, the electromagnetic modes (4.3) in

the first domain simplify to

Āk(η) =
1

J0 a
3/2
0 k30

√
2 k

(
1

η3
− 3 i

k η4
− 3

k2 η5

)

e−i k η, (5.39a)

Ā′
k(η) =

1

J0 a
3/2
0 k30

√
2 k

(
15

k2 η6
+

15 i

k η5
− 6

η4
− i k

η3

)

e−i k η. (5.39b)

Using these solutions, we can compute the contribution to the three-point function from
the first domain. We find that the integrals (5.12) can be evaluated using Eqs. (3.21)
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and (3.22) to obtain

G1
δφBB(k1,k2,k3) = − 3 a0 k0 e

−i α k
T
/k0

4
√
2α5Cφ k

3/2
1 k

5/2
2 k

5/2
3 k2

T

{

90 k60 k
2
T
+ 90 i α k50 k

3
T

− 15 i α5 k0 k
3
1 k

2
T

(
k21 − k22 − k23

)
ei α k

T
/k0 Ei

(

−ikT
α

k0

)

+30α2 k40 k
2
T

[
k21 − 3 k1 (k2 + k3)− k22 − 3 k2 k3 − k23

]

− 15 i α3 k30 k
2
T

[

k31 − 2 k21 (k2 + k3) + 2 k1
(
k22 + 3 k2 k3 + k23

)

+2 k2 k3 (k2 + k3)

]

− 3α4 k20 k
2
T

[

5 k41 − 5 k31 (k2 + k3) + 10 k21 k2 k3

−10 k1 k2 k3 (k2 + k3)− 4 k22 k
2
3

]

+ α5 k0

[

15 π k71 e
i α k

T
/k0

+30 π k61 (k2 + k3) e
i α k

T
/k0 + 30 π ka5 k2 k3 e

i α k
T
/k0 − 30 π k41

(

k32

+k22 k3 + k2 k
2
3 + k33

)

ei α k
T
/k0 + 12 i k21 k

2
2 k

2
3 (k2 + k3)

+ 4 i k1 k
2
2 k

2
3

(
3 k22 + 7 k2 k3 + 3 k23

)
+ 2 i k32 k

3
3 (k2 + k3)

− 15 π k31 (k2 + k3)
2
(
k22 + k23

)
ei α k

T
/k0

]

− 2α6 k1 k
3
2 k

3
3 kT

}

,

(5.40a)

G2
δφBB(k1,k2,k3) = − 3 a0 k0 k2 k3 e

−i α k
T
/k0

2
√
2α3Cφ k

3/2
1 k

5/2
2 k

5/2
3 k2

T

{

3 i α3 k0 k
3
1 k

2
T
ei α k

T
/k0 Ei

(

−i kT
α

k0

)

+3 k40 k
2
T
+ 3 i α k30 k

3
T
+ 3α2 k20 k

2
T

[
k21 − k1 (k2 + k3)− k2 k3

]

−α3 k0

[

3 π k51 e
i α k

T
/k0 + 6 π k41 (k2 + k3) e

i α k
T
/k0

+3 π k31 (k2 + k3)
2 ei α k

T
/k0 + 3 i k21 k2 k3 (k2 + k3)

+ i k1 k2 k3
(
3k22 + 8 k2 k3 + 3 k23

)
+ i k22 k

2
3 (k2 + k3)

]

+ α4 k1 k
2
2k

2
3 kT

}

.

(5.40b)

In the second domain, we have

J
dJ

dφ
= J11 η

(
1 + k20 η

2
)4
, (5.41)

where we have defined J11 = 3 J2
0 k

2
0 a

5
0/Cφ. Also, the electromagnetic modes are given by
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the following expressions:

Āk(η) = C1k + C2k g 3
2
(k0 η), (5.42a)

Ā′
k(η) =

8 C2k k0
(1 + k20 η

2)
3 , (5.42b)

where the quantities C1k and C2k can be written as

C1k = Āk(−α η0) +
1

8 k0
Ā′

k(−α η0)
(
1 + α2

)3
g 3

2
(α), (5.43a)

C2k =
1

8 k0
Ā′

k(−α η0)
(
1 + α2

)3
, (5.43b)

while the function g 3
2
(x) is given by

g 3
2
(x) =

(5 + 3 x2) x

(1 + x2)2
+ 3 tan−1 x. (5.44)

Upon using the above expressions for the modes, we find that the integrals (5.12) in the
second domain are of the following form:

G1
δφBB(k1,k2,k3) = 64 i J11 C∗

2k2 C∗
2k3 k

2
0

∫ β/k0

−α/k0

dη η

(1 + k20 η
2)2

[
S∗
1k1 + S∗

2k1 g1(k0 η)
]
,

(5.45a)

G2
δφBB(k1,k2,k3) = i k2 k3 J11

∫ β/k0

−α/k0

dη η
(
1 + k20 η

2
)4 [S∗

1k1 + S∗
2k1 g1(k0 η)

]

×
[

C∗
1k2

+ C∗
2k2

g 3
2
(k0 η)

] [

C∗
1k3

+ C∗
2k3

g 3
2
(k0 η)

]

. (5.45b)

These integrals can again be evaluated easily and expressed in terms of elementary func-
tions and they can then be combined to arrive at the complete three-point function.

It is useful to note here that, on comparing the amplitude of the contributions to the
three-point function from the first and second domains, we find that the second domain
leads to a much larger contribution than that from the first domain in both the cases of
n̄ = 1 and n̄ = 3/2. The final expressions describing the three-point functions prove
to be quite lengthy and cumbersome. Due to this reason, rather than write them down
explicitly, we shall instead illustrate the behavior of the corresponding non-Gaussianity
parameter as density plots in the next section.
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Figure 5.1: The behavior of the scalar mode fk (on the top) and the electromagnetic mode
Āk (at the bottom, for the case n̄ = 3/2) in the matter bounce scenario (i.e. when q = 1) has
been plotted as a function of time. We have chosen to work with a time variable called e-
N-folds that is convenient to describe symmetric bounces [55]. Note that both the modes
grow as one approaches the bounce. This property can lead to large non-Gaussianities.
These plots correspond to a typical cosmological scale with wavenumber k/k0 = 10−20

and we should add that modes corresponding to all the scales of cosmological interest
behave in a similar fashion. We should also point out that numerical analyses suggest
that these analytical approximations match the exact numerical solutions very well [55,
130, 138].
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5.3 Amplitude and shape of the non-Gaussianity

parameter

Motivated by definitions of the non-Gaussianity parameters describing the three-point
auto and cross-correlations of the scalar and tensor perturbations [76, 80], we shall now
define a non-Gaussianity parameter b

NL
to characterize the cross-correlation between the

magnetic field and the perturbation in the scalar field. As we shall see, the parameter will
prove to be a dimensionless quantity involving the ratio of the cross-correlation and the
power spectra of the scalar perturbation and the magnetic field. The parameter captures
the amplitude and shape of the three-point function, and we should clarify that it has a
form very similar to the parameters defined earlier in this context [99–101]. In this sec-
tion, we shall arrive at the expression for the non-Gaussianity parameter by following the
same procedure as was used to arrive at similar parameters for the three-point functions
involving the scalar and tensor perturbations [76]. With the definition at hand, we shall
evaluate the parameter for the inflationary and bouncing scenarios of our interest.

The amplitude of the non-Gaussianity in the local model for the scalar three-point
function is usually parameterized in terms of a parameter f

NL
which, in this model, coin-

cides with the bispectrum scaled by products of the power spectra. Here, we generalize
that analogously to a non-Gaussianity parameter b

NL
which we define through the fol-

lowing relation:

B̂iq(η) = B̂
(G)
i q (η) +

b
NL

2M
Pl

∫
d3p

(2 π)3/2
δ̂φq−p(η) B̂

(G)
ip (η), (5.46)

where B̂i q is the Fourier mode of the actual magnetic field and B̂
(G)
i q indicates the Fourier

mode of its Gaussian part, while, as usual, δ̂φq−p refers to Fourier mode of the perturba-
tion in the scalar field which has already been assumed to be Gaussian. We can evaluate
the three-point function of our interest, viz. 〈δ̂φk1

B̂i
k2
B̂ik3

〉, upon using the above defini-

tion of B̂i q and Wick’s theorem which applies to Gaussian operators. On making use of
the definition (5.10) of GδφBB(k1,k2,k3) and inverting the resulting expression, we obtain
the following expression for b

NL
[141]:

b
NL

(k1,k2,k3) =
1

16 π5

J2(ηe)

a2(ηe)

[

k31 k
3
2 k

3
3 GδφBB(k1,k2,k3)

]

×
{

Pδφ(k1)
[
k33 PB

(k2) + k32 PB
(k3)

]
}−1

. (5.47)

In this expression, P
B
(k) is the power spectrum of the magnetic field we have discussed

earlier, while Pδφ(k) is the power spectrum of the scalar field, given by

Pδφ(k) =
k3

2 π2M2
Pl

| fk|2, (5.48)
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with the right hand side to be evaluated as ηe → 0 in the context of inflation and at
η = β η0 in the context of the bouncing models. Due to their dual nature [48], both de
Sitter inflation and matter bounce are expected to lead to scale invariant spectra for the
perturbation in the scalar field. In de Sitter inflation, the spectrum is given by the well
known scale invariant form

Pδφ(k) =
H2

I

4 π2M2
Pl

. (5.49)

In the matter bounce, using the modes (5.27), it can be determined to be [130]

Pδφ(k) =
9 k20

16 a20M
2
Pl

. (5.50)

Let us first consider the amplitude and shape of the non-Gaussianity parameter b
NL

for an arbitrary triangular configuration of the wavevectors k1, k2 and k3 in the context of
inflation. In de Sitter inflation, for the case of n = 1, from the two contributions (5.19) to
the three-point function and the power spectra (1.135) and (5.49), the parameter b

NL
can

be obtained to be

b
NL
(k1,k2,k3) = − 1

2 k22 k
2
3 (k2 + k3) k2T

{

4 k22 k
2
3 (k1 + k

T
)
(
−k21 + k22 + k23

)

+

[

k41 − 2 k21
(
k22 + k23

)
+ k42 + 6 k22k

2
3 + k43

] [

k31 + 2 k21 (k2 + k3)

+ 2 k1
(
k22 + k2k3 + k23

)
+ k32 + 2 k22 k3 + 2 k2 k

2
3 + k33

]}

. (5.51)

Note that, in the squeezed limit, wherein k1 → 0 and k2 = k3, we have b
NL

= −4. For the
case of n = 2, the non-Gaussianity parameter can be obtained [from Eqs. (5.22), (1.135)
and (5.49)] to be

b
NL
(k1,k2,k3) =

1

2 k22 k
2
3 (k32 + k33) k

2
T

{

4 k22 k
2
3

(
k21 − k22 − k23

)
[

k31 + 2 k21 (k2 + k3)

+ 2 k1
(
k22 + k2 k3 + k23

)
+ k32 + 2 k22 k3 + 2 k2 k

2
3 + k33

]

−
[

k41 + k42 + k43

− 2 k21
(
k22 + k23

)
+ 6 k22 k

2
3

] [

−3 γ
E
k31 k

2
T
− 3 k31 k

2
T
ln (−k

T
ηe)

+ k2 k3

(

3 k21 (k2 + k3) + k1
(
3 k22 + 8 k2 k3 + 3 k23

)
+ k2 k3 (k2 + k3)

)

+3

(

k21 − k1(k2 + k3)− k2 k3

)

k3
T
+ k5

T

]}

. (5.52)

In the squeezed limit, we have b
NL

= −8. In the next section, we shall discuss the proper-
ties of b

NL
in the squeezed limit in more detail.

114



5.3. AMPLITUDE AND SHAPE OF THE NON-GAUSSIANITY PARAMETER

For the matter bounce scenario and the two cases of n̄ = 1 and n̄ = 3/2 that we had
considered, we can arrive at the non-Gaussianity parameter b

NL
from the various expres-

sions we had obtained earlier and the corresponding power spectra. However, as the
resulting expressions are too lengthy and cumbersome, we do not explicitly write them
down here. We shall plot them below and compare them with the results in inflation.

In Figs. 5.2 and 5.3, we have illustrated the non-Gaussianity parameter b
NL

as a density
plot for an arbitrary triangular configuration of the wavevectors k1, k2, and k3, as is often
done for the scalar non-Gaussianity parameter f

NL
(see, for instance, Ref. [80]). In these

plots, the x-axis corresponds to the ratio of the amplitudes of k1 and k2, while the y-axis
corresponds to the ratio of the amplitudes of k3 and k2. We have plotted the b

NL
parameter

over the ranges 0.0 < k1/k2 < 2.0 and 0.0 < k3/k2 < 1.0. These values of the ratios of
wavenumbers can satisfactorily represent the entire range of triangular configuration of
wavevectors of our interest (as we have discussed in Chap. 2).

A few points need to be stressed regarding the results that have been illustrated in
Figs. 5.2 and 5.3. Let us first discuss the case of de Sitter inflation. To begin, note that,
in this case, the amplitude as well as the shape of the non-Gaussianity parameter b

NL
is

considerably different depending on whether n = 1 or n = 2. Also, the amplitude in the
n = 2 case is substantially larger due to the appearance of the ln (−k

T
ηe) term, with the

maximum values of the parameter arising in the flattened limit wherein k1 = 2 k2 = 2 k3.
Moreover, as we have already mentioned, in the squeezed limit wherein k1 → 0 and
k2 = k3, we have b

NL
= −4 when n = 1 and b

NL
= −8 when n = 2. This is essentially the

consistency relation which we shall establish in the next section for an arbitrary n in the
case of inflation. In contrast, the non-Gaussianity parameter seems to have primarily the
same shape for n̄ = 1 and n̄ = 3/2 in the matter bounce case. This can be attributed to the
fact that, as the wavenumbers of cosmological interest are much smaller than the bounce
scale, the matter bounce scenario is unable to strongly discriminate between these modes.
However, the amplitude of b

NL
in the matter bounce is considerably larger than in de Sitter

inflation, which is possibly because of the form of the coupling function that we have
considered [141]. While, for n̄ = 1, b

NL
is nearly scale invariant, say, in the equilateral limit,

we find that the parameter has a strong red tilt when n̄ = 3/2 (with b
NL

behaving as k−2),
leading to rather large values for the small wavenumbers (say, for 10−20 < k/k0 < 10−15)
corresponding to cosmological scales. We shall discuss the implications of this result in
the concluding section.
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Figure 5.2: The dimensionless non-Gaussianity parameter b
NL

arising in de Sitter inflation
has been illustrated as a density plot for an arbitrary triangular configuration of wavevec-
tors for the two cases of n that we had considered (with n = 1 on the top and n = 2 at the
bottom). Recall that the n = 2 case leads to a scale invariant spectrum for the magnetic
field. The amplitude as well as the shape of the parameter is considerably different in
the two cases. Moreover, in the case of n = 2, the parameter is considerably enhanced in
the flattened limit (due to the logarithmic term depending on ηe that arises in the three-
point function), i.e. when k1 = 2 k2 = 2 k3 [100, 101]. Further, b

NL
tends to −4 and −8

when n = 1 and n = 2 in the squeezed limit (i.e. as k1 → 0), respectively, indicating
that the cross-correlation satisfies the consistency relation, a point which we shall discuss
in some generality in the next section. We have chosen ηe such that the pivot scale of
k∗ = 0.002Mpc−1 leaves the Hubble radius 50 e-folds before the end of inflation. In this
case, note that, we can write ln (−k

T
ηe) = ln (k

T
/k∗)− 50.
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Figure 5.3: The dimensionless non-Gaussianity parameter b
NL

arising in the matter
bounce scenario has been illustrated in the form of density plots as in the previous figure
for the two cases of n̄ we had discussed (n̄ = 1 on the top and n̄ = 3/2 at the bottom).
When compared with the results in the inflationary case, two points are evident. Firstly,
the shape of the parameter proves to be considerably more homogeneous. This is primar-
ily because of the fact that all the scales of cosmological interest are much smaller than the
bounce scale k0, and hence the simple bouncing scenario we are considering here does not
strongly discriminate between the wavenumbers of interest. Secondly, the amplitude of
b
NL

is considerably larger. This can be completely attributed to the forms of the coupling
functions that we have considered. Moreover, in the n̄ = 3/2 case, there arises a strong
red tilt with, say, b

NL
behaving as k−2 in the equilateral limit, which leads to even larger

values (compared to the n̄ = 1 case, where it is nearly scale invariant) over cosmological
scales. In contrast, in de Sitter inflation, b

NL
is nearly scale invariant in all the limits for

both the values of n that we have considered.
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5.4 The three-point function in the squeezed limit and the

consistency relation

In this section, we shall obtain the consistency relation for the three-point function in-
volving the magnetic field and the scalar perturbation in the case of de Sitter inflation.
We shall also discuss its validity in the bouncing scenario.

Let us first consider the case of de Sitter inflation. In the squeezed limit, i.e. when
k1 → 0 and, say, k2 = −k3 = k, the scalar mode with wavenumber k1 can be considered
to have exited the Hubble radius and hence its amplitude can be treated as a constant,
as we have discussed in Subsec. 1.5.5. Therefore, the mode fk can be extracted out of
the integrals (5.12). For the coupling function J(φ) that we had considered, given the
modes (1.134), we obtain that, for arbitrary n [58],

G1
δφBB(k1,k,−k) =

i

M
Pl

∫ ηe

−∞

dη J2(η) f ∗
k1
(η) Ā′∗2

k (η)

≃ i

M
Pl

f ∗
k1
(ηe)

∫ ηe

−∞

dη J2(η) Ā′∗2
k (η)

=
i π k2 η2e e

−i n π

8M
Pl

f ∗
k1
(ηe)

×
{[

H
(2)
n−1/2(−k ηe)

]2

−H
(2)
n−3/2(−k ηe)H

(2)
n+1/2(−k ηe)

}

, (5.53a)

G2
δφBB(k1,k,−k) =

i

M
Pl

k2
∫ ηe

−∞

dη J2(η) f ∗
k1
(η) Ā∗2

k (η)

≃ i k2

M
Pl

f ∗
k1(ηe)

∫ ηe

−∞

dη J2(η) Ā∗2
k (η)

=
i π k2 η2e e

−i n π

8M
Pl

f ∗
k1
(ηe)

×
{[

H
(2)
n+1/2(−k ηe)

]2

−H
(2)
n−1/2(−k ηe)H

(2)
n+3/2(−k ηe)

}

. (5.53b)

Adding the contributions due to these two integrals, the three-point function in the
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squeezed limit can be written as

GδφBB(k1,k,−k) =
−i π3H2

I
η5e k

4

2M2
Pl

∣
∣f ∗

k1
(ηe)

∣
∣2

×
(
[

H
(1)
n+1/2(−k ηe)

]2
{[

H
(2)
n−1/2(−k ηe)

]2

+
[

H
(2)
n+1/2(−k ηe)

]2

−H
(2)
n−3/2(−k ηe)H

(2)
n+1/2(−kηe)−H

(2)
n−1/2(−k ηe)H

(2)
n+3/2(−k ηe)

}

−
[

H
(2)
n+1/2(−k ηe)

]2
{[

H
(1)
n−1/2(−k ηe)

]2

+
[

H
(1)
n+1/2(−k ηe)

]2

−H
(1)
n−3/2(−k ηe)H

(1)
n+1/2(−k ηe)−H

(1)
n−1/2(−k ηe)H

(1)
n+3/2(−k ηe)

})

.

(5.54)

Using this result, the expressions for the power spectra of the scalar field and the magnetic
field as well as the behavior of Hankel functionsHν(x) for small values of x, we can obtain
the non-Gaussianity parameter in the squeezed limit to be [58]

lim
k1→0

b
NL
(k1,k,−k) = 2n

B
− 8, (5.55)

where, recall that, n
B

= (4 − 2n) is the spectral index of the power spectrum of the
magnetic field [cf. Eq. (1.138)]. This implies that, in the squeezed limit, b

NL
= −4 for

n = 1 and b
NL

= −8 for n = 2, results that we had already arrived at in the previous
section.

In the bouncing scenario under consideration, we find that the scalar mode strongly
grows as one approaches the bounce and, in fact, also exhibits a slow growth even after
the bounce [in this context, see Fig. 5.1 (on page 112)]. Specifically, in contrast to its be-
havior in de Sitter inflation, the scalar mode fk does not become a constant at late times.
Therefore, it can be expected that, contrary to the reduced integrals (5.53) that we had
obtained in the squeezed limit in the inflationary context, the corresponding integrals in
bounces would involve all the three modes. Consequently, the consistency relation (5.55)
that is valid in the case of de Sitter inflation may not hold true in the bouncing model. On
evaluating the three-point function and the non-Gaussianity parameter in the bounce,
we find that the consistency relation is indeed violated [141]. The violation of the consis-
tency relation corresponding to the tensor bispectrum in a matter bounce was observed in
Chap. 3, and it is interesting to note that a similar behavior is exhibited by the three-point
function involving one scalar and two electromagnetic modes as well. This difference
in the behavior of the non-Gaussianity parameter between de Sitter inflation and matter
bounce scenarios, despite the similarities in the two-point functions obtained in these two
models, can potentially serve as a discriminator between the inflationary paradigm and
the bouncing scenarios.
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5.5 Discussion

The magnetic fields existing on various scales in the universe are considered to have orig-
inated from a primordial seed field. Although the generation of such fields via the infla-
tionary mechanism has been well studied, there have been far fewer endeavors to investi-
gate the origin of the primordial magnetic fields in bouncing models. One of the most im-
portant signatures of such fields would be the extent of non-Gaussianity associated with
the cross-correlations between these fields and the scalar perturbations. These three-point
functions have been evaluated in certain inflationary scenarios and it has been found that
the corresponding non-Gaussianity parameter can be expected to be quite large.

In the matter bounce scenario of our interest, the modes grow as one approaches the
bounce, and grow very slowly thereafter. Due to the enhancement in the amplitude of
the modes, it can be expected that the non-Gaussianities associated with the three-point
functions would be very large. In Chap. 3, it was shown that despite the growth of the
tensor modes in a matter bounce, the corresponding tensor non-Gaussianity is rather
small and the consistency relation for the tensor bispectrum is violated [130]. In contrast,
in this chapter, we find that the non-Gaussianity parameter associated with the cross-
correlations involving the primordial magnetic fields and the scalar perturbations is very
large and, in fact, is much larger than what is expected in the de Sitter inflationary sce-
nario. Further, the corresponding consistency relation is violated in the bouncing model.
It should be noted that the bouncing scenario that we have considered here suffers from
considerable backreaction in the vicinity of the bounce [55, 138], which can possibly be
responsible for the large non-Gaussianity that we encounter. The issue of circumventing
the backreaction in the proximity of the bounce is non-trivial and needs to be investigated
in more detail.

Recall that we have restricted ourselves to the matter bounce scenario. Evidently, other
combinations of the parameters n̄ and q can also lead to scale invariant magnetic power
spectra of relevant amplitude. It would be interesting to examine whether other scenarios
that result in similar amplitude for the scale invariant power spectrum also lead to sim-
ilar results for the non-Gaussianity parameter. Note that the extent of non-Gaussianity
depends on J(φ) as well as dJ/dφ, with the latter depending on φ′ [cf. Eq. (5.25)]. There-
fore, it is important to explore a wide variety of coupling functions J(φ), some of which
may lead to considerably different levels of non-Gaussianity. We are currently exploring
some of these issues.
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Chapter 6

Enhancing the cross-correlations
between magnetic fields and scalar
perturbations through parity violation

6.1 Introduction

In the context of primordial magnetogenesis, another interesting aspect is to study the
magnetic fields generated due to the addition of a parity violating term to the standard
electromagnetic action. Such a term would lead to the generation of the so-called helical
magnetic fields [142–145]. In this situation, two modes with positive and negative helicity
are generated, which evolve differently and, as a consequence, can conceivably lead to
distinct imprints, such as correlations between B-mode and E-mode polarizations or the
temperature and B-mode polarizations in the CMB [143, 146]. They can also lead to the
production of helical gravitational waves with possible observational imprints (in this
context, see, for example, Refs. [143,146,147]). Further, it has been shown that, the helical
fields evolve strongly in the cosmic magnetohydrodynamic plasma through an inverse
cascade mechanism, resulting in an augmentation of the power on large scales [148].

An additional way to constrain these magnetic fields would be to study their cross-
correlations at the level of the three-point functions with the scalar perturbations and
their possible observational imprints. While such three-point functions have already been
studied for the case of non-helical magnetic fields [99–101,139], we believe it is of utmost
interest to study the non-Gaussianities produced due to the helical fields as well. Ana-
lytically, the evaluation of these three-point functions seems to be a formidable task, due
to the non-trivial form of the helical modes involving the Coulomb functions [143–145].
In this chapter, we shall numerically evaluate the three-point function involving the he-
lical magnetic fields and the perturbations in an auxiliary scalar field and examine its
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implications.

This chapter is structured as follows. In the next section, we shall discuss the action
governing non-minimally coupled helical electromagnetic fields, their quantization and
the power spectrum associated with the magnetic field. In Sec. 6.3, working with a specific
form of the non-minimal coupling, we shall revisit the evaluation of the power spectrum
of helical magnetic fields arising in de Sitter inflation. In Sec. 6.4, by suitably perturb-
ing the action, we shall arrive at the Hamiltonian describing the interaction between the
perturbed scalar field and the electromagnetic field. Using the interaction Hamiltonian,
we shall arrive at the formal structure of the three-point function describing the cross-
correlation between the perturbation in the scalar field and the electromagnetic field. In
Sec. 6.5, we shall outline the numerical procedure that we shall adopt to compute the
cross-correlation. In Sec. 6.6, we shall first compare our numerical results with the ana-
lytical results available in the non-helical case for two different situations (one leading to
a power spectrum with a tilt and another which leads to a scale invariant spectrum) and
present the corresponding results in the helical case. We shall conclude in Sec. 6.7 with a
brief summary of the results we have obtained.

6.2 Non-minimally coupled, helical electromagnetic fields,

quantization and power spectrum

We consider the action [145]

Sem[A
µ, φ] = − 1

16 π

∫

d4x
√−g

[

J2(φ)FµνF
µν − γ

2
I2(φ)FµνF̃

µν
]

, (6.1)

where, as before, the electromagnetic field tensor Fµν is given by

Fµν = ∂µAν − ∂ν Aµ. (6.2)

The dual of the electromagnetic tensor F̃ µν is defined as

F̃ µν = ǫµναβ Fαβ , (6.3)

with ǫµναβ = (1/
√−g) Aµναβ, where Aµναβ is the totally antisymmetric Levi-Civita tensor

and A0123 = 1. Clearly, the function J(φ) describes the non-minimal coupling, while the
function I(φ) (along with the parameter γ) leads to parity violation.

We shall assume that there is no homogeneous component to the electromagnetic field.
We shall choose to work in the Coulomb gauge wherein A0 = 0 and ∂iA

i = 0. In such
a gauge, at the quadratic order in the inhomogeneous modes, the action describing the
electromagnetic field is found to be

S[Ai] =
1

4 π

∫

d η

∫

d3 x

{

J2 (φ)

[
1

2
A′ 2

i − 1

4
(∂iAj − ∂j Ai)

2

]

+ γ I2 (φ) ǫijk A′
i ∂j Ak

}

,

(6.4)

122



6.2. NON-MINIMALLY COUPLED HELICAL ELECTROMAGNETIC FIELDS

where ǫijk is the three-dimensional completely anti-symmetric tensor. We can vary this
action to arrive at the following equation of motion for the electromagnetic vector poten-
tial:

A′′
i + 2

J ′

J
A′

i −∇2Ai = − γ

J2

dI 2

d η
δil ǫ

lnm ∂nAm. (6.5)

For each comoving wave vector k, we can define the right-handed orthonormal basis
(εk1 , ε

k
2 , k̂), where

|εki |2 = 1, εk1 × εk2 = k̂, and εk1 · εk2 = k̂ · εk1 = k̂ · εk2 = 0. (6.6)

While this is a suitable basis for expressing the non-helical modes, it is not ideally suited
for the helical case as the two helical modes would be coupled in this basis. In such a
situation, it is convenient to identify two transverse directions to form the helicity basis,
wherein the modes decouple, as follows [143, 144]:

εk± =
1√
2

(
εk1 ± i εk2

)
. (6.7)

In such a basis, on quantization, the vector potential Âi can be Fourier decomposed
as [145]:

Âi(η,x) =
√
4 π

∫
d3 k

(2 π)3/2

∑

σ=±

[

εkσi b̂
σ
k Ā

σ
k(η) e

ik·x + εk ∗
σi b̂

σ†
k Āσ

k(η) e
−ik·x

]

, (6.8)

where the Fourier modes Āσ
k satisfy the differential equation

Āσ ′′
k + 2

J ′

J
Āσ ′

k +

(

k2 +
σ γ k

J2

dI 2

d η

)

Āσ
k = 0. (6.9)

Note that σ = ±1, and this causes considerable difference in the evolution of the modes.
As we shall see, one of the modes will be strongly amplified on super-Hubble scales and
the extent of amplification will depend on the quantity γ. The operators b̂σk and b̂σ†k are
the annihilation and creation operators satisfying the following standard commutation
relations:

[b̂σk, b̂
σ′

k′ ] = [b̂σ†k , b̂
σ′†
k′ ] = 0 and [b̂σk, b̂

σ′†
k′ ] = δ(3)(k − k′) δσσ′ . (6.10)

Let us define Aσ
k = J Āσ

k . In terms of the new variable Aσ
k , Eq. (6.9) can be rewritten as

Aσ ′′
k +

(

k2 − J ′′

J
+
σ γ k

J2

dI 2

d η

)

Aσ
k = 0. (6.11)

In this chapter, we shall restrict ourselves to the simplest scenarios wherein I = J . In
such a case, the above equation simplifies to

Aσ ′′
k +

(

k2 − J ′′

J
+

2 σ γ k J ′

J

)

Aσ
k = 0. (6.12)
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Since we shall be only interested in the behavior of the helical magnetic fields, we
shall not discuss the electric field in this chapter. Let ρ̂

B
denote the operator correspond-

ing to the energy density associated with the magnetic field. Upon using the decom-
position (6.8) of the vector potential, the expectation value of the energy density ρ̂

B
can

be evaluated in the vacuum state, say, |0〉, that is annihilated by the operator b̂σk for all
k and σ. It can be shown that the spectral energy density of the magnetic field can be
expressed in terms of the modes Āσ

k and the coupling function J as follows [143,145,149]:

P
B
(k) =

d〈0|ρ̂
B
|0〉

d ln k
=
J2(η)

4 π2

k5

a4(η)

[
|Ā+

k (η)|2 + |Ā−
k (η)|2

]
. (6.13)

The spectral energy density P
B
(k) is referred to as the power spectrum for the magnetic

field. A flat or scale invariant magnetic field spectrum corresponds to a constant, i.e. k-
independent, P

B
(k).

6.3 Power spectra of the helical magnetic fields generated

in de Sitter inflation

Let us consider the simple case of de Sitter inflation, wherein the scale factor is given by
Eq. (1.107a), where H

I
is the value of the Hubble parameter during inflation. In order to

solve for the electromagnetic modes, we need to choose a form of the coupling function.
We shall work with a coupling function of the form given by Eq. (1.131), which ensures
that J reduces to unity at ηe.

For the form of the coupling function given by Eq. (1.131), the solutions to the electro-
magnetic modes satisfying Eq. (6.12) can be written as follows [58, 145, 150]:

Aσ
k (η) =

1√
2 k

[Gn(σ ξ,−k η) + i Fn(σ ξ,−k η)] , (6.14)

where Gn(σ ξ,−k η) and Fn(σ ξ,−k η) represent the irregular and regular Coulomb func-
tions respectively and ξ = −n γ. For −k η ≪ σ ξ, which corresponds to modes of interest,
the contribution of Fn(σ ξ,−k η) to the mode is negligible. We also find that the mode
with negative helicity (i.e. with σ = −1) is amplified in comparison to the positive helic-
ity mode. In this regime, the irregular Coulomb function can be written in terms of the
modified Bessel function Kν(z) as follows [150]:

GL (y, z) =
2 (2 y)L

(2L+ 1)!CL(y)
(2 y z)1/2 K2L+1

(√

8 y z
)

, (6.15)

where CL(y) is given by

CL(y) =
2L e−π y/2 |Γ (L+ 1 + i y)|

Γ (2L+ 2)
. (6.16)
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Hence the modes (6.14) reduce to

A−
k (η) ≃

√

−2η

π
e−πξK2n+1

(√

8 ξ k η
)

. (6.17)

Also, for −k η ≪ 1/ξ, which corresponds to late times during inflation, using the proper-
ties of the modified Bessel function for small arguments, we obtain that [151]

A−
k (η) ≃

√

− η

2π
e−πξ Γ (|2n+ 1|) |2 ξ k η|−|n+ 1

2
|. (6.18)

Therefore, using Eq. (6.13), the power spectrum for the magnetic field evaluated as ηe → 0

can be expressed as [145]

P
B
(k) ≃ H4

I

8 π3
e−2π ξ [Γ(|2n+ 1|)]2 |2 ξ|−2 |n+ 1

2
| (k ηe)

5−2 |n+ 1
2
|. (6.19)

Evidently, the spectral index n
B

[cf. Eq. (1.138)] of the power spectrum of the magnetic
field is given by

n
B
= 5− 2

∣
∣
∣
∣
n+

1

2

∣
∣
∣
∣
. (6.20)

This implies that we obtain a scale invariant power spectrum for the magnetic field when
n = −3 or n = 2, just as in the non-helical case. Note that the power spectrum is com-
pletely independent of time in these situations. However, when n < 0, it is found that
the energy in the electromagnetic field grows rapidly at late times. As we have discussed
earlier, such a growth leads to severe backreaction and can result in the termination of
inflation within a few e-folds [99–101]. Because of this reason, in this chapter, we shall
focus only on the cases wherein n > 0.

6.4 Formal structure of the three-point function

In the preceding section, when we had considered the evolution of the electromagnetic
modes, for simplicity, we had assumed the non-minimal coupling J(η) to be given by
Eq. (1.131). However, as discussed in Subsec. 5.2.1, in order to evaluate the cross-
correlation between the perturbation in the scalar field and the magnetic field, other
than J , we shall also require the function Jφ = dJ/dφ. Since Jφ = J ′/φ′ and, as J(η) has
been chosen already [cf. Eq. (1.131)], clearly, we can arrive at dJ/dφ if we know φ′. This
can be achieved by choosing a potential V (φ) to drive the scalar field. Then, a suitable
J(φ) can lead to the desired J(η).

Note that, we have assumed the electromagnetic field to be inhomogeneous. In order
to calculate the three-point function involving perturbations in the scalar field and the
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electromagnetic vector potential, we need the interaction Hamiltonian at the third order
in the perturbations. This can be arrived at by perturbing the electromagnetic action (6.1)
with respect to the scalar field. It is straightforward to show that the third order action
for the case I = J is given by

S[Ai] =
1

2 π

∫

d η

∫

d3 x J Jφ δφ

{[
1

2
A′ 2

i − 1

4
(∂iAj − ∂j Ai)

2

]

+ γ ǫijk A′
i ∂j Ak

}

.

(6.21)
The interaction Hamiltonian can be obtained from this third order action. It is found to
be

Hint =
1

4 π

∫

d3 x J Jφ δφ

{

A′ 2
i +

1

2
(∂iAj − ∂j Ai)

2

}

. (6.22)

Two points need to be stressed regarding this interaction Hamiltonian [152]. Firstly, the
parity violating term does not contribute to the Hamiltonian. This implies that the formal
structure of the resulting three-point function will be largely similar to the non-helical
case that has been considered earlier in the last chapter [99–101,139,141]. Secondly, as we
shall see below, the effects of non-zero helicity will be essentially encoded in the way it
affects the evolution of the modes.

The cross-correlation between the perturbation in the scalar field and the magnetic
field in real space is defined as

〈

δ̂φ(η,x)

M
Pl

B̂i(η,x) B̂i(η,x)

〉

=

∫
d3k1

(2 π)3/2

∫
d3k2

(2 π)3/2

∫
d3k3

(2 π)3/2

〈

δ̂φk1
(η)

M
Pl

B̂i
k2
(η) B̂ik3

(η)

〉

ei (k1+k2+k3)·x, (6.23)

where the components Bi of the magnetic field are related to the vector potential Ai

through the relation

Bi =
1

a
ǫijl ∂j Al, (6.24)

while δ̂φk and B̂i
k denote the Fourier modes associated with the perturbation in the scalar

field and the i-th component of the magnetic field. As per the standard rules of pertur-
bative quantum field theory, the cross-correlation between the perturbation in the scalar
field and the magnetic field in Fourier space, evaluated at the end of inflation, is given
by [99, 101]

〈

δ̂φk1
(ηe)

M
Pl

B̂i
k2
(ηe) B̂ik3

(ηe)

〉

= −i
∫ ηe

ηi

dη

〈[

δ̂φk1

M
Pl

(ηe) B̂
i
k2
(ηe) B̂ik3

(ηe), Ĥint(η)

]〉

,

(6.25)
where Ĥint is the operator associated with the Hamiltonian (6.22) and the square brackets
indicates the commutator.
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We had discussed the quantization of the helical electromagnetic field in the previ-
ous section. The quantization of the perturbation in the scalar field δφ was discussed in
Sec. 5.2 [cf. Eq. (5.6)]. We can now determine the three-point function using the expres-
sion (6.25), along with the form of the interaction Hamiltonian (6.22) and Wick’s theorem
that applies to the products of Gaussian operators. We find that the cross-correlation
GδφBB(k1,k2,k3) [cf. Eq. (5.10)] can be expressed as [153]

GδφBB(k1,k2,k3) =
8 π

M
Pl
a2(ηe)

[(k2 · k3) δqn − k2n k3q]
∑

σ σ′

fk1(ηe) Ā
σ
k2
(ηe) Ā

σ′

k3
(ηe)

×
{

εσq(k2) ε
∗
σl(k2) εσ′n(k3) ε

∗
σ′l(k3)Gσσ′

1 (k1,k2,k3)

−
[
(k2 · k3)

k2 k3
εσq(k2) ε

∗
σr(k2) εσ′n(k3) ε

∗
σ′r(k3)

− (k2l k3r)

k2 k3
εσq(k2) ε

∗
σr(k2) εσ′n(k3) ε

∗
σ′l(k3)

]

Gσσ′

2 (k1,k2,k3)

}

+complex conjugate, (6.26)

where the quantities Gσσ′

1 (k1,k2,k3) and Gσσ′

2 (k1,k2,k3) are described by the integrals

Gσσ′

1 (k1,k2,k3) = i

∫ ηe

ηi

dη J
dJ

dφ
f ∗
k1
(η) Ā′∗σ

k2
(η) Ā′∗σ′

k3
(η), (6.27a)

Gσσ′

2 (k1,k2,k3) = i k2 k3

∫ ηe

ηi

dη

(

J
dJ

dφ

)

f ∗
k1(η) Ā

∗σ
k2 (η) Ā

∗σ′

k3 (η). (6.27b)

6.5 Numerical evaluation of the three-point function

It is evident that evaluating the cross-correlation of our interest involves integrals over
products of the electromagnetic modes and the modes corresponding to the perturbation
in the scalar field. Earlier, we had solved for the electromagnetic modes analytically in
order to arrive at the power spectrum. The analytical solutions entail writing the modes
in terms of Coulomb functions [cf. Eq. (6.14)], which seem non-trivial to integrate. There-
fore, in order to evaluate the three-point function, we shall resort to numerical computa-
tions. In order to obtain the three-point function, we need to solve for the electromagnetic
modes as well as for the modes of the scalar perturbations numerically. Thereafter, we
need to integrate these modes in order to arrive at the complete three-point function.

6.5.1 Evolution of the modes

Let us first discuss the method we shall adopt to numerically solve for the electromag-
netic and scalar modes Āσ

k and fk. The most efficient time variable to perform numerical
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analyses in inflationary scenarios is the e-fold N . In terms of e-folds, for the I = J case,
Eq. (6.9) can be written as

d2Āσ
k

dN2
+

(HN

H + 2
JN
J

)
dĀσ

k

dN
+

(
k2

H2
+

2 σ γ k

H
JN
J

)

Āσ
k = 0, (6.28)

where the subscript N refers to a derivative with respect to the e-fold. For the case of
de Sitter inflation and the form of the coupling function under consideration, we obtain
that HN/H = 1 and JN/J = n. Under these conditions, the above differential equation
simplifies to

d2Āσ
k

dN2
+ (2n+ 1)

dĀσ
k

dN
+

(
k2

H2
+

2 σ γ k n

H

)

Āσ
k = 0. (6.29)

Similarly, Eq. (5.9) governing the evolution of the scalar modes can be rewritten as

d2fk
dN2

+

(

2 +
HN

H

)
dfk
dN

+
k2

H2
fk = 0, (6.30)

which, for the case of de Sitter inflation, simplifies to

d2fk
dN2

+ 3
dfk
dN

+
k2

H2
fk = 0. (6.31)

Recall that, during inflation, in the case of the scalar and tensor modes, the standard
Bunch-Davies initial conditions are imposed on the modes when they are well inside the
Hubble radius. It is clear from Eq. (6.12) governing the dynamics of the electromagnetic
modes that, at very early times, it is the term involving k2 that dominates the other two
terms within the parentheses. In fact, we find that, for the coupling function of our choice
[cf. Eq. (1.131)], it is the second term that dominates the third during the early stages.
These properties permit us to impose Bunch-Davies like initial conditions on the modes,
and evolve them thereafter. Numerically, we shall impose the initial conditions when
k = 300

√

J ′′/J , corresponding to the e-fold, say, Ni (this specific choice will be justified
in the next subsection). In terms of e-folds, the standard initial conditions on the modes
can be expressed as follows:

Āσ
k

∣
∣
∣
∣
Ni

=
1

J(Ni)
√
2 k

, (6.32a)

dĀσ
k

dN

∣
∣
∣
∣
Ni

= − n

J(Ni)
√
2 k

− i k

H(Ni) J(Ni)
√
2 k

. (6.32b)

We then solve Eq. (6.29) with these initial conditions using a fifth order Runge-Kutta
routine to obtain the behavior of Āσ

k . The differential equation (6.31) governing the scalar
modes can be solved for in a similar manner. The initial conditions on the scalar modes
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are given by

fk

∣
∣
∣
∣
Ni

=
1

a(Ni)
√
2 k

, (6.33a)

dfk
dN

∣
∣
∣
∣
Ni

=
1

H(Ni) a(Ni)
√
2 k

[−i k −H(Ni)] . (6.33b)

After imposing these initial conditions on the modes, we shall evolve them till about 42
e-folds for n = 1 and up to 30 e-folds for the n = 2 case (the reason for these choices will
be explained later).

In Fig. 6.1, we have plotted the numerical solutions for the helical as well as the non-
helical electromagnetic modes for the cases of n = 1 and n = 2. It is evident from the plots
that the modes with negative helicity (i.e. with σ = −1) are amplified when compared to
the non-helical case, around the time they leave the Hubble radius [153]. Also, one finds
that the amplitude of the modes with positive helicity (i.e. with σ = 1) are suppressed
when compared with the non-helical modes around Hubble exit. Moreover, the amplifi-
cation and suppression is more in the case of n = 2 than n = 1. This is to be expected
because of the reason that, larger the n, larger is the amplitude of the parity violating term
[cf. Eq. (6.29)].

6.5.2 Evaluation of the three-point function

Before we go on to consider the cross-correlation of our interest, let us make a few clar-
ifying remarks concerning the numerical evaluation of the inflationary two-point and
three-point functions involving the scalar and the tensor perturbations. The inflationary
correlation functions are formally expected to be evaluated at the end of inflation. How-
ever, it is well known that, during inflation, the amplitude of the scalar and the tensor
perturbations freeze on super-Hubble scales (apart from some peculiar situations). This
behavior makes it convenient for the numerical evaluation of the power spectra, since
they can be evaluated soon after the modes leave the Hubble radius. Typically, the initial
conditions are imposed when the modes are sufficiently inside the Hubble radius [say,
when k/(aH) ≃ 102] and the power spectra are evaluated when the modes are suffi-
ciently outside [say, when k/(aH) ≃ 10−5]. As far as the three-point functions are con-
cerned, apart from arriving at the modes, we also need to integrate over them from very
early to late times. One can show that, due to the abovementioned freezing of the am-
plitude of the perturbations, the super-Hubble contributions to the three-point functions
are insignificant (in this context, see, for instance, Refs. [76, 78, 83]). Since the three-point
function involves an arbitrary triangular configuration of wavevectors, to arrive at them,
the initial conditions are imposed when the mode with the smallest of the wavenumbers
is sufficiently inside the Hubble radius (say, at the e-fold Ni) and the integrals involved
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Figure 6.1: The evolution of the mode Āσ
k has been plotted as a function of e-folds N for

n = 1 (on the left) and n = 2 (on the right) for the wavenumber k = 0.002Mpc−1 for the
cases γ = 0 (on top, in blue) and γ = 2 (at the bottom, in red and green). We have plotted
the absolute values of the real (solid lines) and imaginary (dashed lines) parts separately
so that the oscillations are visible. The vertical black line in each plot indicates the e-fold
at which the modes leave the Hubble radius. Note that, around the time when the modes
leave the Hubble radius, the σ = −1 mode (in red) is amplified when compared to the
non-helical case, whereas the σ = 1 mode (in green) is suppressed. Also, as expected, the
amplification and suppression are more in the n = 2 case than in the n = 1 case.

are evaluated until the mode with the largest of the wavenumbers is adequately outside
(say, at Ns) [76, 78, 83, 154].

There is yet another point to be attended to when evaluating the three-point functions
numerically. All the modes will oscillate strongly in the sub-Hubble domain. Therefore,
in order to evaluate the integrals involved, analytically, a small parameter, say, κ, is intro-
duced to achieve an exponential cut-off and thereby regulate these oscillations (see our
discussion in Chap. 1). Actually, as we had also mentioned earlier, such a regulation is
essential to ensure the correct choice of the perturbative quantum vacuum [66, 72]. One
eventually considers the vanishing limit of the parameter κ to arrive at the final forms of
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the three-point functions. The regulator proves to be very convenient in the numerical
efforts, as it can ensure the convergence of the integrals. But, a couple of exercises need
to be carried out to identify an apt value for the cut-off parameter such that the resulting
three-point function is ideally independent of the choice of κ, Ni and Ns. We find that
the above arguments for the scalar and the tensor perturbations can be applied to the
cross-correlation of our interest for the n = 1 case. However, the n = 2 case poses a pe-
culiar difficulty not often encountered in the three-point functions involving the scalars
and the tensors, and needs to be handled with care. We shall make use of the analyti-
cal expressions available in the non-helical case to check the accuracy of our numerical
computations.

In order to identify suitable values of κ, Ni and Ns, we shall evaluate the two contri-
butions to the three-point function of our interest [described by the integrals (6.27)] in the
equilateral limit for different combinations of these variables. Earlier, we had mentioned
that we solve the differential equations involved [viz. Eqs. (6.29) and (6.31)] using the
fifth order Runge-Kutta routine. We shall carry out the integrals (6.27) using the Boole’s
rule [155]. We should add that, in our discussion hereafter, for convenience, we shall
simply set the polarization tensor εkσi to unity. However, we shall include all the contri-
butions due to the positive and negative helicity modes as well as the cross terms that
arise. We shall first keep Ns fixed and calculate the quantities for three different values of
Ni and varied κ. This helps us identify a suitable combination of Ni and κ for which the
three-point function is insensitive to the choice of these variables. We shall then choose
these values of Ni and κ and attempt to identify a suitable choice for Ns. The results of
these exercises are plotted in Figs. 6.2 and 6.3 for both the non-helical and helical cases
for n = 1 as well as n = 2. In Fig. 6.2, we have illustrated the dependence of the two
contributions to the three-point function on the sub-Hubble cut-off parameter κ for dif-
ferent choices of Ni. It is clear from the figure that, for instance, for Ni corresponding to
k = 300

√

J ′′/J , the two contributions to the three-point function are largely independent
of κ around κ = 0.1. Therefore, we shall work with these values.

Let us now turn to determining a suitable Ns. With κ and Ni fixed at the aforemen-
tioned values, in Fig. 6.3 (on page 134), we have plotted the two contributions as a func-
tion of Ns. Note that, in the n = 1 case, the results are independent of the choice Ns,
provided we choose it corresponding to a time reasonably after Hubble exit. In contrast,
when n = 2, it is clear from the figure that there is a slow growth as a function of Ns.
Such a behavior is peculiar to the model and the choices of the parameter involved. This
growth is well known from the analytical calculations and, in the non-helical case, it can
be shown to behave as ln (− k ηe) (in the equilateral limit we are focusing on) [101, 141],
which is exactly the behavior we observe numerically. It is also clear from Fig. 6.3 (on
page 134) that the introduction of helicity considerably enhances the amplitude of the
three-point function in both the n = 1 and n = 2 cases. Moreover, it is evident that the
enhancement occurs as the modes leave the Hubble radius, which is further accentuated
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Figure 6.2: The amplitudes of the contributions to the three-point function arising from
the first (in blue) and second (in red) integrals [cf. Eqs. (6.27)] have been plotted for the
n = 1 case (on the left) and the n = 2 case (on the right) as functions of the cut-off
parameter κ. We have plotted the results for three different choices of Ni corresponding

to k = 100
√

J ′′/J (as solid lines), k = 500
√

J ′′/J (as dashed lines) and k = 1000
√

J ′′/J
(as dotted lines). Also, we have plotted them for the non-helical case (on top) as well
as the helical case with γ = 2 (at the bottom). Note that the two contributions to the
three-point function have been multiplied with suitable powers of k. It should be clear

from the above plots that, for the choice of k = 300
√

J ′′/J , the resulting contributions
are largely insensitive to κ around κ = 0.1. Because of this reason, we shall choose to
evaluate the three-point function and the corresponding non-Gaussianity parameter (see
the next section) for this choice of values. It is also useful to note from the final plot that
the three-point function corresponding to n = 2 in the helical case is largely unaffected
by the value of the sub-Hubble cut-off parameter. As we shall see in the next figure, this
occurs due to the fact that the dominant contribution to this three-point function arises
from the super-Hubble domain.
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in the n = 2 case due to the super-Hubble contributions that arise. While the results will
be independent of Ns in the n = 1 case, they will strongly depend on the parameter when
n = 2. Ideally, it would have been desirable to evaluate the three-point function when
inflation ends at 60 e-folds or so since the earliest time when, say, the largest scale was
sufficiently inside the Hubble radius. However, evolving the modes for this duration and
evaluating the integrals introduce inaccuracies after about 30 e-folds or so. Therefore, we
shall evaluate the three-point function in the n = 2 case for Ns ≃ 30.

6.6 Amplitude and shape of the non-Gaussianity

parameter

In this section, we shall numerically evaluate the dimensionless non-Gaussianity parame-
ter b

NL
which characterizes the amplitude and shape of the three-point function involving

the helical magnetic field and the perturbations in the scalar field. This parameter was
introduced in Sec. 5.3. Here we shall present the numerical results for b

NL
for the different

cases we had discussed. In order to illustrate the accuracy of our numerical methods, we
shall also compare our numerical results with the analytical results that are available in
the non-helical case.

In Fig. 6.4, we have plotted the numerical results for the non-Gaussianity parameter
b
NL

(for an arbitrary triangular configuration of wavevectors, in this context, see Ref. [141])
for the cases of n = 1 and n = 2 when γ = 0 and γ = 2. We have also plotted the
analytical results available for n = 1 and n = 2 in the non-helical case, to illustrate the
extent of accuracy of our numerical methods. On comparing the results in the non-helical
case for n = 1 and n = 2, we find that the analytical and numerical results match up to
about 5–10%. Recall that we have been working with γ = 2. Even for such a relatively
small value of γ, we find that the introduction of helicity considerably amplifies non-
Gaussianities [153].
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Figure 6.3: The amplitudes of the contributions to the three-point function arising from
the first and the second integrals have been plotted for the n = 1 and the n = 2 cases as
functions of Ns, with the same choice of colors as in the previous figure. Also, we have
plotted the non-helical and the helical cases just as in the last figure. We have imposed

the initial condition at an Ni corresponding to k = 300
√

J ′′/J , and we have set κ = 0.1
in arriving at the above plots. We have plotted the results for a mode with the wavenum-
ber k = 0.002Mpc−1, which is often chosen as the pivot scale when comparing with the
observations. The vertical black lines in the plots indicate the e-fold at which the mode
leaves the Hubble radius. Note that, in the n = 1 case, the amplitude of the two terms
freeze soon after Hubble exit, which implies that the super-Hubble contributions to the
three-point function are negligible. This is true in the corresponding helical case as well.
When n = 2, for the non-helical case, even though the first integral flattens out in the
super-Hubble limit, the contribution due to the second integral continues to grow. This
behavior has been encountered in analytical calculations and it can be attributed to the
ln (−k ηe) term that arises in this case. It is also clear from the plots that the introduction of
helicity considerably enhances the amplitude of the three-point functions. Moreover, the
enhancement occurs around the time the mode leaves the Hubble radius. This is further
accentuated by the super-Hubble contributions that are encountered in the n = 2 case.
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Figure 6.4: The non-Gaussianity parameter b
NL

has been plotted for the non-helical case
obtained numerically (top row), analytically (middle row), and the helical case arrived at
numerically (third row of plots) for the cases of n = 1 (on the left) and n = 2 (on the right).
For reasons we have discussed, in the n = 2 case, we have evaluated the non-Gaussianity
parameter corresponding to Ns ∼ 30. From the first and second rows, we find that the
analytical and numerical results match up to 5–10%. It is evident from the third row of
plots that the helical term substantially boosts the value of b

NL
for both the n = 1 and

n = 2 cases, with the amplification being larger for n = 2.

6.7 Discussion

The generation and evolution of primordial magnetic fields has been studied extensively
in the context of inflation. By introducing a non-minimal coupling term in the standard
electromagnetic action, it has been possible to obtain scale invariant magnetic fields of the
requisite amplitude to be in conformity with the observations. It has also been realized
that adding a parity violating term to the electromagnetic action results in the production
of helical magnetic fields, which can have significant observational imprints [143, 146,
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147]. Specifically, helicity considerably boosts the amplitude of the power spectrum of
the magnetic field.

The non-Gaussian signatures generated via cross-correlations between the primordial
magnetic fields and the perturbations in a scalar field can provide additional constraints
to characterize the magnetic fields. These non-Gaussianities, at the level of three-point
functions, have been examined earlier in the non-helical case [99–101, 139]. In this chap-
ter, we have numerically evaluated the three-point functions involving primordial helical
magnetic fields and the perturbations in a scalar field. Since the introduction of the heli-
cal term in the action amplifies the strength of the magnetic field, it can also be expected
to lead to larger non-Gaussianities. We have found that even with a small value of the
parameter quantifying the extent of helicity, there is a substantial enhancement in the
non-Gaussianity parameter b

NL
. It would be interesting to explore related observational

consequences, and possibly arrive at constraints on the mechanisms that could lead to
the generation of the helical magnetic fields (in this context, see Ref. [140]). Another
important aspect would be to investigate into the behavior of the three-point functions
involving the helical magnetic fields and the curvature perturbation [101, 139]. Impor-
tantly, in such a case, one may encounter additional terms arising in the action describing
the interaction term. Also, while the magnitude of b

NL
in, say, slow roll inflation, may not

differ substantially from the case we have examined, considering the curvature pertur-
bation can provide us with additional parameters (viz. the slow roll parameters) to more
effectively constrain the non-Gaussianities generated. We are presently working on these
issues.
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Chapter 7

Conclusions

7.1 Summary of work done

In light of the unprecedented advancement in obtaining accurate cosmological data, it
has been possible to compare theoretical models of the early universe with observations
at extraordinary levels of precision. The inflationary paradigm has emerged as the most
widely accepted theoretical framework to describe the early universe [20–22]. The relative
efficacy of constructing inflationary models has led to the advent of a surfeit of models,
most of which are in conformity with observations at the level of two-point functions [61],
especially in the absence of a direct detection of primordial tensor modes on cosmologi-
cal scales. This has compelled us to look for additional observables that can constrain the
class of inflationary models more effectively. In this context, non-Gaussian signatures,
primarily at the level of three-point functions, have amassed a lot of attention [73,74,106].
It is expected that bounds on non-Gaussianities would be instrumental in restricting the
available set of inflationary models into a smaller viable class. Moreover, features in the
inflationary potential are known to lead to non-trivial characteristics in the power spec-
tra and the three-point functions, the observational signatures of which can conceivably
rule out a large class of models [108, 109]. Further, propositions of alternative scenarios,
such as bouncing models, have been put forward [27,52]. These models, albeit onerous to
construct, seem to be feasible and often lead to similar predictions as inflation, especially
at the level of two-point functions. It seems imperative to arrive at observables that can
possibly distinguish between inflation and bouncing scenarios. Comparing and contrast-
ing between three-point functions generated in these alternative frameworks seems to
hold much promise in this regard. Additionally, the effects due to the presence of gauge
fields, such as electromagnetic fields present in the early universe, are also interesting to
examine [14, 87]. In particular, the imprints of these fields on the primordial scalar and
tensor perturbations can lead to potentially observable signatures on the CMB and LSS.
With this objective in mind, in this thesis, we have studied the three-point functions gen-
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erated in the presence of features in an inflationary model. We have also considered a
specific bouncing scenario and, after analytically evaluating the tensor non-Gaussianity
in the model, we have compared its characteristics with a standard de Sitter inflationary
scenario. We have also investigated the origin and characteristics of primordial magnetic
fields in the bouncing model of our interest, and have evaluated the cross-correlations
of these magnetic fields with scalar perturbations. Additionally, we have studied the
imprints of parity violation on the generation of non-Gaussianities involving primordial
magnetic fields and scalar perturbations in de Sitter inflation.

In Chap. 2, we have discussed the evaluation of the scalar-scalar-tensor three-point
function in the axion monodromy model of inflation [114–116]. This model is character-
ized by a potential with persistent oscillations, leading to features in the scalar and tensor
power spectra. It has been established that the presence of such features leads to an im-
provement in the fit to the CMB data, when juxtaposed with the conventional nearly
scale invariant spectra [110, 111, 115]. This has been an incentive for the comparison of
this model with observations at the level of the three-point functions. There exist stan-
dard templates for the primordial scalar and tensor power spectra which are made use of
while matching with data. In a similar manner, in order to enable efficient comparison, it
behooves one to have analytical templates for the various three-point functions as well.
Prompted by the comparisons of the scalar bispectrum with the CMB data with the aid
of templates [113, 114, 117], in this thesis, we have arrived at a similar template for the
scalar-scalar-tensor three-point function. In contrast to the analytical evaluation of the
scalar bispectrum wherein it was sufficient to take into account the changes in the slow
roll parameters due to the presence of modulations in the potential, the calculation of the
scalar-scalar-tensor three-point function involves considering the effects of the departure
from slow roll on the scalar and tensor modes as well. We have also analytically evalu-
ated the non-Gaussianity parameter corresponding to the scalar-scalar-tensor three-point
function and established that the consistency relation for this three-point function is valid
even in the presence of features [121].

In Chap. 3, we have considered a particular matter bounce scenario. We have analyt-
ically evaluated the tensor modes and the tensor power spectrum in this scenario. We
have observed that the power spectrum is scale invariant over the domain of our interest,
a behavior which mirrors that of the tensor power spectrum in de Sitter inflation [130].
This implies that the characteristics of the tensor power spectrum alone are not adequate
to differentiate between the inflationary and bouncing scenarios. Evidently, the next co-
gent attempt would be to compare the amplitude and shape of the three-point function
involving the tensor perturbations generated in de Sitter and bouncing scenarios. With
this motivation, we have also analytically evaluated the tensor bispectrum. We find that
at the level of the three-point function, there arises a crucial difference between the two
alternative scenarios, namely, the consistency relation corresponding to the tensor bispec-
trum is violated in the matter bounce [130]. We believe this has strong implications with
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regard to arriving at discriminating observables between the inflationary and bouncing
scenarios.

In Chap. 4, we have examined the generation of primordial magnetic fields in a bounc-
ing model. The magnetic fields observed today over extensive scales in the universe are
conjectured to have originated from primordial seed fields. This issue, referred to as
primordial magnetogenesis, has been investigated in detail in the context of inflationary
scenarios [97, 98, 102, 133, 134]. With the introduction of a non-minimal coupling func-
tion in the standard electromagnetic action, thereby breaking the conformal invariance,
it has been possible to obtain magnetic fields compatible with observations [96]. In this
thesis, we have examined the generation of primordial magnetic fields in bouncing sce-
narios. We find that for a convenient choice of the coupling function, it is possible to
obtain scale invariant magnetic fields of relevant strengths over the scales of cosmolog-
ical interest [138]. Further, we also illustrate the property of duality invariance of the
magnetic power spectrum, wherein the shape of the power spectrum remains invariant
under a two parameter family of transformations of the non-minimal coupling function.
This is an interesting property since we show that even two widely disparate coupling
functions can lead to similar magnetic power spectra.

In Chap. 5, we have evaluated the cross-correlations between perturbations in an aux-
iliary scalar field and the primordial magnetic fields generated in bouncing universes.
The magnitude of such cross-correlations has been estimated before in the case of infla-
tion [99–101, 139, 140], and it has been realized that the associated non-Gaussianities can
be large. With the aim to compare the non-Gaussian signatures generated in bouncing
scenarios with those produced in de Sitter inflation, we have analytically calculated the
three-point function involving the scalar perturbations and the primordial magnetic fields
in a matter bounce. We find that the corresponding non-Gaussianity parameter is signif-
icantly larger than that obtained in de Sitter inflation [141]. Moreover, the consistency
relation associated with the three-point function of our interest, which remains valid in
the de Sitter inflationary scenario, is violated in the bouncing model. This behavior again
highlights a pivotal distinction between the attributes of non-Gaussianities generated in
bouncing and inflationary frameworks.

In Chap. 6, we have numerically evaluated the cross-correlations between perturba-
tions in an auxiliary scalar field and primordial helical magnetic fields generated in de
Sitter inflation. The addition of a non-minimally coupled parity violating term to the
electromagnetic action results in the production of magnetic fields with two helicities that
evolve independently and, consequently, can possibly lead to distinct observable effects
on the CMB [143, 146, 147]. Further, the helical modes can also augment the amplitude
of the magnetic power spectrum. In order to arrive at stronger constraints on primor-
dial helical magnetic fields, it would be useful to understand the characteristics of their
cross-correlations with scalar perturbations. On numerical evaluation of these three-point
functions, we find that even with the introduction of a relatively small amount of helicity,
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the resultant non-Gaussianity parameter is inordinately large [153].

7.2 Outlook

As we have discussed, there are broadly three topics that we have investigated in this
thesis. Firstly, we have evaluated the cross-correlations involving tensors in the presence
of oscillatory features in the inflationary potential. Secondly, we have examined the evo-
lution of tensor perturbations in a specific bouncing scenario and the non-Gaussianities
generated therein. The third category of problem we have studied entails the issue of pri-
mordial magnetogenesis and the cross-correlations of these magnetic fields with scalar
perturbations, as well as the effects of parity violation at the level of three-point func-
tions in the case of inflationary magnetogenesis. There are several avenues to explore in
relation to the topics discussed in this thesis.

Firstly, analytical investigations into the non-trivial effects due to presence of features
in an inflationary potential can be extended to include other such models that are in ac-
cordance with observations. It would be of tremendous interest to study the other non-
Gaussian signatures apart from the scalar-scalar-tensor three-point function as well. Im-
portantly, investigating the imprints of these non-Gaussianities on the CMB would allow
us to arrive at constraints on the three-point functions. Such analyses could turn out to be
of considerable importance, in particular, if tensors are observed at the level of the power
spectrum.

The examination of non-Gaussianities in the case of bouncing scenarios has been re-
stricted to the tensor bispectrum in this thesis. It would be of paramount importance to
study the other three-point functions, especially the scalar bispectrum, which leads to the
most significant imprints on the non-Gaussianities, for the bouncing models of our inter-
est. We believe that this point has not been addressed satisfactorily as yet. The evaluation
of non-Gaussianities is substantially more challenging in the case of bounces. Many of the
super-Hubble contributions that can be ignored during inflation may not be ignorable in
bouncing scenarios. Therefore, we believe that the usual approaches for the evaluation
of three-point functions in inflationary scenarios may not be applicable in bouncing uni-
verses. This issue needs to be studied carefully in greater detail.

Investigating the effects of primordial magnetic fields on the scalar and tensor pertur-
bations, both in the inflationary and bouncing scenarios, also seems particularly impor-
tant. It would be interesting to probe into the cross-correlations involving the scalar per-
turbations and magnetic fields in the presence of features in the inflationary potential. We
could also examine the effects on the three-point functions due to the epoch of reheating,
and thereby arrive at stringent constraints on these quantities. We have already obtained
the consistency relation associated with the three-point function involving the perturba-
tions in a scalar field and the primordial magnetic fields in the inflationary scenario. It
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would be worthwhile to investigate how the consistency relation gets modified in the
presence of a parity violating term, leading to helical magnetic fields. We are presently
studying some of these issues.
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5. Primordial magnetic fields in bouncing universes, poster in YKIS2018a symposium
(Gravity and Cosmology 2018), Yukawa Institute for Theoretical Physics, Kyoto Uni-
versity, Kyoto, Japan, February 19–23, 2018.

154



CURRICULUM VITAE

Personal Details:

Name: Debika Chowdhury

Date of Birth: May 15, 1990

Gender: Female

Permanent Address: 486, Jaigir Ghat Road,

Thakurpukur, Kolkata 700063.

Academic History:

2013–Present Ph.D. Physics

Department of Physics,

Indian Institute of Technology Madras, Chennai.

Date of registration: July 15, 2013.

2011-2013 M.Sc. Physics

Department of Physics,

Indian Institute of Technology Madras, Chennai.

2008-2011 B.Sc. Physics

St. Xavier’s College, Kolkata.

155





DOCTORAL COMMITTEE

Guide: Prof. L. Sriramkumar,

Professor,

Department of Physics, Indian Institute of Technology Madras, Chennai.

Co-Guide: Dr. Dawood Kothawala,

Assistant Professor,

Department of Physics, Indian Institute of Technology Madras, Chennai.

Members: Dr. Prasanta Kumar Tripathy,

Associate Professor,

Department of Physics, Indian Institute of Technology Madras, Chennai.

Prof. Suresh Govindarajan,

Professor,

Department of Physics, Indian Institute of Technology Madras, Chennai.

Prof. T. R. Govindarajan,

Professor,

Chennai Mathematical Institute, Chennai.

157


	ACKNOWLEDGEMENTS
	ABSTRACT
	SUMMARY OF NOTATIONS
	LIST OF FIGURES
	Introduction
	The standard model of cosmology
	The inflationary paradigm
	Drawbacks of the hot big bang model
	Overcoming the horizon problem with inflation
	Driving inflation with scalar fields

	Classical bouncing scenarios
	A brief review of bouncing scenarios
	Issues associated with bouncing models
	Characteristics of a matter bounce

	Generation of primordial perturbations and power spectra
	Classification of the perturbations
	Quantization of the perturbations and the power spectra
	Power spectra in slow roll inflation
	Duality invariance of the power spectra
	Observational constraints on the power spectra

	Beyond power spectra: three-point correlation functions
	The Maldacena formalism
	Definitions of the three-â†€point functions
	Non-â†€Gaussianity parameters
	The three-â†€point functions in slow roll inflation
	The three-point functions in the squeezed limit
	Observational constraints on the three-â†€point functions

	Generation of magnetic fields in the early universe
	Observational constraints on magnetic fields
	Origin of primordial magnetic fields during inflation
	The backreaction and strong coupling problems

	Organization of the thesis

	Three-point functions in the axion monodromy model
	Introduction
	The axion monodromy model
	The evolution of the background and the slow roll parameters
	The evolution of the perturbations and the power spectra

	The scalar bispectrum in the Maldacena formalism
	Analytical template for the cross-correlation
	Analytical evaluation of the three-point function
	Comparison with the numerical results

	The squeezed limit and the consistency relation
	Discussion

	The tensor bispectrum in a matter bounce
	Introduction
	The tensor modes and the power spectrum
	Evaluating the tensor bispectrum
	Amplitude and shape of the non-Gaussianity parameter
	Discussion

	Scale invariant magnetic fields in bouncing scenarios
	Introduction
	Non-minimal coupling in bounces
	Analytical evaluation of the modes and the power spectra
	The issue of backreaction
	Duality invariance
	Discussion

	Cross-correlations with magnetic fields
	Introduction
	Evaluating cross-correlations with magnetic fields
	The three-point function in de Sitter inflation
	The three-point function in a matter bounce

	Amplitude and shape of the non-Gaussianity parameter
	The three-point function in the squeezed limit
	Discussion

	Enhancing the cross-correlations through parity violation
	Introduction
	Non-minimally coupled helical electromagnetic fields
	Power spectra of the helical magnetic fields
	Formal structure of the three-point function
	Numerical evaluation of the three-point function
	Evolution of the modes
	Evaluation of the three-point function

	Amplitude and shape of the non-Gaussianity parameter
	Discussion

	Conclusions
	Summary of work done
	Outlook


