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ABSTRACT

KEYWORDS: Inflation, Cosmic Microwave Background, Primordial Black Holes,
Secondary Gravitational Waves, Primordial non-Gaussianity

The inflationary epoch is a period of accelerated expansion of the universe that
occurs during the early stages of the radiation dominated era (for reviews, see, for
instance, Refs. [1–5]). A suitable duration of inflation ensures the observed extent of
homogeneity, isotropy and spatial curvature of the universe. It also provides a natural
mechanism for the generation of perturbations that are imprinted as tiny anisotropies
in the cosmic microwave background (CMB). The study of properties of the quantum
fluctuations of the field driving inflation and the corresponding signatures on the CMB
anisotropies offers us insight into the physics operating at the earliest stages of the
universe (for the latest constraints on inflation from the CMB, see Ref. [6]). Yet, there
are numerous inflationary models that lead to a reasonably good fit to the CMB data
at the level of two-point functions [7]. Hence, it is important to study the correlations
at higher orders, especially the non-Gaussianities arising from three-point functions, in
order to break the degeneracy amongst the various models. It also becomes important
to consider complementary observables over scales smaller than the CMB scales, which
can help us capture the complete picture of the dynamics of the fields during the
inflationary epoch. One possible probe over small scales is the population of primordial
black holes (PBHs) that can contribute to the cold dark matter density today. Primordial
scalar power with enhanced amplitude over small scales lead to copious production
of PBHs when these scales re-enter the Hubble radius at later epochs [8, 9]. Such
enhancement in scalar power also sources second order tensor perturbations thereby
generating secondary gravitational waves (GWs) [10, 11]. Various direct and indirect
constraints have emerged over the last decade on the population of PBHs and the
amplitude of GWs (in this regard, see, for instance, Refs. [12–15]). This thesis is
aimed at evaluating the observational imprints associated with non-trivial inflationary
scenarios over a wide range of scales and utilize the above-mentioned observables to
constrain the dynamics.

We shall briefly outline below the different problems we have investigated
involving the non-trivial dynamics of inflation driven by a single, canonical, scalar field,
which lead to strong features over large or small scales. The goal of these investigations
has been to address some of the issues of current interest in the literature, particularly in
the context of non-Gaussianities generated in these scenarios and their direct or indirect
role on the observables.
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• Unique contributions to the scalar bispectrum in ‘just enough inflation’: A scalar
field rolling down a potential with a large initial velocity results in inflation of a finite
duration. Such a scenario suppresses the scalar power on large scales improving the fit
to the cosmological data. In this work [16], we find that the scenario leads to a hitherto
unexplored situation wherein the boundary terms of the cubic order action dominate the
contributions to the scalar bispectrum over the bulk terms. We show that the consistency
relation governing the non-Gaussianity parameter f

NL
is violated on large scales and that

the contributions at the initial time can substantially enhance the value of f
NL

.

• Suppression of scalar power on large scales and associated bispectra: A sharp cut-off
in the primordial scalar power spectrum on large scales has been known to improve the
fit to the CMB data when compared to the more standard, nearly scale invariant power
spectrum that arises in slow roll inflation. Over the last couple of years, there has been a
resurgent interest in arriving at such power spectra in models with kinetically dominated
initial conditions for the background scalar field which leads to inflation of specific
duration. In an earlier work [16], we had numerically investigated the characteristics
of the scalar bispectrum generated in such models. In this work [17], we compare
the scenario with two other competing scenarios (viz. punctuated inflation and a model
due to Starobinsky) which also suppress the scalar power in a roughly similar fashion
on large scales. We further consider two other scenarios involving inflation of a finite
duration, one wherein the scalar field begins on the inflationary attractor and another
wherein the field starts with a smaller velocity and evolves towards the attractor. These
scenarios too exhibit a sharp drop in power on large scales if the initial conditions on
the perturbations for a range of modes are imposed on super-Hubble scales as in the
kinetically dominated model. We compare the performance of all the models against
the Planck CMB data at the level of scalar and tensor power spectra. The model wherein
the background field always remains on the inflationary attractor is interesting for the
reason that it permits analytical calculations of the scalar power and bispectra. We
also compare the amplitudes and shapes of the scalar non-Gaussianity parameter f

NL

in all these cases which lead to scalar power spectra of similar form. Interestingly, we
find that, in the models wherein the initial conditions on the perturbations are imposed
on super-Hubble scales, the consistency relation governing the scalar bispectrum is
violated for the large scale modes, whereas the relation is satisfied for all the modes
in the other scenarios. These differences in the behavior of the scalar bispectra can
conceivably help us observationally discriminate between the various models which
lead to scalar power spectra of roughly similar shape.

• PBHs and secondary GWs from ultra slow roll and punctuated inflation: The
primordial scalar power spectrum is well constrained by the cosmological data
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on large scales, primarily from the observations of the anisotropies in the CMB. Over
the last few years, it has been recognized that a sharp rise in power on small scales will
lead to enhanced formation of PBHs and also generate secondary GWs of higher and,
possibly, detectable amplitudes. It is well understood that scalar power spectra with
COBE normalized amplitude on the CMB scales and enhanced amplitudes on smaller
scales can be generated due to deviations from slow roll in single, canonical scalar field
models of inflation. In fact, an epoch of so-called ultra slow roll inflation can lead to
the desired amplification. We find that scenarios which lead to ultra slow roll can be
broadly classified into two types, one wherein there is a brief departure from inflation
(a scenario referred to as punctuated inflation) and another wherein such a departure
does not arise. In this work [18], we consider a set of single field inflationary models
involving the canonical scalar field that lead to ultra slow roll and punctuated inflation
and examine the formation of PBHs as well as the generation of secondary GWs in
these models. Apart from considering specific models, we reconstruct potentials from
certain functional choices of the first slow roll parameter leading to ultra slow roll
and punctuated inflation and investigate their observational signatures. In addition to
the secondary tensor power spectrum, we calculate the secondary tensor bispectrum
in the equilateral limit in these scenarios. Moreover, we calculate the inflationary
scalar bispectrum that arises in all the cases and discuss the imprints of the scalar
non-Gaussianities on the extent of PBHs formed and the amplitude of the secondary
GWs generated.

• Could PBHs and secondary GWs have originated from squeezed initial states?: The
production of PBHs and secondary GWs due to enhanced scalar power on small scales
have garnered considerable attention in the recent literature. Often, the mechanism
considered to arrive at such increased power involves a modification of the standard
slow roll inflationary dynamics, achieved with the aid of fine-tuned potentials. In
this work [19], we investigate another well known method to generate features in the
power spectrum wherein the initial state of the perturbations is assumed to be squeezed
states. The approach allows one to generate features even in slow roll inflation with a
specific choice for the Bogoliubov coefficients characterizing the squeezed initial states.
Also, the method is technically straightforward to implement since the Bogoliubov
coefficients can be immediately determined from the form of the desired spectrum
with increased scalar power at small scales. It is known that, for squeezed initial
states, the scalar bispectrum is strongly scale dependent and the consistency condition
governing the scalar bispectrum in the squeezed limit is violated. In fact, the non-
Gaussianity parameter f

NL
characterizing the scalar bispectrum proves to be inversely

proportional to the squeezed mode and this dependence enhances its amplitude at large
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wave numbers making it highly sensitive to even a small deviation from the standard
Bunch-Davies vacuum. These aspects can possibly aid in leading to enhanced formation
of PBHs and generation of secondary GWs. However, we find that: (i) the desired
form of the squeezed initial states may be challenging to achieve from a dynamical
mechanism, and (ii) the backreaction due to the excited states severely limits the extent
of deviation from the Bunch-Davies vacuum at large wave numbers. We argue that,
unless the issue of backreaction is circumvented, squeezed initial states cannot lead to
a substantial increase in power on small scales that is required for enhanced formation
of PBHs and generation of secondary GWs.

• Accounting for scalar non-Gaussianity in secondary GWs: It is well known that
enhancement in the primordial scalar perturbations over small scales generate detectable
amplitudes of secondary GWs, by sourcing the tensor perturbations at the second
order. These stochastic GWs are expected to carry the imprints of the primordial non-
Gaussianities. The scalar bispectrum that is typically produced in models of inflation
leading to significant secondary GWs is non-trivial and highly scale dependent. In this
work [20], we present a method to account for such general, scale dependent scalar
bispectrum arising from inflationary models in the calculation of the spectral density
of secondary GWs. Using this method, we compute the contributions arising from the
scalar bispectrum to the amplitude of secondary GWs in two specific models of inflation
driven by the canonical scalar field. We find that these non-Gaussian contributions
can be highly model dependent and have to be consistently taken into account while
estimating the total amplitude of the secondary GWs. Beyond the models considered,
we emphasize that the method discussed is robust, free from assumptions about the
shape of the bispectrum and generalizes earlier approaches adopted in the literature.
We argue that this method of accounting for scalar bispectrum will be helpful in future
computations of secondary GWs for exotic models that generate larger amplitudes of
scalar non-Gaussianities.

vi



TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS i

ABSTRACT iii

LIST OF TABLES xi

LIST OF FIGURES xv

ABBREVIATIONS xvi

NOTATIONS xvii

1 INTRODUCTION 1

1.1 Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Evolution of the background . . . . . . . . . . . . . . . . . . 5

1.1.2 Perturbations and power spectra . . . . . . . . . . . . . . . . 9

1.1.3 The third order action and the contributions to the scalar
bispectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Observational probes . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.1 Anisotropies in the CMB and constraints on the large scales . 20

1.2.2 Production of PBHs . . . . . . . . . . . . . . . . . . . . . . 27

1.2.3 Generation of secondary GWs . . . . . . . . . . . . . . . . . 30

1.3 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 35

2 SUPPRESSION OF SCALAR POWER ON LARGE SCALES

AND ASSOCIATED BISPECTRA 36

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Suppressing the scalar power on large scales . . . . . . . . . . . . . . 38

2.2.1 The models of interest . . . . . . . . . . . . . . . . . . . . . 38

2.2.2 Performance against the CMB data . . . . . . . . . . . . . . 49

2.3 Evaluating the scalar bispectrum . . . . . . . . . . . . . . . . . . . . 54

2.3.1 Numerical computation of the scalar bispectrum . . . . . . . 54

2.3.2 Analytical calculation in the hard cut-off model . . . . . . . . 57

vii



2.4 Amplitude and shape of the non-Gaussianity parameter . . . . . . . . 61

2.5 Validity of the consistency relation . . . . . . . . . . . . . . . . . . . 64

2.6 Summary and scope . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3 PBHs AND SECONDARY GWs FROM ULTRA SLOW ROLL

AND PUNCTUATED INFLATION 67

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 Models of ultra slow roll and punctuated inflation . . . . . . . . . . . 69

3.2.1 Potentials leading to ultra slow roll inflation . . . . . . . . . . 70

3.2.2 Potentials permitting punctuated inflation . . . . . . . . . . . 72

3.3 Evolution of the curvature perturbation and power spectra . . . . . . . 76

3.3.1 Role of the intrinsic entropy perturbation . . . . . . . . . . . 76

3.3.2 Scalar and tensor power spectra . . . . . . . . . . . . . . . . 79

3.3.3 Challenges in constructing viable models . . . . . . . . . . . 82

3.4 Reverse engineering potentials admitting ultra slow roll and punctuated
inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4.1 Choices of ε1(N) . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4.2 Reconstructed potentials and the corresponding scalar and
tensor power spectra . . . . . . . . . . . . . . . . . . . . . . 85

3.5 Formation of PBHs . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.6 Power and bi-spectra of secondary GWs . . . . . . . . . . . . . . . . 91

3.6.1 The spectrum of secondary GWs . . . . . . . . . . . . . . . . 91

3.6.2 The secondary tensor bispectrum . . . . . . . . . . . . . . . . 93

3.7 Contributions to PBH formation and secondary GWs from scalar non-
Gaussianities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.7.1 Amplitude and shape of the bispectrum and the scalar non-
Gaussianity parameter f

NL
. . . . . . . . . . . . . . . . . . . 97

3.7.2 Imprints of f
NL

on f
PBH

and Ω
GW

. . . . . . . . . . . . . . . 103

3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4 COULD PBHs AND SECONDARY GWs HAVE ORIGINATED

FROM SQUEEZED INITIAL STATES? 108

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2 Squeezed initial states, scalar power and bi-spectra . . . . . . . . . . 110

viii



4.2.1 Power spectrum from squeezed initial states . . . . . . . . . . 111

4.2.2 The associated scalar bispectrum and the non-Gaussianity
parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2.3 Non-Gaussian modifications to the scalar power spectrum . . 120

4.3 Formation of PBHs and generation of secondary GWs . . . . . . . . . 121

4.4 Challenges associated with squeezed initial states . . . . . . . . . . . 124

4.4.1 Possible mechanisms to generate squeezed states . . . . . . . 124

4.4.2 Limits due to backreaction . . . . . . . . . . . . . . . . . . . 127

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5 ACCOUNTING FOR SCALAR NON-GAUSSIANITY

IN SECONDARY GWs 134

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.2 Scale dependent f
NL

(k1, k2, k3) and its relation to the bispectrum . . . 135

5.3 Correction to the power spectrum . . . . . . . . . . . . . . . . . . . . 137

5.4 Computation of Ω
GW

accounting for f
NL

. . . . . . . . . . . . . . . . 139

5.5 Models for illustration . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.5.1 Calculation of the correction to scalar power spectrum . . . . 149

5.5.2 Calculation of non-Gaussian contributions to Ω
GW

. . . . . . 152

5.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6 CONCLUSIONS 158

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A Signatures of initial kinetic domination across models 161

B The dichotomy of ultra slow roll and punctuated inflation 164

C The functional forms of the polarization factors 166

D A closer examination of the consistency relation 167

E Asymptotic behavior of the curvature perturbations 169

ix



F The steepest growth of the scalar power spectrum 171

G The dominant contributions to the scalar bispectrum 173

H Feynman diagrams for non-Gaussian contributions to Ω
GW

175



LIST OF TABLES

Table Title Page

2.1 Background cosmological parameters, and the priors we have worked
with. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2 Parameters associated with the different inflationary models of our
interest and the priors that we have worked with. . . . . . . . . . . . 50

2.3 Best-fit values of the inflationary parameters and the extent of
improvement in the fit with respect to the standard power law case,
arrived at by comparing the models with the recent CMB data. . . . . 51

xi



LIST OF FIGURES

1.1 Behavior of the comoving Hubble radius and the comoving wave
numbers associated with scales of cosmological interest. . . . . . . . 4

1.2 Evolution of the scalar field in the Starobinsky model. . . . . . . . . . 7

1.3 Scalar and tensor power spectra in the Starobinsky model. . . . . . . 12

1.4 Density plots of the scalar non-Gaussianity parameter in the
Starobinsky model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Constraints on the power law primordial scalar and tensor power spectra
arrived at from the recent Planck CMB data. . . . . . . . . . . . . . . 23

1.6 Constraints on the background cosmological parameters and the
parameter describing the Starobinsky model from the recent Planck
CMB data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.7 Angular power spectrum of the CMB in the Starobinsky model. . . . 25

2.1 Behavior of the quantity
√
|z′′/z| in an inflationary scenario of finite

duration achieved due to an initial epoch of kinetic domination. . . . . 40

2.2 Evolution of the Fourier modes of the curvature perturbation in a typical
inflationary scenario with an initial epoch of kinetic domination. . . . 41

2.3 Scalar and tensor power spectra generated in the quadratic potential and
the Starobinsky model with kinetically dominated initial conditions,
when the perturbations are evolved from N1 and N = 0. . . . . . . . 43

2.4 Best-fit scalar power spectra evaluated either analytically or
numerically in the various inflationary scenarios of our interest. . . . . 44

2.5 Best-fit CMB angular power spectra for a set of inflationary models that
mildly improve the fit to the data. . . . . . . . . . . . . . . . . . . . . 53

2.6 Behavior of the bulk and boundary contributions to the scalar
bispectrum, evaluated numerically in the equilateral limit for the case
of the quadratic potential with kinetically dominated initial conditions,
illustrated as a function of the cut-off parameter κ. . . . . . . . . . . . 56

2.7 Different contributions to the scalar bispectrum in the equilateral limit,
evaluated numerically, in three of the models of our interest. . . . . . 58

2.8 Different bulk and boundary contributions to the scalar bispectrum,
evaluated in the equilateral limit, in the hard cut-off model. . . . . . . 60

2.9 Behavior of the scalar non-Gaussianity parameter in the equilateral
limit, in all the models of our interest. . . . . . . . . . . . . . . . . . 62

2.10 Amplitude and shape of the non-Gaussianity parameter has been
illustrated as density plots for the various models of our interest. . . . 63

xii



2.11 Behavior of the scalar non-Gaussianity parameter in the squeezed limit,
in different models of our interest. . . . . . . . . . . . . . . . . . . . 65

3.1 Behavior of the first three slow roll parameters ε1, ε2 and ε3 in the ultra
slow roll and punctuated inflation models of interest. . . . . . . . . . 71

3.2 Dynamics of the scalar field in the phase space in the models USR2 and
PI3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3 Evolution of the amplitudes of the dominant imaginary part of
the curvature perturbation and the corresponding intrinsic entropy
perturbation in the models USR2 and PI3. . . . . . . . . . . . . . . . 78

3.4 Scalar and tensor power spectra in the different ultra slow roll and
punctuated inflationary models of interest. . . . . . . . . . . . . . . . 80

3.5 Behavior of the first slow roll parameter and the forms of the
corresponding potentials in the reconstructed inflationary scenarios. . 86

3.6 Scalar and the tensor power spectra in the reconstructed scenarios. . . 88

3.7 Fraction of PBHs contributing to the dark matter density today in the
various models and scenarios of interest. . . . . . . . . . . . . . . . . 90

3.8 Dimensionless spectral density of secondary GWs in the inflationary
models and scenarios of interest. . . . . . . . . . . . . . . . . . . . . 92

3.9 Dimensionless shape function characterizing the tensor bispectrum in
the equilateral limit in the inflationary models and scenarios of interest. 96

3.10 Amplitude of the dimensionless scalar bispectra in the equilateral and
squeezed limits in the models USR2 and PI3. . . . . . . . . . . . . . 99

3.11 Scalar non-Gaussianity parameter in the equilateral and the squeezed
limits in the model USR2 and the reconstructed scenario RS1. . . . . 101

3.12 Scalar non-Gaussianity parameter in the equilateral and the squeezed
limits in the model PI3 and the reconstructed scenario RS2. . . . . . . 102

3.13 Original scalar power spectrum and the modified spectrum arrived at
upon including the leading non-Gaussian corrections in the models
USR2 and PI3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.1 Scalar power spectra with a lognormal shape obtained from squeezed
initial states and the corresponding modifications due to the cubic order
non-Gaussianities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2 Dominant contributions to the scalar bispectrum from non-vacuum
initial states in the squeezed limit. . . . . . . . . . . . . . . . . . . . 117

4.3 Density plot of the scalar non-Gaussianity parameter in slow roll
inflation from squeezed initial states. . . . . . . . . . . . . . . . . . . 118

xiii



4.4 Behavior of the scalar non-Gaussianity parameter from non-vacuum
initial states in the squeezed limit. . . . . . . . . . . . . . . . . . . . 119

4.5 Extent of PBHs produced and secondary GWs generated from squeezed
initial states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.1 Scalar power spectra and the corresponding spectral density of GWs
today, generated in the two inflationary models SMD and CHI. . . . . 145

5.2 Behavior of the scalar non-Gaussianity parameter in the two inflationary
models SMD and CHI, plotted in the squeezed, equilateral and flattened
limits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.3 Density plots of the scalar the non-Gaussianity parameter in the models
SMD and CHI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.4 Range of integration involved in calculating the non-Gaussian
corrections to the scalar power spectrum. . . . . . . . . . . . . . . . . 150

5.5 Original Gaussian, scalar power spectra and the non-Gaussian
corrections due to the bispectrum in the two inflationary models SMD
and CHI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.6 Gaussian and non-Gaussian contributions to the spectral density of
GWs in the two inflationary models SMD and CHI. . . . . . . . . . . 155

A.1 Scalar power spectra in a small field inflationary model and the axion
monodromy model with kinetically dominated initial conditions. . . . 162

A.2 Behavior of the scalar non-Gaussianity parameter in the squeezed limit
in the small field inflationary model and the axion monodromy model. 163

B.1 Behavior of the first slow roll parameter for two sets of parameters
describing an inflationary potential leading to punctuated and ultra slow
roll inflation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

D.1 Consistency condition describing the scalar non-Gaussianity parameter
in the squeezed limit in the inflationary model PI3. . . . . . . . . . . 168

E.1 Evolution of the first slow roll parameter and the dominant imaginary
part of the curvature perturbation in scenarios involving short and
prolonged duration of ultra slow roll inflation. . . . . . . . . . . . . . 170

F.1 Steepest growth of the scalar power spectra in models permitting an
epoch of ultra slow roll inflation. . . . . . . . . . . . . . . . . . . . . 172

H.1 Elements of the Feynman diagrams . . . . . . . . . . . . . . . . . . . 176

H.2 Feynman diagrams representing P(2−i)
h (k) . . . . . . . . . . . . . . . 177

xiv



H.3 Feynman diagrams representing P(4−i)
h (k) . . . . . . . . . . . . . . . 178

xv



ABBREVIATIONS

BBO Big Bang Observer
CE Cosmic Explorer
CHI Critical-Higgs Inflation
DECIGO DECi-hertz Interferometer Gravitational wave Observatory
CMB Cosmic Microwave Background
COBE Cosmic Background Explorer
EROS Experience pour la Recherche d’Objets Sombres
ET Einstein Telescope
FIRAS Far-InfraRed Absolute Spectrophotometer
GWs Gravitational Waves
HCO Hard Cut-Off
LIGO Laser Interferometer Gravitational-Wave Observatory
LISA Laser Interferometer Space Antenna
MACHOs Massive Astrophysical Compact Halo Objects
MAGIS Matter-wave Atomic Gradiometer Interferometric Sensor
OGLE Optical Gravitational Lensing Experiment
PBHs Primordial Black Holes
PI Punctuated Inflation
PL Power Law power spectra
PTA Pulsar Timing Array
QP Quadratic Potential
RS Reconstructed Scenario
SKA Square Kilometre Array
SMI Starobinsky Model I
SMII Starobinsky Model II
SMD SMI with a dip added to the potential
USR Ultra Slow Roll
WMAP Wilkinson Microwave Anisotropy Probe

xvi



NOTATIONS

The notations used in this thesis have been listed below in the order of their appearance
in the thesis.

Notation Description

~ Reduced Planck’s constant, 1.054× 10−34 J s

c Speed of light, 299792458 m s−1

M
Pl

Reduced Planck mass, 2.435× 1018 GeV/c2

G Universal gravitational constant, 6.674× 10−11 N kg−2 m2

t Cosmic time

x Position vector

η Conformal time

N E-fold

a(t) Scale factor describing the universe

H Hubble parameter

H0 Hubble constant: value of the Hubble parameter today

h Parameter describing the Hubble constant as: H0 = 100h km s−1 Mpc−1

K Spatial curvature

ρ Energy density

w Equation of state parameter

p Pressure

ρcr Critical energy density

φ Scalar field

V (φ) Potential for the scalar field φ

V0 Parameter determining the energy scale of potential in the models of
SMI, SMII, USR1, USR2, PI1, PI3 and CHI

ηi Conformal time when the initial conditions are imposed on perturbations

ηe Conformal time close to the end of inflation

H
I

Value of the Hubble parameter during inflation

Vφ Derivative of the potential V with respect to the scalar field φ

Vφφ Double derivative of the potential V with respect to φ
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Notation Description

εn n-th slow roll parameter

Ωr Dimensionless energy density of radiation at present

Ωm Dimensionless energy density of non-relativistic matter at present

ΩK Density parameter associated with the present value of the spatial curvature

Ωc Density parameter of cold dark matter in the universe at present

λ Comoving wavelength, strength of the dip added in case of SMD

k Comoving wave number of the perturbations

H Conformal Hubble parameter

R(η,x) Curvature perturbation at the spacetime coordinates (η,x)

γij(η,x) Primary tensor perturbation at the spacetime coordinates (η,x)

hij(η,x) Secondary tensor perturbation at the spacetime coordinates (η,x)

S2[R] Second order action governing the curvature perturbations

S2[γij] Second order action governing the primary tensor perturbations

fk Fourier mode of the scalar perturbations, corresponding to the
wave number k

vk Fourier mode of the Mukhanov-Sasaki variable for the scalar
perturbations, corresponding to the wave number k

gk Fourier mode of the primary tensor perturbations, corresponding to the
wave number k

uk Fourier mode of the Mukhanov-Sasaki variable for the tensor
perturbations, corresponding to the wave number k

P
S
(k) Power spectrum of the curvature perturbations

P
T
(k) Power spectrum of the primary tensor perturbations

S3[R] Third order action governing the curvature perturbations

L2 Second order Lagrangian density associated with the action
governing the curvature perturbationR

SB
3 [R] Temporal boundary terms associated with the third order action

governing the curvature perturbations

k
T

k1 + k2 + k3
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Notation Description

G(k1,k2,k3) Bispectrum of the scalar perturbations involving the
wave vectors k1,k2,k3

G
C

(k1,k2,k3) The C-th term of the nine contributions to G(k1,k2,k3)

G
C

(k1,k2,k3) The integral corresponding to G
C

(k1,k2,k3)

κ Cut-off parameter introduced in G
C

to choose the correct
perturbative vacuum

f
NL

(k1,k2,k3) Non-Gaussianity parameter corresponding to the scalar bispectrum

A
S

Amplitude of primordial scalar power spectrum

n
S

Spectral index of primordial scalar power spectrum

r Primordial tensor-to-scalar ratio

τ Optical depth due to reionization

θ
MC

Acoustic scale of the CMB

k∗ Pivot scale

` Multipole

C` CMB angular power spectrum corresponding to the multipole `

δ Density contrast of matter perturbations

σ2 Variance of matter perturbations

δc Threshold value of density contrast beyond which matter fluctuations
are likely to collapse into PBHs

P(δ) Probability density describing the matter perturbations

Pδ(k) Power spectrum of density contrast δ

W (k R) Window function to smoothen the distribution of density contrast
over the length scale R

γ∗ Parameter quantifying the efficiency of collapse of density contrast
into PBHs

g∗,k Relativistic degrees of freedom at the time when density contrast
corresponding to wave number k collapses into PBHs

g∗,eq Relativistic degrees of freedom at the time of radiation-matter equality

M Mass of PBH corresponding to the length scale R

Meq Mass within Hubble radius at the epoch of radiation
and matter equality, 5.83× 1047 kg

β Fraction of matter perturbations that collapse to form PBHs

f
PBH

Fraction of PBHs constituting dark matter in the current universe
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Notation Description

Φ, Ψ Bardeen potentials

T (k η) Transfer function relating the Bardeen potential
to the primordial curvature perturbationRk corresponding to the
wave number k at a given time η

hk Fourier mode of the secondary tensor perturbations corresponding
to the wave number k

ei(k), ēi(k) Unit vectors in the plane perpendicular to the wave vector k

eλij(k) Polarization tensor of GWs corresponding to the wave vector k,
with the index λ = (+,×) denoting the two states of polarization

eλ(k,p) Contraction of the polarization tensor of GWs corresponding to
wave vector k with the wave vector p, i.e. eλ(k,p) = eλij(k) pi pj

Ph(k, η) Power spectrum of the secondary tensor perturbations corresponding
to wave number k at a given time η

Ph(k, η) Ph(k, η) averaged over small time scales

f Frequency corresponding to a given wave number k

Ω
GW

(f) Density parameter of gravitational waves corresponding to
frequency f

m Mass of the inflaton when described by potentials such as QP and PI2

φi Value of the scalar field at the beginning of its evolution

ε1i Value of the first slow roll parameter at the beginning
of the evolution of φ

N1 E-fold at the onset of inflation in scenarios with kinetic dominated
initial conditions, Parameter determining the onset of ultra slow in RS

N∗ E-fold at which the pivot scale k∗ leaves the Hubble radius,
when counted from the end of inflation

ki Wave number corresponding to initial time of inflation, i.e. ki = −1/ηi

φ0 Value of the scalar field at which the slope changes in the potential
of SMII, Value of the field at inflection the point of USR and PI
models, Location of dip introduced in case of SMD

k0 Wave number that exits Hubble radius when the slope changes in
the model of SMII

A+ Slope of the potential in the first stage of SMII

A− Slope of the potential in the second stage of SMII

∆A Difference between the slopes in SMII, i.e. A− − A+
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Notation Description

∆φ Parameter determining the change of slope in the smoothened form
of the potential in SMII, width of the dip added in case of SMD

α(k), β(k) Bogoliubov coefficients that describe the mode function in a
non-vacuum initial state

∆χ2 Difference between the χ2 of a given model and the case
with PL power spectra i.e. ∆χ2 = χ2

model
− χ2

PL

fCR
NL

Expression of f
NL

given by the consistency relation
in the squeezed limit

α, β Parameters describing the potential in USR1

A, f
φ

Parameters describing the potential in USR2

B Parameter describing the potential in PI1

c0, c1, c2, c3 Parameters describing the potential in PI3

S Intrinsic entropy perturbation

Sk Fourier mode associated with intrinsic entropy perturbation
corresponding to the wave number k

δpNA Non-adiabatic component of the pressure perturbation

c
A

Adiabatic speed of the scalar perturbations

εI1(N) Parametrization of ε1 in RS1

εII1 (N) Parametrization of ε1 in RS2

εIII1 (N), εIV1 (N) Truncated versions of RS1

ε1a Parameter in RS to achieve initial slow roll value of ε1
ε2a Parameter in RS to achieve initial slow roll behavior of ε1
ε1b Parameter in RS that determines the minimum value of ε1
N2 Parameter denoting the e-fold at the end of inflation in RS

∆N1 Parameter determining the rapidity of transition from slow roll
to ultra slow roll in RS

∆N2 Parameter determining the rapidity of transition from ultra slow roll
to end of inflation in RS

N i E-fold at the beginning of field evolution in RS

H
i

Value of Hubble parameter at Ni in RS

Gλ1λ2λ3
h (k1,k2,k3) Bispectrum of the secondary tensor perturbations corresponding

to wave vectors k1,k2,k3 and polarizations λ1, λ2, λ3

Sλ1λ2λ3h (k1,k2,k3) Shape function associated with Gλ1λ2λ3
h (k1,k2,k3)

δ(k) Ratio of the Bogoliubov coefficients, i.e. δ(k) = β(k)/α(k)

P0
S
(k) Scale invariant part of a scalar power spectrum containing features
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g(k) Function characterizing the feature over an otherwise scale
invariant spectrum, i.e. P

S
(k) = P0

S
(k) [1 + g(k)]

γ Parameter determining the strength of the feature when g(k)

is chosen to be a lognormal function

kf Wave number corresponding to the location of the peak of the feature
in the spectrum

∆k Width of the feature of lognormal function in the spectrum

kmin k1/10, with k1 being the smallest wave number of observational interest

RG (x, η) Gaussian component of the perturbationR at (x, η)

RG

k (η) Gaussian component of the perturbation in Fourier spaceRk(η)

P
C
(k) Correction to the scalar power spectrum due to f

NL

PM

S
(k) Scalar power spectrum accounting for P

C
(k)

ρ
I

Background energy density during inflation

ρR Energy density of the curvature perturbations during inflation

ρ(1)
R

Contribution to ρR due to modes in the sub-Hubble domain

ρ(2)
R

Contribution to ρR due to modes in the super-Hubble domain

P(2−i)
h (k) Contributions to the secondary tensor power spectrum due to scalar

non-Gaussianity at the level of f 2
NL

P(4−i)
h (k) Contributions to the secondary tensor power spectrum due to scalar

non-Gaussianity at the level of f 4
NL

a, b, c, µ Parameters describing the potential in CHI
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CHAPTER 1
INTRODUCTION

In this age of precision cosmology, the inflationary scenario constitutes an essential
ingredient of the prevailing standard model of cosmology (for textbooks in this context,
see Refs. [21–29]; for reviews, see Refs. [1–5, 30–36]). Inflation refers to an epoch
of accelerated expansion of the universe during its earliest stage of evolution, soon
after big bang. It was originally introduced to explain the observed level of statistical
isotropy and flatness over large scales in the current universe. When compared to
the other alternatives which attempt to provide similar solutions, inflation proves to
be more appealing because of the minimal level of modeling that is required and the
attractor behavior in phase space. Apart from resolving the problems mentioned above,
inflation also provides a natural mechanism to explain the origin of the primordial
perturbations over corresponding scales. During inflation, the quantum fluctuations
present at small scales within a causally connected region are rapidly stretched to seed
the perturbations in the epochs that follow. These perturbations evolve and are imprinted
as small anisotropies in the otherwise isotropic cosmic microwave background (CMB).
They grow further to form galaxies and the large scale structure observed in the current
universe. It is by studying these perturbations through the statistics of their distribution
that we are able gather insight about the epoch of their origin. Modeling the dynamics
of inflation and constraining it using observations are truly remarkable for the reason
that they allow us to probe the physics operating at the highest energy scales. We need
to emphasize that these scales are way beyond the energies that can be accessed by
terrestrial particle accelerators. In this thesis, we shall be discussing the correlations of
the primordial perturbations generated during inflation and the constraints we can arrive
on the mechanisms at play in the early universe from the various observational data. To
begin with, let us quickly understand the essential aspects of inflation, the generation
of the perturbations and the calculation of the two-point and three-point correlation
functions which can be constrained by the observations.

This introductory chapter is organized as follows. In Sec. 1.1, we shall start
with a discussion on the manner in which inflation provides a causal explanation
for large scale isotropy. We shall describe as to how inflation can be driven by a
canonical scalar field that is minimally coupled to gravitation. We shall also describe the
generation and evolution of perturbations during this epoch and outline the computation
of the two-point and three-point correlations that characterize the perturbations. These
correlations predicted by different models shall then be used to arrive at constraints on
the parameters describing the models when compared against relevant observational
phenomena. In Sec. 1.2, we shall discuss the current and upcoming observational



datasets that help us constrain inflationary models, viz. the anisotropies observed in the
CMB, the possibility of primordial black holes (PBHs) constituting a fraction of cold
dark matter today and the amplitude of stochastic gravitational waves (GWs) that can
be measured by current and future observatories. In Sec. 1.3, we shall briefly outline
the problems analyzed in the subsequent chapters of the thesis.

Before we proceed further, let us clarify a few points regarding the conventions and
notations that we shall follow in this thesis. Throughout this thesis, we shall work with
natural units wherein ~ = c = 1, and define the Planck mass to be M

Pl
= (8 π G)−1/2.

Note that Latin indices shall represent the spatial coordinates, except for k which
shall be reserved for denoting the wave number. We shall work in (3 + 1)-spacetime
dimensions, and adopt the signature of the metric to be (−,+,+,+). We shall assume
the background to be the spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW)
universe, with a being the scale factor. An overdot and an overprime shall denote
differentiation with respect to the cosmic time and the conformal time coordinates.
Moreover, N shall represent the number of e-folds — defined as dN = d ln a or,
equivalently, a(N) ∝ eN — a convenient, dimensionless unit of time to quantify the
expansion of space.

1.1 INFLATION

Various cosmological observations — such as, for example, the anisotropies in the
CMB [37, 38], the distribution of the large scale structure [39–43] and the supernovae
data [44–46] — suggest that the universe today is statistically isotropic and spatially flat
over large scales. Moreover, the observations point to the fact that the inhomogeneities
were small at earlier times and at large scales today. Besides, the CMB data constrains
the energy density associated with spatial curvature to be ΩK = 0.001 ± 0.002 (see
Ref. [38]; in this regard, however, also see Refs. [47, 48]). Motivated by the above
mentioned observations and the cosmological principle, in this thesis, we shall assume
that the background is described by the spatially flat FLRW universe. Such a universe
is described by the line-element

ds2 = −dt2 + a2(t) dx2 = a2(t) (−dη2 + dx2), (1.1)

where t denotes the cosmic time coordinate, x represents the spatial coordinates, and
η is called the conformal time coordinate. The function a(t) denotes the scale factor
that quantifies the expansion of the spatial coordinates with respect to cosmic time. The
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dynamics of the FLRW metric is governed by the following Friedmann equations:

H2 =
1

3M2
Pl

ρ, (1.2a)

ä

a
= − 1

6M2
Pl

(ρ+ 3 p), (1.2b)

where ρ and p denote the energy density and pressure of the total matter content of the
universe. The quantity H is the Hubble parameter, which is defined as H = ȧ/a. These
equations are valid for the entire history of expansion of the universe. In this thesis, we
shall primarily focus on solving them during the epoch of inflation.

In Fig. 1.1, we have illustrated the behavior of comoving length scales and the
comoving Hubble radius as functions of e-folds N , during different epochs of the
universe, as dictated by the energy and density and pressure of the corresponding epochs
(see, for instance, Refs. [21, 29]). Note that a range of scales enter the comoving
Hubble radius during the epochs dominated by radiation or matter. The observables
over the large scales associated with the CMB, i.e. from 1 Mpc to 104 Mpc are highly
isotropic, with anisotropies of order 10−4 or less. To explain such a level of isotropy, it is
compelling to demand that these scales of cosmological interest were in causal contact
before they entered the Hubble radius during the later epochs. Otherwise, we would
be forced to impose isotropic initial conditions over such scales by hand, when they
were outside the Hubble radius. For the scales to emerge from inside the Hubble radius
during the early stages of their evolution, we need an epoch wherein the comoving
Hubble radius decreases with time, i.e. d(aH)−1/dt < 0. Since H = ȧ/a, this implies
ä > 0. Hence, a phase with accelerated expansion of the scale factor is invoked to
address this issue. This is the epoch of inflation, hypothesized to occur during the early
stages of the radiation dominated epoch. The behavior of scale factor during inflation
is often conveniently modeled as a(t) ∝ exp (H

I
t), where H

I
is a constant. This leads

to the comoving Hubble radius during this phase decrease as (aH)−1 ∝ a−1, thereby
ensuring that all scales emerge from inside the Hubble radius when evolved from a
sufficiently early time. Note that the second Friedmann equation (1.2b) suggests that
the universe will go through accelerated expansion (i.e. ä > 0) provided (ρ+ 3 p) < 0.
In the next subsection, we shall discuss how such a condition for inflation can be easily
achieved with a scalar field driving the background.

3



−60 −40 −20 0 20 40 60

N = ln[a(t)/ae]

10−21

10−18

10−15

10−12

10−9

10−6

10−3

100

103

ln
(λ
/M

p
c)
,

ln
( (a

H
)−

1

M
p

c

)
CMB scales

PBH and secondary GW scales

ra
d

ia
ti

o
n

-m
a
tt

e
r

e
q
u

a
li
ty

m
a
tt

e
r-

Λ
e
q
u

a
li
ty

φ

V
(φ

)

PBHs & GWs

CMB

Figure 1.1: The behavior of the comoving Hubble radius of the universe beginning
with inflation and through the radiation and matter dominated epochs have
been plotted as a function of e-folds (on top). In the figure, we have also
indicated the comoving wave numbers associated with the CMB and smaller
scales. It is easy to see that the period of inflation ensures that the scales
observed today begin inside a causally connected region, i.e. they lie within
the Hubble radius. We have also illustrated schematically (at the bottom) a
correspondence between the scales of observation and the evolution of the
field over the potential, when inflation is driven by a canonical scalar field.
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1.1.1 Evolution of the background

Inflation is typically modeled as driven by a canonical scalar field, say, φ, that is
minimally coupled to gravitation (see, for example, the reviews [1–5, 30–36] as well as
references therein). The potential, say, V (φ), driving inflation is required to be smooth
to achieve what is called as the slow roll evolution of the field. The equation of motion
governing the scalar field in a FLRW background is given by

φ̈+ 3H φ̇+ Vφ = 0, (1.3)

where Vφ = dV/dφ. The energy density ρ and pressure p associated with the scalar
field are found to be

ρ =
φ̇2

2
+ V (φ), (1.4a)

p =
φ̇2

2
− V (φ). (1.4b)

When the field is slowly rolling as mentioned above, the kinetic energy is subdominant
to the potential, i.e. φ̇2/2 � V (φ). Hence, in such situations, we obtain the relation
between the pressure and energy density to be p ' −ρ. This ensures that the condition
for accelerated expansion — viz. (ρ + 3 p) < 0 — is satisfied, leading to inflation.
Apart from the condition that the velocity of the field is small, i.e. φ̇2/2 � V (φ),
if we demand that φ̈ � 3H φ̇, then the acceleration of the field also remains small
thereby ensuring a sufficient duration of inflation. Depending on the energy scale at
which inflation occurs, a minimum duration of inflation is required for all modes of
cosmological interest to emerge from inside the Hubble radius. We shall now illustrate
how such an evolution can be achieved using a well known potential as an example.

Consider the model of inflation originally introduced by Starobinsky [49]. This
model is arrived at by adding a term that is quadratic in the Ricci scalar to the original
Einstein-Hilbert action in the Jordan frame. In the Einstein frame, the model can be
described by the following potential:

V (φ) =
V0

8

[
1− exp

(
−
√

2

3

φ

M
Pl

)]2

. (1.5)

Notice that the potential has its minimum at φ = 0 and tends to a constant when φ �
M

Pl
. If one starts far away from the minimum of the potential, one finds that the friction

or the drag term 3H φ̇ in the equation of motion (1.3) slows down the field even when it
has a large initial velocity. In other words, the drag term makes the kinetic energy of the
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field sub-dominant to the potential energy, i.e. φ̇2/2 � V (φ), during the course of the
evolution. The small velocity of the field leads to a situation wherein its acceleration is
small so that the equation of motion for the field simplifies to

3H φ̇ ' −Vφ. (1.6)

Therefore, when the field begins its evolution sufficiently away from the minimum of
the potential, one can obtain the required duration of inflation so as to ensure that the
cosmological scales emerge from inside the Hubble radius. As the field approaches the
minimum of the potential, it is found that the velocity of field increases and inflation
is naturally terminated. Thereafter, the field oscillates at the bottom of the potential.
During this epoch, the energy from the inflaton is expected to be transferred to radiation
leading to the conventional radiation dominated phase of the hot big bang model.

The evolution of the field in the Starobinsky model (1.5) can be easily solved
analytically, using the two conditions that ensure that the field rolls slowly for an
adequate period of time, viz. φ̇2/2 � V (φ) and φ̈ � 3H φ̇. These conditions are
referred to as the slow roll approximation and they prove to be helpful in calculations of
observable quantities as well. However, non-trivial potentials that we shall encounter in
later chapters can lead to a violation of the slow roll conditions and hence it may not be
possible to readily obtain analytical solutions for the evolution of the field in such cases.
In order to study the evolution of the field in a generic situation, we have developed a
code to numerically solve and compute the relevant quantities of interest for a given
inflationary potential describing a single, canonical scalar field. The code works with
the e-fold N as the independent variable and it solves the background equations (1.2a)
and (1.3) using the fifth-order Runge-Kutta method to arrive at the evolution of the
field [50, 51]. The step size is made adaptive such that one can discern non-trivial
features during the evolution without losing precision. We shall remark more about this
code later when we discuss perturbations and the evaluation of the inflationary power
spectra.

In Fig.1.2, we have presented the evolution of the field in the Starobinsky model,
arrived at using the above-mentioned code. We have illustrated the behavior of the
field at equal intervals of e-folds as it evolves across the potential. It can be readily
inferred from the figure that the field rolls slowly when it is away from the minimum
and it gathers velocity as it approaches the minimum. Around the minimum, the field
oscillates with a large range of velocity. In the figure, we have also plotted the trajectory
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Figure 1.2: The evolution of the scalar field in the case of the Starobinsky model (1.5)
has been plotted (on top) along with the corresponding trajectory of the
field in phase space (at the bottom). The dots in the plots represent the
evolution of the field over equal intervals of e-folds. We have also indicated
the velocity of the field at different points in the potential, when it is rolling
slowly during the early stages (with ε1 ∼ 10−4, in blue) and when it is
rolling fast after the end of inflation (with 0 ≤ ε1 ≤ 3, in red).
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of the field in the phase space φ–dφ/dN . As is evident from the trajectory in phase
space, the field evolves with low kinetic energy during most of its evolution. At late
times, it spirals with rapid changes in velocity until it loses all the kinetic energy and
settles down at φ = dφ/dN = 0.

In order to gain a better understanding of the dynamics of the evolution of the field,
it is convenient to define the so-called the slow roll parameters εn as follows:

ε1 = −d lnH

dN
, (1.7a)

εn+1 =
d ln εn

dN
, for n ≥ 1. (1.7b)

The first slow roll parameter is a crucial parameter because, combined with the
Friedmann equations, it can be rewritten as

ε1 =
1

2M2
Pl

(
dφ

dN

)2

. (1.8)

Note that, ε1 quantifies the kinetic energy of the scalar field in a dimensionless fashion.
In inflationary models which permit slow roll, such as the Starobinsky model (1.5),
ε1 is initially small when the value of the scalar field is large. At later stages, as the
field approaches the minimum of the potential, the value of the parameter crosses unity,
leading to the termination of inflation. Thereafter, the value of ε1 varies between zero
and 3, indicating the oscillations of the field at the bottom of the potential, which is
reflected in the inspiralling trajectory in phase space [cf. Fig. 1.2].

In terms of these parameters, the slow roll approximation corresponds to εn � 1.
It is also interesting to note that these parameters can be related to the shape of the
potential. For instance, in the slow roll approximation, the first two slow roll parameters
can be expressed as

ε1 '
M2

Pl

2

(
Vφ
V

)2

, (1.9a)

ε2 ' 2M2
Pl

[(
Vφ
V

)2

− Vφφ
V

]
, (1.9b)

where Vφφ = d2V/dφ2. As we shall see later, these parameters play crucial roles in the
calculations of the power and bi-spectra of the perturbations.
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1.1.2 Perturbations and power spectra

Having discussed the dynamics of the homogeneous background, let us turn to the
perturbations over the background. These are perturbations arising from the metric
as well as the scalar field and they can be decomposed into scalar, vector and tensor
components (for detailed discussions, see, for example, Refs. [1, 52, 53]). The vector
perturbations are known to decay rapidly in an inflating universe in the absence of
corresponding sources. Therefore, we shall focus on the scalar and tensor perturbations.

LetR and γij denote the scalar and the tensor perturbations. The action governing
these perturbations at the quadratic order are given by [52, 54]

S2[R] =
1

2

∫
dη

∫
d3x z2

[
R′2 − (∂R)2

]
, (1.10a)

S2[γij] =
M2

Pl

8

∫
dη

∫
d3x a2

[
γ′ij

2 − (∂γij)
2
]
, (1.10b)

where z =
√

2 ε1MPl
a, with ε1 being the first slow roll parameter. Let Rk

and γkij denote the Fourier modes associated with the scalar and tensor perturbations,
respectively. On varying the above action, we arrive at the following differential
equations that govern the dynamics of these modes:

R′′k + 2
z′

z
R′k + k2Rk = 0, (1.11a)

γkij
′′

+ 2
a′

a
γkij
′
+ k2 γkij = 0. (1.11b)

On quantization, the Fourier modes are elevated to be operators, denoted as R̂k and γ̂kij .
The scalar and tensor power spectra P

S
(k) and P

T
(k) are defined in terms of these

operators through the relations

〈R̂k(ηe) R̂k′(ηe)〉 =
2π2

k3
P

S
(k) δ(3) (k + k′) , (1.12a)

〈 γ̂kij(ηe) γ̂
ij
k′(ηe) 〉 =

2 π2

k3
P

T
(k) δ(3)(k + k′), (1.12b)

where ηe is the conformal time at late times, close to the end of inflation. We should
mention that, in the above expressions, the expectation values on the left hand side are
to be evaluated in the specified initial quantum state, which we shall assume to be the
Bunch-Davies vacuum, unless we mention otherwise. Let fk and gk denote the positive
frequency modes (associated with the Bunch-Davies vacuum) in terms of which the
operators R̂k and γ̂kij are decomposed. Then, in terms of the quantities fk and gk, the

9



power spectra P
S
(k) and P

T
(k) can be expressed as

P
S
(k) =

k3

2 π2
|fk(ηe)|2, (1.13a)

P
T
(k) = 4

k3

2π2
|gk(ηe)|2. (1.13b)

Let us now briefly describe the evaluation of the scalar power spectrum in the
standard case of slow roll inflation. Let us introduce quantities called the Mukhanov-
Sasaki variables defined as vk = z fk, uk = (M

Pl
/
√

2) a gk. In terms of these variables,
the equations of motion (1.11) governing the perturbations become (see, for instance,
the reviews [1–5, 30–36]):

v′′k +

(
k2 − z′′

z

)
vk = 0, (1.14a)

u′′k +

(
k2 − a′′

a

)
uk = 0. (1.14b)

The initial conditions on the scalar and tensor Mukhanov-Sasaki variables are imposed
when the modes satisfy the conditions k �

√
z′′/z and k �

√
a′′/a, respectively.

These typically correspond to the condition that the modes are well inside the Hubble
radius, i.e. they are in the sub-Hubble domain. The initial conditions corresponding to
the Bunch-Davies vacuum are given by

vk = uk =
1√
2 k

e−i k η, (1.15a)

v′k = u′k = −i
√
k

2
e−i k η. (1.15b)

Note that, in terms of the Mukhanov-Sasaki variables, the scalar and tensor
spectra (1.13) reduce to the following forms:

P
S
(k) =

k3

2π2

( |vk|
z

)2

, (1.16a)

P
T
(k) =

8

M2
Pl

k3

2 π2

( |uk|
a

)2

. (1.16b)

In the slow roll approximation, one can easily arrive at analytical solutions that describe
the evolution of the Mukhanov-Sasaki variables. On utilizing the solutions, one can
calculate the power spectra at late times when k �

√
z′′/z and k �

√
a′′/a, which

often correspond to the condition that the modes are well outside the Hubble radius,
i.e. they are in the super-Hubble domain. The scalar and tensor power spectra evaluated

10



in the super-Hubble limit can be expressed as

P
S
(k) ' H2

I

8π2M2
Pl
ε1
, (1.17a)

P
T
(k) ' 2H2

I

π2M2
Pl

, (1.17b)

where H
I

denotes the nearly constant value of the Hubble parameter in slow roll
inflation. We should mention that the background quantities in these expressions are
to be evaluated at the time when the modes leave the Hubble radius. These power
spectra depend on the inflationary models of interest. They enable us to compare them
against the observations and thereby arrive at constraints on the models.

While in simple situations such as slow roll inflation, the scalar and tensor power
spectra can be evaluated analytically, one has to resort to numerical computations in
order to arrive at the power spectra in non-trivial scenarios involving departures from
slow roll. The exact scalar and tensor power spectra can be arrived at by solving
equations (1.11) numerically. As in the case of the background, these equations are
usually solved with the e-fold N as the independent variable, which allows us to
efficiently capture the evolution of the modes. As we mentioned above, the Bunch-
Davies initial conditions on the scalar and tensor perturbations are imposed at early
times in a domain wherein k �

√
z′′/z and k �

√
a′′/a. The modes are evolved

from these initial conditions, and the power spectra are evaluated at late times such
that k �

√
z′′/z and k �

√
a′′/a. In a typical slow roll model, one finds that√

z′′/z '
√
a′′/a '

√
2 aH . Therefore, the above conditions correspond to the

modes being in the sub-Hubble [i.e. when k � (aH)] and the super-Hubble [i.e. when
k � (aH)] domains, respectively. While, analytically, one imposes the Bunch-
Davies conditions in the limit k � (aH), numerically, one often finds that it is
adequate if the initial conditions on the perturbations are imposed when k ' 102 (aH).
Moreover, theoretically, the spectra are to be evaluated in the super-Hubble limit k �
(aH). However, other than in a few peculiar models, the amplitude of the curvature
perturbation fk quickly freezes once the modes leave the Hubble radius. Due to this
reason, the power spectra are numerically evaluated typically when k ' 10−5 (aH)

(see, for instance, Refs. [55, 56]). Later in certain cases, we shall explicitly note the
situations where the modes were evolved beyond this condition and the spectra are
computed close to the end of inflation.

Let us now mention a few details about the code used for the computation of
the power spectra. It is a Fortran package developed independently as a part of this
thesis work. We would like to mention here that we have made the code available at
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Figure 1.3: The power spectra of the scalar (in red) and tensor (in blue) perturbations
obtained in the case of the Starobinsky model (1.5) have been presented.
The exact numerical spectra are plotted (as solid lines) along with the
analytical estimates arrived at using the slow roll approximation (indicated
as green and cyan dots). The analytical estimates agree very well with the
numerical results. We find that the relative difference is of the order of 1%.

the following URL: https://gitlab.com/ragavendrahv/pbs.git. It solves the background
evolution for a given inflationary potential and parameters using an adaptive routine
of fifth order Runge-Kutta method, as we pointed out earlier. Then, it solves for the
Fourier modes of the scalar and tensor perturbations using the same method for a given
number of points of wave numbers. The code is modular, capable of multi-threaded
processing and hence time efficient. It is quite model independent as it can be employed
to solve the background and the perturbations for any inflationary model driven by a
single, canonical scalar field. As we shall describe in Chap. 2, a version of this code,
with suitable modifications, was used in conjunction with CosmoMC for comparing
various inflationary models against the CMB data. The power spectra obtained using
the code for the Starobinsky model is presented in Fig. 1.3. We have presented both
the numerical and the analytical estimates for the scalar and tensor power spectra P

S
(k)

and P
T
(k) over the range of modes associated with the CMB scales. Evidently, the

analytical estimates and the exact numerical results agree very well.
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1.1.3 The third order action and the contributions to the scalar bispectrum

We shall now turn to the computation of the three-point correlation generated during
inflation. In this thesis, we shall focus mainly on the three-point auto correlation of the
scalar perturbations, viz. the scalar bispectrum. The scalar bispectrum is the three-point
function of the curvature perturbation in Fourier space, and it is defined in terms of the
operator R̂k that we had introduced earlier as follows [57, 58]:

〈R̂k1(ηe) R̂k2(ηe) R̂k3(ηe)〉 = (2π)3 B
S
(k1,k2,k3) δ(3)(k1 + k2 + k3). (1.18)

Recall that, ηe is a time close to the end of inflation and, in this expression,
the expectation value on the left hand side is to be evaluated in the perturbative
vacuum [52, 53, 59]. Note that the three wave vectors (k1,k2,k3) form the edges of a
triangle. For convenience, we shall hereafter set

B
S
(k1,k2,k3) = (2π)−9/2G(k1,k2,k3) (1.19)

and refer to G(k1,k2,k3) as the scalar bispectrum.

In order to evaluate the scalar bispectrum, one requires the action describing the
curvature perturbation at the third order. For the case of inflation driven by a canonical
scalar field, it can be shown that, at the third order, the action governing the curvature
perturbationR can be expressed as (see, for instance, Refs. [52, 53, 60, 61])

S3[R] = M2
Pl

∫ ηe

ηi

dη

∫
d3x

[
a2 ε21RR′2 + a2 ε21R (∂R)2

− 2 a ε1R′ (∂R) (∂χ) +
a2

2
ε1 ε
′
2R2R′ + ε1

2
(∂R) (∂χ) ∂2χ

+
ε1
4
∂2R (∂χ)2 + 2F(R)

δL2

δR

]
, (1.20)

where, as we have mentioned earlier, ε2 = d ln ε1/dN is the second slow roll parameter,
while ∂2χ = a ε1R′. The quantity F(R) is given by

F(R) =
ε2
4
R2 +

1

aH
RR′ + 1

4 a2H2

{
−(∂R) (∂R) + ∂−2[∂i ∂j (∂iR ∂jR)]

}

+
1

2 a2H

{
(∂R) (∂χ)− ∂−2[∂i ∂j (∂iR ∂jχ)]

}
(1.21)

and L2 denotes the Lagrangian density associated with the action governing the
curvature perturbation at the second order [cf. Eq. (1.10a)]. Note that ηi is the conformal
time when the initial conditions are imposed on the perturbations and ηe is the conformal
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time close to the end of inflation, when the power and bi-spectra are evaluated.
Typically, in analytical calculations, one assumes that ηi → −∞ and ηe → 0−.

The third order action (1.20) is arrived at from the original action governing the
system of the gravitational and scalar fields. A set of temporal and spatial boundary
terms are often ignored in arriving at the above action [52, 53, 61]. The spatial boundary
terms do not contribute to the scalar bispectrum under any condition. However, in cases
such as a scenario involving inflation of a finite duration or in situations involving an
epoch of ultra slow roll, one finds that the temporal boundary terms can contribute non-
trivially. These temporal boundary terms are given by [61]

SB
3 [R] = M2

Pl

∫ ηe

ηi

dη

∫
d3x

d

dη

{
−9 a3HR3 +

a

H
(1− ε1)R (∂R)2

− 1

4 aH3
(∂R)2 ∂2R− a ε1

H
RR′2 − a ε2

2
R2 ∂2χ

+
1

2 aH2
R
(
∂i∂jR ∂i∂jχ− ∂2R ∂2χ

)

− 1

2 aH
R
[
∂i∂jχ∂i∂jχ− (∂2χ)2

]}
. (1.22)

It should be mentioned here that, in standard slow roll inflation, apart from the term
involving ε2, none of the above terms contribute either at early or at late times. The
term involving ε2 contributes non-trivially at late times, and this contribution is often
absorbed through a field redefinition (in this context, see, for example, Refs. [52, 61]).
However, it is important to clarify that, in this thesis, we do not carry out any field
redefinition. We shall explicitly calculate all the contributions due to the bulk and the
boundary terms (1.20) and (1.22).

The bispectrum G(k1,k2,k3) can be arrived at by using the third order action
described above and the standard rules of perturbative quantum field theory [52, 53, 60,
61]. It can be shown that the scalar bispectrum can be expressed as (see, for instance,
Refs. [56, 60])

G(k1,k2,k3) =
9∑

C=1

G
C

(k1,k2,k3)

= M2
Pl

6∑

C=1

[
fk1(ηe) fk2(ηe) fk3(ηe)GC (k1,k2,k3)

+ complex conjugate

]

+G7(k1,k2,k3) + G8(k1,k2,k3) +G9(k1,k2,k3), (1.23)

14



where, as we mentioned earlier, fk are the positive frequency Fourier modes associated
with the curvature perturbation, while ηe denotes the conformal time close to the end of
inflation. The quantities G

C
(k1,k2,k3) represent six integrals that involve the scale

factor, the slow roll parameters, the modes fk and their time derivatives f ′k. They
correspond to the six bulk terms appearing in the cubic order action (1.20) and are
described by the following expressions:

G1(k1,k2,k3) = 2 i

∫ ηe

ηi

dη a2 ε21

(
f ∗k1 f

′∗
k2
f ′∗k3 + two permutations

)
, (1.24a)

G2(k1,k2,k3) = −2 i (k1 · k2 + two permutations)

∫ ηe

ηi

dη a2 ε21 f
∗
k1
f ∗k2 f

∗
k3
,

(1.24b)

G3(k1,k2,k3) = −2 i

∫ ηe

ηi

dη a2 ε21

(
k1 · k2

k2
2

f ∗k1 f
′∗
k2
f ′∗k3 + five permutations

)
,

(1.24c)

G4(k1,k2,k3) = i

∫ ηe

ηi

dη a2 ε1 ε
′
2

(
f ∗k1 f

∗
k2
f ′∗k3 + two permutations

)
, (1.24d)

G5(k1,k2,k3) =
i

2

∫ ηe

ηi

dη a2 ε31

(
k1 · k2

k2
2

f ∗k1 f
′∗
k2
f ′∗k3 + five permutations

)
,

(1.24e)

G6(k1,k2,k3) =
i

2

∫ ηe

ηi

dη a2 ε31

[
k2

1 (k2 · k3)

k2
2 k

2
3

f ∗k1 f
′∗
k2
f ′∗k3 + two permutations

]
.

(1.24f)

These integrals are to be evaluated from a sufficiently early time (ηi), when the
modes are typically well inside the Hubble radius, until very late times, which can be
conveniently chosen to be a time close to the end of inflation (ηe). We should mention
here that the last term in action (1.20) involving F(R) (δL2/δR) actually vanishes
when we assume that the curvature perturbation satisfies the linear equation of motion
[cf. Eqs. (1.11a) and (1.14a)].

In the expression (1.23) for the scalar bispectrum, the terms G7(k1,k2,k3),
G8(k1,k2,k3) and G9(k1,k2,k3) are the contributions that arise due to the boundary
terms (1.22) associated with the third order action governing the curvature perturbation.
The contribution G7(k1,k2,k3) is due to the term containing ε2 in the boundary
term (1.22), and it can be expressed as

G7(k1,k2,k3) = −iM2
Pl
fk1(ηe) fk2(ηe) fk3(ηe)

×
[
a2ε1ε2 f

∗
k1

(η) f ∗k2(η) f ′∗k3(η) + two permutations

]ηe

ηi
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+ complex conjugate. (1.25)

In standard slow roll inflation, the contribution at ηi vanishes with the introduction of
a regulator (which is required to choose the perturbative vacuum, as we shall discuss
soon), and it is only the term evaluated towards end of inflation that contributes. Among
the boundary terms, we have chosen to write this term separately as it is this contribution
that is often taken into account (in slow roll inflation) through a field redefinition [52,
60, 61]. However, as we had mentioned, we shall not carry out any field redefinition
and explicitly calculate the contributions due to the bulk as well as the boundary terms.

The two terms G8(k1,k2,k3) and G9(k1,k2,k3) are the contributions due to
the remaining temporal boundary terms of the cubic order action in Eq. (1.22). The
contributions G9(k1,k2,k3) and G8(k1,k2,k3) arise due to terms with and withoutR′,
respectively. They are given by the following expressions:

G8(k1,k2,k3) = iM2
Pl
fk1(ηe) fk2(ηe) fk3(ηe)

[ a
H
f ∗k1(η) f ∗k2(η) f ∗k3(η)

]
ηi

×
{

54 (aH)2 + 2 (1− ε1) (k1 · k2 + k1 · k3 + k2 · k3)

+
1

2 (aH)2

[
(k1 · k2) k3

2 + (k1 · k3) k2
2 + (k2 · k3) k1

2

]}

ηi

+ complex conjugate, (1.26a)

G9(k1,k2,k3) = iM2
Pl
fk1(ηe) fk2(ηe) fk3(ηe)

×
{

ε1
2H2

f ∗k1(η) f ∗k2(η) f ′∗k3(η)

×,
[
k2

1 + k2
2 −

(
k1 · k3

k3

)2

−
(
k2 · k3

k3

)2]

− a ε1
H

f ∗k1(η) f ′∗k2(η) f ′∗k3(η)

[
2− ε1 + ε1

(
k2 · k3

k2 k3

)2
]}ηe

ηi

+ two permutations + complex conjugate. (1.26b)

Note that, because G8(k1,k2,k3) involves only R (and not R′), its contribution at late
times (i.e. at ηe) vanishes identically in any scenario. Moreover, both the boundary terms
G8(k1,k2,k3) and G9(k1,k2,k3) generally do not contribute in inflationary scenarios
that do not have a finite duration. But, as we shall see, in non-trivial scenarios such as
models with kinetically dominated or ultra slow roll epochs towards the beginning or
end of inflation, these boundary terms can contribute significantly.

In inflationary models which permit slow roll, the different contributions to the
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bispectrum can be computed analytically using the slow roll approximation. One
finds that, in such situations, the dominant contributions to the bispectrum arise due to
G1(k1,k2,k3), G2(k1,k2,k3), G3(k1,k2,k3) and G7(k1,k2,k3). These contributions
can be expressed in terms of the Hubble and the first two slow roll parameters as follows:

G1(k1,k2,k3) =
H4

I

16M4
Pl
ε1

1

(k1 k2 k3)3

×
[
k2

2 k
2
3

(
1

k
T

+
k1

k2
T

)
+ two permutations

]
, (1.27a)

G2(k1,k2,k3) =
H4

I

16M4
Pl
ε1

(k1 · k2 + k2 · k3 + k3 · k1)

(k1 k2 k3)3

×
[
−k

T
+

(k1 k2 + k2 k3 + k3 k1)

k
T

+
k1 k2 k3

k2
T

]
, (1.27b)

G3(k1,k2,k3) =
−H4

I

16M4
Pl
ε1

1

(k1 k2 k3)3

×
{[

(k1 · k2) k2
3 + (k1 · k3) k2

2

]( 1

k
T

+
k1

k2
T

)

+ two permutations

}
, (1.27c)

G7(k1,k2,k3) =
H4

I
ε2

32M4
Pl
ε21

1

(k1 k2 k3)3

(
k3

1 + k3
2 + k3

3

)
, (1.27d)

where k
T

= k1 + k2 + k3. The sum of these four terms gives us the analytical estimate
of the scalar bispectrum in slow roll inflation.

As in the case of the power spectra, one has to resort to numerical computations to
evaluate the scalar bispectrum in non-trivial scenarios involving deviations from slow
roll inflation. To arrive at the exact value of the bispectrum in a generic situation, we
compute all the terms [cf. Eqs. (1.23), (1.24), (1.25) and (1.26)] numerically. The limits
of the integral in Eqs. (1.24) are chosen such that ηi corresponds to a suitable time when
all modes are sufficiently inside the Hubble radius, and ηe corresponds to a time when
all the modes are in the super-Hubble regime. These are ensured by choosing ηi to be
the time when the smallest of the three wave numbers involved in the integrals satisfies
k ' 102 (aH). Similarly, ηe is chosen when the largest of wave numbers satisfies
k ' 10−5 (aH). We should mention that the integrals in Eqs. (1.24) implicitly include
a cut-off function of the form exp [−κ k

T
/(3
√
z′′/z)]. During slow roll, this function

is approximately given by exp [−κ k
T
/(3 aH)]. Such a cut-off function is introduced to

make sure that the bispectrum is computed in the perturbative vacuum (in this context,
see, for example, Refs. [52, 53]). Numerically, the cut-off helps us to regulate the rapid
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oscillations of the mode functions that occur when they are evolving in the sub-Hubble
regime. The cut-off parameter κ is chosen such that the integrals converge when ηi is set
sufficiently inside the Hubble radius [56]. In a later chapter, we shall discuss about the
significance of the choice of the cut-off parameter in inflationary scenarios with kinetic
dominated initial conditions. After performing the integrals with the cut-off function,
the different contributions are summed, along with those arising due to the boundary
terms, to arrive at the complete bispectrum.

The non-Gaussianity parameter f
NL

(k1,k2,k3) associated with the scalar
bispectrum G(k1,k2,k3) is expressed as a suitable dimensionless ratio of the
bispectrum to a sum of products of the power spectrum P

S
(k) as follows (see, for

instance, Refs. [56, 60])

f
NL

(k1,k2,k3) = −10

3

1

(2 π)4 k
3
1 k

3
2 k

3
3 G(k1,k2,k3)

×
[
k3

1 PS
(k2)P

S
(k3) + two permutations

]−1

. (1.28)

In a later chapter, we shall explicitly derive this equation from the definition of scalar
perturbation and discuss the associated caveats. In slow roll inflationary scenarios,
we can utilize the expressions (1.17a) and (1.27) for the scalar power and bi-spectra
to arrive at the corresponding non-Gaussianity parameter. In such cases, the quantity
f
NL

(k1,k2,k3) is given by

f
NL

(k1,k2,k3) = − 5

12

{
ε2 + ε1

[
−k4

1 − k4
2 − k4

3 + 10
(
k2

1 k
2
2 + k2

1 k
2
3 + k2

1 k
2
3

)

+ 2 k1 k2 k3 (k1 + k2 + k3)

] [
(k1 + k2 + k3)(k3

1 + k3
2 + k3

3)
]−1
}
.

(1.29)

Note that, in the so-called equilateral and squeezed limits, i.e. when k1 = k2 = k3 and
k1 → 0, k2 ' k3 = k, the values of the above non-Gaussianity parameter simplifies to
f
NL

= −5 (11 ε1 + 3 ε2)/36 and f
NL

= −5 (2ε1 + ε2)/12, respectively.

Let us now make a few clarifying remarks regarding the numerical setup used
to compute the bispectrum and the associated non-Gaussianity parameter f

NL
. The

code is an extension of the Fortran package used to compute the power spectra.
It uses the Boole’s rule to perform the integrals involved in the contributions to
the scalar bispectrum and estimate the complete f

NL
as a function of the three
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Figure 1.4: The density plots of the non-Gaussianity parameter f
NL

arising in the
Starobinsky model obtained numerically (on top) and analytically using the
slow roll approximation (in the middle) have been plotted in the k1/k3-
k2/k3-plane. The ranges of the axes have been chosen so that all the
possible shapes of the triangles formed by the wave vectors k1, k2 and
k3 are covered. We have also illustrated the relative difference between
analytical and numerical estimates (at the bottom). As we can see, the error
is of the order of 1 % and it can be attributed to the slow roll approximation
used in arriving at the analytical form for f

NL
.
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constituent wave vectors [51]. (As in the case of the inflationary power spectra,
we have made the numerical code to arrive at the scalar bispectrum available at the
URL: https://gitlab.com/ragavendrahv/pbs.git.) In Fig. 1.4, we have presented the
f
NL

(k1,k2,k3) computed numerically using this setup for the Starobinsky model. We
have also illustrated the corresponding analytical estimate, which is arrived at using the
slow roll approximation. The shapes and amplitudes of the numerical and analytical
estimates match closely and, in the figure, we have quantified the extent of matching
by plotting the relative difference over the same range of wave numbers. We find that
the code computes f

NL
to an accuracy of order 1%. We should mention that the code

is also optimized to run in multi-threaded setups and can be modified to compute f
NL

not just for creating density plots (as in Fig. 1.4), but also focus on certain limits of the
configuration of wave numbers, such as the equilateral and squeezed limits. We have
utilized this package for examining non-Gaussianities in models that involve non-trivial
evolution of the modes and hence are not readily solvable by the analytical methods.
We shall discuss these models in subsequent chapters.

1.2 OBSERVATIONAL PROBES

Having understood the computation of the predictions of inflationary models at the
level of two-point and three-point correlations, we shall now turn to a discussion
on comparing them against observations. In this section, we shall describe the
observational probes and datasets that help us constrain the models and the relevant
parameters. We shall discuss three such probes that we have used in this thesis,
viz. anisotropies in the CMB, constraints on population of PBHs, and the current and
future constraints on the amplitude of GWs. As we shall see, the CMB provides the
strongest constraint on the amplitudes and shapes of the primordial power spectra on
large scales, whereas PBHs and GWs provide relatively weaker bounds on them.

1.2.1 Anisotropies in the CMB and constraints on the large scales
First, let us consider the data of the anisotropies in the CMB. The measurements of
the anisotropies in the temperature and polarization of the CMB by the Planck mission
has been the most efficient dataset thus far in constraining the inflationary models [6].
We have used the 2018 release of the Planck mission containing the likelihoods of
anisotropies in temperature and E-mode polarization (i.e. TT, TE and EE) to arrive at
bounds on the inflationary models of interest [62]. The exact likelihoods we have used
are Plik-TTTEEE (plik_rd12_HM_v22b_TTTEEE) for correlations over the higher
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multipoles `, lowT (commander_dx12_v3_2_29) for low-` TT correlations, and lowE
(simall_100×143_offlike5_EE_Aplanck_B) for low-` EE correlations. We have also
included the lensing likelihood (smicadx12_Dec5_ftl_mv2_ndclpp_p_teb_consext8)
that captures the effect of gravitational lensing on the above correlations particularly
over the high multipoles. We have used the setup of CosmoMC, a widely used package,
to compare our models of interest against this dataset [63]. We have coupled the
Fortran code we have developed to compute power spectra, with the part of CosmoMC,
called CAMB, that computes the angular power spectra of the CMB [64]. We have
modified CAMB with our code such that the primordial power scalar and tensor spectra
are no longer the default power law functions but numerically computed as per the
predictions of the models of interest. Such a setup allows us to compare models with
features over larger scales against the CMB data and arrive at constraints on the relevant
parameters that describe the inflationary models of interest. We should mention that,
when we compare the predictions of the inflationary models with the CMB data, we
shall assume that the background cosmology is described by the standard Λ-cold dark
matter (ΛCDM) model.

Often, when comparing against the cosmological data, the primordial scalar and
tensor power spectra are assumed to be of the power law form. The power spectra are
usually written as

P
S
(k) = A

S

(
k

k∗

)n
S
−1

, (1.30a)

P
T
(k) = rP

S
(k∗), (1.30b)

where A
S
, n

S
and r are three parameters that describe the shape and amplitudes of

the spectra. The parameter A
S

is the amplitude of the scalar power at the pivot scale,
which is typically taken to be k∗ = 5 × 10−2 Mpc−1 (or, in some instances, to be
k∗ = 2 × 10−3 Mpc−1). The parameter n

S
is called the scalar spectral index, which

quantifies the tilt of the spectrum at the pivot scale. It is generally defined as

n
S
− 1 =

d lnP
S

d ln k
, (1.31)

which for the case of the spectrum in power law form reduces to a constant. The
parameter r is known as the tensor-to-scalar ratio, which characterizes the amplitude of
the tensor power with respect to the scalar power. We have compared the above spectra
with the Planck CMB data and have reproduced the constraints on these parameters as
arrived at by Planck team [6]. In Fig. 1.5, we have presented the 1-σ and 2-σ contours
of the posterior distributions on the parameters A

S
, n

S
and r. The plots in the figure
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have been obtained using a python package called GetDist [65]. We have obtained the
best fit and 1-σ bounds on the scalar amplitude to be A

S
= (2.10 ± 0.29) × 10−9. We

have also reproduced the well known result of n
S

= 0.9659 ± 0.0042, which strongly
implies a deviation from strictly scale invariant behavior and a small red tilt of the
scalar power spectrum. Besides, we obtain the upper bound on the tensor-to-scalar
ratio to be r < 0.055. We shall remark further about the constraint on r later in the
section. It is worth noting at this point that, in the case of slow roll inflation, one can
utilize the expressions of the scalar and tensor power spectra arrived at using slow roll
approximation [cf. Eq. (1.17)], to estimate the predictions on the parameters n

S
and r.

On using the expression of scalar power spectrum given in Eq. (1.17a) and the definition
of n

S
in Eq. (1.31), one can show that the spectral index in slow roll approximation can

be written in terms of the slow roll parameters as n
S

= 1 − 2 ε1 − ε2. Similarly, upon
utilizing the expressions of the scalar and tensor power spectra [cf. Eq. (1.17)], we can
express the tensor-to-scalar ratio in slow roll approximation to be r = 16 ε1. These
expressions, along with the constraints on these parameters, help us gain an idea of the
typical values of slow roll parameters favored by the data, i.e. εn . O(10−2).

Let us now turn to the comparison of Starobinsky model (1.5) with the Planck
data at the level of the power spectra. To perform such an exercise, we have replaced
the default power law forms in CosmoMC for the primordial scalar and tensor power
spectra with the corresponding numerical power spectra arising from the Starobinsky
model. There is only one parameter describing the model, viz. V0, which sets the energy
scale of the potential and hence determines the amplitudes of the power spectra. We
have constrained the parameter using the above mentioned likelihoods and illustrated
the bounds on the various parameters in Fig. 1.6. The contours in Fig. 1.6 are the 1-σ
and 2-σ regions of the marginalized posterior distribution for the standard background
cosmological parameters and V0. We can infer that the inflationary parameter of our
interest V0 is well constrained with the best fit value and 1-σ bounds being V0 =

(1.10 ± 0.05) × 10−9. In Fig. 1.7, we have presented CMB angular power spectrum
C` corresponding to these best-fit values.

Apart from constraints on the primordial power spectra, the Planck CMB data

22



Figure 1.5: We have presented the constraints on the parameters describing the power
law primordial scalar and tensor power spectra, viz. the primordial scalar
amplitude A

S
, the scalar spectral index n

S
and the tensor-to-scalar ratio r,

arrived at from the recent Planck CMB data. Note that the two contours (in
dark and light blue) correspond to the 1-σ and 2-σ posterior distributions,
obtained after having marginalized over the other parameters involved.
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Figure 1.6: We have presented the contours of the marginalized posterior distribution
of the background cosmological parameters, with inflation described by the
Starobinsky model (in red), as constrained by the recent CMB data from
Planck. For comparison, we have also included the constraints arrived
at upon assuming the primordial spectra to be of the power law form
[cf. Eqs. (1.30)]. In both the cases, we have assumed that the background
cosmology is described by the standard ΛCDM model.
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Figure 1.7: The angular power spectrum ` (`+ 1)C` of the TT anisotropies of the CMB
as predicted by the Starobinsky model has been plotted (in red) along with
the binned data points from the Planck 2018 dataset (in black). We have
compared the Starobinsky model against the Planck data and have used
the best-fit values of the model parameters to arrive at the angular power
spectrum.
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allows us to arrive at constraints on the scalar non-Gaussianity parameter f
NL

as well.
However, there are no strict constraints on f

NL
, but rather relatively weaker bounds

on its amplitude [58]. We should also point out that unlike the power spectra, the
constraints on f

NL
are not specific to models, but rather arrived at using templates that

are suggestive of the shapes of f
NL

expected from typical models of inflation. Hence,
we should be careful in interpreting these constraints for the predictions of specific
inflationary models.

To constrain the primordial non-Gaussianities using the CMB data, the standard
templates for the scalar bispectrum that are often used in the literature are as
follows [66–68]:

Glocal(k1, k2, k3) = − 3

10
(2 π)4 f local

NL

[P
S
(k1)P

S
(k2)

k3
1 k

3
2

+ two permutations

]
,

(1.32a)

Gequil(k1, k2, k3) =
9

10
(2 π)4 f equil

NL

{P
S
(k1)P

S
(k2)

k3
1 k

3
2

+
P

S
(k2)P

S
(k3)

k3
2 k

3
3

]

+
P

S
(k1)P

S
(k3)

k3
1 k

3
3

+
[P

S
(k1)P

S
(k2)P

S
(k3)]2/3

k2
1 k

2
2 k

2
3

−
[
P1/3

S
(k1)P2/3

S
(k2)P

S
(k3)

k1 k2
2 k

3
3

+ five permutations

]}
,

(1.32b)

Gortho(k1, k2, k3) =
27

10
(2 π)4 f ortho

NL

{P
S
(k1)P

S
(k2)

k3
1 k

3
2

+
P

S
(k2)P

S
(k3)

k3
2 k

3
3

]

+
P

S
(k1)P

S
(k3)

k3
1 k

3
3

+
8 [P

S
(k1)P

S
(k2)P

S
(k3)]2/3

3 k2
1 k

2
2 k

2
3

−
[P

S
(k1)1/3P

S
(k2)2/3P

S
(k3)

k1 k2
2 k

3
3

+ five permutations

]}
.

(1.32c)

Note that the bispectra in these templates are expressed as functions of power spectra
with the non-Gaussianity parameter f

NL
retained as a number, independent of wave

numbers. The constraints on the parameters (f local
NL

, f equil
NL

, f ortho
NL

) appearing in the above
mentioned templates are found to be [58]

f local
NL

= −0.9± 5.1, (1.33a)

f equil
NL

= −26± 47, (1.33b)

f ortho
NL

= −38± 24. (1.33c)

We should clarify that these constraints have been arrived at by comparing each of the
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above templates separately with the CMB data. It should be evident from Fig. 1.4 that,
in the Starobinsky model, the quantity f

NL
has an equilateral shape, i.e. its value peaks

when k1 = k2 = k3. The above constraints then suggest that the Starobinsky model is
also consistent with the CMB data at the level of non-Gaussianities. In later chapters,
we shall discuss scalar bispectra arising in models that do not necessarily fit any of
these templates and have a more complicated dependence on wave numbers. We shall
also discuss a different definition of f

NL
that enables us to account for such non-trivial

behavior in calculations without resorting to specific templates.

Let us now discuss the constraints on the primordial tensor power spectrum from
the CMB data. The direct imprints of the tensor perturbations on the CMB — the so-
called B-mode — remains the holy grail in cosmology. Since they are yet to be detected,
as of now, we only have an upper bound on the amplitude of the primary GWs. As we
mentioned earlier, the bound is usually expressed in terms of the tensor-to-scalar ratio r
[cf. Eq. (1.30b)]. In fact, the quantity r is constrained at a specific wave number, often
chosen to be the pivot scale k∗ at which the scalar amplitude is well known. As we
mentioned earlier, for power law primordial spectra, we have obtained the constraint
r < 0.055, which is consistent with the latest bound by Planck [6]. We should point out
that the most recent data from the BICEP/Keck observations together with the Planck
data constrains the tensor-to-scalar ratio to be r < 0.036 at k∗ = 0.05 Mpc−1 [69].
This implies that the tensor power has to be lower than the scalar power by at least
by an order of magnitude over the CMB scales. Since, the scalar amplitude is tightly
constrained to be A

S
= 2.10 × 10−9, as mentioned earlier, the tensor amplitude has to

be less than 10−10. For the Starobinsky model, we do not have this explicit parameter
to constrain. However, the amplitude of tensor power predicted for the best fit value of
the parameter V0 is O(102) less than that of the scalar power, as can be seen in Fig. 1.3.
These bounds suggest that the strength of the primary GWs over the CMB scales is
constrained to be highly suppressed at the level of current observational precision.

1.2.2 Production of PBHs

Another probe that helps us constrain models indirectly over scales much smaller than
the CMB scales are PBHs. These are black holes that are hypothesized to have formed
by direct collapse of energy density due to scalar perturbations of large amplitudes (see,
for instance, Refs. [8, 70–72]). Such PBHs are also regarded as candidates for dark
matter in the current universe (for a review, see Ref. [9]). There are several indirect
constraints on the amount of such PBHs that could constitute the dark matter density
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today (see Refs. [12, 73] and references therein). Hence, any model of inflation that
generates scalar power of large amplitudes over small scales are bound to be constrained
by this phenomenon.

To understand the basics of this phenomenon, let us begin by recalling a few
essentials. Scales with wave numbers greater than k ' 10−2 Mpc−1 renter the Hubble
radius during the radiation dominated epoch. When these modes reenter the Hubble
radius, the perturbations in the matter density at the corresponding scales collapse to
form structures. We shall assume that the density contrast in matter characterized by
the quantity δ is a Gaussian random variable described by the probability density

P(δ) =
1√

2π σ2
exp

(
− δ2

2σ2

)
, (1.34)

where σ2 is the variance of the spatial density fluctuations. Let us assume that
perturbations with a density contrast beyond a certain threshold, say, δc, are responsible
for the formation of PBHs. In such a case, the fraction, say, β, of the density
fluctuations that collapse to form PBHs is described by the integral (in this context,
see the reviews [9, 74–76])

β =

∫ 1

δc

dδP(δ) ' 1

2

[
1− erf

(
δc√
2σ2

)]
, (1.35)

where erf(z) denotes the error function. Note that the lower limit of the above integral is
the threshold value of the density contrast beyond which matter is expected to collapse
to form PBHs. We should clarify here that the value of δc is not unique and it is expected
to depend on the amplitude of the perturbation at a given scale (see Refs. [77, 78]; in
this context, also see the recent discussions [75, 79–83]). The choice of δc becomes
important for the reason that the extent of PBHs formed is exponentially sensitive to its
value. In order to calculate the extent of PBHs formed, we shall work with the following
values of δc: 1/3, 0.35 and 0.4.

During the radiation dominated epoch, the matter power spectrum Pδ(k) and the
inflationary scalar power spectrum P

S
(k) are related through the expression

Pδ(k) =
16

81

(
k

aH

)4

P
S
(k). (1.36)

The variance in the spatial density fluctuations σ2, which determines the fraction β of
PBHs formed [cf. Eq. (1.35)], can be expressed as an integral over the matter power
spectrum Pδ(k). In order to introduce a length scale, say, R, the variance is smoothened
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over the scale with the aid of a window function W (k R). The variance σ2(R) can then
be written as

σ2(R) =

∫ ∞

0

dk

k
Pδ(k)W 2(k R), (1.37)

and we shall work with a Gaussian window function of the form W (k R) = e−(k2R2)/2.

There remains the task of relating the scale R to the mass, say, M , of the PBHs
formed. Let M

H
denote the mass within the Hubble radius H−1 at a given time. It is

reasonable to suppose that a certain fraction of the total mass within the Hubble radius,
say, M = γ∗MH, goes on to form PBHs when a mode with wave number k reenters
the Hubble radius. The quantity γ∗ that has been introduced reflects the efficiency of
the collapse. In the absence of any other scale, it seems natural to choose k = R−1,
and make use of the fact that k = aH when the modes reenter the Hubble radius, to
finally obtain the relation between R and M . One can show that R and M are related
as follows:

R =
21/4

γ
1/2
∗

(
g∗,k
g∗,eq

)1/12 (
1

keq

) (
M

Meq

)1/2

, (1.38)

where keq is the wave number that reenters the Hubble radius at the epoch of radiation-
matter equality, and Meq denotes the mass within the Hubble radius at equality. Also,
the quantities g∗,k and g∗,eq represent the number of relativistic degrees of freedom at
the times of PBH formation and radiation-matter equality, respectively. It can be easily
determined thatMeq = 5.83×1047 kg, so that we can express the above relation between
R and M in terms of the solar mass M� as follows:

R = 4.72× 10−7
( γ∗

0.2

)−1/2
(
g∗,k
g∗,eq

)1/12 (
M

M�

)1/2

Mpc. (1.39)

On using the above arguments, we can arrive at the fraction of PBHs, say, f
PBH

,
that contribute to the dark matter density today. The quantity f

PBH
(M) can be expressed

as

f
PBH

(M) = 21/4 γ3/2
∗ β(M)

(
Ωm h

2

Ωc h2

) (
g∗,k
g∗,eq

)−1/4 (
M

Meq

)−1/2

, (1.40)

where Ωm and Ωc are the dimensionless parameters describing the matter and dark
cold matter densities, with the Hubble parameter, as usual, expressed as H0 =

100h km sec−1 Mpc−1. In our calculations, we shall choose γ∗ = 0.2, g∗,k = 106.75

and g∗,eq = 3.36 and set Ωm h
2 = 0.14, Ωc h

2 = 0.12, with the last two being the best
fit values from the recent Planck data [38, 84]. On substituting these values, one can
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arrive at the following expression for f
PBH

(M):

f
PBH

(M) =
( γ

0.2

)3/2
(

β(M)

1.46× 10−8

) (
g∗,k
g∗,eq

)−1/4 (
M

M�

)−1/2

. (1.41)

Given a primordial power spectrum P
S
(k), we can utilize the relations (1.36)

and (1.37) to arrive at the quantity σ2(R). Then, using the relation (1.38), we can
determine σ2 as a function of M and utilize the result (1.35) to obtain β(M). With
β(M) at hand, we can use the relation (1.41) to finally arrive at f

PBH
(M) for a given

inflationary scalar power spectrum.

In later chapters, we shall discuss the predictions for f
PBH

arising in certain classes
of inflationary models and examine them against the constraints on the quantity.

1.2.3 Generation of secondary GWs

Yet another observation that helps us constrain inflationary models is that of GWs. We
had earlier discussed the power spectrum of the primary tensor perturbations arising
during inflation and had also described the constraints on the tensor-to-scalar ratio r
over the CMB scales. However, on small scales, there are relatively weaker constraints
on the strength of the primordial tensor perturbations that could be detected as GWs
today (see, for instance, Refs. [85–87]; for a review see, Ref. [14] and references
therein). Moreover, in models that predict high amplitudes of scalar perturbations at
small scales, the tensor perturbations sourced by the scalars at the second order may get
amplified enough to have detectable strengths. These are known as secondary GWs (for
early discussions in this context, see for instance, Refs. [88–91]; for recent reviews, see
for example, Refs. [11, 92]). In this subsection, we shall outline the details of computing
the spectral density of secondary GWs in a given model of inflation.

Earlier, we had described the scalar and tensor perturbations at the first order in
terms of the curvature perturbation R and the quantity γij . It is well known that, at
the linear order, the scalar and tensor perturbations evolve independently, with their
evolution being governed by the corresponding equations of motion, viz. Eqs. (1.11).
However, one finds that, at the second order, the tensor perturbations are sourced by
quadratic terms involving the first order scalar perturbations. These contributions due
to the scalar perturbations become important particularly when the amplitude of the
scalar power spectrum is boosted over small scales such as in the situations leading to
enhanced formation of PBHs. In this subsection, we shall describe the calculation of the
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dimensionless spectral density parameter associated with the GWs, say, Ω
GW

, generated
due to the scalar perturbations.

Let us begin by outlining the primary steps towards the calculation of Ω
GW

(f),
where f is the frequency associated with the wave number k. We shall start with the
following perturbed metric:

ds2 = a2(η)

{
− (1 + 2 Φ) dη2 +

[
(1− 2 Ψ) δij +

1

2
hij

]
dxidxj

}
, (1.42)

where Φ and Ψ are the Bardeen potentials describing the scalar perturbations at the
first order, while the quantity hij represents the second order tensor perturbations. We
should clarify that we have denoted the second order tensor perturbations as hij in order
to distinguish them from the first order tensor perturbations γij which we had introduced
earlier. The transverse and traceless nature of the tensor perturbations implies that
∂i hij = 0 and hii = 0. In our discussion below, we shall assume that anisotropic
stresses are absent so that Φ = Ψ.

The tensor perturbations hij can be decomposed in terms of the Fourier modes,
say, hk, as

hij(η,x) =

∫
d3k

(2 π)3/2

[
e+
ij(k)h+

k (η) + e×ij(k)h×k (η)
]

eik·x, (1.43)

where e+
ij(k) and e×ij(k) denote the polarization tensors which have non-zero

components in the plane perpendicular to the direction of propagation, viz. k̂. The
polarization tensors e+

ij(k) and e×ij(k) can be expressed in terms of the set of orthogonal
unit vectors (e(k), ē(k), k̂) in the following manner (see, for instance, the review [10]):

e+
ij(k) =

1√
2

[ei(k) ej(k)− ēi(k) ēj(k)] , (1.44a)

e×ij(k) =
1√
2

[ei(k) ēj(k) + ēi(k) ej(k)] . (1.44b)

The orthonormal nature of the vectors e(k) and ē(k) lead to the normalization
condition: eλij(k) eλ

′,ij(k) = δλλ
′ , where λ and λ′ can be either + or ×.

The equation of motion governing the Fourier modes hk can be arrived at using the
second order Einstein equations describing the tensor perturbation hij and the Bardeen
equation describing the scalar perturbation Ψ at the first order (see, for example,
Refs. [88, 89]; for recent discussions, see Refs. [87, 93–95]). One finds that the equation
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governing hk can be written as

hλk
′′

+ 2H hλk
′
+ k2 hλk = Sλk (1.45)

with the source term Sλk being given by

Sλk(η) = 4

∫
d3p

(2π)3/2
eλ(k,p)

{
2 Ψp(η) Ψk−p(η)

+
4

3 (1 + w)H2

[
Ψ′p(η) +HΨp(η)

] [
Ψ′k−p(η) +HΨk−p(η)

]
}
,

(1.46)

where, evidently, Ψk represents the Fourier modes of the Bardeen potential, while H
and w denote the conformal Hubble parameter and the equation of state parameter
describing the universe at the conformal time η. Also, for convenience, we have defined
the quantity eλ(k,p) = eλij(k) pi pj . While discussing the formation of PBHs earlier, we
had assumed that the scales of our interest reenter the Hubble radius during the epoch
of radiation domination. In such a case, we have w = 1/3 and H = 1/η. Moreover,
during radiation domination, it is well known that we can express the Fourier modes Ψk

of the Bardeen potential in terms of the inflationary Fourier modesRk of the curvature
perturbations generated during inflation through the relation

Ψk(η) =
2

3
T (k η)Rk, (1.47)

where T (k η) is the transfer function given by

T (k η) =
9

(k η)2

[
sin
(
k η/
√

3
)

k η/
√

3
− cos

(
k η/
√

3
)]

. (1.48)

Utilizing the Green’s function corresponding to the tensor modes during radiation
domination, we can express the inhomogeneous contribution to hλk as [95]

hλk(η) =
4

9 k3 η

∫
d3p

(2 π)3/2
eλ(k,p)RpRk−p

×
[
Ic
(
p

k
,
|k − p|
k

)
cos (k η) + Is

(
p

k
,
|k − p|
k

)
sin (k η)

]
, (1.49)

where the quantities Ic(v, u) and Is(v, u) are described by the integrals

Ic(v, u) = −4

∫ ∞

0

dτ τ sin τ

{
2 T (v τ) T (u τ)
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+ [T (v τ) + v τ Tvτ (v τ)] [T (u τ) + u τ Tuτ (u τ)]

}
, (1.50a)

Is(v, u) = 4

∫ ∞

0

dτ τ cos τ

{
2 T (v τ) T (u τ)

+ [T (v τ) + v τ Tvτ (v τ)] [T (u τ) + u τ Tuτ (u τ)]

}
, (1.50b)

with Tz = dT /dz. The above integrals can be carried out analytically and they are
given by

Ic(v, u) = − 27 π

4 v3 u3
Θ
(
v + u−

√
3
)

(v2 + u2 − 3)2, (1.51a)

Is(v, u) = − 27

4 v3 u3
(v2 + u2 − 3)

[
4 v u+ (v2 + u2 − 3) log

∣∣∣∣
3− (v − u)2

3− (v + u)2

∣∣∣∣
]
,

(1.51b)

where Θ(z) denotes the theta function. It is useful to note that Ic,s(v, u) = Ic,s(u, v).

The power spectrum of the secondary GWs, say, Ph(k, η), generated due to the
second order scalar perturbations can be defined as follows:

〈hλk(η)hλ
′

k′(η)〉 =
2 π2

k3
Ph(k, η) δ(3)(k + k′) δλλ

′
. (1.52)

Note that hλk involves products of the Fourier modes Rk and Rk−p of the curvature
perturbations generated during inflation [cf. Eq. (1.49)]. Evidently, the power spectrum
Ph(k) of the secondary GWs will involve products of four such variables. Since, the
quantity Rk is a Gaussian random variable, we can express the four-point function in
terms of the two-point functions or, equivalently, the inflationary scalar power spectrum
P

S
(k) [cf. Eq. (1.12a)] as

Ph(k, η) =
4

81 k2 η2

∫ ∞

0

dv

∫ 1+v

|1−v|
du

[
4 v2 − (1 + v2 − u2)2

4u v

]2

P
S
(k v)P

S
(k u)

× [Ic(u, v) cos (k η) + Is(u, v) sin (k η)]2 . (1.53)

We shall now choose to averagePh(k, η) over small time scales so that the trigonometric
functions in the above expressions are replaced by their average over a time period. In
such a case, only the overall time dependence remains, leading to [95, 96]

Ph(k, η) =
2

81 k2 η2

∫ ∞

0

dv

∫ 1+v

|1−v|
du

[
4 v2 − (1 + v2 − u2)2

4u v

]2

P
S
(k v)P

S
(k u)

×
[
I2
c (u, v) + I2

s (u, v)
]
, (1.54)
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where the bar over Ph(k, η) implies that we have averaged over small time scales.
The energy density of GWs associated with a Fourier mode corresponding to the wave
number k at a time η is given by [10]

ρ
GW

(k, η) =
M2

Pl

8

(
k

a

)2

Ph(k, η). (1.55)

The corresponding dimensionless spectral density parameter Ω
GW

(k, η) can be defined
in terms of the critical density ρcr(η) as [95]

Ω
GW

(k, η) =
ρ

GW
(k, η)

ρcr(η)
=

1

24

(
k

H

)2

Ph(k, η). (1.56)

Note that the dimensionless density parameter Ω
GW

(k, η) above has been evaluated
during the radiation dominated epoch. Once the modes are inside the Hubble radius, the
energy density of GWs decrease with the expansion of the universe just as the energy
density of radiation does. Upon utilizing this point, we can express Ω

GW
(k) today in

terms of the above Ω
GW

(k, η) as follows:

h2 Ω
GW

(k) =

(
g∗,k
g∗,0

)−1/3

Ωr h
2 Ω

GW
(k, η)

' 1.38× 10−5
( g∗,k

106.75

)−1/3
(

Ωr h
2

4.16× 10−5

)
Ω

GW
(k, η), (1.57)

where Ωr and g∗,0 denote the dimensionless energy density of radiation and the number
of relativistic degrees of freedom today. We should point out here that, since H ∝
η−1 during radiation domination and Ph(k, η) ∝ η−2, the quantity Ω

GW
(k, η) in the

expression (1.56) is actually independent of time. Moreover, the observable parameter
today is usually expressed as a function of the frequency, say, f , which is related to the
wave number k as

f =
k

2 π
= 1.55× 10−15

(
k

1 Mpc−1

)
Hz. (1.58)

The parameter Ω
GW

can be compared and constrained against the sensitivity curves
of various current and upcoming GW missions (for a review of the sensitivity curves
of various missions, see Ref. [14] and the associated web-page.). In later chapters, we
shall examine inflationary models that lead to twin predictions of significant amount
of f

PBH
and secondary Ω

GW
. We shall also compare the spectra of Ω

GW
predicted by

the different models against the sensitivity curves of various observational missions.
Further, we shall discuss how the computation of the bispectrum associated with the
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secondary tensor perturbations lends more insights about such models.

1.3 ORGANIZATION OF THE THESIS

We shall conclude this introductory chapter with an outline of the thesis. The thesis
comprises of four pieces of work that analyze features in the primordial correlations
which were considered because of their unique observational imprints over various
ranges of scales in the current universe.

In Chap. 2, we shall present the analysis of the suppression of scalar power over the
largest observable scales and the associated bispectra. We shall discuss how the scalar
non-Gaussianity parameter f

NL
breaks the degeneracy among the models that lead to

similar features at the level of power spectrum.

In Chap. 3, we shall describe a work wherein we consider models which generate
enhanced scalar power over small scales. These correspond to scales which can be
constrained using PBHs and GWs. We shall also discuss the bispectra of scalar and
secondary tensor perturbations in these models.

In Chap. 4, we shall consider the generation of features through an alternative
mechanism of evolving perturbations from excited initial states. We shall describe
the relative ease of modeling in this alternative scenario and present the possibility of
generating extremely large values of f

NL
. We shall also discuss the serious drawback

due to backreaction that plagues this mechanism.

In Chap. 5, we shall discuss a method to account for the scalar bispectrum in the
predictions of the spectral density of GWs Ω

GW
from a given model of inflation. We

shall reconsider the standard definition of the non-Gaussianity parameter f
NL

and extend
it to account for arbitrary scale dependence. Such a generalization allows us to calculate
the non-Gaussian corrections to the scalar power spectrum when f

NL
is scale dependent.

Further, it enables us to compute the non-Gaussian contributions to Ω
GW

arising due to
f
NL

with non-trivial scale dependence. This opens up the possibility of constraining f
NL

on small scales through its imprints on the behavior of Ω
GW

.

Finally, we shall conclude in Chap. 6 with a brief summary and outlook.

We shall relegate some of the discussions to Apps. A–H.
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CHAPTER 2

SUPPRESSION OF SCALAR POWER ON LARGE SCALES
AND ASSOCIATED BISPECTRA

2.1 INTRODUCTION

Ever since the advent of the three-year data from the Wilkinson Microwave Anisotropy
Probe (WMAP), it has been repeatedly found that a sharp drop in power at large scales
roughly corresponding to the Hubble radius today improves the fit to the anisotropies
in the CMB at the low multipoles (for an early analysis, see, for instance, Ref. [97]; for
later discussions in this context, see Refs. [98–101]). A variety of inflationary scenarios
have been constructed to generate such a drop in power on large scales (for a short list
of possibilities, see Refs. [102–116]).

One of the scenarios that generates a scalar spectrum with suppressed power
on large scales corresponds to a situation wherein the scalar field driving inflation
starts rolling down the potential with a high velocity (for the original discussion, see
Ref. [103]; for more recent discussions, see Refs. [117–121]). While the very early
kinetically dominated phase does not permit accelerated expansion, the friction arising
due to the expansion of the universe slows down the field, initially leading to a brief
period of fast roll inflation and eventually to the standard phase of slow roll inflation.
If one chooses the beginning of inflation to occur at an appropriately early time, the
inflationary power spectra exhibit lower power at suitably large scales, improving the
fit to the CMB data at the low multipoles [121]. However, it should be emphasized
that, in such scenarios, a range of large scale modes are never inside the Hubble radius
and the spectra with a suppression of power arise provided the standard Bunch-Davies
initial conditions are imposed on super-Hubble scales [103, 121].

A competing inflationary scenario that, in fact, leads to sharper drop in power over
large scales corresponds to a short phase of fast roll sandwiched between two epochs of
slow roll inflation. Such scenarios can be further sub-divided into two categories: one
wherein inflation is sustained even during the phase of fast roll and another wherein
the epoch of fast roll leads to a brief departure from inflation. While the first type of
scenario can be achieved in a model originally due to Starobinsky involving a linear
potential with an abrupt change in slope [122], the second type of scenario — dubbed
punctuated inflation — is known to arise due to inflationary potentials containing a point
of inflection [110, 111]. The advantage of such scenarios is that the initial epoch of slow
roll inflation permits one to impose the standard Bunch-Davies initial conditions in the
sub-Hubble domain for all the modes of cosmological interest.



As we shall see, these alternative scenarios lead to scalar power spectra which
have almost the same shape. Moreover, as we shall illustrate, these power spectra also
lead to a slightly improved fit to the CMB data than the nearly scale invariant power
spectra. One can expect that non-Gaussianities, specifically, the scalar bispectrum,
would help us discriminate between these models. In this chapter, we shall evaluate
the scalar bispectrum numerically using the procedure we have described earlier
(cf. Subsec. 1.1.3) in models with kinetically dominated initial conditions. We shall
discuss in detail the various contributions to the scalar bispectrum in these cases and
arrive at the corresponding non-Gaussianity parameter f

NL
. Interestingly, as we shall

illustrate, in such models, the contributions due to the boundary terms in the third order
action governing the scalar perturbations dominate the contributions due to the bulk
terms [16]. We shall also compare the bispectrum that arises in these models with those
that occur in the Starobinsky model and punctuated inflation. Moreover, apart from
the above mentioned scenarios, we shall also examine two other situations involving
inflation of a finite duration, which can be considered to be variations of the model
with kinetically dominated initial conditions. We shall consider a case wherein the
background scalar field begins on the inflationary attractor (a scenario which we shall
call as the hard cut-off model) and another wherein the field starts with a small velocity
and evolves towards the attractor (a scenario which we shall refer to as the dual to
kinetic domination). As in the model with an early kinetically dominated phase, these
cases too lead to a sharp drop in power on large scales when the initial conditions on
the perturbations are imposed on super-Hubble scales for a range of modes. Further,
since the trajectory always remains on the attractor in the hard cut-off model, it leads
to slow roll, permitting us to evaluate the scalar power and bispectra analytically. We
find that, in the equilateral limit, the amplitude of the scalar non-Gaussianity parameter
f
NL

proves to be very large [with f
NL
' O(102–106)] in the scenario of dual to kinetic

domination and the hard cut-off model. We also find that f
NL

is relatively larger in
the model with kinetically dominated initial conditions [with f

NL
' O(1–10)] as well

as in the Starobinsky model (with f
NL
' 10). Moreover, as expected, in the models

wherein the Bunch-Davies initial conditions are imposed on super-Hubble scales, the
consistency relation governing the scalar bispectrum is violated for the large scale
modes, whereas the relation is satisfied for all the modes in the other scenarios (viz. the
Starobinsky model and punctuated inflation). These differences in the behavior of
the scalar bispectrum can hopefully help us observationally discriminate between the
various models.

The remainder of this chapter is organized as follows. In the next section, we
shall discuss the power spectra that arise in the different inflationary scenarios of
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interest, viz. inflation with kinetically dominated initial conditions, the Starobinsky
model, punctuated inflation, the hard cut-off model and the model which is dual to
kinetic domination. We shall also compare the scalar power spectra with the CMB
data. In Sec. 2.3, we shall numerically evaluate the scalar bispectra that arise in all
these models. We shall also present the analytical calculation of the scalar bispectrum
in the hard cut-off model. In Sec. 2.4, we shall describe the amplitude and the shape
of the scalar non-Gaussianity parameter f

NL
that arise in all the cases. In Sec. 2.5, we

shall examine the consistency relation governing the scalar bispectrum in the squeezed
limit. We shall conclude in Sec. 2.6 with a summary of the results obtained. In App. A,
we shall illustrate the imprints of the initial kinetically dominated epoch on the scalar
power spectrum across different inflationary models.

2.2 SUPPRESSING THE SCALAR POWER ON LARGE SCALES

In this section, we shall describe the models of our interest and discuss the scalar and
tensor power spectra that arise in these cases. We shall solve for the evolution of the
background and evaluate the scalar and tensor power spectra numerically in the manner
described in Subsecs. 1.1.1 and 1.1.2.

2.2.1 The models of interest
Let us now describe the different inflationary models that we shall consider and discuss
the power spectra arising in these models.

Models with kinetically dominated initial conditions

The scenario of our primary interest is the one with kinetically dominated initial
conditions, i.e. the situation wherein the kinetic energy of the inflaton completely
dominates its potential energy during the initial stages of evolution [103, 120, 121, 123–
125]. We shall examine the scenario in the quadratic potential (which we shall refer to
as QP)

V (φ) =
1

2
m2 φ2, (2.1)

and the Starobinsky model described by the potential (1.5). As we shall also be
considering a different model due to Starobinsky, we shall refer to the model described
by the potential (1.5) as Starobinsky model I (or, simply, SMI, hereafter).

In these potentials, to achieve kinetic domination, we shall set the initial value of
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the first slow roll parameter to be ε1i = 2.99. Evidently, this value determines the initial
velocity of the field. The expansion of the universe slows down the field and one finds
that inflation sets in (i.e. ε1 becomes less than unity) after about an e-fold or two (say,
at N1) counted from, say, N = 0, when we begin evolving the background. Moreover,
slow roll inflation (say, when ε1 . 10−2) is actually achieved only after a few e-folds.
We shall choose the initial value of the field so as to lead to adequate number of e-folds
(say, about 60 or so) before inflation is terminated at late times. We shall assume that
the pivot scale of k∗ = 5× 10−2 Mpc−1 leaves the Hubble radius at, say, N∗ number of
e-folds prior to the end of inflation. As we shall discuss later, we shall be comparing the
scalar power spectra from the different inflationary models with the CMB data. When
doing so, we shall vary N∗, along with the inflationary parameters, to arrive at the best-
fit values for N∗ as well as the other parameters.

Recall that, in the inflationary scenario, the standard practice is to impose the initial
conditions on the perturbations in the sub-Hubble limit. However, due to the initial
kinetic domination, in the scenarios of our interest, a range of large scale modes are
always outside the Hubble radius. As is illustrated in Fig. 2.1, for the initial conditions
for the background and the best-fit values of the parameters that we shall work with
(when the scalar power spectra are compared with the CMB data, see our discussion
below as well as Subsec. 2.2.2), we find that a certain range of large scale modes
never satisfy the condition k >

√
|z′′/z| required for imposing the Bunch-Davies initial

conditions. We shall evolve the perturbations when the initial conditions are imposed at
two instances in the quadratic potential (2.1) and the Starobinsky model (1.5). We shall
choose to impose the Bunch-Davies conditions on the perturbations at the time when
we begin to evolve the background (i.e. at N = 0) and at the onset of inflation (i.e. at
N1). For convenience, we shall refer to these cases as (QPa, QPb) and (SMIa, SMIb),
respectively. In Fig. 2.2, to illustrate the differences in the behavior of the various
modes, we have plotted the evolution of the curvature perturbation for three different
modes of cosmological interest in the case of QPa.

In the case of QP, we choose the initial value of the scalar field to be φi =

18.85M
Pl

. As we mentioned, the initial velocity of the field is determined by the
choice ε1i = 2.99. Under these conditions, the best-fit values for the mass m of the
scalar field prove to be 6.41 × 10−6M

Pl
and 6.17 × 10−6M

Pl
in the cases of QPa and
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Figure 2.1: The behavior of the quantity
√
|z′′/z| has been plotted (in red) as a function

of e-folds N in an inflationary scenario of finite duration achieved due to an
initial epoch of kinetic domination in the model which we refer to as QPa.
Note that

√
|z′′/z| decreases from its initial value until inflation sets in, after

which it begins to rise. (Actually, the quantity z′′/z is negative during the
initially kinetic dominated regime and turns positive during the transition to
the inflationary epoch. Hence, we have plotted the quantity

√
|z′′/z|.) It is

well known that
√
z′′/z ' aH in slow roll inflation, as is reflected in the

linear growth of
√
z′′/z (in the log-linear plot) at later times. Interestingly,

we find that
√
|z′′/z| = O(aH) even in the initial fast roll phase. The

wave numbers of three modes, viz. k = 10−5 Mpc−1, 10−4 Mpc−1 and
10−2 Mpc−1, have also been indicated (in blue) to highlight the differences
in their evolution. While the first mode always remains in the super-Hubble
domain (i.e. k <

√
|z′′/z|), the second and the third modes spend a certain

amount of time in the sub-Hubble regime (i.e. k >
√
|z′′/z|) before they

cross over to the super-Hubble regime.
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Figure 2.2: The evolution of the Fourier modes fk of the curvature perturbation have
been plotted as a function of e-foldsN in a typical inflationary scenario with
an initial epoch of kinetic domination. In order to illustrate the oscillations,
we have plotted the evolution of the amplitudes of the real (in red) and
imaginary (in blue) parts of the Fourier modes for three different wave
numbers of cosmological interest that we had considered in the previous
figure, viz. k = 10−5 Mpc−1, 10−4 Mpc−1 and 10−2 Mpc−1 (in the top,
middle and bottom panels, respectively). Note that these plots correspond
to the case of QPa wherein the modes have been evolved from N = 0
(when the initial conditions are imposed on the background scalar field)
up to a point in the super-Hubble regime, when they satisfy the condition
k = 10−5

√
|z′′/z| ' 10−5 (aH). Evidently, the large scale mode with

wave number 10−5 Mpc−1, which is always in the super-Hubble regime,
barely oscillates and its amplitude almost remains constant (cf. top panel).
The intermediate scale mode with wave number 10−4 Mpc−1 spends a
limited amount of time in the sub-Hubble regime. It oscillates a few times
before its amplitude freezes soon after leaving the Hubble radius (cf. middle
panel). The small scale mode with wave number 10−2 Mpc−1 spends an
adequate amount of time in the sub-Hubble regime, and it reflects the
behavior of modes in standard slow roll inflation (cf. bottom panel). It
oscillates repeatedly in the sub-Hubble regime and settles to a constant
amplitude on super-Hubble scales. These differences in the behavior of
the different modes of cosmological interest lead to different amplitudes at
late times and hence to features in the scalar power and bispectra.
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QPb, respectively (cf. Tab. 2.3). Moreover, in these cases, the best-fit values of N∗ turn
out to be 55.06 and 57.32. For the above parameter values and initial conditions, the
scalar field rolls down the potential for about 65 e-folds (counted from N = 0 when the
scalar field is at φi), before inflation is terminated close to the minimum of the quadratic
potential.

In the case of SMI, we choose the initial value of the scalar field to be φi =

8.37M
Pl

, with ε1i = 2.99. We find that the best-fit values for the parameter V0 in the
cases of SMIa and SMIb prove to be 9.66×10−10M4

Pl
and 8.99×10−10M4

Pl
, respectively

(cf. Tab. 2.3). Also, the corresponding best-fit values for N∗ turn out to be 53.22 and
55.19. For the above initial conditions and parameter values, we find that inflation ends
after approximately 64 e-folds.

Having evolved the background and the perturbations, we evaluate the scalar and
tensor power spectra at a suitably late time when all the modes of cosmological interest
(say, 10−5 < k < 1 Mpc−1) are sufficiently outside the Hubble radius. One finds
that, all the scalar and tensor power spectra, generically, exhibit a drop in power on
large scales, as illustrated in Fig. 2.3. In fact, the suppression in power occurs when
the Bunch-Davies initial conditions are imposed over modes that never satisfy the sub-
Hubble condition k >

√
z′′/z (in the case of scalars) or k >

√
a′′/a (in the case of

tensors). Further, as is expected in any transition, the power spectra exhibit a burst of
oscillations before they turn nearly scale invariant on smaller scales. However, there
is a minor difference in the scale at which the suppression of the tensor power occurs
in the cases wherein the modes are evolved from N1 and N = 0. If we choose the
parameters of a model such that the onset of suppression in the scalar power is matched
when evolved from N1 and N = 0, then, we find that, the corresponding suppression
in the tensor power occurs at slightly different scales. This can be attributed to the
difference in the behavior of the quantities z′′/z and a′′/a that govern the evolution of
the scalar and tensor modes. In Fig. 2.4, we have plotted the scalar power spectra that
arise in these models for the best-fit values of the parameters involved.

42



10−5 10−4 10−3 10−2 10−1 100

k Mpc−1

10−15

10−14

10−13

10−12

10−11

10−10

10−9

P S
(k

),
P T

(k
)

10−4 10−3 10−2

10−10

10−9

10−8

Figure 2.3: The scalar (in red and blue) and tensor (in purple and green) power spectra
generated in the quadratic potential (as solid curves) and the Starobinsky
model (as dotted curves) with kinetically dominated initial conditions have
been plotted for the two cases wherein the perturbations are evolved from
N1 (in red and purple) and N = 0 (in blue and green). We have evolved the
field from φi = 18.85M

Pl
and 8.3752M

Pl
in the quadratic potential and the

Starobinsky model respectively, and have set ε1i = 2.99. The parameters m
and V0 have been chosen suitably so that the scalar spectra match over the
range of modes wherein a suppression in power arises (say, for k < ki)
and in the nearly scale invariant regime (which occurs for k � ki). We
find that this is possible if we set m/M

Pl
= (5.0 × 10−6, 4.9 × 10−6) and

V0/M
4
Pl

= (5.8×10−10, 5.7×10−10) in the cases evolved fromN1 andN =

0, respectively. In these four instances, the pivot scale k∗ = 5×10−2 Mpc−1

leaves the Hubble radius at (57.48, 58.50) and (57.07, 58.08) e-folds before
the end of inflation. Also, in these cases, we find that, ki/Mpc−1 = (2.38×
10−4, 2.32 × 10−3) and (2.38 × 10−4, 1.92 × 10−3). Note that the two sets
of scalar spectra differ only in the amplitude and range of the oscillations
that arise near ki (highlighted in the inset). As far as the tensor spectra
are concerned, the Starobinsky model predicts lower tensor power overall,
when compared to the quadratic potential. Moreover, the tensor spectra
too exhibit a suppression in power on large scales as the scalar spectra.
However, there is a small difference in the scale at which the onset of the
suppression in the tensor power occurs when the modes are evolved from
N1 and N = 0.
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Figure 2.4: The scalar power spectra evaluated either analytically or numerically have
been plotted in the various scenarios of our interest. We have plotted
the best-fit power spectra in all the different models we have considered:
viz. the cases of the quadratic potential (QPa, QPb and QPc, in blue, green
and lime) and the first Starobinsky model (SMIa, SMIb and SMIc, in
cyan, orange and purple) with kinetically dominated initial conditions and
their duals, the second Starobinsky model (SMII, in brown), punctuated
inflation (PI, in black) and the hard cut-off model (HCO, in magenta). For
comparison we have also included the best-fit, featureless, nearly scale
invariant power law spectrum (in red). While most models exhibit a cut-
off on large scales, the drop in scalar power is the sharpest in PI than in
the other cases. As we shall see, the scalar power spectrum in PI leads to
the largest level of improvement in the fit to the CMB data. Moreover, all
the models lead to oscillations before the spectra turn nearly scale invariant
and, understandably, the amplitude of the oscillations is the smallest in the
case of HCO, since it involves only slow roll.
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Another model due to Starobinsky

The second scenario we shall consider is another model due to Starobinsky which is
described by the following linear potential with an abrupt change in its slope [60, 122,
126]:

V (φ) =




V0 + A+ (φ− φ0) for φ > φ0,

V0 + A− (φ− φ0) for φ < φ0,
(2.2)

whereA− 6= A+. In order to distinguish from the first Starobinsky model, we shall refer
to the scenario described by this potential as Starobinsky model II (SMII, hereafter).
We should mention here that, to permit numerical analysis, one often works with a
smoothened form of the above potential given by [127]

V (φ) = V0 +
1

2
(A+ + A−) (φ− φ0) +

1

2
(A+ − A−) (φ− φ0) tanh

(
φ− φ0

∆φ

)
.

(2.3)

It is useful here to briefly describe the dynamics that arises in the model. If we
work with parameters such that the constant term V0 in the potential dominates, then the
first slow roll parameter ε1 always remains fairly small through most of the evolution.
One also finds that, in such a case, there arise two stages of slow roll inflation with a
brief period of departure from slow roll. The deviation from slow roll is reflected in
the large values of the second and the third slow roll parameters, viz. ε2 and ε3 [with
εn+1 = d ln εn/dN , for n > 1, cf. Eq. (1.7)], which occur briefly when the scalar field
crosses φ0. In fact, the small value for ε1 permits one to express the scalar modes in
terms of the de Sitter modes and thereby evaluate the power spectrum even analytically.
It can be shown that the power spectrum in the model can be expressed as [60, 122, 126]

P
S
(k) ' A

S

{
1− 3 ∆A

A+

k0

k

[(
1− k2

0

k2

)
sin

(
2 k

k0

)
+

2 k0

k
cos

(
2 k

k0

)]

+
9 ∆A2

2A2
+

k2
0

k2

(
1 +

k2
0

k2

) [
1 +

k2
0

k2
− 2 k0

k
sin

(
2 k

k0

)

+

(
1− k2

0

k2

)
cos

(
2 k

k0

)]}
, (2.4)

where we have set A
S

=
[
3H3

I
/(2 π A−)

]2, while ∆A = A− − A+ and H2
I
'

V0/(3M
2
Pl

). Note that, since the above analytical result for the scalar power spectrum
has been arrived at using the de Sitter modes, the spectrum is strictly scale invariant on
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small scales. In order to account for a tilt, while comparing the with the CMB data,
we multiply the above power spectrum by (k/k∗)

n
S
−1. The tensor power spectrum

is computed through the parameter r, which is defined as P
T

= rP
S
(k∗). It is thus

parameterized to be of constant amplitude throughout the range of wave numbers as the
features in the model occur only in the scalar power spectrum. As we shall discuss later,
upon comparing such spectra with the CMB data, we obtain the following best-fit values
for the parameters involved: A

S
= 2.11 × 10−9, n

S
= 0.97, k0 = 6.32 × 10−5 Mpc−1,

∆A/A+ = −0.074 and r = 0.017. We have illustrated the best-fit scalar power
spectrum in Fig. 2.4. As should be clear from the figure, the scalar power spectrum
exhibits a step-like feature on large scales and is nearly invariant at small scales. It
should be pointed out that the height of the step in the power spectrum is essentially
determined by the difference in the slopes A+ and A−.

The punctuated inflationary scenario

The third scenario we shall consider is the so-called punctuated inflationary scenario
(referred to hereafter as PI) achieved with the aid of the potential [110, 111]

V (φ) =
1

2
m2 φ2 − 2

3
m2 φ2

0

(
φ

φ0

)3

+
1

4
m2 φ2

0

(
φ

φ0

)4

. (2.5)

The potential contains a point of inflection at φ = φ0. If one starts with a suitably large
initial value of the scalar field such that φ� φ0, the potential admits two stages of slow
roll inflation separated by a brief departure (for less than an e-fold) from inflation. We
shall choose to work with φi = 12M

Pl
and ε1i = 2×10−3. On setting φ0 = 1.9654M

Pl
,

we obtain the best-fit value for the parameter m to be 7.16×10−8M
Pl

. We have plotted
the resulting scalar power spectrum in Fig. 2.4. Clearly, the power spectrum exhibits
a sharp drop in power on large scales. However, the model has a major drawback.
One finds that, in order for the drop in power to occur at wave numbers roughly
corresponding to the Hubble scale today, the largest scale has to leave the Hubble
radius during inflation considerably (about 30–35 e-folds) earlier than the nominally
accepted upper bound of about 65 e-folds, when counted from the end of inflation
(for a discussion on this upper bound, see Refs. [128, 129]). For the above values
of the parameters, we find that inflation lasts for about 110 e-folds and the pivot scale
itself exits the Hubble radius at 90.61 e-folds before the end of inflation. Despite the
drawback, we believe the model is interesting for the reason that, among the different
models we consider, it leads to the largest improvement in the fit to the CMB data. We
shall briefly comment about the model further in concluding section.
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The hard cut-off model

It would be interesting to analytically describe the model with kinetically dominated
initial conditions and evaluate the corresponding observable quantities of interest.
However, it proves to be a bit cumbersome to do so. A simpler model, which permits
complete analytical evaluation of the scalar power and bi-spectra corresponds to a
situation wherein the scalar field starts on the inflationary attractor at some given
conformal time, say, ηi. We shall refer to such a scenario as the hard cut-off model
(or, simply, HCO). The attractive aspect of the initially kinetically dominated model
is that inflation begins naturally at a specific time when the velocity of the scalar field
decreases below a threshold value as it rolls down the potential. In contrast, in the hard
cut-off model, we have to a priori assume that inflation begins at a specific time with
the scalar field being on the attractor.

Since the model involves only slow roll, it is straightforward to arrive at the Fourier
modes fk describing the curvature perturbation. As is well known, during slow roll, the
scalar mode fk, in general, can be expressed in terms of the de Sitter solutions as

fk(η) =
iH

I

M
Pl

√
4 k3 ε1

[
α(k) (1 + i k η) e−i k η − β(k) (1− i k η) ei k η

]
, (2.6)

where H
I

represents the Hubble scale during inflation and ε1 denotes the first slow roll
parameter. The quantities α(k) and β(k) are the so-called Bogoliubov coefficients. If
one imposes the standard Bunch-Davies initial conditions in the sub-Hubble limit, then
one will have α(k) = 1 and β(k) = 0. In our case, we shall impose the initial conditions
at the time ηi irrespective of whether the modes are inside or outside the Hubble radius.
In such a case, we obtain the Bogoliubov coefficients α(k) and β(k) to be

α(k) = 1 +
i

k ηi

− 1

2 k2 η2
i

= 1− i ki

k
− k2

i

2 k2
, (2.7a)

β(k) = − 1

2 k2 η2
i

e−2 i k ηi = − k2
i

2 k2
e2 i k/ki , (2.7b)

where we have set ki = −1/ηi. Note that, as ηi → −∞ (i.e. as ki → 0), α(k)→ 1 and
β(k) → 0, which corresponds to the conventional sub-Hubble, Bunch-Davies initial
conditions often imposed on all the modes.

With the modes fk at hand, it is now straightforward to evaluate the resulting power
spectrum by substituting the modes in the expression (1.13a) and taking the late time
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(i.e. η → 0) limit. One can easily show that the power spectrum can be written as

P
S
(k) = A

S
|α(k)− β(k)|2

= A
S

[
1 +

k4
i

2 k4
− k3

i

k3
sin

(
2 k

ki

)
+

(
k2

i

k2
− k4

i

2 k4

)
cos

(
2 k

ki

)]
, (2.8)

where we have set A
S

= H2
I
/(8 π2 ε1). We find that this analytical expression matches

the corresponding numerical result very well, say, in QP or SMI, modulo at small scales
where the de Sitter modes are not adequate to capture the spectral tilt that arises in a
realistic model. Therefore, when comparing the HCO model with the CMB data, to
allow for the spectral tilt at small scales, we have multiplied the above scalar power
spectrum by (k/k∗)

n
S
−1 as in the case of SMII. Moreover, we define the tensor power

spectrum to be P
T
(k) = rP

S
(k). Such a scale-dependent definition (in contrast to the

SMII case, where the tensor power spectrum was scale invariant) is important because
the model predicts features in the tensor power spectrum similar to that in the scalar
power spectrum [cf. Fig. 2.3], and we have consistently accounted for it in the analysis.
We obtain the following best-fit values for the parameters involved: A

S
= 2.09× 10−9,

n
S

= 0.96, ki = 2.03 × 10−4 Mpc−1, and r = 0.043. In Fig. 2.4, we have plotted the
analytical scalar power spectrum, with the (k/k∗)

n
S
−1 term included, corresponding

to the above mentioned best-fit values. Clearly, the scalar power spectrum exhibits
a suppression of power on large scales as in the case of the other models. As we
shall discuss later, the HCO model allows us to evaluate the scalar bispectrum too
analytically. The analytical calculations prove to be handy as they permit us to test the
numerical results against the analytical results in a situation wherein the Bunch-Davies
initial conditions are imposed on super-Hubble scales.

A dual to initial kinetic domination

We shall now discuss a situation which we shall refer to as the dual to the scenario with
kinetically dominated initial conditions. Recall that, in the model with initial kinetic
domination, the scalar field starts with a large velocity. Evidently, this corresponds to a
situation wherein the field begins from a point away from the inflationary attractor. It
is interesting to examine the effects on the power spectrum in a scenario with a finite
duration of inflation where the field starts with a small velocity (than its value on the
attractor) rather than a large velocity. As in the hard cut-off model, there is no natural
way of terminating inflation (when one goes back in time) in such a case. Therefore,
we shall assume that inflation begins at a specific time and that the Bunch-Davies initial
conditions are imposed on super-Hubble scales for a range of modes. A version of
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such a scenario has been considered previously in the literature and we find that they
are referred to as non-attractor models of inflation (in this context, see, for instance,
Refs. [130, 131]). Under these conditions, we find that, as the field evolves towards the
attractor, there occurs a sharp drop in power on large scales and a regime of oscillations
arises over intermediate scales before the spectrum turns nearly scale invariant on small
scales. We shall refer to this case as QPc and SMIc when implemented in the quadratic
potential (2.1) and Starobinsky model (1.5), respectively. In the case of QPc, we choose
φi = 16.00M

Pl
and ε1i = 10−4, which leads to inflation of about 65 e-folds. In the case

of SMIc, we work with φi = 5.52M
Pl

and ε1i = 10−4, which too results in inflation
lasting for about 65 e-folds. We find that the best-fit values for the parameter in these
models prove to be m = 6.15× 10−6M

Pl
and V0 = 8.75× 10−10M4

Pl
. The pivot scale

exits the Hubble radius at 57.32 and 55.87 e-folds before the end of inflation in the cases
of QPc and SMIc, respectively. In Fig. 2.4, we have illustrated the scalar power spectra
(that lead to the best-fit to the CMB data) in the dual scenario, viz. QPc and SMIc, along
with the spectra arising in the cases with initial kinetic domination, i.e. QPa, SMIa, QPb
and SMIb (as well as the other models of interest). Clearly, the kinetically dominated
model and its dual generate spectra with roughly similar features. We find that the
drop in power at large scales have the same shape in both the scenarios and is mostly
independent of the initial velocity of the field.

2.2.2 Performance against the CMB data

We have compared all the models we have described in the previous subsection against
the recent Planck data [62]. In this subsection, we shall discuss the assumptions we have
made while comparing the models with the CMB data, the priors on the parameters we
have worked with and present the final results for the CMB angular power spectrum.

We have taken into account both the scalar and tensor power spectra arising in
the models of interest when comparing against the CMB data. We have modified the
CAMB package suitably to include the power spectra from the different models [64].
We have made use of CosmoMC to carry out the comparison of the models with the
CMB data and have arrived at the respective likelihoods [63]. We have worked with the
2018 release of Planck data, which comprises of the likelihoods of the TT, TE and EE
correlations along with the lensing likelihood [62]. We have included nonlinear lensing
in the calculation of the CMB angular power spectra which has a significant effect over
small scales. For models with spectra calculated numerically, we have evaluated the
power spectra at 2000 points over the following range of wave numbers: 10−6 ≤ k ≤
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Parameter Lower limit Upper limit
Ωb h

2 0.005 0.1
Ωc h

2 0.001 0.99
θ
MC

0.5 10
τ 0.01 0.8

Table 2.1: The background cosmological parameters which we have varied and the
priors that we have worked with. These are the standard set of background
parameters that are often considered while comparing with the CMB
data [38].

Model ln (A
S
× 1010) n

S
r log10(ki/Mpc−1) ∆A/A+

or log10(k0/Mpc−1)
PL [1.61, 3.91] [0.8, 1.2] [0, 2] - -

HCO [1.61, 3.91] [0.8, 1.2] [0, 2] [−4,−2] -
SMII [1.61, 3.91] [0.8, 1.2] [0, 2] [−5,−3] [−0.999, 0.700]

Model N∗ log10(1010m2/M2
Pl

) log10(1010 V0/M
4
Pl

)
QPa, QPb, QPc [50, 60] [−0.55,−0.25] -

SMIa, SMIb, SMIc [50, 60] - [0.8, 1.2]
PI [87, 93] [−5.20,−3.47] -

Table 2.2: The parameters associated with the different inflationary models of our
interest and the priors that we have worked with. The first set (on top)
corresponds to models wherein we have made use of the analytical results for
the power spectra and the second set (at the bottom) corresponds to models
wherein we have evaluated the spectra numerically.

10 Mpc−1. We should mention that, in CAMB, the maximum value of the multipole ` is
set to be 2700 to compute the CMB angular power spectrum C`. We perform an MCMC
sampling of the posterior distribution of the parameter space using CosmoMC for each
model and arrive at the best-fit χ2 and the corresponding set of parameter values using
the in-built package called GetDist.

In Tab. 2.1, we have listed the priors on the four background cosmological
parameters that we have worked with. In Tab. 2.2, we have listed the priors on the
parameters describing the various inflationary models of our interest. Earlier experience
suggests that the drop in power leading to an improved fit to the CMB data is expected
to occur around the wave number k ' 10−4 Mpc−1. Hence, while choosing the range
of priors for the model parameters which determine the location of the drop in the scalar
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Model ln (A
S
× 1010) n

S
r log10(ki/Mpc−1) ∆A/A+ ∆χ2

or log10(k0/Mpc−1)
PL 3.042 0.967 0.011 - - -

HCO 3.039 0.962 0.043 −3.692 - −0.096
SMII 3.048 0.969 0.017 −4.199 −0.074 −0.672

Model N∗ log10(1010m2/M2
Pl

) log10(1010V0/M
4
Pl

) ∆χ2

QPa 55.06 −0.386 - 2.494
QPb 57.32 −0.419 - −0.384
QPc 57.32 −0.422 - −0.014

SMIa 53.22 - 0.985 −0.896
SMIb 55.19 - 0.954 −0.880
SMIc 55.87 - 0.942 −1.170

PI 90.61 −4.290 - −1.746

Table 2.3: The best-fit values of the inflationary parameters and the extent of
improvement in χ2 with respect to the standard power law case, arrived at
by comparing the models with the recent CMB data. As in the previous
table, the first set (on top) corresponds to models with analytical forms for
the scalar power spectra and the second set (at the bottom) corresponds to
those cases wherein the spectra have been evaluated numerically. We have
defined ∆χ2 = (χ2

model − χ2
PL

) so that a negative value for ∆χ2 implies
an improvement in the fit with respect to the power law case. Note that
PI leads to the largest improvement in the fit to the data. The dataset we
have used is the following combination of likelihoods: TT + TE + EE +
low ` + low E + lensing from Planck 2018 data release. The models were
compared while accounting for tensors as well as non-linear lensing. We
should mention that the best-fit value for χ2 in the power law case we have
obtained is χ2 = 2 (1390.928) = 2781.856. The corresponding value quoted
by Planck team is χ2 = 2 (1391.104) = 2782.208, which is close to the value
we obtain [38].

power (such as N∗), we have made sure that the feature occurs over the wave numbers
10−5 . k . 10−3 Mpc−1.

In Tab. 2.3, we have listed the improvement in the χ2 and the best-fit values
for the inflationary parameters for the different models we have considered. Recall
that the power law (PL) case corresponds to the simplest situation wherein the scalar
power spectrum is expressed as P

S
(k) = A

S
(k/k∗)

n
S
−1 [cf. Eq. (1.30a)]. For the PL

case, the χ2 we obtain from the GetDist package is 2781.856, while the value quoted
by the Planck team is 2782.2081. Note that the quantity ∆χ2 is the difference in χ2

1See the Planck Legacy Archive located at the following URL: http://pla.esac.esa.int/pla/#cosmology.
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between a given inflationary model and the PL case, with a negative value indicating an
improvement in the fit to the data. Evidently, PI leads to the largest improvement in the
fit to the data. Earlier, in Fig. 2.4 we had plotted the inflationary scalar power spectra
for parameter values of the various models that lead to the best fit to the CMB data. In
Fig. 2.5, we have plotted the corresponding CMB angular power spectra for three of the
models which lead to reasonable levels of improvement (∆χ2 ' 0.6–1.7) in their fit to
the data.

Having described the alternative scenarios resulting in scalar spectra with a sharp
drop in power on large scales, let us now turn to the evaluation of the scalar non-
Gaussianities in these models.
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Figure 2.5: The best-fit CMB angular power spectra have been plotted for the three
models SMIc (in blue), SMII (in green) and PI (in cyan) which lead to
an improvement in ∆χ2 of 0.6–1.7 in the fit to the recent Planck data. In
order to highlight the differences, we have also plotted the best-fit angular
power spectrum for the power law case (in red). We have also included the
Planck 2018 data points along with their error bars (in black). Note that the
multipoles ` appear on a log scale until ` = 32 (indicated by the vertical
line) and on a linear scale for ` > 32. We should point out the fact that
the CMB angular spectrum in the case of PI exhibits an oscillation over the
lower multipoles before it merges with, say, the result for the power law
case, at the higher multipoles. The angular spectra for the models of SMIc
and SMII are suppressed to a far less extent when compared to the spectrum
of PI over the low multipoles (as highlighted in the inset).
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2.3 EVALUATING THE SCALAR BISPECTRUM

In this section, we shall describe the numerical evaluation of the scalar bispectrum
and the corresponding non-Gaussianity parameter f

NL
in the different models of our

interest. In fact, these quantities have been calculated earlier in the cases of the
second Starobinsky model and punctuated inflation (in this context, see, for example,
Refs. [56, 60, 132]). Besides, the scalar bispectrum in models with kinetic dominated
initial conditions have been briefly presented earlier [16]. The models wherein the
initial conditions are imposed on super-Hubble scales pose certain challenges and it is
instructive to compare the numerical procedure for the computation of the bispectrum
and the non-Gaussianity parameter f

NL
in the different cases.

2.3.1 Numerical computation of the scalar bispectrum

In Subsec. 1.1.3, we had discussed the various contributions to the scalar bispectrum
arising from the bulk and the boundary terms in the action describing the curvature
perturbation at the third order. We had also outlined the numerical procedure to evaluate
the scalar bispectrum. As we had pointed out, once the background evolution has been
determined, it is a matter of arriving at the solution for the modes fk and then using
them to compute the integrals G

C
(k1,k2,k3) [cf. Eqs. (1.24)] and the corresponding

contributions to the bispectrum. Evidently, evaluating the contributions due to the
boundary terms G7(k1,k2,k3), G8(k1,k2,k3) and G9(k1,k2,k3) [cf. Eqs. (1.25)
and (1.26)] is relatively straightforward as it involves no integrals and can be arrived
at from the background quantities and the modes fk.

As we had discussed earlier, in the standard slow roll scenario or in situations
involving brief intermediate departures from slow roll [such as in the second
Starobinsky model (SMII) and punctuated inflation (PI)], to arrive at the scalar power
spectrum, the modes fk are evolved from the time when k = 102

√
z′′/z to the

time when k = 10−5
√
z′′/z. It has been established that it is often adequate to

consider the evolution of modes over this domain to arrive at the bispectra as well (see
Refs. [55, 56, 132]; in this context, also see Refs. [133, 134]). Since the amplitude of
curvature perturbation freezes on super-Hubble scales, one finds that the contribution
over the domain k < 10−5

√
z′′/z proves to be insignificant. However, as the

bispectrum involves three modes, one has to evolve the modes and carry out the integrals
from a domain when the smallest of the three wave numbers (k1, k2, k3) satisfies the sub-
Hubble condition k = 102

√
z′′/z until the time when the largest of the three satisfy the

super-Hubble condition k = 10−5
√
z′′/z.
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As we had pointed out in Subsec. 1.1.3, there is yet another point one needs
to take into account when computing the integrals. Since the modes oscillate in the
sub-Hubble domain, one actually needs to introduce a cut-off in order to regulate the
integrals involved. Theoretically, such a cut-off is necessary to identify the correct
perturbative vacuum (see, for instance, Refs. [52, 53]). Numerically, the cut-off helps
us to efficiently compute the integrals. For an arbitrary triangular configuration of the
wave vectors, one often works with a democratic cut-off of the form exp− [κ (k1 +k2 +

k3)/(3
√
z′′/z)], where κ is a suitably chosen constant. The value of κ is determined

by calculating the integrals starting from different times inside the Hubble radius and
examining the dependence of the results for the integrals on the initial time and the
value of κ. It is found that, in most of the cases, if one chooses to integrate from
k = 102

√
z′′/z, the value of κ ' 0.3 proves to be optimal [56, 132–134]. In other

words, for κ = 0.3, the values of the integrals prove to be independent of how deep
inside the Hubble radius the integrals are carried out from. We use this procedure
to calculate the integrals G

C
(k1,k2,k3) [cf. Eqs. (1.24)], the resulting bispectrum

G(k1,k2,k3) and the corresponding non-Gaussianity parameter f
NL

(k1,k2,k3) in the
cases of SMII and PI [56].

But, the scenario with kinetically dominated initial conditions and variations of it
such as its dual and the hard cut-off model pose a peculiar problem. Recall that, in
these cases, modes over a certain range of wave numbers are never inside the Hubble
radius (in this context, see Fig. 2.1). Therefore, the integrals involving modes over this
range do not actually require a cut-off. For these modes, we evaluate the integrals from
N = 0 or N = N1 when we begin to evolve the perturbations. When we do so, we find
that, the contributions to the scalar bispectrum for this range of modes are completely
insensitive to the value of the cut-off parameter κ. This point is illustrated in Fig. 2.6
wherein we have plotted the contributions to the bispectrum in the equilateral limit
(i.e. when k1 = k2 = k3 = k) due to the bulk and the boundary terms as a function of κ
in the case of QPa. Also, in QPa and similar scenarios, for the initial conditions and the
best-fit values of the parameters we have worked with, we find that we can impose the
Bunch-Davies initial condition at k = 102

√
z′′/z for modes with k & 8×10−3 Mpc−1.

As one would have expected, for these modes, the choice of κ = 0.3 turns out to be
ideal as in the cases of SMII and PI (see Fig. 2.6). However, since the modes over the
range 8 × 10−5 . k . 8 × 10−3 Mpc−1 do not spend an adequate amount of time
in the sub-Hubble domain, we are unable to carry out the exercise described above for
identifying an apt value of κ over this set of wave numbers. We choose to be democratic,
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Figure 2.6: The bulk and the boundary contributions to the scalar bispectrum evaluated
numerically in the equilateral limit for the case of the quadratic potential
with kinetically dominated initial conditions have been plotted as functions
of the cut-off parameter κ. For highlighting the points we wish to make,
we have grouped the six standard bulk terms, along with the seventh
term, viz. G

C
(k) with C = {1, 2, . . . , 7} (in red) and the boundary terms,

viz. G8(k) and G9(k) (in blue). We have plotted these quantities for two
modes with the wave numbers k = 5 × 10−5 Mpc−1 (in the top panel) and
k = 0.1 Mpc−1 (in the bottom panel) in the case of the model QPa. The first
of these wave numbers is representative of the modes with suppressed power
and is always outside the Hubble radius, whereas the second corresponds
to a typical mode in the nearly scale invariant regime that emerges from
sufficiently deep inside the sub-Hubble domain (cf. Fig. 2.1). We have
plotted the quantities when the integrals involved have been evaluated from
N = 0 (as solid curves) and from the e-folds satisfying the conditions
k = 100

√
z′′/z and k = 200

√
z′′/z (as dashed and dotted curves,

respectively), with the latter two being, evidently, possible only for the
mode with the larger wave number. Note that, while the quantities are
completely insensitive to κ for the first mode, the plots suggest the optimal
value of the cut-off parameter to be κ = 0.3 for the second mode. Also, we
should point out that the boundary terms dominate the bulk terms for the
mode with the smaller wave number (cf. top panel). Moreover, in the case
of the mode with the larger wave number, for κ = 0.3, the boundary terms
cease to be important and the contributions to the bispectrum are dominated
by the bulk terms, as is expected for a mode that emerges from sufficiently
deep inside the Hubble radius.
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and we work with κ = 0.3 over this range of modes as well. Also, we carry out the
integrals from N = 0 or N = N1 for all the modes (viz. for 10−5 < k < 1 Mpc−1) until
the time when the largest of the three wave numbers involved satisfies the condition
k = 10−5

√
z′′/z.

In Fig. 2.7, we have plotted the various bulk and boundary contributions to
the bispectrum for QPa, SMII and PI. One finds that, in the equilateral limit, the
contributions due to the first and the third terms and the contributions due to the fifth
and the sixth terms have the same form. Therefore, in the figure, we have plotted the
combinationsG1(k)+G3(k),G2(k),G4(k)+G7(k)2,G5(k)+G6(k),G8(k) andG9(k).
In the cases of SMII and PI, the boundary terms do not contribute due to the fact that
all the modes of interest emerge from well within the Hubble radius. Also, in these
two models, as is well known, it is the contribution due to the term G4(k) +G7(k) that
dominates [56, 132]. This is easy to understand as the term G4(k) depends on ε′2 which
grows large for a brief period of time in these scenarios [cf. Eq. (1.24d)]. In complete
contrast, in QPa, one finds that all the contributions to the bispectrum are roughly of
the same order over a wide range of wave numbers. Moreover, in SMII and PI, all the
contributions to the bispectrum are enhanced over wave numbers that leave the Hubble
radius during the period of departure from slow roll inflation. However, in the case of
QPa, the contributions to the scalar bispectrum due to the boundary terms dominate the
contributions due to the bulk terms over a range of large scale modes. This is a novel
result that does not seem to have been noticed earlier in the literature [16].

2.3.2 Analytical calculation in the hard cut-off model
Since it involves only slow roll, the hard cut-off model (HCO) provides a simple
situation to evaluate the scalar bispectrum analytically. In this subsection, we shall
compare the analytical results in this case with the corresponding numerical results to
highlight the accuracy of our numerical computations in situations wherein the initial
conditions for a range of modes are imposed on super-Hubble scales.

It is well known that, in slow roll, it is the first, second and the third bulk terms,
viz. G

C
(k1,k2,k3) with C = {1, 2, 3}, that contribute significantly to the bispectrum.

2Note that G7(k) is not a bulk term but is actually a boundary term. Earlier, we had mentioned that
the integrals describing the bulk terms do not contribute when the modes are on super-Hubble scales at
late times. For the term G4(k), this proves to be true only when the boundary term G7(k) is added. For
this reason, often one considers the combination G4(k) +G7(k) [56].
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Figure 2.7: The different contributions to the scalar bispectrum in the equilateral limit,
viz. the bulk terms G1(k) +G3(k) (in red), G2(k) (in blue), G4(k) +G7(k)
(in green), G5(k) + G6(k) (in purple) and the boundary terms G8(k) (in
cyan) and G9(k) (in orange), evaluated numerically, have been plotted for
three models of our interest, viz. QPa (on top), PI (in the middle) and
SMII (at the bottom). We should mention that we have made use of the
smoothened potential (2.3) to evaluate the results numerically in the case
of SMII. Note that, since all the modes of cosmological interest emerge
from sufficiently inside the Hubble radius in SMII and PI, there arise no
contributions from the boundary terms in these cases. However, in the case
of QPa, it should be clear that the boundary terms dominate at small wave
numbers. We should also point out the linear growth in G4(k) + G7(k) at
large k in SMII. The growth is known to be become indefinite in the limit
when the quantity ∆φ in the potential (2.3) vanishes, i.e. when the change
in the slope of the potential ceases to be smooth and is infinitely abrupt as
in the original potential (2.2) [126, 127].

58



These bulk terms are characterized by integrals of the form [cf. Eqs. (1.24)]

I1 =

∫ ηe

ηi

dη fk1(η) f ′k2(η) f ′k3(η) eκ (k1+k2+k3) η/3 + two permutations, (2.9a)

I2 =

∫ ηe

ηi

dη fk1(η) fk2(η) fk3(η) eκ (k1+k2+k3) η/3, (2.9b)

with the modes fk given by Eq. (2.6) in the case of HCO. Since the initial conditions are
imposed on super-Hubble scales for a range of modes, apart from these bulk terms, we
also need to evaluate the contributions due to the boundary terms, viz. G

C
(k1,k2,k3)

with C = {7, 8, 9}. While the boundary terms are straightforward to evaluate as they
involve no integrals, one finds that the above-mentioned integrals are easy to calculate
as well.

Note that, in the above integrals, we have introduced the cut-off in the democratic
(in k1, k2, k3) manner that we had discussed earlier. In Fig. 2.8, we have compared
the analytical results for the different contributions to the bispectrum with the
corresponding numerical results in the equilateral limit. To arrive at the numerical
results, we have worked with the quadratic potential (2.1) and have started the evolution
on the inflationary attractor, as we had described in Subsec. 2.2.1 wherein we had
discussed the scalar power spectrum arising in the model. It is clear that the analytical
results match well with the numerical results indicating the extent of accuracy of the
numerical procedures we have adopted. As in the cases of QP and SMI, we find that the
boundary terms, in particular G8(k), dominate at suitably small wave numbers.
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Figure 2.8: The different bulk and boundary contributions to the scalar bispectrum,
evaluated in the equilateral limit, have been plotted for the hard cut-off
model (HCO) with the same choices of colors as in the previous figure.
We have plotted the quantities arrived at analytically (as dotted curves) as
well as numerically (as solid curves). Clearly, the analytical results match
the numerical results quite well. Moreover, as in the case of QPa plotted
in the previous figure, the contributions from the boundary terms dominate
those due to the bulk terms on large scales.
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2.4 AMPLITUDE AND SHAPE OF THE NON-GAUSSIANITY PARAMETER

Having obtained the scalar bispectrum, let us now turn to understand the amplitude
and shape of the corresponding non-Gaussianity parameter f

NL
. In the next section, we

shall discuss the behavior of the parameter in the so-called squeezed limit wherein it
is expected to be expressed completely in terms of the scalar spectral index. In this
section, we shall discuss the behavior in the equilateral limit as well as the complete
shape, which is often illustrated in the form of density plots.

Let us first consider the equilateral limit. In Fig. 2.9, we have illustrated the
behavior of the parameter f

NL
in the equilateral limit in the different models of our

interest. Recall that, according to the most recent constraints from Planck: f local
NL

= −
0.9± 5.1, f equil

NL
= − 26± 47 and f ortho

NL
= − 38± 24 [cf. Eqs. (1.33); in this context,

also see Ref. [58]]. Amongst the models we have considered, we find that the parameter
f
NL

is very large in the cases of QPc, SMIc and HCO. In fact, these scenarios are likely
to be inconsistent with the most recent constraints on the parameter. The models SMII
and PI also lead to relatively large value of f

NL
, but this can attributed to the sharp drop

in the scalar power spectra over the relevant scales rather than a rise in the amplitude of
the bispectrum. As we shall discuss in the concluding section, it seems urgent to arrive
at a template for the bispectrum in models such as PI in order to be able to compare it
with the CMB data at the level of three-point functions.

In Fig. 2.10, we have illustrated the complete shape of the scalar non-Gaussianity
parameter f

NL
(k1,k2,k3) that arises in the various models of our interest in the form

of density plots, as is usually done. We should mention that the density plots of f
NL

have been computed with k3 set to be the pivot scale. For the models QPa and QPb, we
find that the non-Gaussianity parameter around the pivot scale is equilateral in shape
corresponding to the slow roll value of f

NL
' 2 × 10−2 in the equilateral limit. The

suppression in the scalar power spectrum, which occurs roughly two decades in wave
numbers away from the pivot scale does not affect the shape of f

NL
around the pivot

scale. In the cases of SMIa and SMIb, we see a roughly similar behavior with a slightly
lesser amplitude of f

NL
as expected in SMI models. In the case of SMII, we see small but

persistent oscillations with f
NL
' 10−2 throughout the range of wave numbers around

the pivot scale. This can be attributed to the behavior of the contribution G4(k)+G7(k)

in the model. In PI, the bispectrum is largely local in shape with a sharp increase in
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Figure 2.9: The scalar non-Gaussianity parameter f
NL

computed in the equilateral limit
has been plotted for all the models of our interest: PI and SMII (in the top
and bottom panels on the left), QPa, QPb and QPc (in the top three panels
on the right, respectively, as red curves), SMIa, SMIb and SMIc (in the top
three panels on the right, in blue) and, lastly, HCO (in the bottom panel on
the right). In the case of PI, f

NL
has been plotted on a log scale to cover

the wide range over which it varies. Note that the scalar power spectrum
appears in the denominator in the definition of f

NL
[cf. Eq. (1.28)]. The

spike in the amplitude of f
NL

in the case of PI arises due to the sharp drop
in the power spectrum (in this context, see Fig. 2.4). The oscillations with
increasing amplitude at larger wave numbers in the case of SMII is caused
due to the contribution from G4(k) + G7(k), which rises linearly before
eventually dying down (cf. Fig. 2.7). Such a behavior occurs due to the
sharp transition in the evolution of the field as it crosses the discontinuity
in the potential. Also note that the maximum amplitude of f

NL
is larger

in QPa and SMIa when compared to QPb and SMIb (also see Ref. [16]).
This can be partly attributed to the larger initial velocity of the background
scalar field when the initial conditions are imposed on the perturbations.
Moreover, interestingly, we find that the amplitude of f

NL
is larger in the

case of QP than SMI. Lastly, the amplitude of f
NL

in the cases of QPc, SMIc
and HCO are extremely large, indicating that these models are unlikely to
be viable in the light of the constraints on f

NL
from Planck.
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Figure 2.10: The amplitude and shape of the non-Gaussianity parameter f
NL

(k1,k2,k3)
has been illustrated as density plots for the various models of our interest
(QPa, SMIa and SMII from top to bottom on the left, and QPb, SMIb and
PI in the same order on the right) as a function of k1/k3 and k2/k3. Note
that we have chosen k3 to be the pivot scale in all the plots.
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amplitude occurring at wave numbers around the location where the scalar spectrum
exhibits a sharp drop in power.

2.5 VALIDITY OF THE CONSISTENCY RELATION

Let us now turn to the behavior of the three-point functions in the squeezed limit
wherein one of the three wave numbers is much smaller than the other two [52, 132,
135, 136]. Since the amplitude of the long wavelength mode freezes on super-Hubble
scales during inflation, it can be treated as part of the background. Consequently, one
finds that, in such a limit, the three-point functions generated during inflation can be
expressed entirely in terms of the two-point functions through the so-called consistency
relation. In the squeezed limit, the scalar bispectrum is expected to reduce to the
following form (see, for instance, Ref. [132]):

lim
k1→0

G(k1,k,−k) = − (2 π)4

4 k3
1 k

3
[n

S
(k)− 1] P

S
(k1)P

S
(k), (2.10)

where n
S
(k) = 1 + [d lnP

S
(k)/d ln k] is the scalar spectral index [cf. Eq. (1.31)],

and it should be clear that we have considered k1 to be the squeezed mode. Upon
substituting the above expression in the definition (1.28) for the non-Gaussianity
parameter f

NL
(k1,k2,k3), we find that we can express the consistency relation in the

squeezed limit as follows:

lim
k1→0

f
NL

(k1,k,−k) =
5

12
[n

S
(k)− 1] ≡ fCR

NL
(k). (2.11)

With the results we have obtained, it is straightforward to examine if the above
consistency relation is satisfied in the models of our interest. Actually, it has already
been established that the consistency relation is satisfied in SMII and PI despite the
strong departures from slow roll, as reflected in the sharp features in the power spectra
and bispectra (see Fig. 2.11; in this context, also see Refs. [60, 132]). However, in
the case of the scenarios with kinetically dominated initial conditions, we find that
the consistency condition is violated on large scales where the scalar power spectrum
exhibits a suppression. This should be clear from Fig. 2.11 wherein we have plotted the
non-Gaussianity parameter f

NL
(k) in the squeezed limit as well as the quantity fCR

NL
(k)

[cf. Eq. (2.11)] for most of the models we have been interested in. We find that
the consistency relation begins to be satisfied in these cases only at small scales (for
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Figure 2.11: The non-Gaussianity parameter f
NL

(k) in the squeezed limit has been
plotted (in red) for the cases of PI, SMII (top and bottom panels, on the
left), QPa, QPb, SMIa and SMIb (panels from top to bottom in that order,
on the right). We have also plotted the quantity fCR

NL
(k) [cf. Eq. (2.11)],

determined completely by the scalar spectral index, for each of these
models (as dotted blue curves). Clearly, the consistency condition (2.11)
is satisfied in PI and SMII (as is evident from the figure on the left) even
over wave numbers wherein there arise strong departures from near scale
invariance in the power and bi-spectra. In complete contrast, in QPa, QPb,
SMIa and SMIb, the consistency condition is violated at large scales (as
should be clear from the figure on the right), but it is eventually restored
at the small scales (in this context, also see our earlier work [16]). We
find that the behavior of f

NL
is similar in the cases of QPc, SMIc and

HCO. Hence, we have not plotted them here. The difference arises only in
the magnitude of f

NL
over large scales where the consistency condition is

violated.
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k & 8 × 10−3 Mpc−1) which emerge from sufficiently deep inside the Hubble radius
[say, from k ' 102

√
|z′′/z|] after slow roll inflation has set in. Evidently, the violation

of the consistency condition is associated with the fact that the Bunch-Davies initial
condition on the large scale modes are imposed when they are outside the Hubble radius.
We should mention here that the violation of the consistency condition at large scales
that we encounter is somewhat similar to the violation of the condition noticed earlier
in the case of non-attractor inflation [130, 131, 137–139].

2.6 SUMMARY AND SCOPE

At the level of the power spectrum, all the models we have considered here, viz. models
with kinetically dominated initial conditions, their dual, the hard cut-off model, the
second Starobinsky model and punctuated inflation, lead to a suppression of power on
large scales. Naively, one would have expected that non-Gaussianities would help us
discriminate between the different models, and we find that indeed they do. Though
there arise some differences in the overall amplitude of the scalar bispectra in the
various models, the crucial distinction seems to be their behavior in the squeezed
limit. While the consistency condition is satisfied in PI and SMII over all modes of
cosmological interest, in the models with initial kinetic domination, their dual and HCO,
the consistency relation is found to be violated on large scales for the modes that always
remain in the super-Hubble regime. However, as in the cases of PI and SMII, in QP,
SMI and HCO, the consistency relation is satisfied for the small scale modes which
evolve from the sub-Hubble regime.

Models such as punctuated inflation or the second Starobinsky model may
be considered to be more appealing theoretically than the models with kinetically
dominated initial conditions. However, the data can help us evaluate the performance
of the models and rule in favor of one over the other. In order to compare with the CMB
data at the level of the bispectrum, it will be useful to obtain an analytical template for
the scalar bispectrum (in this context, see, for example, Refs. [140, 141]). While there
have been efforts to reproduce the power spectra analytically in the case of models
with kinetically dominated initial conditions (in this context, see Ref. [103]), these
analytical calculations seem to underestimate the amplitude of the oscillations that arise
as the spectrum turns scale invariant. In the context of PI, there seems to have been
no effort at all to arrive at the power spectrum analytically. We are currently working
on evaluating the spectra as well as the bispectra analytically in PI as well as in models
with kinetically dominated initial conditions with the aim of eventually comparing these
models with the CMB data at the level of bispectra [142].
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CHAPTER 3
PBHs AND SECONDARY GWs FROM ULTRA SLOW ROLL

AND PUNCTUATED INFLATION

3.1 INTRODUCTION

With the recent observations of GWs from merging binary black holes involving a few
to tens of solar masses [143–154], there has been a considerable interest in examining
whether such black holes could have a primordial origin [155–157]. The most popular
mechanism to generate PBHs is the inflationary scenario (for earlier discussions, see,
for example, Refs. [12, 77]; also see the recent reviews [9, 74–76]). PBHs are formed
when the curvature perturbations generated during inflation reenter the Hubble radius
during the radiation and matter dominated epochs. However, most inflationary models
permit only slow roll inflation and, in such cases, the extent of PBHs produced proves
to be considerably smaller than required for any astrophysical implications (see, for
example, Ref. [70]). Recall that, on large scales, the primordial scalar power spectrum
is strongly constrained by the increasingly precise observations of the anisotropies in
the CMB (for recent constraints from Planck, see Refs. [6, 158]). In order to lead to
a significant amount of PBHs, the scalar power spectrum on small scales should be
considerably enhanced from the COBE normalized values over the CMB scales (for an
early discussion in this context, see, for instance, Ref. [70]). In inflation, this is possible
only when there are strong departures from slow roll. It boils down to identifying
inflationary potentials that permit slow roll initially and then violating it for a certain
period of time, before restoring it again until close to the termination of inflation.

In models of inflation driven by a single, canonical scalar field, the so-called ultra
slow scenario has turned out to be the most popular mechanism in the literature to
enhance scalar power on small scales. This scenario involves a period during inflation
wherein the first slow roll parameter turns very small (for the initial discussions, see
Refs. [71, 72, 159]; in this context, also see, for instance, Refs. [160, 161]). In fact, one
finds that the scenario can be further divided into two types, those which admit a brief
period of departure from inflation and another wherein no such departure arises. The
scenario wherein inflation is interrupted briefly is referred to as punctuated inflation (for
the original discussions, see Refs. [162–164]; for later and recent efforts, see Refs. [17,
109–111]; for a discussion in the context of PBHs, see Refs. [160, 165]). Interestingly,
in such scenarios, the interruption of inflation is inevitably followed by an epoch of
ultra slow roll which aids in boosting the power on small scales. While, in the case of
punctuated inflation, all the slow roll parameters (including the first) turn large briefly,
in ultra slow roll inflation, the first slow parameter remains small until the very end



of inflation and slow roll is said to be violated due to the large values achieved by the
second and higher slow roll parameters.

Often, the above-mentioned scenarios are achieved with the aid of potentials which
contain a point of inflection [71, 72, 110, 111, 159, 161]. The inflection point seems to
play a crucial role in these scenarios in inducing a period of ultra slow roll. The two
stages of slow roll and ultra slow roll lead to either a step or a bump-like feature in the
resulting inflationary scalar power spectrum, depending on the details of the dynamics
involved. The lower level of the step is associated with the large scale modes that leave
the Hubble radius during the first epoch of slow roll and the power is enhanced on small
scales corresponding to modes that leave the Hubble radius during the later epoch of
ultra slow roll. As we discussed in the last chapter, the punctuated inflationary scenario
has been considered to explain the lower power observed at the small multipoles in the
CMB data. If one chooses the drop in power to occur at scales roughly corresponding to
the Hubble radius today, one finds that the resulting power spectrum can improve the fit
to the CMB data to a certain extent (for an earlier analysis, see Ref. [110]; for a recent
discussion, see Ref. [17]).

We mentioned above that both ultra slow roll inflation and punctuated inflation can
lead to a sharp rise in power on small scales. Evidently, if one chooses the rise to occur
at suitable scales, one can utilize these power spectra to lead to enhanced formation
of PBHs. As has been established, such an enhanced amplitude for the scalar power
spectrum can induce secondary GWs when these modes reenter the Hubble radius at
later times during the radiation dominated epoch (for the original discussions, see, for
example, Refs. [88–91]; for recent discussions in this context, see Refs. [95, 96, 166]).
These secondary GWs with boosted amplitudes can, in principle, be detected by
current and forthcoming observatories such as LIGO/Virgo [167], Pulsar Timing Arrays
(PTA) [85, 168, 169], the Laser Interferometer Space Antenna (LISA) [170, 171],
the Big Bang Observer (BBO) [172–174], the Deci-hertz Interferometer Gravitational
wave Observatory (DECIGO) [175, 176] and the Einstein Telescope (ET) [177, 178].
Moreover, the deviations from slow roll inflation, even as they boost the scalar power
spectrum on small scales, also lead to larger levels of scalar non-Gaussianities on these
scales (in this context, see, for example, Refs. [55, 56, 60]). These non-Gaussianities
can, in principle, further increase the extent of PBH formation (for early discussions,
see, for example, Refs. [70, 179, 180]; for recent discussions, see Refs. [181–188]) as
well as the strength of the secondary GWs (see Refs. [189–191]; for a recent discussion,
also see Ref. [192]). In this chapter, we examine the enhanced formation of PBHs
and the generation of secondary GWs in ultra slow roll and punctuated inflation. We
also numerically evaluate the inflationary scalar bispectrum generated on small scales
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in these scenarios and utilize the results to discuss the corresponding imprints on the
extent of PBHs formed and the amplitude of secondary GWs. In addition to considering
specific potentials that lead to the scenarios of our interest, we choose functional forms
for the first slow roll parameter leading to ultra slow roll and punctuated inflation,
reverse engineer potentials and examine the observational implications (for other efforts
in these directions, see, for instance, Refs. [70, 193–195]). Interestingly, such an
exercise also confirms the understanding that, in models of inflation involving a single,
canonical scalar field, a point of inflection in the potential seems essential to lead to
ultra slow roll or punctuated inflation.

This chapter is organized as follows. In the following section, we shall introduce
the different models of our interest which lead to ultra slow roll and punctuated inflation.
In Sec. 3.3, we shall discuss the power spectra that arise in these models and illustrate
how the intrinsic entropy perturbation associated with the scalar field proves to be
responsible for enhancing the amplitude of the curvature perturbation. In this section,
we shall also highlight some of the challenges that one encounters in constructing viable
models of ultra slow roll and punctuated inflation. In Sec. 3.4, we shall consider specific
forms for the first slow roll parameter leading to ultra slow roll and punctuated inflation,
and reverse engineer the potentials that lead to such scenarios. We shall also discuss the
power spectra that arise in these cases. In Secs. 3.5 and 3.6, we shall discuss extent of
PBHs formed and calculate the dimensionless parameters characterizing the power as
well as bispectra of secondary GWs generated in the models and scenarios of interest.
We shall also compare our results with the constraints from observations. In Sec. 3.7,
we shall calculate the dimensionless non-Gaussianity parameter f

NL
associated with the

scalar bispectrum in all the different cases. We shall highlight some of the properties of
the non-Gaussianity parameter f

NL
and then go on to discuss the imprints of the scalar

non-Gaussianities on the formation of PBHs and the generation of secondary GWs. In
Sec. 3.8, we shall conclude with a summary of the main results. We shall relegate some
of the related discussions to the appendices.

3.2 MODELS OF ULTRA SLOW ROLL AND PUNCTUATED INFLATION

In this section, we shall briefly describe the specific models of interest that lead to ultra
slow roll and punctuated inflation. We should mention that all the five models that we
shall discuss in the following two subsections contain a point of inflection. Recall that,
while the first slow roll parameter is defined as ε1 = −d lnH/dN , the higher order
slow roll parameters are defined in terms of the first slow roll parameter ε1 through the
relations εn+1 = d ln εn/dN , for n ≥ 1 [cf. Eqs. (1.7)]. As it is the first three slow
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roll parameters, viz. ε1, ε2, and ε3, that determine the amplitude and shape of the power
spectrum as well as the bispectrum, we shall illustrate the behavior of these slow roll
parameters in the models of interest.

3.2.1 Potentials leading to ultra slow roll inflation

We shall consider two specific models that permit ultra slow roll inflation. The first
potential we shall consider which leads to a period of ultra slow roll inflation is often
written in the following form (see, for instance, Ref. [71]):

V (φ) = V0
6x2 − 4αx3 + 3x4

(1 + β x2)2
, (3.1)

where x = φ/v, with v being a constant rescaling factor. We shall work with the
following choices of the parameters involved: V0/M

4
Pl

= 4× 10−10, v/M
Pl

=
√

0.108,
α = 1 and β = 1.4349. For these choices of parameters, the inflection point, say, φ0,
is located at 0.39M

Pl
. We find that, if we choose the initial value of the field to be

φi = 3.614M
Pl

, then inflation lasts for about 63 e-folds in the model. For convenience,
we shall hereafter refer to the potential (3.1), along with the above-mentioned set of
parameters, as USR1.

The second potential that we shall consider is given by [160]

V (φ) = V0

{
tanh

(
φ√

6M
Pl

)
+ A sin

[
tanh

[
φ/
(√

6M
Pl

)]

fφ

]}2

, (3.2)

and we shall work with the following values of the parameters involved: V0/M
4
Pl

=

2 × 10−10, A = 0.130383 and fφ = 0.129576. We find that, for these values of the
parameters, the inflection point occurs at φ0 = 1.05M

Pl
. For the initial value of the

field φi = 6.1M
Pl

, we obtain about 66 e-folds of inflation in the model. We shall refer
to the potential (3.2) and the above set of parameters as USR2.

As we mentioned, the background dynamics driven by these potentials can be well
captured by the behavior of the first three slow roll parameters ε1, ε2 and ε3. We have
plotted the evolution of these quantities as a function of e-folds N in Fig. 3.1. It is clear
from the behavior of ε1 that these models permit two different regimes of slow roll,
separated by a short phase of departure from slow roll. Note that the value of ε1 during
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Figure 3.1: The behavior of the first three slow roll parameters ε1, ε2 and ε3 have been
plotted in the models of interest which lead to ultra slow roll and punctuated
inflation. We have plotted the behavior for all the five models we have
discussed, viz. USR1 and USR2 (as solid and dashed curves, on top) as well
as PI1, PI2 and PI3 (as solid, dashed and dotted curves, at the bottom). Note
that all the models consist of two distinct regimes of slow roll and ultra slow
roll inflation, while the punctuated inflationary models also contain a short
period of departure from inflation.
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the second regime of slow roll is a few orders of magnitude smaller than its value during
the initial regime, thereby leading to the nomenclature of ultra slow roll inflation. We
should point out that there is no deviation from inflation in these models, as the first
slow roll parameter always remains smaller than unity until the very end of inflation.
The transition from slow roll to ultra slow roll is rather rapid and this aspect is reflected
by the sharp rise and fall in the amplitude of the second and third slow roll parameters
within a short period. It should also be highlighted that the second slow roll parameter ε2
is large and negative (about−6 and−7 in USR1 and USR2) during the ultra slow phase
when the first slow roll parameter ε1 is rapidly decreasing. The parameter ε2 changes
sign when ε1 begins to rise as the field crosses the point of inflection and rolls down
towards the minimum of the potential. But, ε2 continues to remain relatively large (it
is about 0.2 and 0.9 in the cases of USR1 and USR2) even during this latter phase,
when compared to the typical slow roll values encountered, say, at early times before
the transition to the epoch of ultra slow roll.

To gain a better understanding of the dynamics involved, in Fig. 3.2, we have
also plotted the evolution of the scalar field in phase space for the case of USR2.
Evidently, trajectories from different initial conditions eventually merge with the
primary trajectory of interest. The transition to the ultra slow roll regime corresponds
to the sharp upward turn in the phase space trajectory when the velocity of the field
decreases as it nears the point of inflection. It is interesting to note that the solution
obtained in the slow roll approximation closely follows the primary trajectory even
during the ultra slow roll regime. The field crosses the point of inflection, eventually
emerging from the ultra slow regime, and inflation ends as the field approaches the
minimum of the potential.

3.2.2 Potentials permitting punctuated inflation

As we have discussed, punctuated inflation corresponds to a scenario wherein a short
period of departure from inflation is sandwiched between two epochs of slow roll.
With the help of specific examples, we shall illustrate that the period of departure from
inflation is inevitably followed by an epoch of ultra slow roll inflation.

A simple model that has been examined in the early literature which permits
interrupted inflation is described by the potential (see Ref. [162]; also see Refs. [163,
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Figure 3.2: The dynamics of the scalar field in the phase space φ-φN , where φN =
dφ/dN , has been illustrated for the models USR2 (on top) and PI3 (at the
bottom). Apart from the trajectory for the specific initial conditions we shall
be working with (plotted in red), we have also plotted the evolution for a few
other initial conditions (as solid curves in different colors). Moreover, in the
case of the primary trajectory, we have indicated the lapse in time every 3 e-
folds (as black dots on the red curves). Further, we have highlighted the
evolution arrived at using the standard slow roll approximation (as dotted
blue curves). Note that the vertical lines (in dashed black) identify the point
of inflection.
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164])
V (φ) = V0

(
1 +B φ4

)
. (3.3)

It should be evident that the inflection point for this model is located at φ = 0. For
B/M4

Pl
= 0.5520, one finds that the model leads to two epochs of inflation separated

by a brief interruption of inflation. In fact, around the interruption, the first slow
roll parameter rises above unity and quickly falls to very small values, resulting in
a period of ultra slow roll. It is easy to argue that such a behavior arises due to
the constant term V0 in the potential [162]. But, the presence of the constant term
simultaneously leads to an important drawback of the model. Once inflation is restored
after the interruption, it is found that the eventual slow roll regime lasts forever. There
is no conventional termination of inflation as the constant term V0 sustains slow roll
evolution even when the field has reached the bottom of the potential. So, one is either
forced to terminate inflation by hand or invoke an additional source to end inflation.
Despite these drawbacks, we shall nevertheless briefly discuss the model due to its
simplicity. We shall work with the above-mentioned value for the parameter B and
choose V0/M

4
Pl

= 8×10−13. We shall set the initial value of the field to be φi = 17M
Pl

,
and we shall assume that inflation ends after 70 e-folds. We shall hereafter refer to this
model as PI1.

The second potential that we shall consider can be expressed as (see, for instance,
Refs. [110, 111, 196])

V (φ) =
m2

2
φ2 −

(√
2λ (n− 1)m

n

)
φn +

λ

4
φ2 (n−1), (3.4)

where n is an integer. These potentials contain a point of inflection at

φ0 =

[
2m2

λ (n− 1)

]1/[2 (n−2)]

. (3.5)

We shall focus on the case n = 3, wherein the potential above reduces to

V (φ) =
m2

2
φ2 − 2m2

3φ0

φ3 +
m2

4φ2
0

φ4, (3.6)

which is the same as the potential (2.5) we had discussed in the last chapter. We
shall work with the following values of the parameters: m/M

Pl
= 1.8 × 10−6 and

φ0/MPl
= 1.9777. As we shall soon discuss, these choice of parameters indeed admit

punctuated inflation. However, one finds, as in the case of PI1, the above potential
(for the parameters mentioned) does not naturally result in an end of inflation after the
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desired duration. Despite this limitation, we shall discuss the model, since, it should
be clear that, modulo the denominator, the potential describing USR1 [cf. Eq. (3.1)] is
essentially the same as the potential (3.4). We shall choose the initial value of the field
to be φi = 20M

Pl
, and we shall again assume that inflation ends after 70 e-folds. We

shall refer to this model as PI2.

Another model we shall consider that permits punctuated inflation is motivated by
supergravity. It is described by the potential (see Ref. [160]; for a recent discussion,
also see Ref. [197])

V (φ) = V0

[
c0 + c1 tanh

(
φ√
6α

)
+ c2 tanh2

(
φ√
6α

)
+ c3 tanh3

(
φ√
6α

)]2

,

(3.7)
and we shall work with the following values for the parameters involved: V0/M

4
Pl

=

2.1 × 10−10, c0 = 0.16401, c1 = 0.3, c2 = −1.426, c3 = 2.20313 and α = 1. This
model too contains a point of inflection and, for the above values for the parameters, the
point of inflection is located at φ0 = 0.53M

Pl
. If we choose the initial value of the field

to be φi = 7.4M
Pl

, we find that inflation ends after about 68 e-folds. We shall refer to
this model as PI3. For the above choice of the parameters, apart from a plateau for large
field values, the potential admits a second plateau at smaller values of the field. As we
shall see soon, it is these aspects of the potential that permits punctuated inflation and
thereby aids in boosting the scalar power spectrum at small scales.

As in the case of the ultra slow roll models we had discussed in the previous sub-
section, we have plotted the first three slow roll parameters ε1, ε2 and ε3 for the models
PI1, PI2 and PI3 in Fig. 3.1. It is easy to see from the plots that the behavior of the three
slow roll parameters are very similar across the models and they differ only in their
location of the departures from slow roll. Evidently, after an initial slow roll regime, a
brief departure from inflation occurs with ε1 growing above unity. The interruption of
inflation is immediately followed by a period of ultra slow roll with ε1 falling to a value
that is considerably smaller than its value during the initial slow roll regime. Moreover,
other than PI3, the models have no definite end of inflation since ε1 does not rise to unity
once the ultra slow roll regime has begun. Further, note that, when the epoch of ultra
slow roll sets in, as in USR1 and USR2, the second slow roll parameter ε2 turns large and
negative in all the cases of PI1, PI2 and PI3. The parameter ε2 eventually approaches
zero in the cases of PI1 and PI2, since the first slow roll parameter never rises from its
very low values in these models. However, in PI3, since ε1 rises ultimately leading to
the end of inflation, the second slow roll parameter ε2 eventually turns positive (from
nearly −7) and attains a large value (around 1.2), in very much the same manner it had
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in USR2. As with USR2, we have plotted the behavior of the field in phase space for
the case of PI3 in Fig. 3.2. It should be clear from the figure that the velocity of the
field reaches larger values in the case of PI3 than in the case of USR2 prior to entering
the ultra slow roll regime. Evidently, it is this behavior that is responsible for the brief
interruption of inflation.

3.3 EVOLUTION OF THE CURVATURE PERTURBATION AND POWER
SPECTRA

In this section, we shall discuss the scalar and tensor power spectra that arise in the
models permitting ultra slow roll and punctuated inflation we had introduced in the
previous section. However, before we go on to discuss the power spectra, we shall
illustrate the behavior of the curvature perturbations during the period of deviation
from slow roll. Specifically, we shall highlight the role played by the intrinsic entropy
perturbations in the enhancement of the amplitude of the curvature perturbations over
wave numbers that leave the Hubble radius either immediately prior to or during the
departure from slow roll.

3.3.1 Role of the intrinsic entropy perturbation

Often the evolution of the curvature perturbations in non-trivial scenarios involving
departures from slow roll inflation are examined in terms of the behavior of the
quantity z (see, for instance, Refs. [160, 198, 199]). We find that it proves to
be instructive to understand this aspect from the behavior of the intrinsic entropy
perturbation [109, 163]. It is well known that, in contrast to perfect fluids, scalar
fields, in general, possess non-vanishing non-adiabatic pressure perturbation δp

NA

or, equivalently, the intrinsic entropy perturbation S, which are related through the
expression (in this context, see, for example, Refs. [200, 201])

δp
NA

=
p′

H S, (3.8)

where p denotes the pressure associated with the background and, as we have indicated
earlier, H = aH is the conformal Hubble parameter. In the case of inflation driven by
a single, canonical scalar field, one can show that the intrinsic entropy perturbation Sk
associated with a given mode of the field can be expressed in terms of the corresponding
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curvature perturbation, say,Rk, as follows [109, 163]:

R′k = −
[

2 a2 p′

M2
Pl

(H′ −H2)

] (
1

1− c2
A

)
Sk, (3.9)

where c
A

=
√
p′/ρ′ is adiabatic speed of the scalar perturbations, with ρ being the

background energy density. It is easy to show using the equation of motion (1.11a)
describing the curvature perturbation that, in the super Hubble limit, the intrinsic
entropy perturbation Sk decays as e−2N . However, it is found that, during deviations
from slow roll, for modes which are either about to leave or have just left the Hubble
radius, the amplitude of the intrinsic entropy perturbation briefly increases, sourcing the
curvature perturbation [109, 164]. This, in turn, alters the amplitude of the curvature
perturbation for modes which cross the Hubble radius just before or during the departure
from slow roll.

To demonstrate these effects, in Fig. 3.3, we have plotted the evolution of the
curvature and the intrinsic entropy perturbations in the inflationary models USR2 and
PI3. In order to highlight the differences in the behavior of the modes, we have plotted
the evolution of the amplitudes for three modes which leave the Hubble radius just prior
to the start of the departure from slow roll inflation, immediately after start of the period
of transition, and during the middle of the transition. We should point out that we have
plotted the imaginary parts of Rk and Sk since they dominate at late times. Moreover,
they allow us to highlight the oscillations in the sub-Hubble regime. The time when
these oscillations cease is an indication that the modes have crossed the Hubble radius.
Evidently, there is a sharp rise in the amplitude of the intrinsic entropy perturbation for
all the modes during the departure from slow roll inflation. We should add here that
the corresponding real parts of Rk and Sk behave in a roughly similar manner. It is
the sharp rise in Sk that is responsible for either an enhancement or a suppression in
the asymptotic (i.e. late time) amplitude of the curvature perturbation, thereby leading
to features in the power spectrum (for related discussions in this context, also see, for
instance, Refs. [160, 202]). In contrast, we find that there is relatively little effect of the
deviation from slow roll on the evolution of the amplitude of the tensor perturbations.
Due to this reason, the tensor power spectrum exhibits far less sharper features than the
scalar power spectrum.
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Figure 3.3: The evolution of the amplitudes of the imaginary parts of the curvature
perturbation Rk (on the left) and the corresponding intrinsic entropy
perturbation Sk (on the right) have been plotted for the three wave numbers
k = 1010 Mpc−1, 1011 Mpc−1 and 1014 Mpc−1 (in light, lime and dark
green, respectively) in the two models USR2 (on top) and PI3 (at the
bottom) as a function of e-folds. We have also included the behavior of
the first two slow roll parameters ε1 and |ε2| (in red and blue, respectively,
on the left) in these models to indicate the regime (demarcated by the cyan
band) over which the transition from slow roll to ultra slow roll occurs. The
first mode with the smallest wave number is already in the super-Hubble
regime when the departure from slow roll sets in, and the amplitude of the
corresponding curvature perturbation is hardly affected by the transition.
The second mode is barely in the super-Hubble regime when the transition
from slow roll begins. The amplitude of its curvature perturbation is slightly
attenuated as it emerges from the departure from slow roll. Whereas, the
amplitude of the curvature perturbation associated with the third mode,
which leaves the Hubble radius right in the middle of the transition,
exhibits a considerable enhancement due to the transition. These changes
in the curvature perturbations can be attributed to the rapid growth in
the corresponding entropy perturbations (plotted on the right) during the
transition. We find that Sk grows as either e3N or e4N (indicated as dashed
lines) during the transition. We also find that the entropy perturbations
eventually die down as e−2N in the super-Hubble limit (indicated by dotted
lines) as expected. It is these behavior that lead to features in the inflationary
scalar power spectra.
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3.3.2 Scalar and tensor power spectra

We shall now turn to the scalar and tensor power spectra that arise in the ultra slow roll
and punctuated inflationary scenarios we had discussed in the last section. Barring the
brief rise of ε1 above unity in the models of punctuated inflation and the location of the
deviations from slow roll inflation, we had seen that the behavior of the first three slow
roll parameters were very similar in the different models of our interest (cf. Fig. 3.1).
We can expect these features to be reflected in the corresponding power spectra. In
Fig. 3.4, we have plotted the power spectra arising in all the five models, viz. USR1,
USR2, PI1, PI2 and PI3.

We shall first point out the features in the scalar power spectra that are common
to all the models. All the models exhibit a rise in scalar power on small scales
corresponding to modes that leave the Hubble radius during the second stage of slow
roll. Moreover, the location of the rise in power is determined by the time when
the deviation from slow roll occurs. This is due to the fact that, as we discussed
in the previous subsection, it is the amplitude of the modes which exit the Hubble
radius during the phase of departure from slow roll that are enhanced compared to
the amplitudes of modes which leave during the initial phase of slow roll. Further, the
modes that exit the Hubble radius during the epoch of ultra slow roll carry the imprints
of the extremely small values of the first slow roll parameter and hence exhibit higher
amplitudes.

Let us now consider the power spectra in the models USR1 and USR2. The
location of features in the spectra is determined by the finely tuned values of parameters
of the potential and the time when the modes leave the Hubble radius. Note that
both USR1 and USR2 have a definite end of inflation. Let us say that the pivot scale
k∗ = 0.05 Mpc−1 leaves the Hubble radius N∗ number of e-folds prior to the end of
inflation. For USR1 and USR2, to arrive at the power spectra plotted in Fig. 3.4, we have
assumed that N∗ = (50.0, 56.2). The occurrence of a peak in the scalar power spectra
at small scales in these models can be easily understood if we recall the behavior of the
slow roll parameters in these cases. Recall that, in slow roll inflation, the scalar spectral
index n

S
is given in terms of the first two slow roll parameters as n

S
= 1 − 2 ε1 − ε2.

Though the regime of our interest does not strictly correspond to slow roll dynamics,
we can utilize this relation to roughly understand the rise and fall of the scalar power
spectra. We had earlier mentioned that, as ε1 decreases rapidly during the epoch of ultra
slow roll and eventually rises from its very small values, ε2 changes from relatively large
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Figure 3.4: The scalar (in red) and tensor power spectra (in blue) have been plotted
in the various ultra slow roll and punctuated inflationary models of our
interest — USR1 and USR2 (as solid and dashed curves, on top) and PI1,
PI2, and PI3 (as solid, dashed and dotted curves, at the bottom) — over
a wide range of scales. Note that the enhancement of power on small
scales is more in the case of USR2 than USR1. Moreover, in the case of
the punctuated inflationary models, the scalar power in PI1 and PI2 do not
eventually come down at very small scales due to the fact that inflation does
not terminate in these models. We should also point out that, in contrast
to the scalar power spectra, the tensor power spectra have lower power at
small scales when compared to the large scales.
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negative values to positive values in USR1 and USR2. Since ε1 is very small during the
ultra slow roll regime, for modes which leave around this epoch, the spectral index n

S

mimics the behavior of −ε2, changing from large positive values (corresponding to an
initially blue spectrum) to negative values (corresponding to a red spectrum on smaller
scales), leading to a peak in the power spectra. Clearly, we also require that the power
spectra at large scales are consistent with the current constraints on the scalar spectral
index n

S
and the tensor-to-scalar ratio r from the CMB data [6, 158]. We find that

the models USR1 and USR2 lead to (n
S
, r) = (0.945, 0.015) and (0.946, 0.007) at the

pivot scale. We should add a word of caution in this regard. The above values for n
S

and r lie barely within the 2-σ limits on the respective parameters according to the latest
constraints from Planck [6]. Importantly, if one were to even slightly change the values
of the model parameters, the features in the power spectra get considerably altered.
In other words, there is a severe fine tuning involved in arriving at the desired power
spectra, an aspect which is well known and has been highlighted earlier (in this regard,
see, for instance, Ref. [72]).

Let us now turn to the power spectra arising in the punctuated inflationary models.
Once again, we can understand the behavior of the spectra at small scales in these
cases from the relation between the scalar spectral index and the slow roll parameters.
Recall that, while PI3 has a finite duration of inflation, there exists the problem of
termination of inflation in the models PI1 and PI2. Due to this reason, as should be
evident from the power spectra plotted in Fig. 3.4, the power never comes down in
PI1 and PI2 because the eventual slow roll regime lasts for a long duration. However,
since the evolution of the slow roll parameters in PI3 mimic their behavior in USR1 and
USR2, the resulting scalar power spectrum exhibits a peak for the same reason that we
discussed above, viz. the relatively large values and the change in the sign of the second
slow roll parameter ε2. For the three models of PI1, PI2 and PI3, we have set N∗ =

(60.0, 60.0, 54.5) to arrive at their respective spectra presented in Fig. 3.4. We find that,
for the choice of parameters that lead to COBE normalized scalar amplitude on large
scales, the scalar spectral index and the tensor-to-scalar ratio at the pivot scale prove
to be (n

S
, r) = (0.885, 0.580), (0.909, 0.461) and (0.944, 0.009) in PI1, PI2 and PI3,

respectively. Evidently, PI1 and PI2 are ruled out due to the large tensor-to-scalar ratio
(beyond the upper limits from Planck, see our discussion in Subsec. 1.2.1) generated on
the CMB scales in these models. In contrast, PI3 leads to a rather small tensor-to-scalar
ratio that is consistent with the bounds from the Planck data and also comes close to
satisfying the constraints on n

S
[6, 158]. As far as the extent of boosting the power

on small scales and the tunability of the model parameters are concerned, PI3 seems to
require the same extent of fine-tuning as USR1 and USR2. In contrast to PI3, we find
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that it is easier to achieve sustained amplification of power over a wider range of scales
in PI1 and PI2. But, obviously, it is achieved at the high cost that inflation does not
end within the desired duration, essentially making them unviable. Nevertheless, we
believe that there are lessons to be learnt from the simpler models PI1 and PI2 and we
will exploit the main features of these models to reverse engineer desired potentials in
the following section.

Lastly, let us make a few remarks on the tensor power spectra that we obtain in the
various models. Note that the tensor power spectra also exhibit a step-like feature in all
the models, but the step is in the opposite direction as compared to the scalars, with the
amplitude of tensors at small scales being a few orders of magnitude smaller than their
amplitude over large scales [110, 111, 203]. This can be attributed to the fact that after
the period of deviation from slow roll, the inflaton evolves over smaller values of the
field and hence smaller values of the potential.

3.3.3 Challenges in constructing viable models
With the experience of examining a handful of inflationary models, let us briefly
summarize the challenges in constructing viable and well motivated models that lead
to enhanced power on small scales.

To begin with, we need to ensure that the scalar spectral index n
S

and the tensor-to-
scalar ratio r are consistent with the cosmological data over the CMB scales. Moreover,
in order to boost the extent of PBHs formed and the amplitude of the secondary GWs,
we require enhanced power on small scales. Simultaneously, we need to make sure that
inflation ends in a reasonable number of (say, about 65) e-folds. It is found that, as one
attempts to resolve one issue, say, reduce the level of fine tuning or permit room to shift
the location of the features in the scalar power spectrum, another difficulty, such as the
prolonged duration of inflation, creeps in.

We should point out here that, a given potential which admits ultra slow roll
inflation for a set of values of the parameters involved may permit punctuated inflation
for another set (in this context, see App. B). For that reason, we should stress that
the potentials themselves cannot always be classified as ultra slow roll or punctuated
inflationary models. Hence, the dichotomy of ultra slow roll and punctuated inflationary
scenarios that we have created may be considered somewhat artificial. However, we
find it intriguing that whenever a potential admits restoration of inflation after a brief
interruption, it seems to naturally result in a regime of ultra slow roll inflation. We
believe that this aspect ought to be exploited to construct well motivated and viable
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canonical, single field inflationary models that also lead to enhanced PBH formation
and generate secondary GWs of significant amplitudes.

With the eventual aim of overcoming these difficulties in single, canonical scalar
field models of inflation, we shall now attempt to reconstruct potentials that possess the
desired features.

3.4 REVERSE ENGINEERING POTENTIALS ADMITTING ULTRA SLOW
ROLL AND PUNCTUATED INFLATION

In this section, we shall assume specific time-dependence for the first slow roll
parameter ε1 so that it leads to ultra slow roll or punctuated inflation. With the functional
form of ε1(N) at hand, we shall reconstruct the potentials using the equations of motion
for the background and evaluate the resulting scalar and tensor power spectra that arise
in the different scenarios [193–195].

3.4.1 Choices of ε1(N)

We shall consider the following two forms for ε1(N) which lead to ultra slow roll or
punctuated inflation for suitable choice of the parameters involved:

εI1(N) = [ε1a (1 + ε2aN)]

[
1− tanh

(
N −N1

∆N1

)]
+ ε1b + exp

(
N −N2

∆N2

)
,

(3.10a)

εII1 (N) = εI1(N) + cosh−2

(
N −N1

∆N1

)
. (3.10b)

We find that considering a parametrization of the first slow roll parameter rather than
the quantity z or the scale factor a proves to be much more convenient and easy to
model the scenarios of our interest (in this context, see the recent efforts [204, 205]).
The approach we adopt also allows us to easily ensure that the CMB constraints on
large scales are satisfied. The above forms of ε1(N) are supposed to represent the
ultra slow roll and the punctuated inflationary scenarios we had discussed earlier. For
convenience, we shall hereafter refer to the reconstructed inflationary scenarios arising
from the forms of ε1(N) in Eqs. (3.10a) and (3.10b) as RS1 and RS2, respectively. We
shall now highlight a few points concerning the above constructions before proceeding
to calculate the resulting power spectra.

Consider RS1 described by ε1(N) in Eq. (3.10a). Note that the functional form
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contains seven parameters, viz. ε1a, ε1b, ε2a,N1,N2, ∆N1 and ∆N2. For suitable choices
of these parameters, this form of ε1(N) leads to a period of slow roll followed by an
epoch of ultra slow roll, before inflation eventually ends, as encountered in the ultra
slow models USR1 and USR2 we had discussed in the last section. While ε1a and ε1b
determine the values of the first slow roll parameter during slow roll and ultra slow roll,
the parameters N1 and N2 determine the duration of these two phases. Note that the
first term in the functional form (3.10a) is expressed as a product of two parts. The
first part involving the parameter ε2a induces a small time dependence during the early
stages. Such a time dependence is necessary to achieve slow roll inflation which leads
to scalar and tensor power spectra that are consistent with the CMB data. Recall that, in
slow roll inflation, the scalar spectral index and the tensor-to-scalar ratio are given by
n

S
= 1 − 2 ε1 − ε2 and r = 16 ε1, with the slow roll parameters evaluated at the time

when the modes cross the Hubble radius. For suitable choices of ε1a and ε2a, we find that
we can arrive at spectra that are consistent with the constraints on n

S
and r from CMB,

viz. n
S

= 0.9649 ± 0.0042 and r < 0.056 at the pivot scale (see Refs. [6, 158]; also
see Subsec. 1.2.1). The second part of the first term containing the hyperbolic tangent
function aids in the transition from the slow roll to the ultra slow roll phase around the
e-fold N1. We need to set N1 so that all the large scale modes leave the Hubble radius
during the first slow roll phase.

The second term ε1b in Eq. (3.10a) essentially prevents the first slow parameter ε1
from reducing to zero beyond N1. Since ε1b defines the ultra slow roll phase of the
model, we shall choose the parameter to be much smaller than ε1a. The last term
involving the exponential factor has been included to essentially ensure that ε1 rapidly
rises at later times, crossing unity at N2, resulting in the termination of inflation. Lastly,
the rapidity of the transitions from slow roll to ultra slow roll and from ultra slow roll
to the end of inflation are determined by the parameters ∆N1 and ∆N2, respectively. In
summary, since ε1a and ε2a are constrained by the CMB data on large scales, we have
five free parameters, viz. ε1b, N1, N2, ∆N1 and ∆N2, to construct the features we desire
in the scalar power spectra over small scales.

Let us now turn to RS2 with ε1(N) described by Eq. (3.10b). In this case, evidently,
the term involving the hyperbolic cosine function has been added to the form of ε1(N) in
RS1. This additional terms leads to a brief interruption of inflation around the e-foldN1,
as is encountered in the punctuated inflationary models PI1, PI2, and PI3 discussed
earlier.

Both the constructions of ε1 above have been motivated to simplify the study of
models containing an epoch of ultra slow roll with or without punctuation and thus
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producing inflationary spectra with either extended or localized features on small scales.
The advantage of these constructions is that the parameters are easy to tune, which
allows us to directly infer the corresponding effects on the background dynamics and
importantly on the power spectra, unlike the specific inflationary models examined
earlier. Of course, this has been possible due to the fact the reconstructions involve
more parameters than the potentials we have considered.

3.4.2 Reconstructed potentials and the corresponding scalar and tensor power
spectra

Using the Friedmann equations and the equation of motion governing the inflaton, it is
straightforward to show that the time evolution of the scalar field φ(N) and the Hubble
parameter H(N) can be expressed in terms of the slow roll parameter ε1(N) as follows:

φ(N) = φi −MPl

∫ N

Ni

dN
√

2 ε1(N), (3.11a)

H(N) = Hi exp

[
−
∫ N

Ni

dN ε1(N)

]
, (3.11b)

where φi and Hi are the values of the scalar field and the Hubble parameter at some
initial e-fold Ni. We can use the above relations to arrive at the required background
quantities given a functional form for ε1(N). These background quantities can then be
utilized to evaluate the resulting scalar and tensor power spectra. It is useful to note that
the potential V (N) can be expressed in terms of the Hubble parameter and the first slow
roll parameter as

V (N) = M2
Pl
H2(N) [3− ε1(N)] . (3.12)

Having obtained φ(N) and V (N), clearly, we can construct V (φ) parametrically.

In Fig. 3.5, we have plotted the two choices (3.10) for ε1(N) and the corresponding
potentials for a small range of the parameter ∆N1 that determines the duration of the
transition from slow roll to ultra slow roll. The parameters we have worked with in the
case of the reconstructed scenario RS1 are as follows: ε1a = 10−4, ε2a = 5 × 10−2,
ε1b = 10−10, N1 = 42, N2 = 72 and ∆N2 = 1.1. We have varied the parameter ∆N1

over the range (0.3345, 0.7) to obtain the bands of ε1 and the corresponding potential in
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Figure 3.5: We have plotted the functional forms of ε1(N) (in blue, on the left) as well
as the corresponding forms of the reconstructed potentials (in blue, on the
right) in the cases of RS1 (on top) and RS2 (at the bottom) for suitable
values of the parameters involved. In fact, we have plotted the behavior
in RS1 and RS2 as bands corresponding to a small range of the parameter
∆N1 which determines the duration of the transition from slow roll to ultra
slow roll. For comparison, we have also plotted the behavior of ε1 (in red,
on the left) and illustrated the potentials (in red, on the right) in the models
USR2 (on top) and PI3 (at the bottom). We have chosen the parameters in
the cases of RS1 and RS2 so that they closely resemble the behavior of ε1
in the models USR2 and PI3. Interestingly, we find that the reconstructed
potentials always contain a point of inflection. Note that, in the cases of RS1
and RS2, we have set V0 = H2

i M
2
Pl

, which corresponds to V0 = 5.625 ×
10−9M4

Pl
.
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the figure. Similarly, in the case of RS2, the parameters we have chosen to work with
are as follows: ε1a = 8 × 10−5, ε2a = 6.25 × 10−2, ε1b = 10−10, N1 = 48, N2 = 72

and ∆N2 = 0.8. The parameter ∆N1 has been varied over the range (0.3847, 0.5)

to arrive at the bands of ε1 and the corresponding potential. We should note that the
band describing the potential is more pronounced in the case of RS2 than in RS1.
The choices for ε1a and ε2a have been made so that the resulting power spectra are
consistent with the Planck constraints on the scalar spectral index n

S
and the tensor-to-

scalar ratio r at the pivot scale that we mentioned earlier. For comparison, in the figure,
we have also included the behavior of the first slow parameter as well as the form of the
potential in the models USR2 and PI3. It should be clear that, for suitable values of the
parameters, our functional forms for ε1(N) closely mimic the corresponding behavior
in these models. Moreover, from the parametric forms of V (φ) constructed numerically,
we have been able to determine if the reconstructed potentials in the cases of RS1 and
RS2 contain a point of inflection. At an accuracy of 0.1%, we find that the reconstructed
potentials indeed contain an inflection point.

With the background quantities at hand, it is straightforward to compute the power
spectra by integrating the differential equations (1.11) for the curvature and the tensor
perturbations. In Fig. 3.6, we have plotted the power spectra that arise in the scenarios
RS1 and RS2. We have also compared the power spectra in these cases with the
spectra in USR2 and PI3. It is clear that, while the scalar power spectra from the
reconstructed potentials are indeed very similar to the power spectra from USR2 and
PI3, the corresponding tensor power spectra exhibit some differences. Since we shall
be focusing on the observational imprints of the scalar perturbations generated during
inflation, we shall ignore these differences for now. We shall make a few clarifying
remarks regarding this point in the concluding section.

Earlier, we had emphasized the point that the models USR2 and PI3 are highly
fine-tuned and that it is difficult to move the locations of the peaks in the scalar power
spectra substantially without either considerably affecting the duration of inflation or
the spectra over the CMB scales. In contrast, because of the presence of the additional
parameters, the scenarios RS1 and RS2 are easier to tune and, as a result, we find that
we can shift the location of the peak as well as broaden its width. In Fig. 3.6, apart
from the spectra in RS1 and RS2 which closely mimic the scalar spectra that arise in
USR2 and PI3, we have plotted the power spectra for two other sets of parameters which
lead to peaks at different locations and also exhibit a broader peak. These spectra have
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Figure 3.6: The scalar (in solid blue) and tensor power spectra (in dashed blue) resulting
from the scenarios RS1 (on top) and RS2 (at the bottom) have been plotted
over a wide range of wave numbers. For comparison, we have also plotted
the scalar (in solid red) and tensor (in dashed red) power spectra that arise
in the cases of USR2 (on top) and in PI3 (at the bottom). In the cases
of RS1 and RS2 (plotted in blue), we have chosen the parameters so that
the peak in the scalar power spectra roughly coincides with the peaks in
the models of USR2 and PI3 (plotted in red), respectively. In addition, we
have plotted the spectra arising in RS1 and RS2 for two other values of the
parameterN1 to produce peaks in the scalar power at smaller wave numbers
(in green and orange). Actually, we have plotted the spectra in RS1 and RS2
as bands (in blue, green and orange) corresponding to a small range of the
parameter ∆N1 [cf. Eqs. (3.10)].
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been achieved by choosing different values for the parameter N1, while keeping the
other parameters fixed at the values mentioned earlier. To arrive at the spectra with the
broader peaks in Fig. 3.6, we have set N1 = 34 and 26 in the case of RS1 and N1 = 40

and 32 in the case of RS2. We should mention that a smaller choice of N1 leads to a
peak at a smaller wave number. Moreover, the bands associated with these two spectra
correspond to the variation of the parameter ∆N1 over the domain we had mentioned
before.

In the next two sections, we shall study the imprints of the various power spectra
on the formation of PBHs and the generation of secondary GWs.

3.5 FORMATION OF PBHS

Earlier, in Subsec. 1.2.2, we had described the calculation of the quantity f
PBH

,
i.e. the fraction of PBHs that constitute the cold dark matter density today, in a
given inflationary model. Using the method outlined, we have calculated the quantity
f
PBH

(M) in the models USR2, PI3, RS1, and RS2, and have plotted the results
in Fig. 3.7. In the figure, we have also indicated the constraints from the various
observations such as constraints from gravitational lensing [206, 207], constraints
due to the limits on extragalactic background photons from PBH evaporation [12],
constraints from microlensing searches by Kepler [208], MACHO [209], EROS [210]
and OGLE [211], constraints from the large scale structure [12], constraints from the
CMB anisotropies due to accretion onto PBHs (FIRAS and WMAP3) [212] and, finally,
constraints from the dynamics of ultra-faint dwarf galaxies [213]. (For the latest and
comprehensive list of these constraints and a detailed discussion, see Refs. [13, 214].
For related discussions in these contexts, also see Refs. [215–218].) We find that,
in the cases of USR2 and RS1, where the location of the peaks in the scalar power
spectra approximately match, the maximum values of f

PBH
achieved are 1.5 × 10−2

and 0.10, respectively. For the models PI3 and RS2, when the peaks are located at
roughly the same wave number, we similarly obtain f

PBH
to be 3 × 10−3 and 0.11 at

their respective maxima. In these cases, the maxmima in f
PBH

(M) are located over the
domain M ' 10−16–10−12M�. For peaks in the scalar power spectra that occur at
smaller wave numbers in the cases of RS1 and RS2, as expected, the locations of the
maxima in f

PBH
(M) shift towards larger masses of PBHs. Interestingly, for the power

spectra in RS1 and RS2 which exhibit a broad peak beginning at k ' 106 Mpc−1,
there arise maxima in f

PBH
at tens of solar masses. However, the corresponding

89



1011 1016 1021 1026 1031 1036 1041 1046

10−10

10−7

10−4

10−1

CMB

GGB

EGB

V

GC WD
NS

HSC

K

O

E I
SN

PA

RX

S1

n/p

µ

XB

Eri

Ly-α
WB

DF

M

LSS

DH

GC

RS
G

GW2

IL

C

M/kg

10−16 10−12 10−8 10−4 100 104 108 1012 1016

M/M⊙

10−10

10−7

10−4

10−1

f P
B

H
(M

)

CMB

GGB

EGB

V

GC WD
NS

HSC

K

O

E I
SN

PA

RX

S1

n/p

µ

XB

Eri

Ly-α
WB

DF

M

LSS

DH

GC

RS
G

GW2

IL

C

Figure 3.7: The fraction of PBHs contributing to the dark matter density today f
PBH

has been plotted for the various models and scenarios of interest, viz. USR2
and RS1 (on top, in red and blue) and PI3 and RS2 (at the bottom, in red
and blue). We have plotted the quantity f

PBH
for the following three values

of δc: 1/3 (as solid curves) and 0.35 (as dashed curves) and 0.4 (as dotted
curves). In the cases of RS1 and RS2, apart from the original choices of
parameters that led to scalar spectra that closely matched the spectra in
USR2 and PI3, we have plotted the quantity f

PBH
for spectra which had

exhibited broader peaks starting at smaller wave numbers (cf. Fig. 3.6). As
in the previous figure, in the cases of RS1 and RS2, we have plotted bands
corresponding to a range of the parameter ∆N1. We have also indicated the
latest direct (in different colors) and indirect (in gray) constraints on f

PBH

from a variety of observations. We should mention here that the indirect
constraints depend on additional assumptions. Evidently, for the parameters
of the potentials we have been working with, USR2 leads to a larger
formation of PBHs than PI3. Moreover, note that the existing observational
constraints already limit the parameter ∆N1 in the reconstructions RS1 and
RS2.
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maximum value of f
PBH

at M ' 10M� is a few orders of magnitude smaller than
the maximum values we discussed above at smaller masses. This arises despite the fact
the amplitude of the scalar power spectra at their peak is the same in all these cases.
We believe that this result can be attributed to the dependence of f

PBH
on M as M−1/2

[cf. Eq. (1.41)]. We should point out here that the shaded bands corresponding to RS1
and RS2 in Fig. 3.7 indicate the range of f

PBH
that can be generated by varying the

parameter ∆N1 in the functional forms of ε1(N) [cf. Eqs. (3.10)]. The intersection of
the shaded bands with the constraints readily translate to the limits on this parameter in
our reconstructions RS1 and RS2. We find that a smaller ∆N1 leads to a steeper growth
of power and hence to a higher fraction of PBHs. Therefore, for a fixed set of values for
the other parameters, the constraints essentially restrict the rapidity of the transition of
inflation from slow roll to ultra slow roll epoch in our reconstructions.

3.6 POWER AND BI-SPECTRA OF SECONDARY GWS

In Subsec. 1.2.3, we had described the calculation of the dimensionless spectral energy
density of secondary GWs induced by the scalar perturbations at the second order over
wave numbers that reenter the Hubble radius during the radiation domination epoch.
Using the method, in this section, we shall calculate the power spectra of secondary
GWs generated in the inflationary models and scenarios of our interest. We shall also
calculate the bispectrum associated with the secondary GWs.

3.6.1 The spectrum of secondary GWs

In Fig. 3.8, we have plotted the quantity Ω
GW

(f) arising in the models USR2 and
PI3 as well as the reconstructed scenarios RS1 and RS2. In the figure, we have also
included the sensitivity curves associated with the various current and forthcoming
observatories, viz. PTA and the Square Kilometre Array (SKA) [14], LISA [87],
MAGIS-100 [95, 219], BBO [172–174], DECIGO [175, 176], ET [178], advanced
LIGO + Virgo [167, 220] and CE [221]. (For a summary of the sensitivity curves
and their updated versions, see Ref. [14] and the associated web-page.) We should
mention here that the estimated sensitivity curves have been arrived at assuming a power
law spectrum (the so-called ‘power-law integrated curves’) over the bands of interest.
These sensitivities are expected to be achieved by integrating over frequency in addition
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Figure 3.8: The dimensionless density parameter Ω
GW

associated with the secondary
GWs generated in the models and reconstructed scenarios of USR2 and
RS1 (in red and blue, on top) as well as PI3 and RS2 (in red and blue,
at the bottom) have been plotted as a function of the frequency f . We
have also plotted the Ω

GW
produced by the scenarios RS1 and RS2 with

broader peaks beginning at smaller wave numbers (in green and orange).
The bands of spectra, as with the previous figures, correspond to variation
of the parameter ∆N1 for a given N1. Moreover, we have included the
sensitivity curves of various existing and upcoming observational probes of
GWs (as shaded regions, in the top part of the panels). Clearly, it should
be possible to detect the GWs generated in the models and scenarios of our
interest by some of the forthcoming observatories.
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to integrating over time [222, 223]. It should be evident from the figure that the strength
of the GWs generated in the models and scenarios we have examined here is significant
enough to be detectable by one or more of these observatories. Recall that, spectra
arising in the scenarios RS1 and RS2 with broad peaks starting from a wave number of
about 106 Mpc−1 had led to PBHs with tens of solar masses. It should be clear from
Fig. 3.8 that the constraints from PTA on Ω

GW
already rule out such spectra for certain

values of ∆N1.

3.6.2 The secondary tensor bispectrum

In this subsection, we shall evaluate the secondary tensor bispectrum generated in the
inflationary models and scenarios of our interest. The secondary tensor bispectrum, say,
Bλ1λ2λ3h (k1,k2,k3) is defined as

〈
hλ1k1

(η)hλ2k2
(η)hλ3k3

(η)
〉

= (2π)3 Bλ1λ2λ3h (k1,k2,k3, η) δ(3)(k1 + k2 + k3). (3.13)

We can evaluate the tensor bispectrum during the radiation dominated era by using the
expression (1.49) for hλk(η). As we had discussed, hλk(η) is quadratic in the Gaussian
variables Rk. Therefore, obviously, the bispectrum Bλ1λ2λ3h (k1,k2,k3, η) will involve
six of these variables. Upon utilizing Wick’s theorem applicable to Gaussian random
variables, one can show that the tensor bispectrum consists of eight terms all of which
lead to the same contribution [94, 95]. For convenience, we shall define

Gλ1λ2λ3
h (k1,k2,k3, η) = (2π)−9/2 Bλ1λ2λ3h (k1,k2,k3, η) (3.14)

and hereafter refer to Gλ1λ2λ3
h (k1,k2,k3, η) as the secondary tensor bispectrum. We

find that the secondary tensor bispectrum can be expressed as

Gλ1λ2λ3
h (k1,k2,k3, η) =

(
8π

9

)3
1

(k1 k2 k3 η)3

×
∫

d3p1 e
λ1(k1,p1) eλ2(k2,p2) eλ3(k3,p3)

× PS
(p1)

p3
1

P
S
(p2)

p3
2

P
S
(p3)

p3
3

× J
(
p1

k1

,
p2

k1

, η

)
J

(
p2

k2

,
p3

k2

, η

)
J

(
p3

k3

,
p1

k3
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)
,

(3.15)
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where p2 = p1 − k1, p3 = p1 + k3 and, for convenience, we have set

J

(
p1

k1

,
p2

k1

, η

)
= Ic

(
p1

k1

,
p2

k1

)
cos (k1 η) + Is

(
p1

k1

,
p2

k1

)
sin (k1 η) , (3.16)

with Ic(v, u) and Is(v, u) given by Eqs. (1.51). In a manner partly similar to the case
of the secondary tensor power spectrum, we shall replace the trigonometric functions
by their averages so that the function J(x, y, η) is instead given by

J̄(v, u) =
1√
2

[
I2
c (v, u) + I2

s (v, u)
]1/2

. (3.17)

Our aim in this work is to understand the amplitude of the secondary tensor
bispectrum generated due to the scalar perturbations for modes that reenter the Hubble
radius during the radiation dominated era. For simplicity, we shall restrict our analysis
to the equilateral limit of the bispectrum so that k1 = k2 = k3 = k. In order to
determine the integrals involved in the expression (3.15), we shall choose a specific
configuration for the vectors k1, k2 and k3. We shall assume that the vectors lie in the
x-y-plane with k3 oriented along the negative x-direction. In such a case, we find that
the vectors (k1,k2,k3) in the equilateral limit are given by

k1 =
(
k/2,
√

3 k/2, 0
)
, k2 =

(
k/2,−

√
3 k/2, 0

)
, k3 = (−k, 0, 0). (3.18)

We shall choose p1 = (p1x, p1y, p1z) so that, since p2 = p1 − k1 and p3 = p1 + k3, we
have

p2 =
(
p1x − k/2, p1y −

√
3 k/2, p1z

)
, p3 = (p1x − k, p1y, p1z). (3.19)

We find that such a choice of Cartesian coordinates proves to be convenient to carry
out the integrals involved than the cylindrical polar coordinates that have been adopted
earlier [94, 95]. Therefore, the tensor bispectrum in the equilateral limit Gλ1λ2λ3

h (k) can
be written as

k6Gλ1λ2λ3
h (k, η) =

(
8π

9
√

2

)3
1

(k η)3

×
∫ ∞

−∞
dp1x

∫ ∞

−∞
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. (3.20)
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The factors eλ(k,p) involving the polarization tensor can be readily evaluated for our
configurations of (k1,k2,k3) and (p1,p2,p3) (for details, see App. C). Since λ can be +

or ×, clearly, the tensor bispectrum Gλ1λ2λ3
h (k, η) has eight components. However, we

find that e×(k,p) is odd in p1z [cf. Eqs. (C.1)]. As a result, the tensor bispectrum proves
to be non-zero only for the following combinations of (λ1λ2λ3): (+ + +), (+ × ×),
(×+×) and (××+). Also, note that the integral above describing the tensor bispectrum
in the equilateral limit is symmetric under the simultaneous interchange of λ1 ↔ λ2,
k1 ↔ k2 and p1 ↔ p2. This implies that, in the equilateral limit of interest, the tensor
bispectrum for the three components (+××), (×+×) and (××+) are equal. Hence,
we are left with only G+++

h (k, η) and, say, G+××
h (k, η) to evaluate.

We proceed to numerically evaluate G+++
h (k) and G+××

h (k) in the models and
scenarios of our interest, viz. USR2, PI3, RS1, and RS2. Because the scalar power
spectra in these cases exhibit a localized maxima, we restrict our evaluation of the tensor
spectrum to the range of wave numbers around the peak. We find that the integrand in
Eq. (3.20) exhibits a maximum around |p1| ' k and, beyond that, it quickly decreases
in all the three directions of integration. In fact, the contributions to the integral prove
to be negligible for |p1| & 100 k. So, we choose the limits for our integrals over p1x,
p1y and p1z to be (−103 k, 103 k).

In order to understand the behavior of the tensor bispectrum, we shall calculate the
dimensionless quantity referred to as the shape function, say, Sh(k), which is defined
as [94, 95]

Sλ1λ2λ3h (k) =
k6Gλ1λ2λ3

h (k, η)√
P3
h(k, η)

. (3.21)

Note that, in this expression, both the quantities k6Gλ1λ2λ3
h (k) and Ph(k) are

dimensionless. Moreover, the overall dependence on time cancels out leading to a
shape function that is time-independent. In Fig. 3.9, we have plotted the shape functions
S+++
h (k) and S+××

h (k) for the four cases of interest, viz. USR2, PI3, RS1 and RS2. We
find that the amplitude of Sh(k) for a given model or scenario is maximum around the
wave number where the scalar power spectrum exhibits a peak. This is true for both the
cases of S+++

h (k) and S+××
h (k) though there is a certain asymmetry in the behavior of

the functions about the peak. We should point out that, while the amplitude of Sh(k)

remains large over large wave numbers, it quickly reduces to small values at smaller
wave numbers. In fact, this behavior should not come as a surprise since such a behavior
was also encountered in the case of Ω

GW
(f) (cf. Fig. 3.8). It is interesting to note that
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Figure 3.9: The dimensionless shape function Sh(k) characterizing the tensor
bispectrum has been plotted in the equilateral limit for the models and
scenarios of interest, viz. USR2 and RS1 (in red and blue, in the top panel) as
well as PI3 and RS2 (in red and blue, in the bottom panel). We have plotted
both the non-zero components S+++

h (k) (as solid curves) and S+××
h (k) (as

dashed curves) for all the cases. In plotting the results for RS1 and RS2, we
have set N1 = 42 and 48 and chosen ∆N1 to be the lowest value within our
windows, viz. 0.3345 and 0.3847. We find that, at large wave numbers [when
compared to the location of the peak in the scalar power spectra (cf. Figs. 3.4
and 3.6)], the amplitudes of S+++

h (k) and S+××
h (k) settle down to around

10 and −250, respectively. Also, at wave numbers smaller than the location
of the peak, the amplitudes of both the components prove to be of order
unity or less in all the cases.
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S+++
h (k) and S+××

h (k) settle down to about 10 and −250, respectively, at large wave
numbers. Recall that the secondary tensor bispectra and hence the shape functions we
have illustrated in Fig. 3.9 have been evaluated during the radiation dominated epoch,
when the modes are well inside the Hubble radius. They will have to be evolved
until today to examine the corresponding observational imprints which may possibly
be detected by upcoming missions such as, say, LISA and PTA (in this context, see
Ref. [94]; also see Refs. [224–226]).

3.7 CONTRIBUTIONS TO PBH FORMATION AND SECONDARY GWS
FROM SCALAR NON-GAUSSIANITIES

Until now, we have focused on the imprints of the scalar power spectrum on the extent
of PBHs formed and the generation of secondary GWs. Clearly, if the scalar non-
Gaussianities prove to be large in a given inflationary model, it seems plausible that
they would significantly alter the observables f

PBH
, Ω

GW
and Sh [70, 179–190]. To

understand the possible effects of non-Gaussianities on f
PBH

, Ω
GW

as well as Sh, in this
section, we shall first calculate the scalar bispectrum and thereby the corresponding
non-Gaussianity parameter f

NL
in the two inflationary models USR2 and PI3 and

the reconstructed scenarios RS1 and RS2. We shall then discuss the corresponding
contributions from the scalar bispectrum to f

PBH
, Ω

GW
and Sh.

3.7.1 Amplitude and shape of the bispectrum and the scalar non-Gaussianity
parameter f

NL

Recall that the non-Gaussianity parameter f
NL

(k1,k2,k3) associated with the scalar
bispectrum is defined in Eq. (1.28) (see, for instance, Refs. [56, 60]). As in the case of
the scalar power spectrum, due to the deviation from slow roll, it proves to be difficult to
evaluate the scalar bispectrum analytically in the inflationary models introduced earlier
in this chapter. In Sec. 1.1.3, we had outlined the procedure to numerically compute the
scalar bispectrum in inflationary models involving a single, canonical scalar field [55,
56]. In this subsection, using the method, we shall compute the scalar bispectrum in
the different inflationary models of our interest. With the scalar power and bi-spectra at
hand, evidently, it is straightforward to arrive the non-Gaussianity parameter f

NL
for a

given model.

Based on prior experience, we would like to emphasize a few points concerning the
expected shape and amplitude of the scalar bispectrum before we go on to present the
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results for f
NL

in the different models and scenarios we have considered earlier in this
chapter. As is well known, in slow roll inflationary models involving a single, canonical
scalar field, the scalar non-Gaussianity parameter f

NL
proves to be of the order of the

first slow roll parameter ε1 [52, 53, 59]. In other words, the parameter f
NL

is typically
of the order of 10−2 or smaller in such situations (see our discussion in Subsec. 1.1.3).
Moreover, the bispectrum is found to have an equilateral shape, with the f

NL
parameter

slightly peaking when k1 = k2 = k3 (see Fig. 1.4; in this context, also see Ref. [56]).
However, when departures from slow roll occur, the non-Gaussianity parameter f

NL

can be expected to be of the order of unity or larger, depending on the details of the
background dynamics. Further, in contrast to the slow roll case, wherein there is only a
weak dependence of the parameter f

NL
on scale, when departures from slow roll occur,

the parameter turns out to be strongly scale dependent. Needless to say, we can expect
that the non-Gaussianity parameter f

NL
to be relatively large as well as strongly scale

dependent in the situations of our interest.

Let us now discuss the results we obtain in the different models we have
introduced. In order to illustrate the complete shape of the bispectrum, the non-
Gaussianity parameter f

NL
is usually presented as a density plot in, say, the (k1/k3)-

(k2/k3)-plane (see Fig. 1.4; in this context, also see Refs. [56, 68]). It proves to be a
bit of a numerical challenge to compute the complete shape of the bispectrum across
the wide range of wave numbers over which we have evaluated the power spectra. As a
result, we shall focus on the amplitude of f

NL
in the equilateral and the squeezed limits,

i.e. when k1 = k2 = k3 = k and when k1 → 0, k2 ' k3 = k, respectively. It is easier
to calculate the scalar bispectrum in the equilateral limit as we just need to follow the
evolution of one mode at a time. To arrive at the scalar bispectrum in the squeezed
limit, we shall set k2 = k3 = k and choose k1 = 10−3 k. We have confirmed that
our results are robust against choosing a smaller value of k1. Before we go to illustrate
the amplitude and shape of the non-Gaussianity parameter f

NL
, let us understand the

behavior of the scalar bispectrum G(k1,k2,k3) itself. In Fig. 3.10, we have plotted
the scalar bispectra that arise in the equilateral and squeezed limits in the models of
USR2 and PI3. We would like to highlight a few aspects regarding the amplitude and
shape of the bispectra. Note that the scalar bispectra have roughly the same shape in the
equilateral and squeezed limits. Also, they closely resemble the corresponding scalar
power spectra and, in particular, they exhibit a dip and a peak around the same locations
(cf. Fig. 3.4). Moreover, at small scales, the scalar bispectra have a larger amplitude in
the equilateral limit than in the squeezed limit. Further, in the equilateral limit, the
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Figure 3.10: The amplitude of the dimensionless scalar bispectra has been plotted in
the equilateral (on top) and squeezed limits (at the bottom) for the models
USR2 (in red) and PI3 (in blue). Clearly, the bispectra have approximately
the same shape as the corresponding power spectra (cf. Fig. 3.4). Note
that, at small scales, the dimensionless bispectra have considerably lower
amplitudes in the squeezed limit when compared to their values in the
equilateral limit, whereas they have roughly the same amplitude over the
CMB scales.
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scalar bispectra have almost the same amplitude as the power spectra near the peak.

Let us now understand the behavior of the non-Gaussianity parameter f
NL

. In
Figs. 3.11 and 3.12, we have plotted the behavior of the f

NL
parameter in the equilateral

and squeezed limits over a wide range of wave numbers in the models USR2 and PI3
as well as the scenarios RS1 and RS2. The following points are evident from the two
figures. Firstly, in the equilateral limit, the non-Gaussianity parameter f

NL
proves to be

fairly large (of the order of 101–104) over a small range of wave numbers. In fact, the
f
NL

exhibit an upward spike in their amplitude around exactly the same wave numbers
wherein the scalar power spectra exhibit a downward spike (cf. Figs. 3.4 and 3.6). Since
the definition of the parameter f

NL
[cf. Eq. (1.28)] contains the scalar power spectrum

in the denominator, the upward spike can be partly attributed to the downward spike in
the power spectrum. If we ignore the large spike, we find that f

NL
' 1–10 around these

wave numbers. It is worth noting that these wave numbers correspond to those modes
which leave the Hubble radius just prior to or during the transition from the slow roll
to the ultra slow roll regime. In contrast, the non-Gaussianity parameter f

NL
proves to

be relatively small (at most of order unity) over wave numbers where the scalar power
spectra exhibit their peak. However, we should clarify that, though the value of f

NL
is

smaller than unity around this domain, it is considerably larger than its typical value
in slow roll inflation (of about 10−2, such as over the CMB scales in our models). For
instance, in USR2 and PI3, we find that, in the equilateral limit, f

NL
is about −0.37

and −0.44, respectively, near the locations of the peak in the power spectra. This can
be attributed to the large value of ε2 during the ultra slow roll regime. Secondly, in the
squeezed limit, the scalar bispectrum is expected to satisfy the so-called consistency
condition wherein it can be completely expressed in terms of the scalar power spectrum
[see Refs. [52, 135]; also see Eq. (2.10)]. In Figs. 3.11 and 3.12, apart from plotting f

NL

in the squeezed limit, we have also plotted the quantity fCR
NL

[cf. Eq. (2.11)] obtained
from the scalar spectral index. We should add that we have also examined the validity
of the consistency relation more closely by working with a smaller k1. We find that the
consistency condition is indeed satisfied even when there arise strong features in the
scalar power spectrum in all the scenarios of our interest (in this context, however, see
App. D). Therefore, in the squeezed limit, we find that f

NL
is at most of order unity

around the peaks of the scalar power spectra.
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Figure 3.11: The scalar non-Gaussianity parameter f
NL

has been plotted in the
equilateral (on top) and the squeezed (at the bottom) limits for the model
of USR2 (in red) and the reconstructed scenario RS1 (in blue and green).
Note that, in the case of RS1, we have worked with our original choice
of N1 = 42 and plotted the lower (in blue) and the upper (in green)
bounds of f

NL
corresponding to the range over which the parameter ∆N1 is

varied. In the case of USR2, we have also plotted the consistency condition
fCR
NL

(k) = (5/12) [n
S
(k)− 1] (as purple dots) along with the results in the

squeezed limit. Despite the deviations from slow roll leading to strong
features in the scalar power and bi-spectra, we find that the consistency
condition is always satisfied. The insets highlight the f

NL
around the

wave numbers where the scalar power spectra exhibit their peaks. It is
clear that the parameter f

NL
attains larger values in the equilateral (where

f
NL
' 101–104 at its maximum) than the squeezed (where f

NL
' 1–10)

limit. Importantly, we find that f
NL

is at most of order unity near the peaks
of the scalar power spectra.
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Figure 3.12: The scalar non-Gaussianity parameter f
NL

has been plotted in the
equilateral and the squeezed limits for the model PI3 and the reconstructed
scenario RS2 in the same manner (and the same choices of colors) as in the
cases of USR2 and RS1 in the previous figure. In the case of RS2, we have
worked with our initial choice of N1 = 48 and plotted the lower (in blue)
and the upper (in green) bounds of f

NL
corresponding to the range over

which the parameter ∆N1 is varied. It should be evident that our earlier
comments regarding the results for USR2 and RS1 apply to the cases of
PI3 and RS2 as well.
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It seems important that we clarify a point regarding the validity of the consistency
condition at this stage of our discussion. One may be concerned if the period of ultra
slow roll, with its large value of ε2, could lead to a violation of the consistency condition
over wave numbers that leave the Hubble radius during this epoch (in this context, see
Refs. [137, 138, 227]). Recall that the amplitude of scalar modes over a certain range
of wave numbers are modified to some extent during the transition from slow roll to
ultra slow roll (cf. Fig. 3.3). However, since, in the cases of our interest, the epoch of
ultra slow roll ends leading to the eventual termination of inflation, the amplitude of
the scalar modes asymptotically freeze at sufficiently late times (for further details, see
App. E; in this context, also see Refs. [132, 187]). Due to this asymptotic behavior
of the scalar modes, it should not come as a surprise that the consistency condition is
satisfied in the models and scenarios of our interest despite the phase of ultra slow roll
(for very recent discussions in this context, see Refs. [228, 229]).

3.7.2 Imprints of f
NL

on f
PBH

and Ω
GW

Recall that the observationally relevant dimensionless, scalar non-Gaussianity
parameter f

NL
is usually introduced through the following relation (see Ref. [230]; also

see Refs. [56, 60]):

R(η,x) = RG(η,x)− 3

5
f
NL

[RG(η,x)]2 (3.22)

where RG denotes the Gaussian contribution. In Fourier space, this relation can be
written as (see, for instance, Ref. [60])

Rk = RG
k −

3

5
f
NL

∫
d3p

(2 π)3/2
RG

p RG
k−p. (3.23)

If one uses this expression forRk and evaluates the corresponding two-point correlation
function in Fourier space, one obtains that [189, 190]

〈R̂k R̂k′〉 =
2 π2

k3
δ(3)(k + k′)

[
P

S
(k) +

(
3

5

)2
k3

2 π
f 2
NL

∫
d3p
P

S
(p)

p3

P
S

(|k − p|)
|k − p|3

]
,

(3.24)
where P

S
(k) is the original scalar power spectrum defined in the Gaussian limit

[cf. Eq. (1.12a)], while the second term represents the leading non-Gaussian correction.
We find that we can write the non-Gaussian correction to the scalar power spectrum,
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say, P
C
(k), as follows:

P
C
(k) =

(
3

5

)2

f 2
NL

∫ ∞

0

dv

∫ 1+v

|1−v|

du

v2 u2
P

S
(k v)P

S
(k u)

=

(
12

5

)2

f 2
NL

∫ ∞

0

ds

∫ 1

0

dd

(s2 − d2)2
P

S
[k (s+ d)/2]P

S
[k (s− d)/2].

(3.25)

Since we have evaluated the scalar non-Gaussianity parameter in the inflationary
models of our interest, we can now calculate the non-Gaussian corrections P

C
(k) to

the scalar power spectrum and the corresponding modifications to f
PBH

, Ω
GW

and Sh.
However, before we do so, we need to clarify an important point. In introducing the
scalar non-Gaussianity parameter through the relation (3.22), it has been assumed that
f
NL

is local, i.e. it is independent of the wave number [230]. In contrast, the parameter
f
NL

proves to be strongly scale dependent in all the situations we have considered.
In order to be consistent with the fact that the f

NL
in Eq. (3.22) is local, we shall

consider the squeezed limit of the parameter (in this context, also see the discussions in
Ref. [181]). Moreover, in the expression (3.25) for P

C
(k), we shall assume that f

NL
is

dependent on the wave number k, with k2 = k3 ' k and k1 � k to be consistent with
the squeezed limit. In Fig. 3.13, we have plotted the original Gaussian power spectrum
as well the modified power spectrum including the non-Gaussian corrections P

C
(k).

Recall that the non-Gaussianity parameter f
NL

had contained sharp spikes around the
wave numbers where the Gaussian scalar power spectra had exhibited a downward
spike (cf. Figs. 3.11 and 3.12). While evaluating the modified power spectra, we
have regulated the maximum value of these spikes to be |f

NL
| ' 100. Evidently, the

non-Gaussian corrections to the scalar power spectrum are insignificant. This can be
attributed to the fact that the peaks in the original power spectrum P

S
(k) and the non-

Gaussianity parameter f
NL

are located at different wave numbers. Therefore, we find
the corresponding modifications to f

PBH
, Ω

GW
and Sh are insignificant as well. This

conclusion can also be understood from the fact the amplitude of the dimensionless
bispectrum in the squeezed limit is considerably smaller than the amplitude of the scalar
power spectrum around its peak (cf. Fig. 3.10).

We should clarify a particular point regarding the non-Gaussian corrections we
have calculated in this section. Note that we have calculated the cubic order non-
Gaussian corrections to the power spectrum. In fact, as we shall discuss in Chap. 5,
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Figure 3.13: The original scalar power spectrum P
S
(k) (in solid red) and the modified

spectrum P
S
(k) + P

C
(k) (in dashed blue) arrived at upon including the

leading non-Gaussian corrections, have been plotted for the models of
USR2 (on top) and PI3 (at the bottom). In these models, the non-
Gaussianity parameter f

NL
had exhibited sharp spikes in its amplitude

around wave numbers where the Gaussian scalar power spectrum had
contained downward spikes. We should clarify here that, in order to arrive
at the modified power spectra, we have regulated the spikes in the f

NL

parameter so that its maximum value around these wave numbers is 102.
Clearly, the modifications to the scalar spectra, particularly at their peak,
is hardly significant.
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this method does not take into account all the contributions due to the scalar bispectrum
to the dimensionless spectral energy density Ω

GW
describing the secondary GWs.

Similarly, the approach does not completely account for the effects of non-Gaussianities
on the fraction f

PBH
of PBHs produced (for an early discussion on the topic, see

Ref. [231]; for recent discussions, see Refs. [232, 233]). In the context of PBHs, the
non-Gaussianities also change the shape of the probability distribution characterizing
the over-densities at the time of their formation, which we have assumed to be a
Gaussian [cf. Eq. (1.34)]. These effects due to the non-Gaussianities are expected to
be larger (than the corrections to the power spectrum we have calculated), and they
need to be taken into account to arrive at the modified f

PBH
[232].

3.8 DISCUSSION

In this chapter, we had considered models involving a single, canonical scalar field that
lead to ultra slow roll or punctuated inflation. All these models had contained a point
of inflection, which seems essential to achieve the epoch of ultra slow roll required
to enhance scalar power on small scales. We had also examined the extent of PBHs
formed and the secondary GWs generated in these models and had compared them with
the constraints on the corresponding observables f

PBH
and Ω

GW
. These models require

a considerable extent of fine tuning in order to lead to the desirable duration of inflation
(of say, 60–70 e-folds), be consistent with the constraints from the CMB on large scales,
and simultaneously exhibit higher scalar power on small scales.

In order to explore the possibilities in single field models further, we had also
considered scenarios wherein the functional forms for the first slow roll parameter
closely mimic the typical behavior in ultra slow roll and punctuated inflation. We
had reconstructed the potentials associated with these scenarios, evaluated the resulting
scalar and tensor power spectra as well as the corresponding imprints on f

PBH
, Ω

GW

and Sh. The presence of extra parameters in the choices for ε1(N) had allowed us
to construct the required scenarios rather easily. Interestingly, we had found that the
reconstructed potentials too contain a point of inflection as the original models do. This
lends further credence to the notion that a point of inflection is essential to achieve
ultra slow roll or punctuated inflation. However, we should add a note of caution that,
while we were able to broadly capture the expected shape of the scalar power spectra
in the reconstructed scenarios, there were some differences in the tensor power spectra
in these scenarios and the original models. Moreover, we find that these reconstructed
scenarios allow us to easily examine the rate of growth of the scalar power from the
CMB scales to small scales (for a discussion in this context, see Refs. [194, 199]).
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While the steepest growth possible in the reconstructed scenario RS1 has n
S
− 1 ' 4,

we find that the growth is non-uniform but faster in RS2 with n
S
− 1 between 4 and 6

over the relevant range of wave numbers (for details, see App. F). Further, though we
have been able to reconstruct the potentials numerically in the scenarios RS1 and RS2,
it would be worthwhile to arrive at analytical forms of these potentials [193–195].

We had also computed the scalar bispectrum and the associated non-Gaussianity
parameter f

NL
is these models and scenarios. We had found that the parameter f

NL

is strongly scale dependent in all the cases. Also, the non-Gaussianities had turned
out to be fairly large (with, say, f

NL
> 10 over a range of wave numbers) in the

equilateral limit. Moreover, we had found that the consistency condition governing
the non-Gaussianity parameter is always satisfied, despite the period of sharp departure
from slow roll, implying that the non-Gaussianity parameter in the squeezed limit is at
most of order unity around the domain where the scalar power spectra exhibit their peak.
Due to this reason, we had found that the non-Gaussian corrections to power spectra
were negligible leading to insignificant modifications to the observables f

PBH
, Ω

GW
and

Sh on small scales. However, we should point out that the effects of non-Gaussianities
on f

PBH
and Ω

GW
have been included in a simple fashion and a more detailed approach

seems required to account for the complicated scale dependence of f
NL

[182–187]. It
has recently been argued that, in the squeezed limit of the bispectrum, the part satisfying
the consistency relation should be subtracted away as it cannot be observed (in this
context, see Refs. [234, 235]; however also see Ref. [236]). If this is indeed so, since
the scalar bispectrum satisfies the consistency condition in the squeezed limit in the
models and scenarios we have examined, the cubic order non-Gaussian corrections to
the power spectrum would then identically vanish.

Moreover, we had calculated the secondary tensor bispectrum generated in
the different inflationary models of interest during the radiation dominated epoch.
Interestingly, we had found that the shape function characterizing the tensor bispectrum
has an amplitude of about 10–250 at small wave numbers in all the models and scenarios
of interest. It seems important to evolve the shape function until today and examine
the possibility of observing its imprints in ongoing efforts such as PTA [224] and
forthcoming missions such as LISA [94, 225, 226]. We are currently investigating these
issues in a variety of single and two field models of inflation [237–245].

107



CHAPTER 4
COULD PBHs AND SECONDARY GWs HAVE ORIGINATED

FROM SQUEEZED INITIAL STATES?

4.1 INTRODUCTION

It is now almost half-a-century since it was originally argued that black holes could
have formed due to over-densities in the primordial universe [8, 77]. The investigations
of such primordial black holes (PBHs) have gained traction over the last few years
with the observations of gravitational waves (GWs) from the mergers of binary black
holes [147–149, 246]. Several current and upcoming observational efforts promise to
provide constraints on the fraction of the PBHs constituting the bulk of cold dark matter
density in the current universe, a quantity usually referred to as f

PBH
[13]. Motivated by

these observational efforts, there has been several attempts to build models of inflation
that could generate considerable population of PBHs over certain mass ranges (see, for
example, Refs. [71, 72, 159, 160, 247]).

It is well known that scales smaller than those associated with the cosmic
microwave background (CMB), say, with wave numbers k > 1 Mpc−1, reenter the
Hubble radius during the radiation dominated epoch. If the scalar power over these
small scales have enhanced amplitudes (when compared to their COBE normalized
values over the CMB scales), they could, in principle, induce instantaneous collapses
of energy densities of corresponding sizes, thereby forming PBHs [70, 248, 249]. To
achieve a higher amplitude in the inflationary scalar perturbation spectrum (say, of the
order of 10−2) at larger wave numbers, one has to suitably model the background
dynamics so that a departure from slow roll inflation arises at late times. As we
have discussed in Chap. 3, in single field models, inflationary potentials containing
a point of inflection can generate the required boost in the scalar power (see, for
instance, Refs. [18, 72, 161, 250]). The inflection point in the potential leads to a
transient epoch of ultra slow roll inflation, which turns out to be responsible for the
rise in the scalar power over small scales. Other features, such as a bump or dip
artificially added to the potential are also known to boost the scalar power at larger
wave numbers [237, 251]. There have also been attempts to generate PBHs using other
mechanisms such as models involving non-canonical scalar fields [252, 253], inflation
driven by multiple fields [243–245, 254, 255], inducing a non-trivial speed of sound
during inflation [256–258], or a modified history of reheating and radiation dominated
era following inflation [259, 260].

Moreover, as we have discussed, when the scalar power is boosted to large
amplitudes, the second order tensor perturbations that are sourced by the quadratic



terms involving the first order scalar perturbations can dominate the contributions due
to the original, inflationary, first order tensor perturbations [88, 89]. In other words, the
enhanced scalar power, apart from producing a significant amount of PBHs, also leads
to considerable amplification of the secondary GWs at small scales or, equivalently, at
large frequencies [15]. These GWs induced by the scalar perturbations are expected to
be stochastic and isotropic. There are several experiments and observational surveys
that constrain the dimensionless energy density of such a stochastic gravitational wave
background, say, Ω

GW
, observable today [14].

As we mentioned above, the enhancement in the scalar power over small scales
can be achieved with the aid of a brief period of departure from slow roll inflation. We
should point out here that such scenarios would also produce a strongly scale dependent
bispectrum. However, it has been shown that, in single field models of inflation wherein
the deviation from slow roll is brief, the consistency condition relating the bispectrum
and the power spectrum in the squeezed limit is indeed satisfied (in this context, see
Refs. [18, 132, 228]). This implies that the magnitude of the scalar non-Gaussianity
parameter f

NL
is at the most of order unity over the range of wave numbers which

contains enhanced power. As a result, any corrections due to the bispectrum that has to
be accounted for in the power spectrum proves to be negligible in these models [18].

However, the aforementioned methods of modifying slow roll inflation to achieve
sufficient enhancement in the scalar power, and hence produce significant amount of
PBHs and secondary GWs, are known to pose certain challenges. They typically require
extreme fine-tuning of the parameters involved. Else, they may either prolong the
duration of inflation beyond reasonable number of e-folds or alter the scalar spectral
index n

S
and the tensor-to-scalar ratio r over the CMB scales thereby leading to a

tension with the constraints from Planck data (see, for instance, Refs. [18, 72]). There
exists another approach to achieve power spectra with the desired shape at small scales.
The alternative method is to work with non-vacuum, specifically, squeezed, initial
states for the perturbations during inflation. This method of evolving the perturbations
with initial states other than the standard Bunch-Davies vacuum is well known in the
literature and has been discussed in various contexts (see, for example, Refs. [261–
273]). These excited initial states for the perturbations can be expressed in terms of
the so-called Bogoliubov coefficients. As we shall see, the Bogoliubov coefficients
essentially provide us an independent function to introduce the desired features in
the power spectrum. However, while it is technically straightforward to arrive at the
required power spectrum with a suitable choice of the Bogoliubov coefficients, we
encounter two drawbacks with the proposed approach. On the one hand, it seems
challenging to design a mechanism that leaves the curvature perturbations in such
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an excited initial state. On the other hand, we find that squeezed initial states lead
to significant backreaction during the early stages of inflation unless the state is
remarkably close to the Bunch-Davies vacuum.

To illustrate these points, in this chapter, we shall focus on the popular lognormal
shape of amplification in the scalar power spectrum [15, 166]. In the following section,
we shall briefly describe the modes corresponding to squeezed initial states and discuss
the corresponding scalar power and bispectra. We shall consider suitable functional
forms for the Bogoliubov coefficients to produce the lognormal feature in the power
spectrum and calculate the corresponding scalar bispectrum analytically. We shall
show that the bispectrum is significantly enhanced in the squeezed limit and that the
consistency condition is strongly violated over the range of wave numbers containing
the lognormal feature. In other words, we find that the cubic order non-Gaussian
modifications to the scalar power spectrum can possibly dominate the amplitude of
the original scalar power around the feature for certain values of the parameter that
characterizes the deviations from the Bunch-Davies vacuum. In Sec. 4.3, we shall
compute the observable quantities of interest, viz. f

PBH
and Ω

GW
, generated from

such an enhanced scalar power spectrum. In Sec. 4.4, we shall first discuss possible
mechanisms that can lead to the squeezed initial states for the curvature perturbation
at early times. Thereafter, we shall describe the issue of backreaction wherein we
compute the energy density associated with the perturbations evolved from squeezed
initial states and compare it against the background energy density. We argue that
it is rather challenging to achieve such specific initial states by invoking mechanisms
operating prior to inflation. Moreover, we find that backreaction severely restricts the
extent of deviation of the initial state from the Bunch-Davies vacuum, particularly on
small scales. This, in turn, implies that the desired amplification in the power spectrum
and the larger levels of non-Gaussianities cannot be achieved in this approach unless the
choice of the specific initial state is satisfactorily justified and the issue of backreaction
is overcome. We shall finally conclude in Sec. 4.5 with a brief summary and outlook.

4.2 SQUEEZED INITIAL STATES, SCALAR POWER AND BI-SPECTRA

In this section, we shall construct scalar power spectra with a lognormal peak from
squeezed initial states. We shall also calculate the associated scalar bispectra and
utilize the result to arrive at the corresponding non-Gaussian modifications to the power
spectrum.

As far as the background dynamics is concerned, we shall have in mind the
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scenario of slow roll inflation. Recall that, in such a case, while it is the combination of
the nearly constant Hubble parameter H

I
and the first slow parameter ε1 that determine

the amplitude of the scalar power spectrum, the first two slow roll parameters ε1
and ε2 determine the scalar spectral index n

S
. Moreover, the tensor-to-scalar ratio r

is determined by the first slow roll parameter ε1 (in these contexts, see Subsecs. 1.1.2
and 1.2.1). The values of these parameters can be chosen so that we achieve nearly scale
invariant scalar and tensor power spectra that are consistent with the recent constraints
from Planck over the CMB scales [6]. However, for convenience, in our calculations
below, we shall work with the de Sitter modes to describe the scalar perturbations.
The modes, say, fk(η), describing the scalar perturbations that emerge from initial
conditions corresponding to squeezed states can be expressed as [261–271, 273]

fk(η) =
iH

I

2M
Pl

√
k3 ε1

[
α(k) (1 + i k η) e−i k η − β(k) (1− i k η) ei k η

]
, (4.1)

where α(k) and β(k) are the so-called Bogoliubov coefficients. Note that we have
encountered such an expression for the mode function earlier in a particular scenario
leading to a suppression of power over large scales and we have repeated the expression
here for convenience [cf. Subsec. 2.2.1, Eq. (2.6)]. As we had pointed out earlier, the
standard Bunch-Davies initial conditions correspond to setting α(k) = 1 and β(k) = 0.
The above modes correspond to squeezed initial states that are excited states above the
Bunch-Davies vacuum. We should also mention that the Bogoliubov coefficients α(k)

and β(k) are not completely independent functions, but satisfy the following constraint:

|α(k)|2 − |β(k)|2 = 1. (4.2)

This constraint arises due to the fact that the Wronskian associated with the differential
equation governing the scalar perturbations is a constant, which is determined by the
initial conditions imposed on the modes.

4.2.1 Power spectrum from squeezed initial states

The power spectrum of the scalar perturbations evolving from squeezed initial states
can be evaluated towards the end of inflation (i.e. as η → 0). Upon using the
modes (4.1), the resulting power spectrum can be expressed in terms of the Bogoliubov
coefficients α(k) and β(k) as follows:

P
S
(k) =

k3

2π2
|fk(η → 0)|2 = P0

S
(k) |α(k)− β(k)|2, (4.3)
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where P0
S
(k) denotes the COBE normalized, nearly scale invariant spectrum with a

small red tilt given by Eq. (1.17a). Since we are interested in the small scale features
of the spectrum, for simplicity, we shall assume that P0

S
(k) is strictly scale invariant

with a COBE normalized amplitude over all the wave numbers of our interest. We
should hasten to add that introducing a small red tilt does not affect our conclusions in
the remainder of our discussion. We shall choose to work with the following values of
the primary slow roll inflationary parameters: H

I
= 4.16 × 10−5M

Pl
, ε1 = 10−2 and

ε2 = 2 ε1. Also, note that the power spectrum is independent of an overall phase factor
and depends only on the relative phase factor between α(k) and β(k).

Let us now define δ(k) = β(k)/α(k). Then, upon using the constraint (4.2), the
power spectrum (4.3) can be written in terms of the function δ(k) as

P
S
(k) = P0

S
(k)

[ |1− δ(k)|2
1− |δ(k)|2

]
. (4.4)

For ease of modeling, we shall assume the relative phase factor between α(k) and
β(k) to be zero. We should clarify that this assumption is made just to simplify our
calculations. It can be relaxed, if needed, to model the spectrum with the phase factor
taken into account. Setting the relative phase factor to be zero essentially implies that
δ(k) is real so that the above expression for the scalar power spectrum reduces to

P
S
(k) = P0

S
(k)

{
[1− δ(k)]2

1− δ2(k)

}
. (4.5)

With the above form of the spectrum arising from squeezed initial states, we shall
now proceed to model the feature of our interest. Let us assume that the power spectrum
has a localized feature over a certain range of wave numbers, say, g(k), so that P

S
(k) is

given by
P

S
(k) = P0

S
(k) [1 + g(k)] . (4.6)

Upon comparing the above two equations, it is evident that the feature g(k) is related
to δ(k) as follows:

δ(k) =
−g(k)

2 + g(k)
. (4.7)

It should be clear that we have essentially traded off the function g(k) for δ(k). In
other words, we can choose an initial squeezed state described by δ(k) to lead to the
desired feature g(k) in the power spectrum. In this chapter, we shall assume g(k) to be
a lognormal function of the wave number k. Such a form for the feature in the spectrum
is often considered because of the fact that, when departures from slow roll arise, many
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single field and two field models lead to scalar power spectra whose shape near the
peak can be roughly approximated by such a function (see, for instance, Refs. [166,
245, 274]). Also, it simplifies the calculations involved and hence allows an easier
comparison of the quantities f

PBH
and Ω

GW
against the observational constraints [166,

275]. We shall assume that the function g(k) takes the form

g(k) =
γ√

2π∆2
k

exp

[
− ln2(k/kf)

2 ∆2
k

]
, (4.8)

where γ represents the strength of the feature in the spectrum, ∆k determines the width
of the Gaussian and kf denotes the location of the peak of the lognormal distribution. It
is useful to note here that, given g(k), the Bogoliubov coefficients α(k) and β(k) can
be obtained to be

α(k) =
2 + g(k)

2
√

1 + g(k)
, β(k) =

−g(k)

2
√

1 + g(k)
. (4.9)

We should stress again that these expressions for α(k) and β(k) have been arrived at
under the assumption that their relative phase factor is zero. We should also point out
that setting γ = 0 leads to g(k) = 0, δ(k) = 0, α(k) = 1 and β(k) = 0. This recovers
the standard Bunch-Davies vacuum state and the scale invariant spectrum. Moreover,
note that, for modes far away from kf , i.e. for k � kf or k � kf , g(k) → 0, and we
again recover the standard Bunch-Davies vacuum state. Therefore, it should be clear
that, in our scenario, it is only modes around kf which evolve from non-vacuum initial
states. Further, the strength of their deviation from the vacuum state is proportional to
the parameter γ.

In Fig. 4.1, we have plotted the scalar power spectra P
S
(k) containing a lognormal

feature with peaks located at four different wave numbers kf with suitable values for the
parameter γ. In the figure, we have also plotted the modified power spectra, i.e. P

S
(k)+

P
C
(k) [cf. Eqs. (3.24) and (3.25)], that have been arrived at when the non-Gaussian

modifications are taken into account. The reason behind the specific choice of the values
for the parameter γ will become clear when we discuss the non-Gaussian modifications
to spectra in a subsequent subsection.
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Figure 4.1: The scalar power spectra with a lognormal shape obtained from suitably
chosen squeezed initial states have been plotted for different sets of the
parameters γ and kf that determine the strength and the location of the
peaks. Note that, we have plotted the original spectra P

S
(k) (in red) as

well as the modified spectra P
S
(k) +P

C
(k) (in blue), where P

C
(k) denotes

the non-Gaussian modifications to the power spectrum [cf. Eqs. (3.24)
and (3.25)]. We have illustrated the spectra for the following four values
of kf : 105 Mpc−1 (as solid curves), 5×105 Mpc−1 (as dashed-dotted curves),
109 Mpc−1 (as dashed curves) and 1013 Mpc−1 (as dotted curves). We
have chosen the corresponding values of γ to be 4.5, 1.2, 5.5 × 10−4 and
4.5 × 10−8, respectively. We have set the width ∆k of the lognormal
distribution to be unity in all the cases. The features in the original spectra
P

S
(k) with peaks around 109 Mpc−1 and 1013 Mpc−1 are not as discernible

as those at the two other locations due to the small values of γ. Hence,
in these two cases, we have included insets to highlight the function g(k)
[cf. Eq. (4.8)] instead. The parameter γ has been chosen so that, when the
non-Gaussian modifications are taken into account, all the power spectra
have roughly the same amplitudes at their peaks.
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4.2.2 The associated scalar bispectrum and the non-Gaussianity parameter

We shall now proceed to calculate the corresponding scalar bispectra to eventually
take into account the non-Gaussian modifications to the power spectra. In scenarios
involving slow roll inflation, the scalar bispectrum, say, G(k1,k2,k3), is known to
consist of seven contributions, which arise from the cubic order action governing the
scalar perturbations (see Refs. [52, 53, 59]; also see our discussion in Subsec. 1.1.3).
Of these seven contributions, six arise due to the bulk terms in the third order action,
while the seventh arises due to a field redefinition carried out to absorb the boundary
terms [60, 61]. Amongst these contributions, in the situation of interest, it is known
that the first, second, third and the seventh terms, say, G1(k1,k2,k3), G2(k1,k2,k3),
G3(k1,k2,k3) and G7(k1,k2,k3), dominate the contributions due to the remaining
terms. Recall that the three vectors k1, k2 and k3 form the edges of a triangle
[cf. Eq. (1.18)]. As we had discussed in Subsec. 3.7.2, it is the bispectrum evaluated
in the so-called squeezed limit of the triangular configuration, i.e. when k1 → 0 and
k2 ' k3 ' k, that is expected to contribute to the non-Gaussian modifications to the
power spectrum (in this context, see, for instance, Refs. [181, 189, 190]).

The scalar bispectrum in slow roll inflation with squeezed initial states can be
calculated easily using the de Sitter modes (4.1) describing the scalar perturbations
(see, for example, Refs. [264, 266, 268–271]). Since the resulting expressions are
somewhat lengthy, we relegate them to an appendix. We have listed the complete
expressions for dominant contributions G1(k1,k2,k3), G2(k1,k2,k3), G3(k1,k2,k3)

and G7(k1,k2,k3) in App. G. It is useful to note that, in the squeezed limit, the
dominant contributions to the scalar bispectrum at the wave number kf , corresponding
to the location of the peak in the power spectrum P

S
(k), can be obtained to be

lim
k1�kf

k3
1 k

3
f [G1(k1,kf ,−kf) +G3(k1,kf ,−kf)] = k3

1 k
3
f [G1(kf) +G3(kf)]

' H4
I

16M4
Pl
ε1

kf

k1

γ√
2π∆2

k

×
(

2 +
γ√

2 π∆2
k

)
,

(4.10a)

lim
k1�kf

k3
1 k

3
f G2(k1,kf ,−kf) = k3

1 k
3
f G2(kf)

' H4
I

16M4
Pl
ε1

kf

k1

γ√
2π∆2

k

×
(

2 +
γ√

2 π∆2
k

)
,
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(4.10b)

lim
k1�kf

k3
1 k

3
f G7(k1,kf ,−kf) = k3

1 k
3
f G7(kf)

' H4
I
ε2

16M4
Pl
ε21

(
1 +

γ√
2π∆2

k

)
.

(4.10c)

In the above expressions, as is usually done in the context of slow roll inflation, we have
combined the contributions G1(kf) and G3(kf), as they have a similar dependence on
the wave numbers [see, for instance, Ref. [60]; in this context, also see Eqs. (1.27)]. We
should clarify that the above expressions are the dominant contributions for the values
of γ we have worked with. The striking property of the contributions G1(kf) + G3(kf)

and G2(kf) is their dependence on the squeezed mode as 1/k1. This property of the
bispectrum in the case of squeezed initial states is well known [266, 268, 270]. On the
other hand, note that, G7(kf) is independent of k1 in the limit k1 � kf . Therefore, at
the leading order, the bispectrum around kf is inversely proportional to the squeezed
mode k1.

Consider an observational survey extending over a certain range of scales such as,
say, the measurements of the anisotropies in the CMB, which spans a few decades in
wave numbers. In such a case, we can calculate the squeezed limit of the bispectrum
assuming k1 to be the smallest wave number within the range. In practice, this implies
that 1 . k/k1 . 104 over the CMB scales. Therefore, for squeezed initial states,
the bispectrum in the squeezed limit will be proportionately large and, hence, the
associated non-Gaussianity parameter can be expected to be of a similar order. Note
that, in this chapter, we are interested in examining phenomena leading to formation of
PBHs and generation of secondary GWs which occur at much smaller scales. For such
observations spanning several decades in wave numbers, it seems reasonable again to
choose k1 to be the smallest observable wave number. Therefore, in our calculations,
we shall set the value of squeezed mode to be k1 ' 10−4 Mpc−1, which roughly
corresponds to the Hubble scale today. Such a choice can clearly lead to a considerable
enhancement in the amplitude of the scalar bispectrum and the corresponding non-
Gaussianity parameter at the small scales of interest. Moreover, we should mention
that, because of this boost in the amplitude, the consistency condition relating the scalar
bispectrum to the power spectrum in the squeezed limit can be expected to be violated
over these scales.
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Figure 4.2: The dominant contributions to the dimensionless scalar bispectra in the
squeezed limit, viz. k3

1 k
3 times G1(k) + G3(k), G2(k) and G7(k), have

been plotted (in red, blue and green, respectively) for non-vacuum initial
states which lead to scalar power spectra with lognormal peaks. We have
plotted the contributions to the dimensionless bispectra for the four sets
of values for the parameters γ and kf (as solid, dashed-dotted, dashed and
dotted curves) we had considered in the previous figure. It is clear that
the bulk terms GC(k) with C = {1, 2, 3} dominate the contributions to the
bispectrum. In contrast, as expected, the boundary term G7(k) has a much
smaller amplitude and mimics the shape of the power spectrum.
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Figure 4.3: The non-Gaussianity parameter log |f
NL
| has been plotted as a density plot

in the k1/k3–k2/k3 plane, for the first of the four sets of parameters we had
introduced in Fig. 4.1. We have set k3 = kf and varied k1/k3 over the range
[5 × 10−4, 1] in arriving at this figure. Note that the f

NL
parameter has a

largely ‘local’ shape, with its maximum amplitude (in red) occurring in the
so-called flattened limit corresponding to the left edge of the triangle.

In Fig. 4.2, we have plotted the behavior of the bispectrum in the squeezed limit
for the four set of values for the parameters of γ and kf we considered earlier. Notice
that the amplitudes of the bispectra are significantly enhanced around the locations of
the peaks in the power spectra. The amplitudes retain their slow roll values away from
the peaks. The amplification of several orders of magnitude around kf arises evidently
due to the dependence of the bispectrum on the squeezed mode as 1/k1, as we discussed
above. We should stress that this amplification occurs even for a relatively small value
of the parameter γ, which quantifies the deviations from the Bunch-Davies vacuum.
We find that, for a larger k, we require a smaller value of γ to achieve the same level of
enhancement of the bispectrum. In other words, the bispectrum becomes increasingly
sensitive to deviations from the standard vacuum state at smaller scales.

Recall that, we had introduced the non-Gaussianity parameter f
NL

(k1,k2,k3)

associated with the scalar bispectrum G(k1,k2,k3) in Eq. (1.28). The dimensionless
parameter f

NL
(k1,k2,k3) can be calculated using the expressions (4.6), (4.8) and (G.1)

for the power spectrum, the function g(k) and the bispectrum. In order to understand
the complete shape of the scalar bispectrum, in Fig. 4.3, we have illustrated the non-
Gaussianity parameter as a density plot in the k1/k3–k2/k3 plane for the first of the four
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Figure 4.4: The non-Gaussianity parameter f
NL

(k) in the squeezed limit has been
plotted (in red) for the four set of parameters (as solid, dashed-dotted,
dashed and dotted curves) leading to lognormal spectra we had considered
in the first two figures. We have also plotted the quantity fCR

NL
(k) (in blue)

for all the cases to illustrate the fact that the consistency condition is strongly
violated around the region of the peaks in the power spectra.

sets of parameters for γ and kf we had introduced earlier (see the caption of Fig. 4.1).
The figure clearly illustrates the fact that the non-Gaussianity parameter has a largely
‘local’ shape. As is well known, its amplitude is the largest in the flattened limit,
i.e. along the line k2/k3 = 1 − k1/k3 which describes the left edge of the triangle
in Fig. 4.3. This shape evidently depends on the choice of k3, which in this illustration
has been set to be the location of the peak kf .

Let us now turn to consider the behavior of the parameter f
NL

in the squeezed limit.
In such a limit, on utilizing the results (4.10), we obtain the value of f

NL
at the location
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of the peak in the power spectrum P
S
(k) to be

lim
k1�kf

f SL

NL
(k1,kf ,−kf) = f SL

NL
(kf) ' −

5 ε1
6

kf

k1

γ√
2π∆2

k




2 + γ√
2π∆2

k

1 + γ√
2π∆2

k


 . (4.11)

In Fig. 4.4, we have plotted the behavior of f
NL

(k) in the squeezed limit for the
four sets of parameters we have mentioned earlier. We find that, for these choices
of the parameters, the value of f

NL
is of order 107 around kf , while it has the slow

roll value of 10−2 away from kf . Also, we find that the consistency condition —
viz. that fCR

NL
(k) = 5 [n

S
(k)− 1] /12, where n

S
(k) = 1 + d lnP

S
(k)/d ln k is the scalar

spectral index [cf. Eq. (2.11)] — is strongly violated around the lognormal peak as
expected, while it is satisfied sufficiently far away from the peak. It has been argued
that any calculation of f

NL
has to account for the so-called local observer effect (in this

context, see, for instance, Refs. [234, 235]). This essentially means that, to arrive at
the observable value of the non-Gaussianity parameter in the squeezed limit, we need
to subtract the part of f

NL
satisfying the consistency relation from its total value. In

the scenario of interest, around the peaks in the power spectra, the quantity fCR

NL
(k)

is negligible compared to the magnitude of f
NL

obtained from the squeezed initial
states. The main conclusions we can draw from the above considerations are twofold.
Firstly, for perturbations evolved from non-vacuum initial states, the non-Gaussianity
parameter f

NL
is inversely proportional to the value of squeezed mode. Hence, it has

a rather large amplitude over small scales for the values of the parameter γ we have
considered. Secondly, the amplitude of f

NL
is highly sensitive to even minor deviations

from standard vacuum state. As we shall discuss in the following subsection, the
large value for the non-Gaussianity parameter in the squeezed limit leads to substantial
modifications to the original power spectrum. This should be contrasted with scenarios
involving, say, ultra slow roll inflation, that we had considered in the previous chapter,
wherein the consistency condition governing the scalar bispectrum is satisfied in the
squeezed limit and hence the non-Gaussian corrections to the power spectrum prove to
be either negligible or identically zero [18, 228].

4.2.3 Non-Gaussian modifications to the scalar power spectrum

Having arrived at the bispectrum and the corresponding non-Gaussianity parameter,
let us now proceed to calculate the non-Gaussian modifications to the scalar power
spectrum [18, 189, 190, 192, 276]. Recall that, we have earlier arrived at an expression
for the non-Gaussian modifications to the power spectrum arising due to an f

NL
that is
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assumed to be local in shape [cf. Subsec. 3.7.2]. Therefore, we shall work with the value
f
NL

in the squeezed limit when calculating the non-Gaussian modifications to the power
spectrum. (Note that, around kf , the scalar bispectrum had a largely ‘local’ shape, as
illustrated in Fig. 4.3.) Moreover, the parameter f

NL
in the squeezed limit in our scenario

is highly scale dependent in the sense that it is large around kf (for the values of the
parameter γ we have worked with), but is completely negligible away from it. Hence,
when calculating the modifications to the spectrum, in Eq. (3.25), we have assumed f

NL

to be a function of k. In Fig. 4.1, we have plotted the modified spectra, viz. P
S
(k) +

P
C
(k), as well as the spectra P

S
(k) we had originally constructed. Note that the non-

Gaussian modifications P
C
(k) dominate at small scales around the peaks in the original

power spectra. In fact, it is due to the dependence of the non-Gaussianity parameter f
NL

on the squeezed mode as 1/k1 that we have been able to achieve the required boost in
the power spectrum [of O(10−2)] at small scales. Also, we should point out that, given
a γ, the amplification due to the non-Gaussian modifications are larger at a higher kf . It
is due to this reason that, for a larger kf , we have worked with a smaller value of γ. We
have chosen these parameters so that, when the non-Gaussian modifications are taken
into account, the modified power spectra have comparable amplitudes at their maxima
despite the varying amplitudes of the peaks in their original spectra. We should clarify
that the large, cubic order, non-Gaussian corrections do not lead to a breakdown of
the perturbation theory since the scalar power spectra are of O(10−2) even when the
modifications due to the scalar bispectra have been taken into account (cf. Fig. 4.1).

It is worthwhile to highlight another related point at this stage of our discussion.
We find that the widths of the modified power spectra are larger than the widths of the
original power spectra which were dictated by the parameter ∆k that we have set to
unity. This is because of the nature of the integrand involved that describes the non-
Gaussian correction given in Eq. (3.25). The appearance of the integration variables s
and d in the arguments of the original power spectrum as well as the limits of the
integrals involved contribute to the widening of the peak and a slight shift of power
towards larger wave numbers in the final modified spectra.

4.3 FORMATION OF PBHS AND GENERATION OF SECONDARY GWS

In this section, we shall compute the observable quantities at small scales, viz. the
fraction of PBHs constituting the dark matter density today f

PBH
and the dimensionless

spectral energy density of secondary GWs Ω
GW

, using the scalar power spectra with the
non-Gaussian corrections taken into account. Recall that, we have described in detail
the calculation of f

PBH
(M) and Ω

GW
(f) arising from a given scalar power spectrum in
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Subsecs. 1.2.2 and 1.2.3, respectively.

In Fig. 4.5, we have plotted the quantities f
PBH

(M) and Ω
GW

(f) for the four
power spectra we have obtained from squeezed initial states with the non-Gaussian
modifications taken into account [cf. Eqs. (3.24) and (3.25)]. We have also included
the constraints on f

PBH
(M) that are presently available from different datasets in the

various mass ranges (see Refs. [9, 12]; for recent discussions of the constraints over
specific mass ranges, see Refs. [217, 277]). Moreover, we have illustrated the sensitivity
curves of the various GW observatories and missions (in this context, see Ref. [14]).
As expected, the enhancements in the scalar power on small scales lead to proportional
amplifications in f

PBH
(M) and Ω

GW
(f) over the corresponding masses and frequencies.

Also, due to the nature of the integrals that determine Ph(k, η) [cf. Eq. (1.54)], the
peaks of Ω

GW
(f) are considerably wider when compared to the peaks of the scalar

power spectra. As can be seen from the figure, the predicted f
PBH

(M) and Ω
GW

(f)

curves already intersect the various constraints and sensitivity curves. These constraints
immediately translate to bounds on the parameter γ which determines the strength of
the feature in the scalar power spectra. Recall that, the Bogoliubov coefficient β(k)

is proportional to γ [cf. Eq. (4.9)]. So, in our scenario of PBHs and secondary GWs
produced from excited initial states, evidently, the limits on f

PBH
and Ω

GW
directly

constrain the non-vacuum nature of the states from which the perturbations evolve.
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Figure 4.5: The quantity f
PBH

(M) (on top, for δc = 1/3 and 0.5 in red and blue,
respectively) and the dimensionless energy density of GWs Ω

GW
(f) (at the

bottom) have been plotted for the cases of the four lognormal spectra with
the non-Gaussian modifications to the power spectrum taken into account
that were illustrated in Fig. 4.1. The various constraints on f

PBH
(M)

from different observations have also been indicated (in the top part of the
figure on top) over the corresponding mass ranges. We have also included
the sensitivity curves of the various ongoing and upcoming observational
missions of GWs (as shaded regions in the top part of the figure at the
bottom). The intersections of the curves with the shaded regions translate
to constraints on the parameter γ which determines the extent of deviation
of the initial state from the Bunch-Davies vacuum.
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4.4 CHALLENGES ASSOCIATED WITH SQUEEZED INITIAL STATES

In the last two sections, we have illustrated that a specific choice for the Bogoliubov
coefficient β(k) can lead to the desired lognormal peak in the scalar power spectrum
[cf. Eqs. (4.6), (4.8) and (4.9)]. We have also shown that, since the cubic order non-
Gaussian corrections prove to be significant in the squeezed limit in the non-vacuum
initial states, it is possible to choose a relatively small value for β(k) to arrive at large
peaks in the effective scalar power spectrum. We have also examined the possible
imprints of such power spectra on the extent of PBHs produced and the secondary
GWs generated on small scales. In this section, we shall discuss some of the challenges
associated with squeezed initial states.

4.4.1 Possible mechanisms to generate squeezed states

The first task before us is to justify the choice of the squeezed initial states of our
interest. In other words, we need to examine whether there exist mechanisms that can
generate the specific form of β(k) that we have considered. Note that, we have assumed
that the curvature perturbation is in the non-vacuum initial state at some early time, say,
ηi, when the smallest wave number of our interest, viz. k1 ' 10−4 Mpc−1, is adequately
inside the Hubble radius. In this subsection, we shall discuss mechanisms that can
possibly excite the curvature perturbations to such an initial state and the challenges
associated with them.

The first possibility would be to consider effects due to high energy physics. For
instance, since the large scale modes emerge from sub-Planckian length scales during
the initial stages of inflation, it has been argued that trans-Planckian physics may modify
the dynamics of the perturbations during the early stages (for the original discussion,
see Ref. [261]). But, in the absence of a viable model of quantum gravity to take
into account the high energy effects, the equations describing the perturbations are
often modified by hand. The modifications essentially introduce an energy scale into
the equations of motion governing the perturbations, beyond which the new physics
operates, while ensuring that the standard equations are satisfied at lower energies. One
of the approaches that has been extensively examined in this context involves modifying
the dispersion relation governing the perturbations (for example, see the review [270]).
In this context, while the super-luminal dispersion relations are known to leave the
primordial spectrum largely unaffected, the sub-luminal dispersion relations have been
shown to lead to significant production of particles resulting in stronger features
in the power spectrum [270]. However, the produced particles result in significant
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backreaction (a point which we shall discuss in the following subsection) making them
unviable. We also find that, in some of the approaches, the power spectrum is modified
on large scales, since they emerge from the sub-Planckian length scales at high energies
(see, for instance, Ref. [278]). Another popular method that has been considered to
take into account the high energy effects involves the imposition of non-trivial initial
conditions on the standard modes as they emerge from the Planckian regime [279].
Such an approach is known to only result in oscillations in the power spectrum over a
wide range of scales [280, 281].

Another possibility that can leave the curvature perturbation in an excited state
during the early stages of inflation would be to consider an initial epoch of non-
inflationary phase. Often, one either considers a radiation dominated phase or an
initial period wherein the scalar field is rolling rapidly as we had discussed earlier in
Chap. 2 (in this context, see, for instance, Refs. [103, 105]; for recent discussions, see
Refs. [17, 121]). Again, in such cases, the power spectrum seems to be modified only
on large scales and it often displays a sharp drop in power over these scales. Moreover,
we should add that, in such scenarios, it is possible that a certain range of wave numbers
would have never been inside the Hubble radius. Therefore, there can arise some
ambiguity in the initial conditions that are to be imposed on these modes. Moreover, we
should mention that, if such a pre-inflationary mechanism is to excite the state of the
curvature perturbation at the small wave numbers kf of interest, the mechanism should
involve changes that occur as rapidly as k−1

f (for a recent related discussion, see, for
example, Ref. [282]). Yet another possibility would be to consider two stages of slow
roll inflation with either a brief departure from slow roll or even a break from inflation
sandwiched between them. But, these are exactly the scenarios of ultra slow roll and
punctuated inflation that have been considered to generate increased power on small
scales so as to lead to enhanced formation of PBHs and higher strengths of secondary
GWs (see Refs. [18, 72, 161, 250]; also see our discussion in the previous chapter).
Apart from single field models, as we had mentioned in the introductory section, there
also exist inflationary scenarios involving two fields which can lead to a rapid rise in
power on small scales [245, 255, 283]. Often, in this context, there arises a sharp turn
in the trajectory of the fields, essentially giving rise to particle production and therefore
a non-trivial form of β(k) (in this context, see the discussion in Ref. [255]). However,
these models involve a certain level of fine tuning of the field trajectory and the form
of β(k) will be dependent on the details of the model. Importantly, we should mention
that, in such cases, the features are generated as the modes of interest leave the Hubble
radius during the epochs of deviations from slow roll. Actually, this is true of any
inflationary scenario. This implies that it is difficult to generate features on small scales
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as we desire by inducing or introducing transitions in or between inflationary phases at
very early stages.

In fact, there exists one more possibility. One can treat the curvature perturbation
that we are considering as associated with a test field in an inflationary regime driven by
another source (for scenarios wherein the dominating background is driven by another
scalar field, see, for instance, Refs. [284, 285]; for situations wherein the perturbations
are dominated by, say, the Higgs field, see Refs. [95, 286]). The source that dominates
the background dynamics either prior to inflation or in the early stages of the inflationary
regime can excite the modes associated with the curvature perturbations leaving it in a
squeezed state. Let us illustrate the points we wish to make in this regard by starting
with the aid of an example. Consider a situation wherein the Fourier mode ψk of a
quantum field satisfies an equation of motion of the following form:

ψ′′k +
(
k2 + µ2 k2

0 η
2
)
ψk = 0, (4.12)

where µ and k0 denote scales associated with the system. The solution to such a
differential equation can be expressed in terms of the parabolic cylinder functions and
by comparing the asymptotic forms of the solutions at early and late times, one can
immediately show that the number of particles produced in such a case is given by (in
this context, see the discussions in the recent work [282])

|β(k)|2 = e−k
2/(µk0). (4.13)

In fact, such a result should not come as a surprise. One encounters an equation of
motion of the above form when one considers a complex scalar field that is evolving in
the background of a constant electric field in flat spacetime, leading to the well known
Schwinger effect [287]. Note that the above Bogoliubov coefficient (to be precise, its
modulus squared) is a Gaussian, which is close to the form that we desire. However,
since it is not of the lognormal shape, it is peaked at k = 0 rather than at a non-zero k.
Moreover, it has a maximum value of unity, whereas we require an additional parameter
(such as γ) to be able to tune the amplitude of β(k).

Let us now discuss mechanisms that can possibly help us achieve the desired β(k)

in a FLRW universe. A good starting point seems to be to construct situations in which
the equation governing either the curvature perturbation or a test scalar field has the
same form as Eq. (4.12) above so that we can at least arrive at a Gaussian form for
|β(k)|2. Recall that the Mukhanov-Sasaki variable vk associated with the curvature
perturbation satisfies Eq. (1.14a). Evidently, we require z′′/z = −µ2 k2

0 η
2 if we are

126



to achieve the |β(k)|2 mentioned above [cf. Eq. (4.13)]. In such a case, the generic
solution to z can be immediately expressed in terms of a linear combination of the
parabolic cylinder functions (as the modes vk themselves can be). But, we find that the
generic solution for z does not remain positive definite, which is unacceptable (due to
the form of z quoted above). Therefore, the proposal does not seem viable. If we now
instead consider a massive, test scalar field of mass µ in a radiation dominated universe,
one arrives at an equation governing the modes exactly as in Eq. (4.12). Interestingly,
one indeed obtains a spectrum of particles as in Eq. (4.13) when the evolution of
massive scalar fields are examined in certain scenarios involving radiation dominated
universes (in this context, see Ref. [288]). If such a scenario is acceptable, there still
remains the task of converting the Gaussian distribution for |β(k)|2 into a lognormal
distribution. Remarkably, if we replace k2 by f 2(k) with f(k) = ln (k/kf), we indeed
arrive at a |β(k)|2 which has a lognormal shape. However, the challenge is to justify
the replacement of k2 by a generic function f 2(k). At first sight this seems possible if
we modify the dispersion relation so that ω2(k) = k2 is replaced by ω2(k) = f 2(k).
However, note that, since the field is evolving in a FLRW universe, such a modified
dispersion relation would apply to the physical wave number k/a rather than to k itself
(in this context, see the discussion in Ref. [270]). Clearly, such a choice modifies
Eq. (4.12) and hence the solutions completely. More importantly, as we pointed out,
it has been established that strong modifications to the dispersion relation will lead to a
copious amount of particle production which backreacts significantly on the background
(in this context, also see the following subsection on the issue of backreaction). The
above set of arguments suggests that it is rather difficult to construct mechanisms that
lead to the form of β(k) that we have worked with.

4.4.2 Limits due to backreaction

In this subsection, we shall discuss another challenge that arises with the squeezed
initial states we have worked with. When the perturbations are evolved from non-
vacuum initial states, we must ensure that the energy density associated with the
excited states is less than the energy density driving the inflationary background. If
the densities become comparable, then, evidently, the perturbations can start affecting
the background dynamics. This issue is often referred to as the backreaction problem
(see, for instance, Refs. [263, 270, 272, 289–291]). We shall now arrive at constraints
on the parameter γ that determines the strength of the squeezed states by demanding
that the issue of backreaction is avoided in the situation we are considering.
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The task ahead is to calculate the energy density associated with the curvature
perturbations when they are assumed to be in a squeezed initial state. We find that the
energy density associated with the curvature perturbations in the de Sitter limit that we
are considering can be expressed as follows:

ρR = ρ(1)
R

+ ρ(2)
R

' 1

2π2 a4

∫ ∞

−η−1

dk k3 |β(k)|2

+
H2

I

8 π2 a2

∫ −η−1

0

dk k

{
2 |β(k)|2 − [α(k) β∗(k) + α∗(k) β(k)]

}
. (4.14)

where β(k) is the Bogoliubov coefficient which indicates the extent of deviation
from the Bunch-Davies vacuum. There are a couple of clarifying remarks we
should make regarding this expression. Firstly, in arriving at the above expression,
we have subtracted the contribution due to the Bunch-Davies vacuum, which, upon
regularization, is known to correspond to (see, for example, Refs. [292, 293])

ρBD

R
=

61H4
I

960π4
. (4.15)

Clearly, this is sub-dominant to the background energy density which behaves as
ρ

I
= 3H2

I
M2

Pl
(since H

I
/M

Pl
< 10−5). Secondly, it should be evident that we have

divided the total energy density ρR into two parts, with the first part ρ(1)
R

arising from
the contributions due to the modes that are in the sub-Hubble domain at any instance,
while the second part ρ(2)

R
corresponds to modes that are in the super-Hubble domain.

At early times, when all the modes are well inside the Hubble radius, it is the first part
that dominates (in this context, see, for instance, Refs. [263, 271]). This result can be
easily understood in simple instances such as, say, power law inflation. In such cases,
as is well known, the curvature perturbation behaves in a manner similar to that of a
massless scalar field. The expression ρ(1)

R
is essentially the same as the energy density

of a massless scalar field in the sub-Hubble limit. Note that the energy density ρ(1)
R

behaves as a−4. In other words, the energy density is the largest at early times when the
initial conditions are imposed on the modes of interest in the sub-Hubble regime. We
shall soon see that this behavior severely restricts the amplitude of the parameter γ.

As we discussed above, it is the sub-Hubble contribution ρ(1)
R

that dominates
in the expression (4.14) for ρR at early times. Recall that, in the scenario we are
considering, β(k) is determined by the lognormal function g(k) [cf. Eqs. (4.8) and (4.9)]
that describes the feature in the scalar power spectrum. Since g(k) is a Gaussian with
the strength γ at its maximum [cf. Eq. (4.8)], we have g(k) . γ for all k. We have
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always worked with values such that γ . O(1). Therefore, we can approximate the
expression for β(k) that is to be used in the integral describing ρ(1)

R
[cf. Eq. (4.14)]

as β(k) ' −g(k)/2. This simplifies the evaluation of ρ(1)
R

, and we obtain the energy
density of the perturbations in terms of the parameters γ, kf and ∆k to be

ρR ' ρ(1)
R
' γ2 e4 ∆2

k

16 π5/2 ∆k

(
kf

a

)4

. (4.16)

We should stress again that we have subtracted the contribution due to the Bunch-Davies
vacuum in arriving at this expression. Due to this reason, we should also add that no
regularization is required to arrive at the above result. Hence, ρR → 0 when γ → 0, as
expected. We find that the relative difference between the above approximate estimate
of ρ(1)

R
[obtained by assuming that β(k) ' −g(k)/2] and the exact estimate is at most

of O(1). Therefore, for convenience, we shall use the approximate estimate to arrive at
the bound on the parameter γ in our scenario.

For the backreaction to be negligible in our scenario, we require that ρR � ρ
I
,

where, as we mentioned, ρ
I

= 3H2
I
M2

Pl
is the energy density of the background during

inflation. This requirement leads to the condition

γ2 e4 ∆2
k

∆k

(
kf

aH
I

)4

� 48π5/2

(
M

Pl

H
I

)2

. (4.17)

During inflation, the value of the Hubble parameter H
I

is related to the tensor-to-scalar
ratio r through the relation (H

I
/M

Pl
)2 ' r A

S
, where A

S
' 2.11 × 10−9 is the COBE

normalized scalar amplitude over the CMB scales (in this context, see Subsec. 1.2.1).
Since the energy density ρR is the largest at early times, let us evaluate it at the time
when the smallest wave number of interest, say, kmin, leaves the Hubble radius, i.e. when
kmin = aminHI

. At such a time, as we have set ∆k = 1, the above inequality reduces to
(upon ignoring the constant coefficients)

γ � 109/2

√
r

(
kmin

kf

)2

. (4.18)

It seems reasonable to set kmin = k1/10 ' 10−5 Mpc−1 (recall that we had earlier
chosen k1 = 10−4 Mpc−1). If we choose kf = 105 Mpc−1, which is the smallest of
the values for kf that we had considered, then we arrive at γ � 10−16.5/

√
r. In other

words, for r ' 10−3, we require γ < 10−15. For a larger kf , clearly, the limits on γ are
even stronger. If kf ' 1013 Mpc−1 and r ' 10−3, we require that γ < 10−30. Evidently,
γ can be larger if the tensor-to-scalar ratio is smaller, i.e. when the scale of inflation
is lower. Nevertheless, even for an extreme value of r ' 10−30 as suggested by the
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recent arguments based on the trans-Planckian censorship conjecture (in this context,
see, for instance, Ref. [294]), we require γ < 10−2 for kf ' 105 Mpc−1 and γ < 10−17

for kf ' 1013 Mpc−1. We have instead worked with γ ' 1 for kf = 105 Mpc−1 and
γ ' 10−8 for kf = 1013 Mpc−1. Clearly, for a more reasonable r, the constraints on γ
are considerably more severe. Under such conditions, f

NL
and hence the non-Gaussian

modifications will prove to be small and we will not be able to achieve the desired level
of amplification of the corrected power spectrum P

S
(k) +P

C
(k). In fact, γ is so tightly

constrained by the backreaction that we are essentially left with the slow roll results.

There are two related points we wish to make here. Firstly, one may wonder if
the energy associated with the curvature perturbation ρR itself may support accelerated
expansion. Since ρ(1)

R
∝ a−4, conservation of energy suggests that, at early times,

the pressure associated with the excited states should be given by p(1)
R

= ρ(1)
R
/3.

Upon explicit calculation, we find that this is indeed the case (in this context, also
see Refs. [271, 272]). In other words, the pressure associated with the excited initial
states does not possess the equation of state required to drive inflation. Secondly, since
the energy density of the perturbations ρ(1)

R
dies down as a−4, one may imagine that

it could decay rapidly enough permitting the background energy density to dominate.
Given ρR at a = amin, we find that the number of e-folds after which the energy density
associated with the perturbations becomes sub-dominant to ρ

I
is given by

N ' 1

4
ln

(
γ2 r

109

)
+ ln

(
kf

kmin

)
. (4.19)

For the values of the various quantities we have worked with, say, γ ' 1, kf =

105 Mpc−1 and kmin = 10−5 Mpc−1, if we choose a tensor-to-scalar ratio of r ' 10−3,
we find that it will take as many as 16 e-folds before the background energy density
begins to dominate. This duration will be more prolonged for larger values of kf .
Clearly, backreaction is a rather serious issue that needs to be accounted for.

4.5 DISCUSSION

In this chapter, we had explored a possible mechanism for the production of PBHs and
GWs wherein the primordial scalar perturbations were evolved from squeezed initial
states. The advantage of the mechanism is the fact that it is completely independent of
the actual model that drives the background dynamics during inflation. All we require
is typical slow roll inflation which leads to a power spectrum that is consistent with
the recent CMB data on large scales. By choosing specific forms for the Bogoliubov
coefficients that characterize the squeezed states, we had constructed scalar power
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spectra with a lognormal feature at small scales. It is well known that, in such cases,
the scalar bispectra in the squeezed limit is inversely proportional to the value of
the squeezed mode, a dependence which we expected to utilize so that we obtain
significantly high values for the scalar non-Gaussianity parameter f

NL
at large wave

numbers. We had hoped that this property can lead to large non-Gaussian modifications
to the scalar power spectrum, which in turn can amplify the power considerably at
small scales. While the proposal seemed feasible, there were two challenges that we
had encountered. Mathematically, it was rather easy to construct squeezed initial states
that led to a sharp rise in power on small scales, when the non-Gaussian modifications
were taken into account. However, we had found that it can be a challenge to design
scenarios that excite the curvature perturbation to such an initial state during the early
stages of inflation. Moreover, we had found that the backreaction on the inflationary
background due to the excited state of the perturbations strongly limits the extent of
deviation from the Bunch-Davies vacuum. In fact, the bounds due to the backreaction
are so strong that the slow roll results remain valid.

Let us make a few further clarifying remarks at this stage of our discussion. The
consistency condition relating the bispectrum and the power spectrum is known to be
violated for modes that evolve from the non-vacuum initial states (i.e. around the peaks
in the original power spectra). As a result, we had expected that the contributions to
the non-Gaussianity parameter due to the so-called local observer effect that has to
be subtracted will be small when compared to the actual value f

NL
over these wave

numbers (in this context, see Refs. [234, 235]). Motivated by the largely local form of
the scalar bispectrum in the squeezed limit, we had utilized the corresponding f

NL
to

calculate the non-Gaussian modifications to the power spectrum [18, 181, 189, 190].
We had hoped that the non-Gaussian modifications will dominate leading to enhanced
power at small scales. However, we had found that the issue of backreaction put paid to
the proposal.

Before we conclude, we would like to comment on four issues and their possible
resolutions in the approach of generating PBHs and GWs from squeezed initial states.

1. Note that we have arrived at the scalar bispectrum by calculating the integrals
involved over the domain −∞ < η < 0. In other words, we have assumed that
the initial squeezed state was chosen in the infinite past, i.e. as η → −∞. It may
be argued that if we choose to work with non-vacuum initial states, then the initial
conditions need to be imposed at a finite initial time, say, ηi. We believe that our
results and conclusions will hold as long as ηi � −1/kmin, where, recall that, we
have set kmin ' k1/10, with k1 being the smallest wave number of observational
interest, which we have assumed to be 10−4 Mpc−1.
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2. The method by which we have calculated modifications to the power spectrum
due to the scalar non-Gaussianity parameter is strictly valid for an f

NL
of the local

type. In other words, f
NL

ought to be a constant independent of scale. However, in
our scenario, the f

NL
we obtain is strongly scale dependent. There are two points

that we believe support the method we have adopted. Firstly, in order to mimic the
local behavior of f

NL
, we have chosen to work with its value in the squeezed limit

(in this context, also see Ref. [181]). Secondly, and interestingly, we find that,
near the wave numbers corresponding to the peaks of the power spectra, the non-
Gaussianity parameter f

NL
seems to have a strongly local shape. We should add

here that a formal approach to arrive at the modifications to the power spectrum
would be to calculate the loop corrections at the appropriate order. While such an
effort seems worthwhile, we believe that, since the parameter f

NL
is largely local

around the maximum in the power spectrum, our calculations can be considered
to be fairly suggestive (for further discussions in this context, see the following
chapter).

3. In our approach, we have accounted for the cubic order non-Gaussianities by
considering the corresponding modifications to the scalar power spectrum [189,
190, 276]. We should caution that this approach may not be adequate to account
for the non-Gaussian modifications to the density parameter Ω

GW
describing

the stochastic GW background (see Ref. [295] and also the discussions in the
next chapter). Moreover, when calculating the density of PBHs formed, the
non-Gaussianities are expected to also modify the probability distribution of the
density contrast and hence the number of PBHs at the time of their formation
[cf. Eq. (1.35)]. We should point out that this effect needs to be accounted for
separately [80, 232].

4. Lastly, it may be interesting to explore if the contributions due to the higher
order correlations such as the trispectrum may rescue our proposal and lead to
large non-Gaussian modifications despite the strong constraints on γ due to the
backreaction [192, 296]. For instance, we had seen that, in the squeezed limit, f

NL

had behaved as kf/k1. If the non-Gaussianity parameter, say, τ
NL

, characterizing
the trispectrum (in this context, see Ref. [297]) in a squeezed initial state behaves
in a stronger fashion, it seems possible that the higher order terms may modify the
power spectrum adequately to circumvent the limits on γ. However, even if this
works out, one concern would remain. We had seen that, despite the large value of
f
NL

, the amplitude of the modified power spectrum was of the order of 10−2 (for
the original values of γ we had worked with). If the non-Gaussian modifications
due to the trispectrum prove to be significant, it is possible that these higher order
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contributions will also affect the validity of perturbation theory. One will have
to ensure that the amplitude of the corrected power spectrum remains smaller
than unity even when further contributions are taken into account. Probably,
the conditions for the validity of the perturbation theory at higher orders would
severely restrict the extent of deviations from the Bunch-Davies vacuum. We are
currently exploring these issues.

We would like to close by pointing out that, the various arguments we have
considered in this chapter suggest that the initial state of the curvature perturbations
is likely to be remarkably close to the Bunch-Davies vacuum, in particular, on small
scales.
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CHAPTER 5
ACCOUNTING FOR SCALAR NON-GAUSSIANITY

IN SECONDARY GWs

5.1 INTRODUCTION

Models of inflation leading to enhanced scalar power over small scales have recently
been examined in the context of production of PBHs and the associated generation
of secondary GWs. As we have discussed before, in these models, modes of scalar
perturbations that have amplitudes large enough to form PBHs, also enhance the
tensor perturbations by sourcing them at the second order. This leads to generation
of secondary GWs of detectable strengths in the present universe (see, for instance,
Refs. [13, 14, 88, 89, 94, 276] for discussions and constraints). Typical inflationary
models considered in this context that are driven by a canonical scalar field, permit a
brief epoch of ultra slow roll amidst an otherwise slow roll evolution of the inflaton
field (see, for instance, Refs. [18, 71, 72, 160, 161] and our discussion in Chap. 3). This
epoch is known to enhance the amplitude of curvature perturbations and lead to large
amplitudes of scalar power over small scales. The production of PBHs is exponentially
sensitive to the amplitude of scalar power and hence highly dependent on the behavior
of the spectrum around the small range of wave numbers close to the peak. However, the
spectrum of secondary GWs is proportional to the square of the scalar power spectrum
sourcing it. Therefore, it can be expected to capture better any feature that may be
present in the scalar power spectrum over a wider range of wave numbers.

Besides, there have been efforts to quantify the effect of the primordial scalar non-
Gaussianity on the predicted signals of secondary GWs [19, 189, 190, 238, 295, 298].
The general approach is to account for corrections in the power spectrum arising
due to the scalar bispectrum through the non-Gaussianity parameter f

NL
. There are

usually well-motivated assumptions made about the shape of f
NL

being local in such
calculations. However, in realistic models of inflation, we find that, though f

NL
is local

close to the peak of the scalar power spectrum, it is highly scale dependent over a wide
range of wave numbers. Moreover, it has been shown that the consistency condition
relating the power spectrum and the bispectrum in the squeezed limit is satisfied in
canonical, single field models considered in these scenarios [18, 299]. Therefore, it is
important to take into account the complete form of the bispectrum in calculating the
correction to the power spectrum and examining the imprints of scalar non-Gaussianity
on the secondary GWs.

In this chapter, we present a method to account for a general, scale-dependent f
NL

in such a calculation, by reconsidering the definition of the parameter. This method



does not assume any shape or template for f
NL

or the scalar bispectrum. Nevertheless
it is consistent with the previous approaches when the assumptions are invoked, i.e. it
reduces to earlier methods adopted if the f

NL
is assumed to be of a certain shape, say,

a local form. This allows us to capture the complete behavior of the bispectrum along
with any non-trivial features that may be present therein and examine its imprints on
the spectrum of GWs generated. We illustrate this method of accounting for scalar
bispectrum using two models as examples. One is a toy model of inflation constructed
by adding an artificial dip to a potential that otherwise admits slow roll inflation [237,
251]. The second is a model of inflation known as critical-Higgs inflation which is
motivated by Higgs field driving inflation while containing an inflection point in the
potential [300–302]. Both these models serve as interesting examples for a typical
scenario of inflation where the field undergoes an interim epoch of ultra slow roll during
its evolution. We calculate the scalar bispectrum in these models and compute the
corresponding correction to the power spectrum. We further compute the non-Gaussian
contributions to the dimensionless spectral energy density of secondary GWs, i.e. Ω

GW
,

generated in these models.

The structure of this chapter is as follows. In the next section, we shall present
the extended definition of the non-Gaussianity parameter f

NL
to include a generic scale

dependence. In Sec. 5.3, we shall then arrive at the expression for the correction to
the scalar power spectrum due to the bispectrum, viz. P

C
(k). In Sec. 5.4, we shall

compute the non-Gaussian contributions to the Ω
GW

arising due to f
NL

. We shall point
out that some of these contributions can be expressed in terms of P

C
(k). In Sec. 5.5, we

shall present the models for illustration and compute the power and bi-spectra arising
from them. We shall calculate the corrections to the power spectra using the respective
bispectra and compare against the original spectra. Moreover, we shall obtain an
analytical estimate of the correction and compare it against the exact numerical result.
We shall finally evaluate the Ω

GW
generated from these models due to both Gaussian

and non-Gaussian contributions and compare the amplitudes in each case. We shall
conclude in Sec. 5.6 with a brief summary and outlook.

5.2 SCALE DEPENDENT f
NL

(k1, k2, k3) AND ITS RELATION TO THE
BISPECTRUM

In this section, we shall reconsider the conventional definition of the scalar non-
Gaussianity parameter f

NL
and extend it to account for a generic scale dependence.

Recall that the parameter f
NL

is conventionally defined using the relation (3.22) we
had introduced earlier [52, 60]. Evidently, this definition assumes f

NL
to be local,
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i.e. independent of wave numbers. Nevertheless, this is often taken as the definition
to calculate the bispectrum even in cases with non-trivial scale dependence. We shall
extend this definition to explicitly account for the scale dependence in the parameter.
Towards this end, we consider the relation (3.22) in Fourier space and redefine f

NL
as

a function in Fourier space with wave numbers as its arguments (for similar efforts in
different contexts, see Refs. [303, 304]). We can write such a relation as

Rk(η) = RG

k (η)− 3

5

∫
d3k1

(2 π)3/2
RG

k1
(η)RG

k−k1
(η) f

NL
[k, (k1 − k),−k1], (5.1)

where Rk is the mode function corresponding to the curvature perturbation R, and
RG

k denotes the Gaussian part of Rk. We should mention that the f
NL

(k1,k2,k3)

defined depends only on the magnitude of the three wave vectors in the argument.
We have written the arguments in the integrand above as vectors to emphasize that
by construction they form a triangular configuration in the space of wave vectors
(i.e. sum of the three vectors vanishes identically), as is expected of the arguments
of the bispectrum. We can also obtain the counterpart of this parameter in real space by
considering the inverse Fourier transform of the above relation, viz.

R(η,x) = RG (η,x)− 3

5

∫
d3k

(2π)3

∫
d3k1RG

k1
(η)RG

k−k1
(η)

× f
NL

[k, (k1 − k),−k1] eik·x. (5.2)

We should mention that this equation reduces to the conventional definition of f
NL

, as
given in Eq. (3.23), when f

NL
(k1,k2,k3) turns out to be scale independent in a given

model. Hence, our generalization is consistent with the existing approach to quantify
the scalar non-Gaussianity.

Let us now proceed to establish the relation between the f
NL

(k1,k2,k3) given
above and the scalar bispectrum G(k1,k2,k3). Recall that the scalar power spectrum
P

S
(k) and the bispectrum G(k1,k2,k3) are defined through the expressions (1.12a),

(1.18) and (1.19). To express f
NL

(k1,k2,k3) in terms of G(k1,k2,k3) and P
S
(k), we

compute the expectation value of the three point correlation of R̂k. Using the relation
given in Eq. (5.1), we obtain that

〈R̂k1 R̂k2 R̂k3〉 = −3

5

∫
d3k′1

(2 π)3/2
〈R̂G

k1
R̂G

k2
R̂G

k′
3
R̂G

k3−k′
3
〉

× f
NL

[k3, (k
′
3 − k3),−k′3] + two permutations. (5.3)

We should mention that the expectation values are evaluated in a specific initial state,
which is assumed to be the Bunch-Davies vacuum. Also, note that the term in the right

136



hand side of the above expression is the leading order term in the expansion assuming
RG is perturbative. Using Wick’s theorem, we can express the four point function in
the above integral in terms of the power spectrum P

S
(k) and simplify it to obtain

〈R̂k1R̂k2R̂k3〉 = −3

5

4π4

(2π)3/2

P
S
(k1)

k3
1

P
S
(k2)

k3
2

δ(3)(k1 + k2 + k3)

×
[
f
NL

(k3,k2,k1) + f
NL

(k3,k1,k2)

]
+ two permutations.

(5.4)

We again emphasize that the arguments of f
NL

above satisfy the triangularity condition
(k1 + k2 + k3) = 0. We then use the property of the bispectrum being symmetric in its
arguments [i.e. G(k1,k2,k3) = G(k1,k3,k2)] to relate the f

NL
(k1,k2,k3) constructed

to the power and bi-spectra. Upon doing so, we obtain the relation

f
NL

(k1,k2,k3) = −10

3

(k1 k2 k3)3

16 π4
G(k1,k2,k3)

× [k3
1 PS

(k2)P
S
(k3) + two permutations ]−1. (5.5)

This turns out to be the conventional relation used in the literature [cf. Eq. (3.22)] to
express f

NL
in terms G(k1,k2,k3) and P

S
(k) [17, 56, 60, 132]. Thus, we infer that

the f
NL

(k1,k2,k3) defined in Eq. (5.1) is compatible with the conventional relation.
The difference in this derivation is that we have explicitly accounted for the scale
dependence of the bispectrum in the non-Gaussianity parameter f

NL
(k1,k2,k3).

5.3 CORRECTION TO THE POWER SPECTRUM

Earlier, in Subsec. 1.1.3, we had outlined the numerical procedure to calculate the scalar
bispectrum in a given model of inflation. Using the method, we shall evaluate the scalar
bispectrum numerically and evaluate the corresponding non-Gaussianity parameter
f
NL

(k1,k2,k3) through the relation given in Eq. (5.5).

Having setup a method to account for a generic scale dependence in the non-
Gaussianity parameter f

NL
(k1,k2,k3), we shall now proceed to compute the non-

Gaussian correction to the P
S
(k) arising due to the bispectrum. To compute the

correction, which we shall call as P
C
(k), we calculate the two-point correlation of R̂k

using the relation given in Eq. (5.1). We obtain the two-point correlation of R̂k to be

〈R̂k1 R̂k2〉 = 〈R̂G

k1
R̂G

k2
〉+

9

25

∫
d3k′1
(2π)3

∫
d3k′2 〈R̂G

k′
1
R̂G

k1−k′
1
R̂G

k′
2
R̂G

k2−k′
2
〉

137



× f
NL

(
k1,k

′
1 − k1,k

′
1

)
f
NL

(
k2,k

′
2 − k2,k

′
2

)
. (5.6)

On substituting the definition of scalar power spectrum [cf. Eq. (1.12a)] and expressing
the four-point correlation in terms of the two-point correlations as before, the above
equation leads to

PM

S
(k) = P

S
(k) +

9

50 π
k3

∫
d3k1

P
S
(k1)

k3
1

P
S
(|k − k1|)
|k − k1|3

f 2
NL

(k,k1 − k,k1),

(5.7)

where P
S
(k) denotes the original power spectrum corresponding to the Gaussian

perturbations RG . Therefore, we can identify the correction P
C
(k), that is to be added

to the original spectrum P
S
(k), as

P
C
(k) =

9

50 π
k3

∫
d3k1

P
S
(k1)

k3
1

P
S
(|k − k1|)
|k − k1|3

f 2
NL

(k,k1 − k,k1). (5.8)

We should note here that there can be additional terms to this correction which
involve the irreducible part of the four point correlation, viz. the trispectrum of scalar
perturbations [190, 238, 295]. Such terms shall receive contributions from higher order
terms of the action and hence will be at higher order in perturbations than the terms we
are working with. We believe those terms are beyond the scope of this work. In our
analysis, we shall restrict ourselves to the terms of four-point correlations reduced in
terms of the power spectra.

To simplify the above expression for P
C
(k) we perform a suitable change of

variables. Defining a variable u = k − k1, we get

P
C
(k) =

9

25
k2

∫ ∞

0

dk1

k2
1

P
S
(k1)

∫ |k+k1|

|k−k1|

du

u2
P

S
(u) f 2

NL
(k,u,k1). (5.9)

Further, upon introducing the variables x = k1/k and y = u/k, we obtain that

P
C
(k) =

9

25

∫ ∞

0

dx

∫ |1+x|

|1−x|
dy
P

S
(kx)

x2

P
S
(ky)

y2
f 2
NL

(k, xk, y k). (5.10)

Again, we can notice that if f
NL

(k1,k2,k3) turns out to be scale independent we recover
the expression forP

C
(k) that is used in case of a local f

NL
[see Refs. [19, 189, 190, 238];

also see Eq. (3.25)]. If we use the relation between f
NL

(k1,k2,k3) and the power and
bi-spectra [cf. Eq. (5.5)], we can write down P

C
(k) explicitly in terms of G(k1,k2,k3)
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and P
S
(k) as follows:

P
C
(k) =

4

(2π)8
k12

∫ ∞

0

dx

∫ 1+x

|1−x|
dy

x4 y4

P
S
(kx)P

S
(ky)

G2(k, xk, y k)

×
[
1 + x3 PS

(k)

P
S
(k x)

+ y3 PS
(k)

P
S
(ky)

]−2

. (5.11)

We should point out that, because of the well regulated nature of the integral involved,
we shall use Eq. (5.10) as the working definition for computing P

C
(k).

5.4 COMPUTATION OF Ω
GW

ACCOUNTING FOR f
NL

Having obtained the corrections to the power spectra, P
C
(k), we shall proceed to

compute the corresponding Ω
GW

for these models. During the computation of Ω
GW

there may arise contributions from f
NL

other than from P
C
(k). These are referred to as

connected contributions in the literature [189, 190, 295]. We should note that there are
arguments in the literature suggesting that these contributions vanish identically when
integrated over azimuthal angles involved in the corresponding integrals [189, 238].
However, detailed calculations suggest that this may not be the case when accounted
for exact dependence of the integrand over these angles appropriately [295]. In this
work, we shall compute all the terms involved while consistently accounting for a scale
dependent f

NL
in them. We shall later compare the respective contributions against the

contribution from the original power spectrum to the complete estimate of Ω
GW

, when
we consider specific models for illustration.

To begin with, let us recall the calculation of the secondary tensor power spectrum
in terms of the scalar power spectrum (for some of the earlier discussions, see Refs. [88,
89]; for some of the recent efforts, see, Refs. [18, 94–96, 166, 276, 305]). The two-point
correlation of the secondary tensor perturbation hλk is related to the scalar perturbation
Rk as

〈ĥλk1
ĥλ
′

k2
〉 =

16

81

1

k1k2η2

∫
d3p

(2π)3/2

∫
d3p′

(2π)3/2
Qλ(k1, p)Q

λ′(k2, p
′)

×
[
Ic
(
p

k1

,
|k1 − p|
k1

)
cos (k1 η) + Is

(
p

k1

,
|k1 − p|
k1

)
sin (k1 η)

]

×
[
Ic
(
p′

k2

,
|k2 − p′|

k2

)
cos (k2 η) + Is

(
p′

k2

,
|k2 − p′|

k2

)
sin (k2 η)

]

×〈R̂p R̂k1−p R̂p′ R̂k2−p′〉, (5.12)

where the functions Ic,s(u, v) arise due to the transfer function relating the Bardeen
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potential during the radiation dominated epoch to the primordial curvature perturbation
[see Eqs. (1.51) in Subsec. 1.2.3]. The function Qλ(k, p) arises from the polarization
tensor associated with the tensor modes [cf. App. C]. Upon using Wick’s theorem,
we can express the four-point correlation in the above integral in terms of the two-
point correlations. This leads to the following expression for secondary tensor power
spectrum in terms of the scalar power spectrum:

Ph(k, η) = 2
16

81

2π2

k2 η2

∫
d3k′

(2 π)3
Qλ(k, k′)Qλ(k, k

′) I2(k, k′)

× k
3P

S
(k′)P

S
(|k − k′|)

k′3 |k − k′|3 , (5.13)

where the P
S
(k) denotes the Gaussian part of the scalar power

spectrum [cf. Subsec. 1.2.3]. We should note that the spectrum is averaged over
the oscillations that occur on small time scales. Hence, the quantity I(k, k′) can be
expressed as

I2(k, k′) =

[
I2
c

(
k′

k
,
|k − k′|

k

)
+ I2

s

(
k′

k
,
|k − k′|

k

)]
. (5.14)

Notice that the contraction of Q(k, k′) over λ implies summing over both polarizations.
The quantity Qλ(k1, k2) is explicitly given by

Qλ(k, k′) =





(
k′

k

)2 sin2 θ√
2

cos (2φ), forλ = +,
(
k′

k

)2 sin2 θ√
2

sin (2φ), forλ = ×.
(5.15)

We find that the dimensionless spectral energy density of GWs associated with
secondary tensor perturbations in the current universe, viz. Ω

GW
(k), can be expressed

as

h2 Ω
GW

(k) ' 1.38× 10−5

24
(k2 η2)Ph(k, η). (5.16)

Note that we had obtained this relation earlier [in Subsec. 1.2.3, cf. Eqs. (1.56)
and (1.57)]. We shall use this expression to compute Ω

GW
due to both Gaussian and

non-Gaussian contributions to Ph(k).

As to the non-Gaussian contributions to Ph(k), let us first consider the
contributions at the level of f 2

NL
. These terms arise when we introduce f

NL
, as defined in

Eq. (5.1), in two ofRk terms of the four-point correlation in Eq. (5.12). This gives rise
to three types of contributions to Ph(k), which we shall refer to as P(2−1)

h (k),P(2−2)
h (k)

and P(2−3)
h (k). The exact expressions that describe these three contributions are given
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by

P(2−1)
h (k) = 25 16

81

9

25

(2 π2)2

(2 π)6

1

k2 η2

×
∫

d3q1

∫
d3q2Q

λ(k, q1)Qλ(k, q2) I(k, q1) I(k, q2)

× k3 PS
(q2)P

S
(|q2 + k|)P

S
(|q1 − q2|)

q3
2 |q2 + k|3 |q1 − q2|3

× f
NL

(q1, q2, q1 − q2) f
NL

(k − q1, q2 − q1,k + q2), (5.17a)

P(2−2)
h (k) = 25 16

81

9

25

(2 π2)2

(2 π)6

1

k2 η2

∫
d3q1

∫
d3q2Q

λ(k, q1)Qλ(k, q1) I2(k, q1)

× k3 PS
(|k − q1|)PS

(q2)P
S
(|q1 − q2|)

q3
2 |k − q1|3 |q1 − q2|3

f 2
NL

(q1, q2, q1 − q2)

= 25 16

81

(2 π2)

(2 π)3

1

k2 η2

×
∫

d3q1Q
λ(k, q1)Qλ(k, q1) I2(k, q1) k3 PC

(q1)P
S
(|k − q1|)

q3
1 |k − q1|3

,

(5.17b)

P(2−3)
h (k) = 25 16

81

9

25

(2 π2)2

(2 π)6

1

k2 η2

×
∫

d3q1

∫
d3q2Q

λ(k, q1)Qλ(k, q2) I(k, q1)I(k, q2)

× k3 PS
(q1)P

S
(q2)P

S
(|k − q1 + q2|)

q3
1 q

3
2 |k − q1 + q2|3

× f
NL

(k − q1, q2,k − q1 + q2) f
NL

(k + q2, q1,k1 − q1 + q2).

(5.17c)

We have used the definition of P
C
(k) in P(2−2)

h (k) to reduce the first expression and
obtain Eq. (5.17b) [cf. Eq. (5.8)]. Such a simplification is not possible with P(2−1)

h (k)

or P(2−3)
h (k). It is useful to note that one can construct Feynman diagrams to represent

these integrals (see, for instance, Refs. [190, 295, 298]). If we identify the diagrams
with the above integrals, we find that P(2−1)

h (k) arises from what is called the C-type
diagram, whereas P(2−3)

h (k) arises from the Z-type diagram. The term P(2−2)
h (k) arises

from what is known as the hybrid diagram (see, App. H for the construction of these
diagrams). The difference between the integrals presented here and the corresponding
ones in the literature is the dependence of f

NL
over wave numbers. As mentioned earlier,

it has been argued that the terms P(2−1)
h (k) and P(2−3)

h (k) shall vanish due to integration
over azimuthal angles and it is only the P(2−2)

h (k) term that survives [189, 238].
However, it was later shown that P(2−1)

h (k) and P(2−3)
h (k) do not necessarily vanish

when the angular dependences are appropriately accounted for [295].

141



Next, we shall consider contributions to Ph(k) at the level of f 4
NL

. These terms
arise when we introduce f

NL
, as defined in Eq. (5.1), in all four ofRk terms in the four-

point function in Eq. (5.12). In such a case, we obtain three terms, which we shall call
P(4−1)
h (k),P(4−2)

h (k) and P(4−3)
h (k). The expressions describing these terms are given

by

P(4−1)
h (k) = 25 16

81

(
9

25

)2
(2 π2)3

(2 π)9

1

k2 η2

∫
d3q1

∫
d3q2Q

λ(k, q1)Qλ(k, q2)

×I(k, q1) I(k, q2) k3

∫
d3q′2

P
S
(|k − q1 + q2 − q′2|)
|k − q1 + q2 − q′2|3

×PS
(q′2)P

S
(|q2 − q′2|)PS

(|q1 + q′2|)
q′2

3 |q2 − q′2|3| q1 + q′2|3
× f

NL
(q1,−q′2, q1 + q′2) f

NL
(k − q1,k − q1 + q2 − q′2, q

′
2 − q2)

× f
NL

(q2, q
′
2, q2 − q′2) f

NL
(k + q2, q1 − k − q2 + q′2,−q1 − q′2)

(5.18a)

P(4−2)
h (k) = 25 16

81

(2 π2)

(2 π)3

1

k2 η2

×
∫

d3q1Q
λ(k, q1)Qλ(k, q1) I2(k, q1) k3 PC

(q1)P
C
(|k − q1|)

q3
1 |k − q1|3

,

(5.18b)

P(4−3)
h (k) = 25 16

81

(
9

25

)2
(2 π2)3

(2 π)9

1

k2 η2

∫
d3q1

∫
d3q′1Q

λ(k, q1) I(k, q1)

× k3 PS
(q′1)P

S
(|q1 − q′1|)PS

(|k − q1 + q′1)

q′1
3 |q1 − q′1|3 |k − q1 + q′1|3

×f
NL

(q1, q
′
1, q1 − q′1) f

NL
(k − q1,−q′1,k − q1 + q′1)

×
∫

d3q2Qλ(k, q2) I(k, q2)
P

S
(|q′1 − q1 − q2|)
|q′1 − q1 − q2|3

× f
NL

(q2, q1 + q2 − q′1, q
′
1 − q1)

× f
NL

(−k − q2, q
′
1 − q1 − q2, q1 − k − q′1|). (5.18c)

Notice that we have used the definition of P
C
(k) to reduce the expression of P(4−2)

h (k)

in terms of P
C
(k) [cf. Eq. (5.8)]. This is known as the reducible contribution. The other

two terms, viz. P(4−1)
h (k) and P(4−3)

h (k), cannot be rewritten in terms of P
C
(k) and

they correspond to so-called non-planar and planar Feynman diagrams, respectively
(cf. App. H; for a discussion in this context, also see Ref. [295]).

We can now utilize Eq. (5.16) to compute the Ω
GW

arising from each of these
non-Gaussian contributions as well as the Gaussian contributions, and compare them
against one another. However, we should note here that, the terms denoted as
P(2−i)
h (k), containing f 2

NL
, involve computation of six dimensional integrals and the
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terms denoted as P(4−i)
h (k), containing f 4

NL
, involve performing nine dimensional

integrals. Evidently, when we need to compute such integrals numerically, simpler
methods such as the Boole’s rule on a grid based sampling can be disadvantageous.
Also, in such conventional methods, one will require enormous number of sampling
points to achieve reasonable level of convergence of integrals in higher dimensions.
Hence, one should resort to Monte-Carlo method of integration which circumvents
the issue of dimensionality with reasonable number of points [51]. Moreover, at each
point of these integrals we require the power spectra and f

NL
to be evaluated, with their

given dependence on wave numbers. Therefore, arriving at numerical estimates of these
non-Gaussian contributions for a case of inflation driven by non-trivial potentials is a
computationally intensive exercise. There has been an earlier attempt in the literature
to compute these contributions [295]. But, we should point out that, in these efforts,
the computations involved using analytical templates for the power spectra, such as the
Dirac delta function or a lognormal function. Also, the f

NL
was assumed to be of local

form with a given amplitude and without any scale dependence. Hence, the computation
of integrals in such cases is relatively easier. However, in this chapter we compute both
the power spectra and the f

NL
numerically from the action governing the perturbations

for a given model of interest. Therefore, the computation becomes significantly more
intensive and hence takes considerably more time and processing power. Due to this
complexity in computation and constraints in implementation, in this chapter, we shall
restrict ourselves to calculating the non-Gaussian contributions up to the level of f 2

NL
,

i.e. terms denoted as P(2−i)
h .

5.5 MODELS FOR ILLUSTRATION

In this section, we shall illustrate the calculation of the correction to the scalar power
spectrum and the non-Gaussian contributions to Ω

GW
due to a generic f

NL
(k1,k2,k3)

using two models of inflation. These models serve as good examples of a typical
scenario of inflation leading to generation of secondary GWs of significant strengths.
These models permit a brief epoch of ultra slow roll leading to enhancement of scalar
power over small scales. These scalar perturbations source the secondary tensor
perturbations and hence amplify the strength of secondary GWs over frequencies
corresponding to those scales.

The first model we shall consider is inflation driven by a potential which has a
dip introduced to it by hand. Such scenarios where a bump or a dip introduced in
a rather smooth potential have been discussed in the literature in the context of PBH
formation [237, 251]. Though it may not be well motivated or immediately realized
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from a high energy theory, it is a toy model that helps achieve a brief epoch of ultra
slow roll during inflation and hence enhance the scalar power. We shall work with such
a toy model consisting of a dip added to the popular Starobinsky model (1.5). On the
introduction of a dip, the potential is given by

V (φ) = V0

[
1− exp

(
−
√

2

3

φ

M
Pl

)]2 {
1− λ exp

[
−1

2

(
φ− φ0

∆φ

)2
]}

, (5.19)

where clearly the first part is the potential corresponding to Starobinsky model while
the second part (in curly braces) is the Gaussian shaped dip located at φ0 having a
coupling strength λ and a width ∆φ . The values of the parameters involved are set to
be V0 = 2.25× 10−10M4

Pl
, λ = 2.58× 10−3, φ0 = 4.25M

Pl
and ∆φ = 2.8× 10−2M

Pl
.

With the initial value of φi = 5.6M
Pl

, we achieve about 81 e-folds of inflation with
the epoch of ultra slow roll occurring when the field crosses and evolves beyond φ0, at
around 31 e-folds before the end of inflation. We shall refer to this model as SMD.

Another model we shall consider to illustrate our arguments is a model known as
critical-Higgs inflation [300–302]. This model arises when the Higgs field is coupled
non-minimally to gravity. The effective potential in this scenario contains a point of
inflection which leads to an epoch of ultra slow roll thereby enhancing the scalar power.
The potential describing the model is usually written as

V (φ) = V0

[
1 + a (ln z)2] z4

[1 + c (1 + b ln z) z2]2
, (5.20)

where z = φ/µ. We shall choose the values of the parameters to be µ = 1M
Pl

and
V0 = 1.5 × 10−8M4

Pl
. The parameters a and b are related to c and the location of the

point of inflection, say, zc, as follows:

a =
4

1 + c z2
c + 2 log(zc)− 4 log2(zc)

, (5.21a)

b = 2
1 + c z2

c + 4 log(zc) + 2 c z2
c log zc

c z2
c [1 + c z2

c + 2 log(zc)− 4 log2(zc)]
. (5.21b)

We have set {c, zc} = {2.850, 0.784} and arrived at the values of {a, b} using the above
relations. For these values of the model parameters, and with an initial value of field
φi = 6.0M

Pl
, we achieve about 66 e-folds of inflation. The epoch of ultra slow roll

occurs as the field crosses the inflection point at 0.784M
Pl

around 35 e-folds before the
end of inflation. We shall denote this model as CHI.
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Figure 5.1: The scalar power spectra (on the left) and the corresponding Ω
GW

(on the
right) generated in the two models of our interest — viz. SMD (in red)
and CHI (in blue) — have been presented. For the values of parameters
chosen for these models, we observe that the peaks of these spectra occur
at around 106 Mpc−1. The corresponding maxima in the amplitude of
Ω

GW
occur at around 10−9 Hz. The various constraint and sensitivity

curves corresponding to current and upcoming GW missions have also been
included as shaded regions (of different colors at the top) in the plot of Ω

GW

(on the right). The intersection of Ω
GW

curve of the CHI with the sensitivity
regions of SKA and BBO indicate predictions for the corresponding future
detectors. The intersection of the Ω

GW
curve in the case SMD with the

observations from PTA indicates the possibility of arriving at constraints
on the associated model parameters by comparing with the NANOGrav
data [86].
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The scalar power spectrum that arises in these models are presented in Fig. 5.1.
The power over small scales have been amplified by several orders due to the ultra slow
roll epochs in these models. The parameters that we have worked with ensure that the
spectra are COBE normalized over the CMB scales. However, we should mention that
the predictions of n

S
and r over these scales have some tension with the constraints on

these parameters arrived at by Planck [6]. This issue is known in case of models with
enhancement of power over small scales and the tension with data is larger if the peak
is closer to CMB scales [18, 161]. Moreover, the rise in power occurs close to the range
of scales that can be probed by the effect of spectral distortions in the CMB [306–308].
Hence, there is a possibility of constraining these models using the data from future
missions which can probe these effects with improved sensitivity [309]. In this work,
we shall focus on the generation of secondary GWs due to the rise in power over small
scales and the contributions due to scalar bispectrum.

We first compute the amplitude and behavior of secondary GWs generated from
the Gaussian power spectrum in these two models. We present the observable quantity
of interest, viz. the dimensionless energy density of secondary GWs Ω

GW
, as a function

of frequency f . The spectrum of Ω
GW

(f) has been plotted for our models of interest
in Fig. 5.1. The peaks in these spectra occur at around 106 Mpc−1 for the choices of
parameter values we have worked with. The peak produced in the SMD is sharper than
that in the model of CHI. In the figure, we also plot the constraint and sensitivity curves
from the current and upcoming observational missions (see Ref. [14] and the associated
web-page for the sensitivity curves of various missions). We find that the maximum
amplitude of Ω

GW
generated is over the range corresponding to PTA and SKA surveys

and the curve due to the model of SMD already intersects with the constraints from
PTA. This indicates possibility of constraining the model of SMD using the NANOGrav
data [85, 86].

Our primary objective in this work is to examine the possible imprints of the scalar
non-Gaussianity on the power spectra and on Ω

GW
(f) in these models. Hence, we begin

by calculating the correction to the power spectrum by the procedure discussed earlier
in Sec. 5.3. We first compute the scalar bispectrum for the models. We evaluate all the
contributions arising from the third order action governing the scalar perturbations and
arrive at the complete form of the scalar bispectrum G(k1,k2,k3) [cf. Eqs. (1.23) and
(1.24)] for each of the models. We then use the relation (5.5) to obtain the associated
f
NL

(k1,k2,k3). The resulting f
NL

(k1,k2,k3) is then substituted into Eq. (5.10), to
arrive at the correction to the power spectrum P

C
(k). Since the bispectra for the models
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Figure 5.2: We present the non-Gaussianity parameter f
NL

(k1,k2,k3) for the two
models of interest, viz. SMD (on the left) and CHI (on the right). We have
illustrated the behavior in the squeezed, equilateral and flattened limits (on
the top, in the middle and at the bottom panels, respectively). We find that
the f

NL
(k1,k2,k3) has non-trivial scale dependence and it is important to

capture its complete behavior while computing the corrections to the power
spectrum. There are rather large values of f

NL
(k1,k2,k3) occurring at the

wave numbers corresponding to the location of the sharp downward spike in
the power spectra of the respective models. As mentioned, these spuriously
large values should be dealt with caution and have to be regulated while
using f

NL
(k1,k2,k3) in further calculations.

of interest are not easy to evaluate analytically, we perform this calculation numerically.

In Fig. 5.2, we illustrate the behavior of the scalar non-Gaussianity parameter
f
NL

(k1,k2,k3) for both the models of interest for various configuration of wave
numbers. We have plotted f

NL
(k1,k2,k3) in the squeezed limit (k1 → 0, k2 = k3 = k),

equilateral limit (k1 = k2 = k3 = k) and the flattened limit (k1 = k2 = k, k3 = 2 k).
The parameter exhibits non-trivial behavior close to the wave number corresponding
to the peak in the power spectra. The behavior is smoother over scales farther from
the peak in the spectra. We also present the density plot of f

NL
around the peak in

the power spectra for these models in Fig 5.3. We find that f
NL

is largely local in its
behavior around the peak. We should note that the value of f

NL
is lesser than unity over

this range of wave numbers close to the peak. However, we notice deviation from these
local values as we move further from the peak, i.e. as k1 takes values smaller than k3.
We should mention that there arises a sharp spike in f

NL
(k1,k2,k3) at the point where
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Figure 5.3: The density plots of the scalar non-Gaussianity parameter f
NL

(k1,k2,k3)
illustrating its behavior for a general configuration of wave numbers around
a given value of k3 is presented for the two models of interest, viz. SMD
(on top) and CHI (at the bottom). The behavior is evidently dependent on
the value of k3, which for both the models is taken to be k3 = 106 Mpc−1,
corresponding to the wave number close to the peak in the spectra. We find
that f

NL
(k1,k2,k3) in these models are highly local in shape around the

peak in the spectra. The value of the parameter is roughly −0.5 in case of
SMD, whereas in case of CHI, it turns out to be around−0.04. As we move
away from the peak, for k1 � k3, we see that the f

NL
starts deviating from

the local shape and growing larger in value.
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there is a sharp downward spike in the power spectrum, occurring before the rise and the
peak in the range of wave numbers. This indicates power spectrum reaching very small
values. Hence, quantities like n

S
(k) or f

NL
(k1,k2,k3) that contain power spectrum in

their denominators of their definitions, may incur spuriously large values at this wave
number. Therefore, care should be taken when dealing with such anomalous values. In
our calculation, we have regulated the value of f

NL
around the region by introducing

a cutoff at 10. This implies that any value of |f
NL
| which is larger than 10 is taken to

be 10.

5.5.1 Calculation of the correction to scalar power spectrum

With f
NL

(k1,k2,k3) thus computed, we can obtain the correction to the spectrumP
C
(k)

for both the models. Before we proceed to perform the integrals numerically, we utilize
Eq. (5.10) and attempt to arrive at a rough analytical estimate of P

C
(k).

Let kf denote the wave number corresponding to the peak in the power spectrum.
We know that the maximum amplitude of the integrand occurs around the region where
x = kf/k or y = kf/k or x = y = kf/k. In Fig. 5.4, we illustrate the range of the
integrals involved and the points from which the maximum contribution arises. We
shall describe the sharp peak in the behavior of the power spectrum by approximating
its form around the peak using a Dirac delta function as follows:

P
S
(k) = P

S
(kf) δ

(1)(ln k − ln kf). (5.22)

Using this approximation, we proceed to calculate the dominant contributions to the
integrals. We perform the integral over x in Eq. (5.10) to obtain that

P
C
(k) =

9

25

(
k

kf

)
P

S
(kf)

∫ 1+kf/k

|1−kf/k|

dy

y2
P

S
(ky) f 2

NL
(k,kf , yk). (5.23)

To perform this integral, we shall consider the two regimes in wave numbers, viz. k < kf

and k > kf . For the case of k < kf , the integrand receives contribution only from the
point marked P3 in Fig. 5.4. Due to the narrow range of the integral over y, we may
approximate (k y) ' kf in the arguments of P

S
and f

NL
. So, the above integral over y
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Figure 5.4: The range of integration involved in calculating P
C
(k) [cf. Eq. (5.10)] is

plotted on a logarithmic scale. The shaded region marks the region covered
by the limits of the integrals. We mark the three points P1, P2 and P3 at
which the integrals derive maximum contribution when there is a strongly
localized peak in the power spectrum. The region around the points P1
and P2 contribute when k > kf and the region around P3 contributes when
k < kf . It is also worth noting that, due to the symmetry of the integrand
over the variables x and y, the contributions from P1 and P2 turn out to be
equal to one another. For the case of k ∼ kf , the integrand receives the
maximum contribution from the wide region around x = y = 1.
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simplifies to

P
C
(k) ' 9

25

(
k

kf

)
[P

S
(kf) fNL

(k,kf ,kf )]
2

∫ 1+kf/k

|1−kf/k|

dy

y2

=
18

25

(
k

kf

)3

[P
S
(kf) fNL

(k,kf ,kf )]
2 , (5.24)

where we have used the fact that kf/k > 1. It is interesting to note the combination
of wave numbers appearing in the argument of f

NL
. We know that k < kf . Hence,

f
NL

(k,kf ,kf ) denotes that the parameter has to be evaluated in the squeezed limit of
the configuration of wave numbers. This further simplifies the expression because we
know that the consistency condition relating the f

NL
and the scalar spectral index n

S
(k)

is obeyed in these models [18, 299]. Therefore, we utilize the consistency relation

f
NL

(k,kf ,kf ) =
5

12
[n

S
(kf)− 1]. (5.25)

In this expression, strictly speaking, [n
S
(kf) − 1] vanishes identically since it is the

slope of the spectrum at its peak. However, we shall take it to be a small non-vanishing
value close to the peak in the spectrum for the purpose of our calculation. Therefore
expression for P

C
(k) reduces to

P
C
(k) =

1

8

(
k

kf

)3 {
P

S
(kf) [n

S
(kf)− 1]

}2

. (5.26)

We find that P
C
(k) shall be proportional to k3 over the scales with k < kf .

We then consider the case of k > kf . For these wave numbers, there arise
contributions from the two points P1 and P2 marked in Fig. 5.4. We shall first evaluate
the contribution at P1 using the approximation of the spectrum in Eq. (5.22). The
expression for P

C
(k) becomes

P
C
(k) ' 9

25

(
k

kf

)
P

S
(kf)PS

(k) f 2
NL

(k,kf ,k)

∫ 1+kf/k

|1−kf/k|

dy

y2

=
18

25
P

S
(kf)PS

(k) f 2
NL

(k,k,kf ), (5.27)

where we have used the smallness of kf/k. We again note that the arguments of f
NL

suggest that it is evaluated in the squeezed limit but now with kf acting as the squeezed
mode. We shall use the consistency relation again, where

f
NL

(k,k,kf ) =
5

12
[n

S
(k)− 1]. (5.28)
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Upon using this relation, the expression for P
C
(k) reduces to be

P
C
(k) =

1

8
P

S
(kf)PS

(k) [n
S
(k)− 1]2 . (5.29)

Due to the fact that the form of the integral in Eq. (5.10) remains unchanged under the
exchange of x and y, the contribution from the point P2 shall be the same as from P1
which we computed above. So, we have the total value of P

C
(k) for k > kf to be

P
C
(k) =

1

4
P

S
(kf)PS

(k) [n
S
(k)− 1]2 . (5.30)

We find that P
C
(k) over the regime of k > kf shall be proportional to P

S
(k). Hence,

if P
S
(k) turns nearly scale invariant away from the peak over large wave numbers, then

we can expect a corresponding P
C
(k) with nearly constant amplitude. In summary, we

have the analytical estimate of P
C
(k) to be

P
C
(k) =





1

8

(
k

kf

)3

{P
S
(kf) [n

S
(kf)− 1]}2 , for k < kf ,

1

4
P

S
(kf)PS

(k) [n
S
(k)− 1]2 , for k > kf .

(5.31)

Having obtained these analytical expressions, we proceed to compute the exact
numerical estimates of P

C
(k). We shall briefly discuss certain aspects of numerical

evaluation of the integrals involved. The integral involved in P
C
(k) [cf. Eq. (5.10)] is

evaluated ensuring that the regimes around x = kf/k and y = kf/k are well sampled.
Due to the wide range of the integral over x, the integration is performed over log scale.
The limits are chosen such that the range of integration is centered at kf/k and spans two
decades on either side of the point. For given values of k x and k y, the power spectra
are evaluated numerically. Besides, each point on this x-y plane provides a triangular
configuration of wave numbers for which f

NL
(k, xk, yk) is calculated numerically. This

is the most time consuming part of the calculation. Once computed, the integrand is
summed over to obtain P

C
(k). The exercise is repeated for the complete range of wave

numbers.

5.5.2 Calculation of non-Gaussian contributions to Ω
GW

The behavior of P
C
(k) may give us an idea of the effect of f

NL
on the scalar power

spectrum. It may further give us an insight about the amplitude of one of the non-
Gaussian contributions [cf. Eqs. (5.17)]. Having obtained the P

C
(k) in the models of
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interest, we proceed to compute the non-Gaussian contributions P(2−i)
h to the Ω

GW
in

these cases.

At the outset, we should note that, the non-trivial dependence of f
NL

over different
combination of wave numbers in P(2−1)

h (k) and P(2−3)
h (k) do not allow us to easily

obtain an analytical estimate as we did for P
C
(k). Hence, as mentioned earlier,

we numerically perform these integrals involved using the Monte-Carlo method of
integration to obtain the estimates. Let us now mention a few details about the
procedure. We first identify the region of maximum amplitude of the integrands in
the range of integration, for a given wave number k. Interestingly, we find that the
integrands have maximum values around the wave number kf , if the wave number
of interest k < kf , while they peak around k if k > kf . We also find that the
nature of integrands are very localized in the range of k allowing us to set the range
of integrals to be two decades on either side of the peaks of the integrands. The
respective angular integrals were performed over the entire range viz. cos θi ∈ [−1, 1]

and φi ∈ [0, 2 π]. During the performance of integration, each point corresponded to a
numerical evaluation of a combination of power and bi-spectra with their appropriate
arguments of wave numbers. The computation of f

NL
at each point of integration was

the time consuming part of this process. The integrals were performed using 105 points
and checked for convergence.

We should also note an interesting property of these contributions. The integrand
describing P(2−2)

h (k) is positive definite and hence the contribution shall be positive.
However, the integrand characterizing the contributions P(2−1)

h (k) and P(2−3)
h (k) can

be negative, because of their dependence over the polar angles (as noted earlier in
Ref. [295]). This property should be accounted for while comparing them against Ω

GW

from the Gaussian contribution.

5.5.3 Results

First, we present the P
C
(k), obtained both the analytically and numerically, against

the original spectra, P
S
(k), in Fig. 5.5. We observe that P

C
(k) is smaller than the

original P
S
(k) particularly around the peak and over the range k > kf . There appears

a region close to the dip in the spectrum where P
C
(k) is greater than P

S
(k). This is

mainly due to the sharp spike occurring in f
NL

that we mentioned earlier. But apart
from this effect, there arises no significant correction to the original power spectrum.
Moreover, the analytical estimate fairly mimics the exact numerical behavior of P

C
(k).

The behavior of k3 over large scales and near scale invariance over small scales is well
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Figure 5.5: The original scalar power spectra P
S
(k) (as solid lines) and the non-

Gaussian corrections P
C
(k) due to the bispectrum (as dashed lines) have

been plotted here for the models of interest, viz. . SMD (on the left) and
CHI (on the right). Evidently, the P

C
(k) computed is lower in amplitude

than P
S
(k). We have also plotted the analytical estimate of P

C
(k) for these

two models (as dotted lines). The analytical estimate matches the numerical
behavior better in the case of SMD than CHI since the spectrum is more
sharply peaked in the first model than in the second model. The complete
spectrum corrected for P

C
(k) shall effectively be the same as the original

P
S
(k), particularly around kf and over k > kf .

captured in the numerical result thereby assuring the validity of the analytical estimates
over wave numbers far from the peak. The match is better for the model SMD. This can
be understood because its spectrum is closer in resemblance to the Dirac delta function
used in the analytical calculation. The original spectrum P

S
(k) in case of CHI has a

rather broad peak with slower descent over the range of wave numbers. This behavior
leads to the difference between numerical and analytical estimates of P

C
(k) around the

peak in this model. However, for k > kf , the analytical estimate matches better even
in case of such a broad peak. The rugged nature of the numerical result is due to the
limited number of points taken for evaluation over the range of wave numbers.

We present the behavior of the non-Gaussian contributions to Ω
GW

at the level of
f 2
NL

, viz. due to P(2−i)
h (k), in Fig. 5.6. We focus particularly around the peak amplitude

of Ω
GW

and find that the non-Gaussian contributions are significant for SMD. These
contributions dominate the Ω

GW
from the Gaussian spectrum for wave numbers k ≤ kf .

However, they become sub-dominant for k > kf . In case of CHI, the non-Gaussian
contributions become briefly comparable over the range of k ' kf . But they are sub-
dominant for wave numbers k < kf as well as k > kf . Thus, we learn that the behavior
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Figure 5.6: We present the non-Gaussian contributions to Ω
GW

arising due to f
NL

(as
dotted lines), against the original Gaussian contribution (as solid lines) for
the models SMD (on left) and CHI (on right), focusing over the range of
frequencies containing the maximum amplitude. The contributions arising
from the termsP(2−1)

h (k) (in green),P(2−2)
h (k) (in cyan),P(2−3)

h (k) (in lime)
are presented for both the models of interest.

of Ω
GW

arising from non-Gaussian contributions are model dependent and significant in
case of power spectrum with highly localized behavior around the peak. However, as we
move farther from the peak, these contributions become lesser in amplitude compared
to the Gaussian contribution. Therefore, these models illustrate that the non-Gaussian
contributions to Ω

GW
have to be computed and consistently accounted for, especially

around the peak, in models of interest.

5.6 DISCUSSION

There have been attempts in the literature to account for scalar non-Gaussianity in the
calculation of the spectral density of the secondary GWs, Ω

GW
(f), for specific cases of

f
NL

assuming certain shapes or limits of the bispectrum. In this work, we have presented
a method to account for a general scalar bispectrum with non-trivial scale dependence
in such a calculation. We have presented the correction to the scalar power spectrum
that may arise due to the scalar bispectrum. We have also attempted an analytical
estimate of the correction to be expected from models with a localized peak in the
power spectrum. We have found that it is the squeezed limit of f

NL
that contributes the

most to the correction for wave numbers away from the peak in the power spectrum. We
have then presented the non-Gaussian contributions to Ω

GW
(f) that arise due to f

NL
. We
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have computed terms that are reducible in terms of P
C
(k) as well as those that are not

reducible so. We have consistently accounted for the scale dependence of f
NL

, arising
from the modified definition of the parameter, in computing these contributions.

We then illustrated our method using two models of inflation. These are models
driven by canonical scalar fields that permit brief epochs of ultra slow roll and hence
lead to significant amplitudes of secondary GWs. We have computed the correction
to the power spectrum arising from f

NL
and find that it is largely sub-dominant to the

original power spectrum. Moreover, the analytical estimate of the correction agrees
fairly well with the exact numerical estimate in these cases. We have then computed
the non-Gaussian contributions to the Ω

GW
(f) and compared them against the Gaussian

contribution. We have computed these contributions up to the level of f 2
NL

. We have
found that the non-Gaussian contributions are non-trivial and slightly different from
the shape of the original Ω

GW
(f). The non-Gaussian contributions arising in the case

of SMD have been found to dominate the original amplitudes of Ω
GW

(f) around the
frequencies corresponding to the wave number kf containing the peak in the power
spectrum, as well as smaller wave numbers, i.e. over k < kf . But, these contributions
decrease farther from the peak and become sub-dominant to the Gaussian contribution
for wave numbers with k > kf . In the case of CHI, the non-Gaussian contribution
become briefly comparable to and dominant over the Gaussian contribution around kf ,
but remain sub-dominant farther from kf on either side. Since the models serve as
examples typical models of inflation that are considered in this context of generation
of secondary GWs, we can argue that the non-Gaussian contributions arising from f

NL

may turn out to be significant, particularly around the peak amplitude of Ω
GW

. Hence,
they have to be computed and accounted for in the estimates of Ω

GW
.

Besides, we should emphasize that the method used for calculation has its value
in being able to capture the complete behavior of f

NL
(k1,k2,k3) in any non-trivial

scenario of inflation. Moreover, the analytical estimate of the correction to the power
spectrum, P

C
(k), serves as a good approximation for the exact estimate, without

directly computing the bispectrum. This greatly reduces the time taken for the
calculation of f

NL
and provides a quick estimate of P

C
(k) to be expected from just the

shape of the spectrum for any model with a peak in its scalar power. Importantly, the
non-negligible levels of non-Gaussian contributions to Ω

GW
obtained in these models

indicate the necessity to capture the exact scale dependence of f
NL

as presented in this
method.

As to the caveats of this work, we should mention that we have restricted the
computation of non-Gaussian contributions to Ω

GW
up to terms involving f 2

NL
due to the
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complexity of numerical implementation. We are currently working on addressing the
complexity and accounting for terms involving f 4

NL
in the calculation. Secondly, there

arises a spike like behavior in the shape of f
NL

[cf. Fig. 5.2]. This occurs due to the
presence of P

S
(k) in the denominator of the expression of f

NL
in terms of power and

bi-spectra [cf. Eq. (5.5)]. As P
S
(k) reaches extremely small values, this spike occurs

and it has to be regulated to a finite value during the computation. This has an effect
in our results as one may see a corrugated shape of P

C
(k) computed using f

NL
. Hence,

to avoid such artefacts in computation, it may be preferable to modify this method to
utilize the bispectrum directly in the calculation of P

C
(k) as well as the non-Gaussian

contributions to Ω
GW

. We are presently working on these issues.

In summary, we argue that the method we have discussed is a robust way to
account for the exact form of primordial scalar non-Gaussianity at the level of three-
point correlation in the calculation of Ω

GW
arising from models of inflation. Since we

infer a significant non-Gaussian contribution to Ω
GW

in the models considered, it would
be interesting to employ this method for non-canonical models that can potentially
produce larger amplitudes and different shapes of scalar non-Gaussianities. Such
scenarios may even lead to significant non-Gaussian corrections to the power spectra
along with large non-Gaussian contributions to Ω

GW
. Moreover there are efforts to

account for the contribution of higher order non-Gaussianities, such as the trispectrum,
to the secondary tensor power spectrum. It would be interesting to explore the effects of
non-Gaussianities with non-trivial scale dependence in such higher order calculations.
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CHAPTER 6

CONCLUSIONS

6.1 SUMMARY

The objective of this thesis has been to examine the observational signatures of non-
trivial models of inflation and constrain them using the corresponding data. We
have investigated models containing unique features in their power spectra and have
computed the corresponding observational imprints. We had focused on models which
are degenerate at the level of power spectra and found that they possess distinguishing
features at the level of bispectra. We had further examined these distinct features and
had attempted to consistently account for them in the estimation of the associated
observables. We have discussed these investigations and have presented the findings
of these analyses in detail in the preceding chapters. In this section, we shall briefly
summarize the essential results of the our analyses.

In Chap. 2, we had investigated models leading to the suppression of scalar power
over the largest CMB scales. We had considered the scenario of kinetically dominated
initial conditions and contrasted it against other models such as the Starobinsky
model (2.2) and the punctuated inflation model (2.5) which lead to similar features. We
had also compared these models against the latest CMB data from Planck and arrived at
constraints on the respective model parameters. We had further examined the associated
scalar bispectrum in models with kinetically dominated initial conditions and had found
that it contains unique signatures. In particular, we had shown that the consistency
relation is violated over large scales in such models where suppression of power occurs
in the scalar spectrum. These interesting aspects can serve to potentially discriminate
this scenario from other models when we have more precise constraints on primordial
non-Gaussianity from future CMB missions and large scale structure surveys.

In Chap. 3, we had focused on models leading to enhancement of scalar power
on small scales and hence giving rise to significant amounts of PBHs and detectable
amplitudes of secondary GWs. The class of models we had considered, viz. the ultra
slow roll and punctuated inflationary models, lead to power spectra which are largely
similar in shape and amplitude. We had also reproduced similar spectra in scenarios
reconstructed from the behavior of the first slow roll parameter ε1. Such reconstructions
had allowed us to understand the essentials of the inflationary dynamics leading to
enhanced scalar power and had also permitted us to tune the location and shape of
the feature more easily. Moreover, we had learnt that these models lead to a non-
trivial scalar bispectrum and yet, surprisingly, satisfy the consistency relation in the



squeezed limit. These properties shall become crucial when one attempts to account
for non-Gaussianities in the estimates of PBHs and GWs generated from such models.
Besides, we had illustrated that the bispectrum associated with the secondary tensor
perturbations contains remarkable signatures that can shed light on the characteristics
of GWs. The associated shape function, if detected by upcoming GW missions, can
lend further insight into the dynamics of the models giving rise to them.

In Chap. 4, we had explored a novel mechanism for the production of PBHs and
secondary GWs. We had considered evolving scalar perturbations from excited initial
states, in particular, squeezed initial states, rather than the standard Bunch-Davies
vacuum. We had calculated the scalar bispectrum in this scenario analytically and
had shown that, in the squeezed limit, the non-Gaussianity parameter f

NL
is inversely

proportional to the squeezed mode. Hence, the consistency condition is seriously
violated and f

NL
could reach large values. We had utilized such large amplitudes of

f
NL

to compute the associated correction to the power spectrum. This had lead to
significant production of PBHs and secondary GWs in this scenario. However, we had
also found that the issue of backreaction imposes a severe limit on this mechanism. We
had estimated the energy density of perturbations backreacting on the background and
had arrived at a stringent constraint on the parameter quantifying the deviation of the
initial state from the Bunch-Davies vacuum.

In Chap. 5, we had presented a method to account for the complete behavior of
the scalar bispectrum in the calculation of secondary GWs. We had used a modified
definition of f

NL
that generalizes the parameter beyond any particular template or limit.

We had computed the correction to the scalar power spectrum due to such an f
NL

and
had also computed the non-Gaussian contributions to the amplitude of secondary GWs.
We had illustrated this method using two inflationary models involving the canonical
scalar field that are representative of models often considered in this context. We
had argued that the method is robust, free from assumptions and generalizes earlier
approaches in this regard. Hence, it can be applied to any given scenario of inflation that
may give rise to a strongly scale dependent scalar bispectrum and substantial amplitude
of secondary GWs.

6.2 OUTLOOK

The theme of this thesis has been investigation of models leading to non-trivial features
at level of power and bi-spectra, across a wide range of scales. The constituent efforts
discussed thus far can be extended further in many directions. We shall highlight below
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a few such possibilities for further exploration.

The non-Gaussianities we had examined had involved the auto-correlations, i.e. the
bispectra of the scalar and tensor perturbations. It is of great interest and possibly of
equal significance to investigate the non-Gaussianities arising from the cross-correlation
of the scalar and tensor perturbations in the models discussed (for related efforts, see
Refs. [310–312]). Accounting for such contributions to the total non-Gaussianity in
the estimates of predictions of observables can be highly insightful. It can also help us
to jointly constrain the associated non-Gaussianity parameters using the available and
forthcoming observational datasets.

The phenomenon of production of PBHs is particularly interesting in the context of
models giving rise to non-trivial non-Gaussianities. Recall that, the population of PBHs
produced is exponentially sensitive to the amplitude of the scalar power around the
peak. Hence, any minor correction to it can have significant effect on the amount PBHs
produced. Further, a large primordial scalar non-Gaussianity can alter the underlying
distribution governing the field of density contrast during the subsequent epochs (for
related efforts, see Refs. [80, 182, 187]). This can, in turn, drastically modify the
estimate of the population of PBHs formed in a given epoch [232, 313]. Therefore,
the effect of scalar non-Gaussianity on the formation of PBHs in the context of the
models of our interest is an interesting avenue to explore.

Another potential aspect of future investigation arises from the upcoming field
of observational astronomy, viz. the detection of 21 cm signals from the epoch of
reionization (for current efforts, see Refs. [314, 315]). This is an observational probe
corresponding to scales between 10−1 Mpc and 100 Mpc. This range is intermediate to
the large scales of the CMB and the small scales probed by PBHs and GWs. Therefore,
examining the predictions of models over this regime complements our analyses thus
far. Such efforts may therefore help us complete our understanding of the dynamics
of inflation throughout its duration (see for instance, Refs. [316, 317]). Further, as
these observations grow more precise, an interesting possibility would be to constrain
models using a comprehensive dataset comprising of variety of observables that span
the complete range of scales.

We are presently working on some these issues.
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APPENDIX A

Signatures of initial kinetic domination across models

To illustrate that the imprints of initial kinetic domination arise across all inflationary
modes, in this appendix, we shall consider two other models of inflation, viz. a small
field model and so-called the axion monodromy model, which are described by the
following potentials:

V (φ) = V0

[
1−

(
φ

φ0

)4
]
, (A.1a)

V (φ) = µ3

[
φ+ b φ0 cos

(
φ

φ0

)]
. (A.1b)

We work with parameters and initial conditions for the background such that the power
spectra are COBE normalized around the pivot scale and the suppression on large scales
occurs as in QPa. The corresponding power spectra are illustrated in Fig. A.1, and it
is clear that, despite the different choice of potentials, the power spectra have the same
shape at large and small scales across models. In Fig. A.2, we have plotted the behavior
of the non-Gaussianity parameter f

NL
in the squeezed limit in these cases. Clearly, the

behavior of the parameter is similar to that encountered in the cases of QP and SMI.
The restoration of the consistency condition is well illustrated in the case of the axion
monodromy model, wherein both the power and bispectra exhibit continued oscillations
even at small scales [132, 318].
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Figure A.1: The scalar power spectra in a small field inflationary model (in blue) and
the axion monodromy model (in green) with kinetically dominated initial
conditions have been plotted along with the power spectrum in the case of
QPa (in red). The parameters have been chosen so that the features of the
power spectra match at large scales.
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Figure A.2: The behavior of the scalar non-Gaussianity parameter f
NL

in the squeezed
limit has been plotted (in red) for the small field inflationary model (on
top) and the axion monodromy model (at the bottom). Just as we had
done earlier, we have also plotted the quantity fCR

NL
(in blue). As in the

cases of QP and SMI, while the consistency condition is violated at large
scales, it is restored at small scales. This is clearly evident in the case of
the axion monodromy model which is known to exhibit oscillations in the
power spectrum as well as in the bispectrum even at small scales.
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APPENDIX B

The dichotomy of ultra slow roll and punctuated inflation

With the help of an example, in this appendix, we shall illustrate that a given inflationary
potential can permit ultra slow roll as well as punctuated inflation for different sets
of parameters. The potential that we shall consider, when expressed in terms of the
quantity x = φ/v that we had introduced in the context of USR1, is given by [161]

V (φ) = V0
αx2 − β x4 + γ x6

(1 + δ x2)2
. (B.1)

In Fig. B.1, we have plotted the evolution of the first slow roll parameter ε1 in the
above potential for the following two sets of parameters: V0/M

4
Pl

= 1.3253 × 10−9,
γ = 1, δ = 1.5092 and (v/M

Pl
, α, β) = (4.3411, 8.522× 10−2, 0.469) and (10, 8.53×

10−2, 0.458). We obtain about 75 e-folds of inflation in these cases for φi = 17.245M
Pl

and φi = 13.4M
Pl

. It is clear from the figure that, while the first set of parameters lead
to punctuated inflation, the second set does not permit an interruption of inflation until
the very end. This example illustrates the point that a potential itself cannot be classified
as an ultra slow roll or a punctuated inflationary model.
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Figure B.1: The behavior of the first slow roll parameter ε1 has been plotted for two sets
of parameters describing the potential (B.1) and suitable initial conditions
that lead to about 75 e-folds of inflation. Note that the first set of values for
the parameters leads to punctuated inflation with ε1 (plotted in red) crossing
unity (indicated as a dotted horizontal line) twice, once prior to the regime
of ultra slow roll and eventually when inflation terminates. The second set
of parameters leads to an extended period of ultra slow roll (plotted in blue)
without any interruption of inflation until the very end.
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APPENDIX C

The functional forms of the polarization factors

Recall that, eλ(k,p) = eλij(k) pi pj . For our choice of (k1,k2,k3) and (p1,p2,p3)

[cf. Eqs. (3.18) and (3.19)], we find that eλ(k,p) can be evaluated to be

e+(k1,p1) =
1

4
√

2

(
3 p2

1x + p2
1y − 2

√
3 p1x p1y − 4 p2

1z

)
, (C.1a)

e+(k2,p2) =
1

4
√

2

(
3 p2

1x + 3 k2 + p2
1y + 2

√
3 p1x p1y − 6 k p1x (C.1b)

− 2
√

3 k p1y − 4 p2
1z

)
, (C.1c)

e+(k3,p3) =
1√
2

(
p2

1y − p2
1z

)
, (C.1d)

e×(k1,p1) = − 1√
2

(√
3 p1x − p1y

)
p1z, (C.1e)

e×(k2,p2) =
1√
2

[√
3 (p1x − k) + p1y

]
p1z, (C.1f)

e×(k3,p3) = −
√

2 p1y p1z. (C.1g)



APPENDIX D

A closer examination of the consistency relation

We had pointed out that, in the squeezed limit, i.e. when k1 → 0 and k2 ' k3 =

k, the scalar non-Gaussianity parameter f
NL

is expected to satisfy the consistency
condition (2.11). In the results presented earlier (in Figs. 3.11 and 3.12), we had
worked with k1 = 10−3 k to arrive at f

NL
in the squeezed limit. While we find that

the consistency condition is satisfied to better than 5% over a wide range of scales, we
notice that there is some departure around wave numbers corresponding to the peak
in the scalar power spectrum. To investigate this point more closely, in Fig. D.1, we
have plotted the numerical results around the peak in the scalar power spectrum for the
original choice of k1 as well as for k1 = 10−1 k and k1 = 10−5 k in the case of the
model PI3. We have considered the case of k1 = 10−1 k since we find that roughly a
decade of modes exit the Hubble radius during the ultra slow roll phase. Evidently, such
a value of k1 would be insufficient for it to be considered a squeezed mode. We find that
the value of f

NL
remains of order unity even when we confine to modes which leave the

Hubble radius during the period of ultra slow roll. Also, as one would expect, we find
that the consistency condition is satisfied better and better as we work with a smaller
value of k1. We should clarify that adequate care needs to be taken while evaluating the
integrals involved in the calculation of the bispectrum during the ultra slow roll regime.
Since there occur rapid changes in the slow roll parameters during this epoch, we should
regulate the integrals with an appropriate choice for the cut-off parameter κ, especially
for the dominant contribution G4(k1,k2,k3) [cf. Eqs. (1.24)]. With an appropriate cut-
off and with smaller values for the squeezed mode k1, we find that the match between
f
NL

and fCR
NL

indeed improves. Nevertheless, even with a smaller of choice of k1, we
still notice some difference near the peak in the power spectrum. We feel that this is an
artefact and we believe that the difference can be overcome with a further smaller value
for k1. However, working with a very small k1 poses certain numerical challenges, and
we will leave it for future investigation. We should mention that this is an independent
issue and stress that it does not affect our main conclusions related to PBHs and GWs.
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Figure D.1: The non-Gaussianity parameter f
NL

in the squeezed limit (in blue) and the
consistency condition fCR

NL
(in red) have been plotted for the model PI3 over

wave numbers around the peak in the scalar power spectrum. We have set
the squeezed mode to be k1 = 10−1 k (on the left), k1 = 10−3 k (in the
middle) and k1 = 10−5 k (on the right) in plotting these figures. We have
also indicated the 5% uncertainty in our numerical estimate as bands (in
blue). Moreover, we have demarcated the range of modes (by vertical,
dashed, green lines) that leave the Hubble radius during the epoch of ultra
slow roll in the model. Obviously, the choice of k1 = 10−1 k is insufficient
for k1 to be considered a squeezed mode. Such a choice has been made to
illustrate the point that the value of f

NL
proves to be of order unity even

when we confine to modes that leave the Hubble radius during the period
of ultra slow roll. Evidently, there is an improvement in the extent to which
the consistency condition is satisfied when we choose to work with smaller
and smaller values of k1. Though the match improves as we work with
a smaller k1, we still seem to notice some deviation. This is possibly an
artefact arising due to the reason that, numerically, we are unable to work
with an adequately small value of k1.
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APPENDIX E

Asymptotic behavior of the curvature perturbations

As we mentioned, it has been shown that an indefinite ultra slow roll regime of inflation
leads to the violation of the consistency condition [137, 138]. Since all the models
of our interest contain an ultra slow roll phase, one may wonder if a violation of the
consistency condition would occur in these cases. As we have seen, the consistency
condition is satisfied in all the cases we have considered. This is primarily due to the
fact that the ultra slow roll phase lasts only for a finite duration in our models, permitting
the eventual freezing of the amplitude of the curvature perturbations.

In this appendix, we shall illustrate this point with the aid of a truncated version of
the scenario RS1. We shall consider the following two functional forms for ε1(N):

εIII1 (N) = [ε1a (1 + ε2aN)]

[
1− tanh

(
N −N1

∆N1

)]
, (E.1a)

εIV1 (N) = [ε1a (1 + ε2aN)]

[
1− tanh

(
N −N1

∆N1

)]
+ ε1b. (E.1b)

Evidently, while the first choice leads to an indefinite period of ultra slow roll beyond
the e-fold N1, the second choice restores slow roll when ε1(N) attains the value of ε1b.
In Fig. E.1, we have plotted the behavior of these slow roll parameters as well as the
evolution of the curvature perturbation for three modes which leave the Hubble radius
just prior to and after the onset of the ultra slow roll phase. We have worked with the
following values for parameters involved in plotting the figure: ε1a = 10−4, ε2a = 0.05,
N1 = 42, ∆N1 = 0.5 and ε1b = 10−10. It should be clear that, while the amplitude
of the curvature perturbations grow indefinitely when the ultra slow roll continues, the
amplitude freezes when slow roll inflation is restored.
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Figure E.1: The functional forms εIII1 (N) (in red) and εIV1 (N) (in blue) for the first slow
roll parameter have been plotted as a function of e-folds (on top). We have
also illustrated the evolution of the dominant imaginary part of the curvature
perturbation Rk for three representative modes in these two scenarios (as
solid, dashed and dotted curves, in red and blue, respectively, at the bottom).
It is easy to see that (upon comparison of, say, the dotted red and blue
curves) that the end of the ultra slow phase ensures that the amplitude of
the curvature perturbations eventually freeze.
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APPENDIX F

The steepest growth of the scalar power spectrum

In models of ultra slow roll and punctuated inflation, we have seen that the scalar power
grows rapidly from its COBE normalized values on the CMB scales to higher values
at smaller scales over wave numbers that leave the Hubble radius during the transition
from slow roll to ultra slow roll. An interesting issue that is worth understanding is the
steepest such growth that is possible in models of inflation driven by a single, canonical
scalar field. It has been argued that the fastest growth will have n

S
− 1 ' 4 over

this range of wave numbers (in this context, see Ref. [194]; also see Ref. [199]). We
find that the reconstructed scenarios RS1 and RS2 easily permit us to examine this
issue. Recall that, in these scenarios, the parameter ∆N1 determines the rapidity of the
transition from the slow roll to the ultra slow roll regime [cf. Eqs. (3.10)]. We find that
it is this parameter that dictates the steepness of the growth in the corresponding scalar
power spectra, with smaller ∆N1 producing a faster rise. We have examined the rate of
growth in the cases of RS1 and RS2 by varying ∆N1 over a certain range, while keeping
the other parameters fixed. In Fig. F.1, we have illustrated the spectra for four values
of ∆N1 which are relatively smaller than those we had used for the reconstructions
discussed earlier. It should be clear from the figure that, in the case of RS1, the rise is
fairly steady as the value of ∆N1 is made smaller, with n

S
− 1 ' 4 over the growing

regime. In the case of RS2, we find that n
S
−1 varies between 4 and 6 over the growing

regime and therefore corresponds to a steeper but non-uniform growth of the spectra.
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Figure F.1: The scalar power spectra around the region where they exhibit the sharpest
growth have been plotted in the cases of RS1 (on the left) and RS2 (on
the right) for a set of values of ∆N1. We have plotted the spectra for the
following four values of ∆N1: (0.1, 0.08, 0.05, 0.01) (in red, blue, green
and purple, respectively). The insets illustrate the corresponding spectral
indices n

S
− 1. We have also indicated the k4 behavior in the case of RS1

(as dotted lines of corresponding colors on the left) to show how well it
matches the spectra during the growth. It should be evident that, while RS1
leads to a growth corresponding to n

S
− 1 ' 4, RS2 permits a steeper but

non-uniform growth with n
S
− 1 varying between 4 and 6 over the relevant

wave numbers.
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APPENDIX G

The dominant contributions to the scalar bispectrum

In this appendix, we shall provide the complete expressions describing the dominant
contributions to the scalar bispectrum evaluated in a squeezed initial state. For a generic
α(k) and β(k), these contributions are given by the following expressions (in this
context, see for example, Refs. [264, 268, 270, 271]):

G1(k1,k2,k3) =
H4

I

32M4
Pl
ε1

|α1|2 |α2|2 |α3|2
k1 k2 k3

(1− δ1) (1− δ2) (1− δ3)

k2
1

×
[

1 + δ∗1 δ
∗
2 δ
∗
3

k
T

(
1 +

k1

k
T

)

+
δ∗1 + δ∗2 δ

∗
3

k1 − k2 − k3

(
1 +

k1

k1 − k2 − k3

)

+
δ∗2 + δ∗1 δ

∗
3

k2 − k1 − k3

(
1− k1

k2 − k1 − k3

)

+
δ∗3 + δ∗1 δ

∗
2

k3 − k1 − k2

(
1− k1

k3 − k1 − k2

)]

+ complex conjugate + two permutations, (G.1a)

G2(k1,k2,k3) = − H4
I

64M4
Pl
ε1

(k2
1 + k2

2 + k2
3)

(k1 k2 k3)3

× |α1|2 |α2|2 |α3|2 (1− δ1) (1− δ2) (1− δ3)

×
{[

i

ηe

(
ei kT ηe − δ∗1 ei (−k1+k2+k3) ηe

− δ∗2 ei (k1−k2+k3) ηe − δ∗3 ei (k1+k2−k3) ηe

+ δ∗2 δ
∗
3 e−i (−k1+k2+k3) ηe + δ∗1 δ

∗
3 e−i (k1−k2+k3) ηe

+ δ∗1 δ
∗
2 e−i (k1+k2−k3) ηe − δ∗1 δ∗2 δ∗3 e−i kT ηe

)]

ηe→0

+ (1 + δ∗1 δ
∗
2 δ
∗
3)

(k1 k2 + k2 k3 + k1 k3)

k
T

+ (δ∗1 + δ∗2 δ
∗
3)

(k1 k2 − k2 k3 + k1 k3)

(−k1 + k2 + k3)

+ (δ∗2 + δ∗1 δ
∗
3)

(k1 k2 + k2 k3 − k1 k3)
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+ (δ∗3 + δ∗1 δ
∗
2)

(−k1 k2 + k2 k3 + k3 k1)
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+ k1 k2 k3
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1 + δ∗1 δ

∗
2 δ
∗
3

k2
T

+
(δ∗1 + δ∗2 δ

∗
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(−k1 + k2 + k3)2



+
(δ∗2 + δ∗1 δ

∗
3)

(k1 − k2 + k3)2
+

(δ∗3 + δ∗1δ
∗
2)

(k1 + k2 − k3)2

]

+ complex conjugate, (G.1b)

G3(k1,k2,k3) = − H4
I

32M4
Pl
ε1

|α1|2 |α2 |2 |α3|2
k1 k2 k3

(1− δ1) (1− δ2) (1− δ3)

k2
1

× (k2
2 − k2

3)2 − k2
1 (k2

2 + k2
3)

2 k2
2 k

2
3

×
[

1 + δ∗1 δ
∗
2 δ
∗
3

k
T

(
1 +

k1

k
T

)

+
δ∗1 + δ∗2 δ

∗
3

k1 − k2 − k3

(
1 +

k1

k1 − k2 − k3

)

+
δ∗2 + δ∗1 δ

∗
3

k2 − k1 − k3

(
1− k1

k2 − k1 − k3

)

+
δ∗3 + δ∗1 δ

∗
2

k3 − k1 − k2

(
1− k1

k3 − k1 − k2

)]

+ complex conjugate + two permutations, (G.1c)

G7(k1,k2,k3) =
H4

I
ε2

32M4
Pl
ε21

[
1

(k1 k2)3
|α1|2 |α2|2

× (1− δ1) (1− δ∗1) (1− δ2) (1− δ∗2)

+ two permutations

]
, (G.1d)

where k
T

= k1 + k2 + k3 and, for convenience, we have set α(ki) = αi and δ(ki) = δi

for i = {1, 2, 3}. Note that, we can write

|α(k)|2 =
[
1− |δ(k)|2

]−1 (G.2)

so that the complete bispectrum can be expressed in terms of the function δ(k), which
in turn is determined by the feature g(k) in the power spectrum [cf. Eqs. (4.6) and (4.7)].
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APPENDIX H

Feynman diagrams for non-Gaussian contributions to Ω
GW

In order to understand various non-Gaussian contributions to the secondary GWs, one
can construct Feynman diagrams representing these contributions (see, for instance,
Refs. [190, 295, 298]). In this appendix, we shall define the elements constituting these
diagrams and present the diagrams corresponding to the contributions we discussed in
Sec. 5.4.

The basic elements that we shall be using for the diagrams are the scalar power
spectrum P

S
(k), secondary tensor power spectrum Ph(k), the scalar non-Gaussianity

parameter f
NL

(k1,k2,k3) and the correction to the scalar power spectrum P
C
(k).

These diagrams are presented in Fig. H.1. Note that the diagram representing the
secondary tensor power spectrum Ph(k) indicates that it is a first loop correction to
the primary tensor power specrum P

T
(k), due to the interaction between the tensor

and scalar perturbations at the second order (as expected from our discussion in
Subsec. 1.2.3). The functions I(k, k′) and Qλ(k, k′) arising out of the transfer function
and polarization tensor, can be accounted at the vertices connecting the secondary tensor
and scalar modes in the diagram of Ph(k). The diagram of f

NL
(k1,k2,k3) represents

the interaction of scalar perturbations Rk at the cubic order (as can be expected from
our discussions in Subsec. 1.1.3 and Sec. 5.2). Further, the diagram of P

C
(k) indicates

that it is a one loop correction to the scalar power spectrum P
S
(k) due to such cubic

order interaction. It involves two vertices of f
NL

and hence we readily infer that P
C
(k)

shall be proportional to f 2
NL

. Using these elements we can construct the diagrams for
higher order contributions to secondary tensor power spectrum Ph(k) due to scalar non-
Gaussianity. These shall be higher order loop diagrams arising due to introduction of
the vertex of f

NL
in each arm of the loop in the diagram of Ph(k).

The diagrams representing non-Gaussian contributions toPh(k) at the level of f 2
NL

,
P(2−i)
h (k), are presented in Fig. H.2. These diagrams arise due to the introduction of

f
NL

in two of the four arms of the loop in the diagram of Ph(k). They are called as
C-type, hybrid and Z-type diagrams [295].



Figure H.1: The Feynman diagrams representing the scalar power spectrum P
S
(k1)

(on top left), secondary tensor power spectrum Ph(k1) (on top right) are
presented. We also present the diagrams for the scalar non-Gaussianity
parameter f

NL
(k1, q1,k1 − q1) (on bottom left) and the correction to the

scalar power P
C
(k1) (on bottom right). We use solid lines to represent the

scalar mode Rk and dashed-dotted line to represent the secondary tensor
mode hk.
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Figure H.2: The Feynman diagrams representing the non-Gaussian contributions at the
level of f 2

NL
are presented. The term denoted as P(2−1)

h (k) corresponds to
the C-type diagram (on top) and the term denoted as P(2−2)

h (k) corresponds
to the diagram known as the hybrid type (in the middle). The term denoted
as P(2−3)

h (k) corresponds to the Z-type diagram (at the bottom).
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Figure H.3: The Feynman diagrams representing the non-Gaussian contributions at the
level of f 4

NL
are presented. The term denoted as P(4−1)

h (k) corresponds to
non-planar diagram (on top) and the term denoted asP(4−2)

h (k) corresponds
to the diagram known as reducible term (in the middle). The term denoted
as P(4−3)

h (k) corresponds to the planar diagram (at the bottom).

178



The diagrams representing non-Gaussian contributions to Ph(k) at the level of f 4
NL

i.e. P(4−i)
h (k), are presented in Fig. H.3. These diagrams arise when we introduce of f

NL

in all the four arms of the loop in the diagram of Ph(k). They are called as non-planar,
reducible and planar diagrams [295].
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