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ABSTRACT

KEYWORDS: Inflation, Primordial magnetic fields, Non-conformal coupling,
Violation of parity, Cosmic microwave background, Evolution of the quantum state
of electromagnetic fields

Magnetic fields permeate the entire universe, extending from the smallest to the largest
observable length scales. In galaxies and clusters of galaxies, the strength of the
observed magnetic fields is of order µG, with their coherence lengths ranging from Kpc

to Mpc. In addition, very weak magnetic fields with a lower bound of the order
of 10−17G are observed in the voids in the intergalactic medium, which are coherent
over scales above 1Mpc. According to the standard paradigm, the strong magnetic
fields observed in galaxies and clusters are a result of the amplification of pre-existing,
weaker, seed magnetic fields via physical phenomena such as the dynamo mechanism.
Due to the absence of complex plasma and magnetohydrodynamical processes, the
magnetic fields present in intergalactic voids on cosmological scales (i.e. over 1–
104Mpc) are least likely to be affected by astrophysical phenomena. Hence, they can
be considered as suitable regions in space for the investigation of the origin of the seed
fields.

The seed magnetic fields could be generated from quantum fluctuations in the
vacuum state of the electromagnetic fields during the early stages of the evolution of
the universe. Such fields are referred to as primordial magnetic fields (PMFs). Since
the energy density of magnetic fields decay with the expansion of the universe, the
strength of the seed fields generated in the early universe, especially during inflation,
will rapidly die down, and hence will not lead to the observed strengths of the fields
today. Therefore, in order to produce magnetic fields that are consistent with the current
observations, according to the popular theory of inflationary magnetogenesis, the
seed magnetic fields on cosmological scales are generated by breaking the conformal
invariance of the conventional electromagnetic action.

To understand the origin and evolution of the PMFs, we first need to understand
the physics of inflation. Inflation corresponds to a period of accelerated expansion
that is expected to have occurred during the early stages of the radiation dominated
epoch. It is often invoked to overcome the shortcomings of the hot big bang model,
such as the horizon and flatness problems. A canonical scalar field (often referred to
as the inflaton) that is slowly rolling down the potential is one of the simplest ways
to achieve inflation. In order to generate large scale magnetic fields during inflation,
the conformal invariance of the standard electromagnetic action is broken by coupling
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the electromagnetic field to the inflaton. In addition, a parity violating term is often
included in the action to generate helical magnetic fields. It has been found that, in such
situations, one of the two states of polarization of the electromagnetic modes evolves
to a higher amplitude than the other during the later stages of inflation. The magnetic
fields generated through such mechanisms will not be diluted during inflation and can
evolve to the observed strengths today.

The form of the non-conformal coupling function that is widely used in the
literature generally involves a power of the scale factor. Such a form for the coupling
function leads to power spectra of magnetic fields that are of the desired shape and
amplitude. However, in a more realistic scenario wherein inflation is driven by a scalar
field, it is appropriate to work with coupling functions which capture the dynamics of
the field. In inflationary models wherein the inflaton rolls slowly, the resulting scalar
power spectrum has a nearly scale invariant form. Such spectra are largely consistent
with the recent data on the anisotropies in the cosmic microwave background (CMB).
However, with an interest in improving the fit to the CMB data and to understand
the possible primordial origin of black holes, a plethora of inflationary models have
been proposed which generate features in the scalar power spectrum over large and
small scales. These models involve potentials which lead to nontrivial dynamics—
specifically, departures from slow roll—and it is interesting to investigate the generation
of magnetic fields in such scenarios.

In this thesis, we shall first understand the challenges that arise in the generation of
magnetic fields in single field models of inflation that lead to deviations from slow roll.
Thereafter, we shall discuss the manner in which such challenges can be circumvented
using two field models of inflation. Lastly, we shall utilize different measures to
understand the evolution of the quantum state of helical electromagnetic fields during
inflation. In what follows, we have briefly outlined below three pieces of work that
have been completed in these contexts, which constitute this thesis. (The reference
numbers in this abstract correspond to the manuscripts listed earlier under publications
and preprints.)

•On the challenges in the choice of the non-conformal coupling function in inflationary

magnetogenesis: PMFs are generated during inflation by considering actions that break
the conformal invariance of the electromagnetic field. To break the conformal
invariance, the electromagnetic fields are coupled either to the inflaton or to the scalar
curvature. Also, a parity violating term is often added to the action in order to enhance
the amplitudes of the primordial electromagnetic fields. In this work [1], we examine
the effects of deviations from slow roll inflation on the spectra of nonhelical as well
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as helical electromagnetic fields. We find that, in the case of the coupling to the
scalar curvature, there arise certain challenges in generating electromagnetic fields
of the desired shapes and strengths even in slow roll inflation. When the field is
coupled to the inflaton, it is possible to construct model-dependent coupling functions
which lead to nearly scale invariant power spectra of the magnetic fields in slow
roll inflation. However, we show that sharp features in the scalar power spectrum
generated due to departures from slow roll inflation inevitably lead to strong features
in the power spectra of the electromagnetic fields. Moreover, we find that such effects
can also considerably suppress the strengths of the generated electromagnetic fields
over the scales of cosmological interest. We illustrate these aspects with the aid of
inflationary models that have been considered to produce specific features in the scalar
power spectrum. Further, we find that, in such situations, if the strong features in the
electromagnetic power spectra are to be undone, the choice of the coupling function
requires considerable fine tuning. We discuss the wider implications of the results we
obtain.

•Circumventing the challenges in the choice of the non-conformal coupling function in

inflationary magnetogenesis: As is well known, in order to generate magnetic fields of
observed amplitudes during inflation, the conformal invariance of the electromagnetic
field has to be broken by coupling it either to the inflaton or to the scalar curvature.
Couplings to scalar curvature pose certain challenges even in slow roll inflation and
it seems desirable to consider couplings to the inflaton. It can be shown that, in slow
roll inflation, to generate nearly scale invariant magnetic fields of adequate strengths,
the non-conformal coupling to the inflaton has to be chosen specifically depending on
the inflationary model at hand. In an earlier work [1], we had shown that, when there
arise sharp departures from slow roll inflation leading to strong features in the scalar
power spectra, there inevitably arise sharp features in the spectra of the electromagnetic
fields, unless the non-conformal coupling functions are extremely fine tuned. In
particular, we had found that, if there occurs an epoch of ultra slow roll inflation (that
is often required either to lower scalar power on large scales or to enhance power on
small scales), then the strength of the magnetic field over large scales can be severely
suppressed. In this work [2], we examine whether these challenges can be circumvented
in models of inflation involving two fields. We show that the presence of the additional
scalar field allows us to construct coupling functions that lead to magnetic fields of
required strengths even when there arise intermediate epochs of ultra slow roll inflation.
However, we find that the features in the spectra of the magnetic fields that are induced
due to the departures from slow roll inflation cannot be completely ironed out. We
make use of the code MagCAMB to calculate the effects of the magnetic fields on
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the anisotropies in the CMB and investigate if the spectra with features are broadly
consistent with the current constraints.

• Amplifying quantum discord during inflationary magnetogenesis through violation of

parity: It is well known that, during inflation, the conformal invariance of the
electromagnetic action has to be broken in order to produce magnetic fields of observed
strengths today. Often, to further enhance the strengths of the magnetic fields, parity is
also assumed to be violated when the fields are being generated. In this work [3], we
examine the evolution of the quantum state of the Fourier modes of the non-conformally
coupled and parity violating electromagnetic field during inflation. We utilize tools
such as the Wigner ellipse, squeezing parameters and quantum discord to understand
the evolution of the field. We show that the violation of parity leads to an enhancement
of the squeezing amplitude and the quantum discord (or, equivalently, in this context,
the entanglement entropy) associated with a pair of opposite wave vectors for one of the
two states of polarization (and a suppression for the other state of polarization), when
compared to the case wherein parity is conserved. We highlight the similarities between
the evolution of the Fourier modes of the electromagnetic field when parity is violated
during inflation and the behaviour of the modes of a charged, quantum, scalar field in
the presence of a constant electric field in a de Sitter universe. We briefly discuss the
implications of the results we obtain.
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S
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r Tensor-to-scalar ratio

k∗ Pivot scale

λ
B

Coherence length of magnetic fields

B0 Present day amplitude of magnetic fields

Aµ Electromagnetic four vector potential

Fµν Electromagnetic field tensor

F̃µν Dual electromagnetic field tensor

σ Positive or negative helicity of the electromagnetic modes

γ Helicity parameter

J(ϕ), I(ϕ)
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direction

Āk
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Hubble radius

χ Scalar field that drives inflation

V (χ) Potential describing the scalar field χ

mϕ, mχ Masses of scalar fields in two field models of inflation

χ0

Points of turn in background trajectory in field space of two field
models

χi Value of the second scalar field at the beginning of its evolution

ϕ1, χ1

Values of the scalar fields at the point of transition in two field
models

δσ Adiabatic perturbation in the two field models

δs Entropy perturbation in the two field models

xviii



Notation Description

vσk
Mukhanov-Sasaki variable associated with the curvature
perturbation corresponding to the wave number k

vsk
Mukhanov-Sasaki variable associated with the isocurvature
perturbation corresponding to the wave number k

Rk1, Rk2 Curvature perturbation in two field models

Sk1, Sk2 Isocurvature perturbation in the two field models

PS(k) Power spectrum of the isocurvature perturbations

Rmag
k

Secondary curvature perturbation induced by magnetic fields
during inflation

∆χ
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corresponding to the wave vector −k

Pσ
k Conjugate momentum associated with the Fourier mode Aσ

−k

Pσ
−k Conjugate momentum associated with the Fourier mode Aσ

−k

Ψ(A, η) Wave function describing a given mode of the electromagnetic
fields
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CHAPTER 1

INTRODUCTION

1.1 MAGNETIC FIELDS IN THE UNIVERSE

Magnetic fields are observed in the entire universe, extending from the astrophysical
to the cosmological scales (in this context, see the reviews [1–10]). The Earth and
the Sun have dipolar magnetic fields of order 1G, sustained for billions of years due
to the dynamo mechanism [11–14]. In galaxies and clusters of galaxies, the strength
of the observed magnetic fields is of the order of µG, with their coherence length
scales ranging from Kpc to Mpc [15–20]. Apart from these, very weak magnetic
fields with a lower bound of order 10−17G are observed in the voids in the intergalactic
medium (IGM), which are coherent over scales above 1Mpc [21–24].

On small scales, such as in astronomical objects like the Earth, Sun, stars and
planets, magnetic fields can dissipate their energy through turbulent and thermal
motions of astrophysical plasma. This behaviour also applies, to some extent, to the
galactic magnetic fields, including those in the Milky Way galaxy. However, weak
magnetic fields on larger distance scales may not have sufficient time to dissipate
their energy into motions in the plasma. Once amplified through mechanisms like the
dynamo, these magnetic fields can maintain their strength over time scales comparable
to the age of the universe.

According to the conventional paradigm, the strong magnetic fields observed in
galaxies and clusters of galaxies are produced due to the amplification of already
existing weaker magnetic fields through different physical phenomena such as the
dynamo mechanism. However, the existing data on magnetic fields in galaxies and
clusters of galaxies do not provide direct constraints on the properties and origin of
the seed fields. One of the reasons is due to the uncertainties associated with the
intricate details of dynamo mechanism operating in galaxies and clusters. Therefore,
the only potential opportunity to gain insight into the nature of the initial seed fields
is to search for regions in the universe where these fields might exist in their original
form, undistorted by the plasma and magnetohydrodynamical (MHD) processes. One
such possibility is the IGM, specifically the voids in the large scale structure (LSS). The
seed magnetic fields could have been generated through astrophysical processes such
as the Biermann battery [25, 26]. But these processes can not explain the large scale
magnetic fields present in voids. If weak magnetic fields were indeed present in the
very early stages of the universe, they would have experienced limited amplification due
to the absence of dynamo processes in the voids. Cosmologically produced magnetic



fields could have evolved over time, being diluted by the expansion of the universe.
Therefore, potential measurements of magnetic fields in the IGM using observational
techniques in the radio, microwave, and γ-ray frequencies could provide essential clues
regarding the origin of the seed fields. Such magnetic fields, which are generated
through cosmological processes, are called primordial magnetic fields (PMFs).

This thesis focuses on investigating magnetic fields that arise from cosmological
processes, particularly during the inflationary epoch of the early universe. Inflation
offers an efficient mechanism for the generation and evolution of magnetic fields.
The magnetic fields are expected to have arisen out of quantum fluctuations which
are inevitably present at the onset of inflation. We will discuss the inflationary
epoch of the universe later in this chapter. Our research involves exploring the
generation of magnetic fields in various non-trivial inflationary scenarios which leads
to interesting signatures of the primordial perturbations on the cosmic microwave
background (CMB). We shall also assess how consistent the amplitudes of these
magnetic fields are with the observational bounds.

In this chapter, we shall discuss the physics of inflation and the constraints on the
magnetic fields present in the voids in the IGM. The chapter is organized as follows.
In the next section, we shall outline the essential ideas associated with the hot big bang
model. In Sec. 1.3, we shall introduce the metric describing the homogeneous and
isotropic universe and discuss the equations governing its dynamics. Thereafter, in
Sec. 1.4, we shall discuss the horizon problem, a crucial drawback of the hot big bang
model and, in Sec. 1.5, we shall explain how an epoch of inflation helps in overcoming
the drawback. We shall also discuss the manner in which inflation can be achieved
with the aid of a single, canonical scalar field, and introduce the so-called slow roll
parameters. Further, in Sec. 1.6, we shall describe the generation of the scalar and tensor
perturbations in an inflationary scenario driven by a single, canonical scalar field. We
shall also outline the evaluation of the power spectra characterizing these perturbations
in slow roll inflation. Next, in Sec. 1.7, we shall outline the popular mechanisms for the
origin of the large scale magnetic fields observed today. In Sec. 1.8, we shall describe
the theoretical and observational constraints on the magnetic fields. Lastly, in Sec. 1.9,
we shall outline the organization of the thesis.

Before we proceed further, let us clarify a few points regarding the conventions and
notations that we shall work with. To begin with, we shall assume that gravitation is
described by the general theory of relativity. We shall work with natural units such that
ℏ = c = 1, and set the reduced Planck mass to be M

Pl
= (8 π G)−1/2. We shall adopt

the signature of the metric to be (−,+,+,+). Note that Latin indices will represent the
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spatial coordinates, except for k which will be reserved for denoting the wave number.
We shall assume that the smooth background universe is described by the spatially

flat Friedmann-Lemaître-Robertson-Walker (FLRW) line-element characterized by the
scale factor a. We shall represent the cosmic time as t and the conformal time as η.
Also, an overdot and an overprime will denote differentiation with respect to the cosmic
and conformal time coordinates, respectively. Moreover, H = ȧ/a will represent the
Hubble parameter. Lastly, N will represent the number of e-folds.

1.2 THE HOT BIG BANG MODEL

The prevailing cosmological model that provides the most comprehensive
understanding of the universe from its earliest moments to its current state is
widely known as the hot big bang model (for discussions in this context, see the
textbooks [27–35]). There are two critical pieces of observational evidence that support
this model. The first of these observations is the expansion of the universe as described
by the Hubble’s law in the nearby or local universe. As we shall discuss below,
the expanding universe can be described in terms of the scale factor a, which is the
ratio of the physical distance to the comoving distance between, say, two galaxies
in the universe. The second observational evidence that supports the hot big bang
model is the discovery of the CMB and the extent of its isotropy. In general theory
of relativity, from the conservation of energy, it can be shown that the energy density
of non-relativistic (or pressureless) matter and radiation decay as the inverse of the
third and fourth powers of the scale factor, respectively [36]. The presence of the
CMB indicates that the expansion of the universe started from a hot and dense state
dominated by radiation. As the universe cooled down due to the expansion, the initial
epoch of radiation domination transits to the epoch of matter domination.

During the initial period of radiation domination, the universe consisted of an
opaque plasma of relativistic particles. Soon after the time of transition from the
epoch of radiation domination to that of matter domination, the photons decoupled
from the baryonic plasma and started propagating freely through space. In other words,
following decoupling, the universe became transparent and it is the freely streaming
photons that constitute the CMB which we observe today. Therefore, the CMB photons
are remnants from the early universe and they carry information about the universe
prior to decoupling. While the CMB is observed to be highly isotropic, it also carries
small anisotropies of about 1 part in 105. Over the last few decades, successive
generations of space-based observational missions such as the Cosmic Background
Explorer (COBE) [37–44], Wilkinson Microwave Anisotropy Probe (WMAP) [45–47]
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and Planck [48–52] have played a crucial role in measuring the anisotropies in the CMB
with ever-increasing precision. The data collected from these satellites have immensely
helped in constraining the parameters that describe the hot big bang model.

Despite the tremendous success of the hot big bang model, it cannot provide an
appropriate explanation for certain puzzles such as the overall isotropy of the CMB,
viz. the fact that the photons arriving at us from even opposite directions of the sky
exhibit nearly identical temperatures. It also cannot explain the origin of anisotropies
in the CMB. This has led to the exploration of scenarios beyond the hot big bang
model that can account for the evolution of the universe while remaining consistent
with the observational data. The most promising resolution to the shortcomings of
the hot big bang model is the introduction of a brief period of inflation preceding
the epoch of radiation domination, a period during which the universe undergoes
accelerated expansion (for detailed discussions in this context, see the reviews [53–64]).
The primordial perturbations are believed to have been generated from the quantum
fluctuations inevitably present during the early stages of inflation, which are amplified
into classical perturbations due to the rapid expansion of the universe. The anisotropies
observed in the CMB are the imprints of the primordial perturbations. Post-decoupling,
during the epoch of matter domination, the perturbations grow and form the LSS, such
as galaxies and clusters of galaxies that we observe in the universe today.

1.3 THE HOMOGENEOUS UNIVERSE

As we had mentioned, we shall assume that the homogeneous and isotropic background
universe is described by the spatially flat FLRW line-element. The line-element
characterized by the scale factor a is given by

ds2 = −dt2 + a2(t) dx2, (1.1)

where t and x represent the cosmic time coordinate and the comoving spatial
coordinates. The quantity η =

∫
dt/a(t) represents the so-called conformal time

coordinate, in terms of which the above FLRW line-element can be expressed as

ds2 = a2(η)
(
−dη2 + dx2

)
. (1.2)

In other words, in terms of the time coordinate η, the FLRW line-element is conformally
related to the line-element of Minkowski spacetime. Due to the symmetries of
the FLRW line-element, the stress-energy tensor describing the matter fields can be
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expressed as

T µ
ν =

(
−ρ 0

0 p δij

)
, (1.3)

where ρ and p are time-dependent and homogeneous energy density and pressure
associated with the matter fields that drive the expansion of the universe.

The Einstein field equations corresponding to the above metric and the stress-
energy tensor are given by

H2 =
8 π G

3
ρ =

ρ

3M2
Pl

, (1.4a)

ä

a
= −4πG

3
(ρ+ 3 p) = − 1

6M2
Pl

(ρ+ 3 p), (1.4b)

whereH = ȧ/a represents the Hubble parameter and the overdot denotes differentiation
with respect to the cosmic time. These equations are often referred to as the Friedmann
and the Raychaudhuri equations. The above two equations can be combined to arrive
at the following continuity equation which reflects the conservation of the above stress-
energy tensor:

ρ̇+ 3H (ρ+ p) = 0. (1.5)

If we are given that the energy density ρ and pressure p are governed by a constant
equation of state patameter w so that p = w ρ, the above continuity equation can be
immediately integrated to obtain that

ρ(a) ∝ a−3 (1+w). (1.6)

During radiation and matter domination (i.e. when w = 1/3 and w = 0), for such a
behaviour of ρ, the Friedmann equation (1.4a) can be integrated to obtain that a(t) ∝
t1/2 and a(t) ∝ t2/3, respectively.

1.4 THE HORIZON PROBLEM

As we mentioned earlier, the hot big bang model has certain shortcomings, the most
important of which is the horizon problem. Consider the situation in the model wherein
the universe is initially dominated by radiation and later by matter. In such a case, it
can be shown that, the angle subtended by a region in the CMB sky that was causally
connected at the time of decoupling will be approximately 1◦. But, we find that photons
arriving at us from even two widely separated points in the sky (i.e. points which were
causally disconnected at the time of decoupling) share the same physical properties,
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such as the temperature. This issue is known as the horizon problem and it cannot be
explained solely on the basis of the hot big bang model.

There is another way of stating the horizon problem. From the behaviour (1.6)
of the energy density ρ, it is easy to show that the comoving Hubble radius (aH)−1

behaves as
(aH)−1 ∝ a(1+3w)/2. (1.7)

Therefore, if the universe was initially dominated by the energy density of radiation
(w = 1/3) and later that of matter (w = 0), in both the epochs, the comoving Hubble
radius grows monotonically with the expansion of the universe. Since the comoving
wave lengths k−1 are constant in time, it is then clear that all the modes of cosmological
interest will be outside the Hubble radius at sufficiently early times. In other words,
the modes will not be within a causally connected domain during the early stages of
evolution of the universe.

1.5 RESOLUTION OF THE HORIZON PROBLEM VIA INFLATION

To resolve the horizon problem, there should arise an epoch prior to the period of
radiation domination wherein the comoving Hubble radius (aH)−1 decreases with
time. In such a situation, provided the duration of this epoch is adequately long, all
the comoving wave numbers of cosmological interest will be well inside the Hubble
radius during the early stages of the epoch. A decreasing comoving Hubble radius
implies that

d

dt
(aH)−1 < 0, (1.8)

which, in turn, leads to
ä > 0. (1.9)

This condition suggests that the universe needs to go through an epoch of accelerated
expansion at a very early stage of its evolution in order to overcome the horizon
problem. Such an epoch is called as inflation. Often, for convenience, the scale factor
during inflation is assumed to be of the de Sitter form, i.e. it is expected to behave as
a(t) ∝ eHI

t, whereH
I

is a constant Hubble parameter. In such a situation, the comoving
Hubble radius behaves as

(aH)−1 ∝ a−1. (1.10)

Such a behaviour ensures that the wave numbers of observational interest begin from
sufficiently inside the Hubble radius implying they are within a causally connected
domain during the early stages of inflation. They leave the Hubble radius during
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Figure 1.1: This figure depicts the evolution of the comoving Hubble radius (aH)−1 (in
red) and the comoving wave length k−1 (in blue) during the epochs of
inflation and radiation domination. The evolution of these quantities have
been plotted as a function of e-foldsN . Note that, while the comoving wave
length is not affected by the expansion, the comoving Hubble radius behaves
as a−1 during inflation and as a during radiation domination. The shrinking
comoving Hubble radius during inflation ensures that the wave lengths of
observational interest begin from inside the Hubble radius at early times.
The wave lengths leave the Hubble radius during the later stages of inflation
and they reenter later during the epochs of radiation or matter domination.

inflation and reenter at later epochs. In Fig. 1.1, we have illustrated the behaviour of the
comoving Hubble radius during inflation followed by the epoch of radiation domination.
Since the comoving Hubble radius falls as the inverse power of the scale factor during
inflation, while it is proportional to the scale factor during radiation domination, in the
log-log plot, they have slopes of +1 and −1, respectively. It proves to be convenient
to express the duration of inflation in terms of the number of e-folds, which is defined
through the relation a ∝ eN . The number of e-folds required to overcome the horizon
problem is estimated to be approximately 60–70 [53–64]. In summary, the horizon
problem can be effectively resolved by invoking a period of inflation during the early
stages of the universe.
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1.5.1 Driving inflation with a scalar field
As we can see from Eq. (1.4b), it is not possible to achieve inflation (i.e. ä > 0) if we
consider the energy density of the universe to be dominated by that of radiation or matter
(i.e. when ρ > 0 and w ≥ 0). Clearly, we require (ρ+ 3 p) = (1 + 3w) ρ < 0 in order
to realize a period of accelerated expansion. One of the simplest ways to drive inflation
is to consider a canonical scalar field (generally referred to as the inflaton, say, ϕ) that
is slowly rolling down a potential, as illustrated in Fig. 1.2. The action describing the
canonical scalar field that is governed by the potential V (ϕ) is given by

S[ϕ] = −
∫

d4x
√−g

[
−1

2
∂µϕ ∂

µϕ+ V (ϕ)

]
. (1.11)

In the spatially flat FLRW universe described by the line-element (1.1), the
homogeneous scalar field satisfies the following equation of motion:

ϕ̈+ 3H ϕ̇+ Vϕ = 0, (1.12)

where Vϕ = dV/dϕ. The stress-energy tensor associated with the homogeneous scalar
field resembles that of a perfect fluid whose energy density ρϕ and pressure pϕ are given
by

ρϕ =
ϕ̇2

2
+ V (ϕ), (1.13a)

pϕ =
ϕ̇2

2
− V (ϕ). (1.13b)

In order for the model to be stable, the potential is always assumed to be positive,
which implies that ρϕ > 0. To achieve inflation, we require that (ρϕ + 3 pϕ) < 0 or,
equivalently, ϕ̇2 < V , implying that, to lead to an epoch of accelerated expansion, the
the potential energy has to dominate the kinetic energy. Typically, the inflaton ϕ starts
away from the minimum of the potential V (ϕ) and it rolls down slowly towards the
minimum. Inflation usually ends as the field nears the bottom of the potential.

1.5.2 The slow roll parameters

While it is adequate if ϕ̇2 < V to achieve inflation, we also require a sufficient duration
of inflation to overcome the horizon problem. The friction term in Eq. (1.12), viz. 3H ϕ̇,
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Figure 1.2: We have illustrated the shape of a typical inflationary potential V (ϕ) as a
function of the field ϕ. The scalar field (in blue) slowly rolls down the
potential (in red) during the early stages of inflation. One finds that inflation
is terminated as the field approaches the bottom of the potential. Thereafter,
the field starts oscillating at the bottom of the potential leading to the epoch
referred to as (p)reheating.

ensures that the field rolls slowly down the potential. Therefore, if we start at a high
enough value of the potential, it is guaranteed that we will have the required duration
of inflation to overcome the horizon problem before the field reaches the bottom of
the potential leading to the end of inflation. The conditions that guarantee a sufficient
duration of inflation are given by

ϕ̇2 ≪ V (ϕ), (1.14a)

ϕ̈ ≪ 3H ϕ̇. (1.14b)

These conditions are often expressed in terms of dimensionless parameters called
the slow roll parameters [53–64]. The first of these parameters is conventionally defined
as

ϵ1 = − Ḣ

H2
= −HN

H
, (1.15)

where HN = dH/dN , and we have made use of the relation dN/dt = H in arriving at
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the final expression. It is useful to note that we can also write the parameter ϵ1 in terms
of the kinetic energy of the scalar field as follows

ϵ1 =
ϕ2
N

2M2
Pl

, (1.16)

where ϕN = dϕ/dN , which suggests that ϵ1 is a positive definite quantity. The
subsequent higher order slow roll parameters are defined as

ϵn+1 =
d ln ϵn
dN

, (1.17)

where n ≥ 1. In the slow roll limit, the Friedmann equation (1.4a) and the equation of
motion (1.12) of the scalar field reduce to the following forms:

H2 ≃ V

3M2
Pl

, (1.18a)

3H ϕ̇+ Vϕ ≃ 0. (1.18b)

Upon combining these equations, we can write the first two slow roll parameters in
terms of the potential and its derivatives with respect to the field as follows:

ϵ1 ≃ M2
Pl

2

(
Vϕ
V

)2

, (1.19)

ϵ2 ≃ 2M2
Pl

[(
Vϕ
V

)2

− Vϕϕ
V

]
, (1.20)

where Vϕϕ = dVϕ/dϕ. It is easy to show that the condition for inflation (i.e. ä > 0)

implies that ϵ1 < 1. In a typical slow roll inflationary scenario, the velocity of the field
is assumed to be very small initially. Hence, the first slow roll parameter ϵ1 starts with
a small value and it increases slowly as the field rolls down the potential. As the field
approaches the bottom of the potential, the parameter ϵ1 crosses unity indicating the
termination of inflation.

1.6 PERTURBATION THEORY AND POWER SPECTRA IN SLOW ROLL
INFLATION

The precise measurements of the anisotropies in the CMB by the various satellite
missions indicate that, although the universe was remarkably homogeneous and
isotropic at the time of decoupling, there existed small inhomogeneities over all
scales. As we mentioned, it is the quantum fluctuations associated with the scalar
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field that drives inflation which are supposed to be responsible for the generation of
the perturbations during inflation. Due to the accelerated expansion of the universe, the
tiny quantum fluctuations are amplified into small inhomogeneities or perturbations.
These perturbations, in turn, act as the sources for the formation of structures during the
epoch of matter domination. The fluctuations in the scalar field are coupled to the metric
perturbations through the Einstein’s equations. Based on their transformation properties
on a spacelike hypersurface in a FLRW universe, the metric and matter perturbations
can be classified into three categories as the scalar, vector, and tensor perturbations [53–
64]. At the linear order, it can be shown that these perturbations evolve independently.

In this section, we shall first arrive at the equations governing the perturbations
using the Arnowitt-Deser-Misner (ADM) formalism and thereafter go on to discuss the
generation of perturbations. In the ADM formalism, a generic spacetime is described
by the line-element [65–69]

ds2 = −N 2
(
dx0
)2

+ hij (N i dx0 + dxi) (N j dx0 + dxj), (1.21)

where x0 and xi indicate the time and the spatial coordinates, N represents the lapse
function, N i denotes the shift vector, and hij represents the spatial metric such that
hij h

jk = δij . In other words, the metric tensor is given by

gµν =

(
−N 2 +N iNi Ni

Ni hij

)
, (1.22)

where Ni = hij N j . In terms of the above line-element, the complete action describing
the system of a canonical scalar field that is coupled to gravitation can be written as

S[N ,N i, γij, ϕ] =
1

2

∫
d4xN √

γ

{
M2

Pl

[
R(3) +

1

N 2

(
Eij E

ij − E2
)]

+
1

N 2

(
∂0ϕ−N i ∂iϕ

)2 − γij ∂iϕ ∂jϕ− 2V (ϕ)

}
, (1.23)

where γ = det. (γij), R(3) represents the spatial curvature, the quantity Eij is given by

Eij =
1

2
[∂0γij − (∇iNj +∇jNi)] (1.24)

with ∇i denoting the covariant derivatives, and E = hijE
ij .

Since inflation is assumed to be driven by a scalar field, there are no vector
sources during the epoch. The vector perturbations decay in the absence of a vector
source. Therefore, we shall restrict our discussion to the scalar and tensor perturbations.
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To describe the scalar perturbations, for convenience, we shall work in the so-called
comoving gauge wherein the perturbations in the scalar field are zero. In such a case,
the action (1.23) simplifies to the form

S[N ,N i, γij, ϕ] =
1

2

∫
d4xN √

γ

{
M2

Pl

[
R(3) +

1

N 2

(
Eij E

ij − E2
)]

+
1

N 2
(∂0ϕ)

2 − 2V (ϕ)

}
. (1.25)

As is well known, the lapse function N and the shift vector N i act as Lagrange
multipliers for the system. Upon varying the above action with respect to N and N i,
we obtain the so-called energy and momentum constraints to be

R(3) − 2V (ϕ)− 1

N 2

(
EijE

ij − E2
)
− 1

N 2
(∂0ϕ)

2 = 0, (1.26a)

∇i

[
1

N
(
Ei

j − δij E
)]

= 0. (1.26b)

In the FLRW universe, we shall assume that the scalar perturbations are described
by the curvature perturbation R and the tensor perturbations are characterized by the
spatial metric tensor hij . Under these assumptions, the spatial metric γij can be written
as

γij = a2(t) e2R ehij . (1.27)

If we now solve the constraint equations (1.26) up to the first order in the perturbations,
we obtain the lapse function N and the shift vector N i to be

N = 1 +
Ṙ
H
, (1.28a)

Ni = a

[
− 1

aH
∂iR+ ϵ1 ∂i(∇−2Ṙ)

]
. (1.28b)

On substituting these expressions for the Lagrange multipliers in the action (1.25),
we find that, at the quadratic order, the actions governing the scalar and tensor
perturbations R and hij are given by [53–61, 65–73]

S2[R] =
1

2

∫
dη

∫
d3x z2

[
R′2 − (∂R)2

]
, (1.29a)

S2[hij] =
M2

Pl

8

∫
dη

∫
d3x a2

[
h′2ij − (∂hij)

2] , (1.29b)

where z = aM
Pl

√
2ϵ1.
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The primordial perturbations are expected to have originated from quantum
fluctuations in the early universe. On quantization, the classical perturbations R and hij
are elevated to be quantum operators. We can express these operators in terms of the
Fourier mode functions, say, fk and hk, of the scalar and tensor perturbations as

R̂(η,x) =

∫
d3k

(2 π)3/2
R̂k(η) e

ik·x

=

∫
d3k

(2 π)3/2

[
âk fk(η) e

ik·x + â†k f
∗
k (η) e

−ik·x
]
, (1.30a)

ĥij(η,x) =

∫
d3k

(2 π)3/2
ĥkij(η) e

ik·x

=

∫
d3k

(2 π)3/2

∑
λ=(+,×)

[
b̂λk ϵ

λ
ij(k)hk(η) e

ik·x + b̂λ†k ϵλ∗ij (k)h
∗
k(η) e

−ik·x
]
,

(1.30b)

where the annihilation (âk, b̂λk) and creation (â†k, b̂
λ†
k ) operators satisfy the following

commutation relations:

[âk, âk′ ] =
[
â†k, â

†
k′

]
= 0,

[
âk, â

†
k′

]
= δ(3)(k − k′), (1.31a)[

b̂λk, b̂
λ′
k′

]
=

[
b̂λ†k , b̂

λ′†
k′

]
= 0,

[
b̂λk, b̂

λ′†
k′

]
= δλλ′ δ(3)(k − k′). (1.31b)

Also, the quantities ϵλij(k) denote the polarization tensors associated with the
gravitational waves, with λ = (+,×) denoting the two states of polarization. Note
that the polarization tensors ϵλij(k) satisfy the conditions δim δjn ϵλij(k) ϵ

λ′
mn(k) = 2 δλλ′

and ki ϵij(k) = 0.

By varying the actions (1.29), we can arrive at the equations of motion governing
the Fourier modes of the scalar and tensor perturbations to be

f ′′
k + 2

z′

z
f ′
k + k2 fk = 0, (1.32a)

h′′k + 2
a′

a
h′k + k2 hk = 0. (1.32b)

We can rewrite these equations in terms of another set of convenient quantities called
the Mukhanov-Sasaki variables, which are defined as vk = z fk and uk = aM

Pl
hk/

√
2.

In terms of these variables, the equations (1.32) reduce to the following forms:

v′′k +

(
k2 − z′′

z

)
vk = 0, (1.33a)
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u′′k +

(
k2 − a′′

a

)
uk = 0. (1.33b)

The initial conditions on the variables vk and uk are imposed in the domain wherein k ≫√
z′′/z for the scalar perturbations and k ≫

√
a′′/a for the tensor perturbations. These

conditions are often referred to as the sub-Hubble limit, since in slow roll inflationary
scenario, under these conditions, the wave numbers are sufficiently inside the Hubble
radius. In this limit, the modes do not feel the curvature of spacetime and, as a result,
they behave exactly as they would in Minkowski spacetime, i.e. they have the form

vk(η) = uk(η) =
1√
2k

e−i k η, (1.34)

which is considered to be the initial condition for evolving the perturbations. The
vacuum state associated with such initial conditions for the Mukhanov-Sasaki variables
is known as the Bunch-Davies vacuum.

At late times such that k ≪
√
z′′/z and k ≪

√
a′′/a, the wave numbers are well

outside the Hubble radius. From the equations (1.33) governing the scalar and tensor
Mukhanov-Sasaki variables vk and uk, it should be clear that, in the super-Hubble limit,
the solutions can be expressed as

vk(η) ≃ A1 z +B1 z

∫
dη

z2
, (1.35a)

uk(η) ≃ A2 a+B2 a

∫
dη

a2
, (1.35b)

whereA1,B1,A2 andB2 are constants. The first and the second terms in these solutions
describe the growing and decaying modes. In slow roll inflation, at late times, the
second terms are subdominant since they decay. Clearly, in such a case, vk ∝ z

and uk ∝ a, which implies fk and hk are constant in the super-Hubble limit. As we
shall discuss below, in slow roll inflation, the exact solutions to the Mukhanov-Sasaki
variables indeed exhibit such a behaviour in the super-Hubble limit.

Many models of inflation permit slow roll wherein the slow roll parameters
(ϵ1, ϵ2, . . .) remain small until close to the end of inflation. Let us now discuss
the solutions for the scalar and tensor mode functions in such slow roll inflationary
scenarios. At the leading order in the slow roll approximation, one can show that the
conformal Hubble parameter H = aH = a′/a can be expressed as

H =
a′

a
≃ 1

(1− ϵ1) η
. (1.36)
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Upon using this expression and the definition of z mentioned earlier, we can express the
quantities z′′/z and a′′/a in terms of the first two slow roll parameters as follows (see,
for instance, Refs. [62, 63, 74, 75]):

z′′

z
≃

(
2 + 3 ϵ1 +

3 ϵ2
2

)
1

η2
, (1.37a)

a′′

a
≃ (2 + 3 ϵ1)

1

η2
. (1.37b)

For such forms of z′′/z and a′′/a, the solutions to the Mukhanov-Sasaki equations (1.33)
which satisfy the Bunch-Davies initial conditions (1.34) can be obtained to be

vk(η) =

√
−π η

4
e

i π
2

[ν
S
+1/2]H

(1)

ν
S
(−k η), (1.38a)

uk(η) =

√
−π η

4
e

i π
2

[ν
T
+1/2]H

(1)

ν
T
(−k η), (1.38b)

where H(1)
ν (z) are the Hankel functions of the first kind, while the indices ν

S
and ν

T
are

given by

ν
S

≃ 3

2
+ ϵ1 +

ϵ2
2
, (1.39a)

ν
T

≃ 3

2
+ ϵ1. (1.39b)

The statistical properties of the Gaussian primordial perturbations are
characterized by their two-point correlations. In Fourier space, these quantities are
described by the corresponding power spectra. The scalar and tensor power spectra—
denoted as P

S
(k) and P

T
(k)—are defined in terms of the operators R̂k and ĥkij [cf.

Eqs. (1.30)] as follows:

⟨0|R̂k(η) R̂k′(η)|0⟩ =
2π2

k3
P

S
(k) δ(3)(k − k′), (1.40a)

⟨0|ĥkij(η) ĥijk′(η)|0⟩ =
2π2

k3
P

T
(k) δ(3)(k − k′), (1.40b)

where |0⟩ denotes the Bunch-Davies vacuum. On using the decomposition (1.30), the
scalar and tensor power spectra can be written in terms of the mode functions (fk, hk)
or the Mukhanov-Sasaki variables (vk, uk) as

P
S
(k) =

k3

2π2
|fk|2 =

k3

2 π2

∣∣∣vk
z

∣∣∣2 , (1.41a)
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P
T
(k) = 4

k3

2 π2
|hk|2 =

8

M2
Pl

k3

2π2

∣∣∣uk
a

∣∣∣2 , (1.41b)

with the right hand sides to be evaluated at late times during inflation. In slow roll
inflation, on super-Hubble scales, the mode functions fk and hk associated with the
solutions (1.38) to the scalar and tensor Mukhanov-Sasaki variables approach a constant
value, as we have pointed out earlier. On using these asymptotic forms, the power
spectra P

S
(k) and P

T
(k) evaluated at late times (i.e. as η → 0) can be expressed as

P
S
(k) =

H2
I

8 π2M2
Pl
ϵ1

[
1− 2 ϵ1 − (2 ϵ1 + ϵ2) ln

(
k

k∗

)
− (2 ϵ1 + ϵ2) (γE

+ ln 2− 2)

]
, (1.42)

P
T
(k) =

2H2
I

π2M2
Pl

[
1− 2 ϵ1 ln

(
k

k∗

)
− 2 ϵ1 (γE

+ ln 2− 1)

]
, (1.43)

where H
I

denotes the nearly constant Hubble parameter in slow roll inflation, k∗
represents the so-called pivot scale at which the amplitude of the scalar power spectrum
is often quoted, and γ

E
is the Euler-Mascheroni constant.

As we shall discuss below, apart from the scalar and tensor amplitudes, the
quantities of observational interest are the scalar and tensor spectral indices n

S
and n

T
.

These are defined in terms of the scalar and tensor power spectra P
S
(k) and P

T
(k) in

the following manner:

n
S

= 1 +
d lnP

S

d ln k
, (1.44)

n
T

=
d lnP

T

d ln k
. (1.45)

It should be evident from the form of the power spectra (1.42)that, in the slow roll
approximation, the scalar and tensor indices are given by n

S
= 1− 2 ϵ1 − ϵ2 and n

T
=

−2 ϵ1. In other words, in a slow roll inflationary scenario, since the parameters ϵ1 and ϵ2
are small, the scalar and tensor power spectra are expected to be nearly scale invariant.
Another quantity of observational interest is the tensor-to-scalar ratio r, which is defined
as

r =
P

T
(k)

P
S
(k)

. (1.46)

In slow roll approximation, if we ignore the weak scale dependence of the power
spectra (1.42), the tensor-to-scalar ratio r can be obtained to be

r ≃ 16 ϵ1 = −8n
T
. (1.47)
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To compare with the observational data, the primordial scalar and tensor power
spectra are often written in a simple power law form as follows:

P
S
(k) = A

S

(
k

k∗

)n
S
−1

, (1.48a)

P
T
(k) = A

T

(
k

k∗

)n
T

, (1.48b)

where A
S

and A
T

are scalar and the tensor amplitudes, respectively. The scalar
amplitude A

S
is well constrained by the CMB data and is often referred to as COBE

normalization [76]. According to the recent Planck data, the value of A
S

is given
by [51, 52]

ln (1010A
S
) = 3.044± 0.014, (1.49)

while the scalar spectral index is constrained to be n
S
= 0.9649 ± 0.0042 at the pivot

scale of k∗ = 0.05Mpc−1. The most recent constraint on the tensor-to-scalar ratio from
the Planck and BICEP/Keck array data is the upper bound of r < 0.032 [77, 78].

1.7 PRIMORDIAL MAGNETIC FIELDS

As we discussed earlier in Sec. 1.1, magnetic fields are present everywhere in the current
universe over a wide range of length scales. The strength of magnetic fields can be
measured using methods such as Faraday rotation and synchrotron emission. While the
former method helps with measuring the line of sight component of the magnetic fields
in galaxies and clusters of galaxies, the latter method helps measure the component of
magnetic fields perpendicular to the line of sight in galaxies. To measure the magnetic
fields present in stars and interstellar gas clouds, investigation of the Zeeman splitting
of the spectral lines, particularly the 21 cm line from the neutral hydrogen, proves to be
a useful method [79, 80]. Although the techniques of Faraday rotation and synchrotron
emission are adequate for measuring the amplified magnetic fields with strengths of
the order of µG, they are unsuitable for probing the PMFs present in the IGM voids,
which are expected to be considerably weaker in their strengths. The weakness is due
to the absence of any structure to support the mechanism required to amplify the small
seed fields. Also, the uncertainties in the amplification mechanism pose challenges to
investigate the origin of these fields. To probe the magnetic fields present in the voids,
the data from the measurements of anisotropies in the CMB, radio emission from distant
quasars and high energy γ rays from blazars have proven to be useful, as they allow us to
set limits on the strength of the magnetic fields. If these magnetic fields can be detected
and measured, they can provide additional information about their evolution during the
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early stages of the universe. In Sec. 1.8, we shall discuss the observational constraints
on magnetic fields present in the current universe [8, 10, 50, 81]. In this section, we
shall broadly outline the two popular mechanisms that are believed to be responsible
for the origin of large scale magnetic fields in the early universe.

The PMFs could have been generated through cosmological processes either
during the inflationary epoch or during the electroweak (EW) and quantum
chromodynamic (QCD) phase transitions which occur at temperatures of T ∼ 100GeV

and T ∼ 150MeV, respectively. During the phase transitions, the magnetic fields
are produced by causal mechanisms (in this context, see, for example, Refs. [82–
88, 88–90]). In these scenarios, it has been found that the correlation lengths of the
magnetic fields (which are proportional to the inverse of the temperature) prove to be
much smaller than the Hubble radius H−1. Also, the generated magnetic fields are
very weak and are damped rapidly. However, when the magnetic fields possess non-
zero helicity, energy can be transferred from small to large scales—a process called the
inverse cascade. Such helical magnetic fields generated during the phase transitions
may possess adequate strengths to explain the magnetic fields observed today [91, 92].

Let us now turn to discuss the generation of magnetic fields during the epoch of
inflation (in this regard, see, for instance, Refs. [7, 93–102]). Recall that the standard
electromagnetic action which leads to the Maxwell’s equations is invariant under the
conformal transformations. Since the FLRW metric is conformally related to the
metric of Minkowski spacetime, the solutions to the electromagnetic vector potential
in FLRW spacetime are similar in form to the solutions in Minkowski spacetime. Such
a behaviour leads to a rapid decay of the electromagnetic fields with the expansion of
the universe (the magnetic field B behaves as the inverse square of the scale factor a).
In particular, the accelerated expansion of the universe during inflation quickly dilutes
the strengths of the fields. As the electromagnetic fields are supposed to have originated
from the quantum vacuum, another way of stating this result is that no photons are
created due to the expansion of the universe [103].

Hence, to generate large scale magnetic fields during inflation that can evolve
to current observable strengths, the conformal invariance needs to be broken. As we
shall discuss in the next chapter, this is often achieved by coupling the electromagnetic
field to either the inflation or scalar curvature through terms such as: J2(ϕ)Fµν F

µν ,
J(R)Fµν F

µν or evenRαβµν F
αβ F µν (for more details in this context, see, for instance,

Refs. [5, 6, 9, 93–95, 104–107]). Another way of breaking the conformal invariance is
to assume that the gauge field is massive, which also breaks the gauge symmetry (in this
regard, see, for instance, Ref. [108]). In this thesis, we shall focus on the generation of
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PMFs during inflation wherein the electromagnetic field is non-conformally coupled to
the inflaton.

1.8 OBSERVATIONAL CONSTRAINTS ON MAGNETIC FIELDS

Deciphering the characteristics of PMFs can help us understand their role in several
astronomical and cosmological phenomena, such as the propagation of ultra high-
energy cosmic rays (UHECRs), various aspects of radio astronomy and the formation of
structure. As we mentioned earlier, using methods of Faraday rotation and synchrotron
emission, magnetic fields have been observed in collapsed objects such as galaxies and
clusters of galaxies. However, there is no direct detection of the magnetic fields in
the IGM voids, which are regions far from the collapsed objects. Also, there is no
direct detection of the magnetic fields generated during the very early phases of the
universe due to various challenges. There are only observational bounds on the strengths
of the magnetic field today (say, B0) at different correlation lengths (say, λ

B
). We

can arrive at the constraints on the magnetic fields from the CMB, UHECRs, Faraday
rotation measurements of distant quasars and observations of high energy gamma rays
emitted by the blazars. In this section, we shall discuss the theoretical and observational
constraints on the magnetic fields.

The observational upper bound of B0 < 10−9G with correlation lengths of
cosmological scales, are primarily obtained from the Faraday rotation measure (FRM)
of radio emissions from distant quasars [109–115] and the CMB [116–119]. The
polarization plane of electromagnetic radiation changes its orientation when it
propagates through an ionized medium containing magnetic fields. Based on this effect,
the FRM observations provide an upper bound on the strength of magnetic fields in IGM
voids. The total rotation angle of the polarized light is proportional to the so-called
rotation measure (RM), which is given by [120]

RM =
e3

2 πm2
e c

4

∫
dl(z)

ne(l)B∥(l)

1 + z2
, (1.50)

where e andme are the charge and mass of the electron, ne is the number density of free
electrons, and B∥(l) is the component of the magnetic field parallel to the line of sight.
The quantity z represents redshift, which is defined as

1 + z =
a0
a
, (1.51)

with a0 denoting the scale factor today (i.e. at t = t0). The distance element dl(z) is

19



given by

dl(z) =
dz

H0 (1 + z)
√
Ω0

m (1 + z3) + Ω0
Λ

, (1.52)

where H0 is the value of the Hubble parameter today, while Ω0
m and Ω0

Λ represent the
present day values of the dimensionless density parameters corresponding to matter and
the cosmological constant, respectively. There can be three contributions to RM which
source the extragalactic magnetic fields, usually listed as RM

G
, RM

IG
and RM

S
. They

represent the rotation measures arising due to galaxies, IGM, and the medium close to
the source (such as the distant quasars), respectively. To arrive at constraints on the
strengths of the magnetic fields in the IGM, the contributions due to the other two
need to be removed. While this proves to be a useful probe to impose constraints
on the magnetic fields in the IGM, the lack of information regarding magnetic fields
in galaxies, which has the maximum contributions to the RM, raises problems in
considering the FRM as the best choice for constraining the seed fields. The next-
generation telescopes such as the Low-Frequency Array and Square Kilometre Array
might provide us more information about the RM

G
, which can help us arrive at better

constraints on the PMFs [121].

Apart from the FRM of distant quasars, the upper bound of the order of nG on
scales above 1Mpc can also be obtained from the CMB data [122–127]. The PMFs can
source the scalar, vector, and tensor perturbations, which can leave distinct imprints on
the temperature and polarization angular power spectra of the CMB [124, 128–131].
Importantly, in the case of helical magnetic fields, the violation of parity can lead
to cross-correlations between temperature and E and B polarization of the CMB. In
addition, since the energy-momentum tensor corresponding to the PMFs is quadratic
in nature, they can induce primordial non-Gaussianities, which can also leave their
signatures on the CMB [50, 106, 132–134]. The coupling between the primordial
plasma and the magnetic fields on small scales can affect the acoustic peaks of the
CMB spectra due to the dissipation of the magnetic fields. Along with this, the
dissipation of the non-thermal energy of magnetic fields into the energy of electrons
prior to recombination can cause spectral distortions in the nearly perfect black body
spectrum of CMB. Moreover, the presence of magnetic fields can affect Silk damping
and the formation of LSS. Upon taking into account all these effects, one can arrive at
constraints on the PMFs of coherent lengths comparable to the CMB scales to be of the
order of nG that we mentioned above.

Another upper bound of order 10−6G can be arrived from the epoch of big bang
nucleosynthesis (BBN) by studying the effects of the magnetic fields on the abundance
of light elements, especially He4 (in this context, see, for instance, Refs. [135–139]).
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If magnetic fields are present during the epoch of BBN, they can change the expansion
rate of the universe due to their contribution to the total energy density of the universe.
The magnetic fields can also affect the reaction rates of weak processes like neutron-to-
proton conversion and also modify the phase space of the electrons and positrons, which
leads to changes in their statistical distributions. Taking all these effects into account,
the above constraint is arrived at over the scales of Kpc-Gpc.

A lower bound on the magnetic fields in the IGM can be obtained from the
observations of the high energy (0.1GeV-10TeV) blazars through γ-ray telescopes
such as High Energy Stereoscopic System (HESS) [140] and the Fermi large area
telescope (Fermi/LAT)[21, 141–143]. These high energy γ-rays interact with the
extragalactic background light while propagating through the IGM voids. This
interaction creates electron-positron pairs whose trajectories can be deflected by the
magnetic fields present in the voids. When these electrons and positrons interact with
the CMB photons via inverse Compton scattering, a cascade of secondary γ-rays are
produced, which carry information about the magnetic fields present in the IGM voids.
The cascade of secondary photons gives rise to two observable effects, which are an
extended emission pattern around the initial point source of the γ-rays [144–146], and
time delays observed in the γ-ray flares [147, 148]. If the distance scale over which the
electron-positron pairs lose energy due to scattering is less than the correlation length
of the magnetic fields, then the lower bound on the strength of magnetic fields decays
as λ−1/2

B
. This generally happens in the case of magnetic fields with correlation lengths

less than 1Mpc. If the distance scale is greater than the correlation length, it possesses
constant amplitude, and it happens for magnetic fields with λ

B
> 1 Mpc. These

observations impose a lower bound of about 10−17G on the magnetic fields present
in the IGM voids.

At the scale of 1Mpc, the strongest upper bounds on the magnetic fields arise
from the CMB. For a nearly scale invariant spectrum of the PMFs, the Planck 2015 data
leads to the upper limit on the present day strength of the magnetic field to be B0 <

2.0 nG [50]. The addition of the BICEP/Keck data and the data from the South Pole
Telescope improves the limit to be B0 < 1.5 nG, at 95% confidence level [149]. Other
observational constraints are derived based on long term combined monitoring of γ-rays
from the blazar 1ES 0229+200 in the energy range of 1-100GeV with Fermi/LAT and in
the energy range above 200GeV with Cherenkov telescopes such as MAGIC, HESS and
VERITAS. These concurrent observations impose a lower bound ofB0 > 1.8×10−17G
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Figure 1.3: We have illustrated the theoretical and observational bounds on the current
strengths of the magnetic field B0 as a function of the coherence length
scale λ

B
. As we have discussed in the text, the constraints from BBN

suggest that B0 < 10−6G over 10−3 < λ
B
< 1Mpc. The CMB and the

observations of γ-ray blazars lead to the upper and lower bounds of 10−9G
and 10−17G, respectively, over the coherent scales 10−1 < λ

B
< 104Mpc

(indicated in teal). The γ-ray observations and the decay due to the MHD
turbulence lead to constraints on scales smaller than λ

B
< 10−1Mpc

(indicated in powder blue). We have also delineated the largest and the
smallest scales of interest, viz. the Hubble scale today (i.e. 104Mpc) and
the scale of magnetic diffusion (i.e. 10−12Mpc). Note that the other regions
(in white) are excluded observationally.
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Correlation length (λ
B
) Present day amplitude (B0

−1 ≤ log
(

λ
B

Mpc

)
≤ 4 −17 ≤ log

(
B0

G

)
≤ −9

−6.3 ≤ log
(

λ
B

Mpc

)
≤ −1 −17.5− 0.5 log

(
λ
B

Mpc

)
≤ log

(
B0

G

)
≤ −8 + log

(
λ
B

Mpc

)
−9 ≤ log

(
λ
B

Mpc

)
≤ −6.3 −8 + log

(
λ
B

Mpc

)
≤ log

(
B0

G

)
< no upper bound

Table 1.1: We have listed the theoretical and observational constraints on the magnetic
fields today, corresponding to different coherence length scales.

for magnetic fields with long correlation lengths (i.e. λ
B
> 1Mpc) and B0 > 10−14G

for magnetic fields of the cosmological origin present in the voids in the IGM [142].
We have illustrated these different observational bounds in Fig. 1.3.

Let us now turn to discuss the theoretical bounds on the PMFs over very small
scales. The evolution of these fields is affected due to their coupling with the primordial
plasma as the generation of PMFs causes turbulence in the plasma. For instance, if
small scale magnetic fields are generated during the EW or QCD phase transitions, their
amplitudes will decay with time until they reach the boundary of the largest possible
region associated with the causal MHD processes [150]. Because of the non-linear
processes affecting the evolution of the magnetic fields due to the turbulence in MHD,
there is a transfer of energy from small scales to large scales (see, for instance, Refs. [41,
92, 151]). As a result, the correlation length of these fields increase, and it may reach a
length scale of astrophysical interest. The locus of such points where the evolution of
the amplitude and correlation length of the magnetic fields finally terminate, behave in
a linear fashion, which can be seen in Fig. 1.3. It has been noticed that the amplitude of
magnetic fields generated during the QCD phase transition with present-day coherence
length of 50Kpc could reach 10−9G and the fields which are generated during the EW
phase transition with coherence length of about 0.3Kpc could reach 10−10G after decay
due to the MHD processes [89].

Along with the constraints on the magnetic fields, it is essential to understand the
bounds on the correlation lengths λ

B
. The upper bound on the correlation length is

of the order of λ
B
< 104Mpc. It arises owing to the non-observation of magnetic

fields with correlation lengths larger than the Hubble radius today. The lower bound on
the correlation length is established from the fact that the resistive magnetic diffusion
timescale must not be larger than the age of the universe [1]. In Tab. 1.1, we have
presented a summary of the theoretical and observational bounds on the magnetic fields
today [8, 10, 81, 142].
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1.9 ORGANISATION OF THE THESIS

In this section, we shall conclude the chapter with a brief outline of the thesis. The thesis
consists of three pieces of research related to the generation of PMFs in non-standard
inflationary scenarios and the evolution of the quantum states of non-helical as well as
helical electromagnetic fields during inflation.

In Chap. 2, we shall consider the generation of magnetic fields in single field
inflationary models involving deviations from slow roll inflation. We shall specifically
discuss the challenges posed due to such departures from slow roll on generating
spectra of magnetic fields with observable strengths and shapes. In Chap 3, we shall
describe the manner in which the challenges encountered in magnetogenesis in single
field models permitting departures from slow roll can be overcome with the aid of two
field models of inflation. In addition, we shall also discuss the imprints of the PMFs
generated in certain two field models on the angular power spectra (of both temperature
and polarization) of the CMB. In Chap. 4, we shall discuss the quantum origin of
the PMFs and study the evolution of the quantum states associated with the Fourier
modes of the electromagnetic fields using different tools from the theory of quantum
information. We shall particularly focus on the behaviour of these quantum measures in
the case of helical electromagnetic fields. Lastly, in Chap. 5, after a quick overview of
the thesis, we shall briefly outline the problems that can be further investigated in these
contexts.

There is one point we would like to mention before we proceed. In the following
chapters, to make it convenient while reading, we shall repeat some of the primary
equations (such as actions, equations, and potentials) and some of the essential
discussions.
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CHAPTER 2

CHALLENGES IN THE CHOICE OF THE
NON-CONFORMAL COUPLING FUNCTION

IN INFLATIONARY MAGNETOGENESIS

2.1 INTRODUCTION

Large-scale magnetic fields are observed in galaxies, galaxy clusters and in the
intergalactic voids (for reviews on magnetic fields, see Refs. [1–10]). The Fermi/LAT
and HESS observations of TeV blazars suggest that the strength of magnetic fields in the
intergalactic medium is of the order of 10−15G [21–23, 152–155]. Also, magnetic fields
of strength of the order of 10−6G are observed within galaxies (for a recent discussion
of the various observational constraints, see, for instance, Refs. [10, 149]). It seems
challenging to explain the presence of magnetic fields of such strengths, specifically in
the voids in the IGM, on the basis of astrophysical phenomena alone [3, 4]. Hence, it is
believed that these magnetic fields may have a cosmological origin and they could have
been generated during the inflationary epoch in the early universe (for reviews in this
context, see Refs. [5, 6, 8–10]).

Recall that the standard electromagnetic action is conformally invariant.
Therefore, the energy density of the magnetic fields generated in such a theory will
be rapidly washed away during inflation. We should clarify that this is strictly
true only in the case of the spatially flat FLRW universe, which is conformally flat
globally. The FLRW universes with non-vanishing spatial curvature are conformally
flat only locally and, as a result, the adiabatic evolution of magnetic fields in such
scenarios can be affected (see Refs. [156, 157]; however, for further discussions in
this context, see Refs. [158–160]). As we mentioned, in this thesis, we shall focus
on the spatially flat FLRW universe. The spectrum of magnetic fields generated in
the conformally invariant theory will be strongly scale-dependent, inconsistent with
the recent constraints from the CMB [50]. The simplest way to generate magnetic
fields of observable strengths today seems to break the conformal invariance of the
electromagnetic action (in this context, see, for example, Refs. [93–95, 104, 107, 161–
164]). Often, this is achieved by coupling the electromagnetic field to either the scalar
field that drives inflation [81, 95, 161, 165, 166] or to the Ricci scalar describing the
background [104, 107, 162, 164]. In fact, it has also been discovered that the addition
of a parity violating term in the electromagnetic action can significantly enhance the
amplitude of magnetic fields generated during inflation [97, 99, 167–173]. It can be
shown that, for certain choices of the coupling function, the spectrum of magnetic fields



generated can be nearly scale invariant consistent with the current constraints over a
wide range of scales (see, for instance, Refs. [50, 174–177]).

The CMB observations point to a nearly scale invariant primordial scalar power
spectrum as is generated in models of slow roll inflation [52]. Nevertheless, there
has been a constant interest in the literature to examine if there exist features in the
scalar power spectrum. During the last decade or two, the possibility of features in the
inflationary power spectrum has been often examined with the aim of improving the
fit to the CMB and the LSS data (in this context, see, for instance, Refs. [178–190]).
More recently, with the detection of gravitational waves from merging binary black
holes [191], there has been a tremendous interest in investigating whether such black
holes could have a primordial origin [192–195]. In this context, a variety of inflationary
models generating increased power on small scales (compared to the COBE normalized
power on the CMB scales) which can lead to an enhanced formation of primordial
black holes (PBHs) have been investigated (see, for instance, Refs. [196–203]). These
features in the scalar power spectrum—both on the large as well as the small scales—are
usually generated due to deviations from slow roll inflation. We mentioned above that
the spectrum of the magnetic field depends on the choice of the function that couples
the electromagnetic field to either the inflaton or the Ricci scalar. These coupling
functions are often chosen such that the power spectrum of the magnetic field is nearly
scale invariant in slow roll inflation (actually, the background is often assumed to be
of the de Sitter or power law forms). However, if there arise departures from slow
roll, the non-trivial dynamics can influence the behaviour of the coupling functions and
thereby affect the spectrum of the magnetic field. In other words, the mechanism that
generates features in the scalar power spectrum can also induce features in the spectrum
of the magnetic field depending on the nature of the coupling that breaks the conformal
invariance of the electromagnetic action or induces violation of parity.

In this chapter, we shall investigate the effects of deviations from slow roll inflation
on the power spectra of the electromagnetic fields. While there have been some earlier
attempts to understand the effects of transitions during inflation (in this context, see,
for instance, Refs. [97, 98, 117, 204]; for some recent efforts, see Refs. [205, 206]),
we find that there does not seem to have been any effort to systematically examine the
imprints of departures from slow roll inflation on the spectra of the electromagnetic
fields. We find that coupling the electromagnetic field to the scalar curvature poses
certain difficulties even in slow roll inflation. We consider specific inflationary models
that lead to features in the scalar power spectrum. We choose functions that are coupled
to the inflaton which lead to nearly scale invariant spectra for the magnetic field either
in the absence of departures from slow roll or over large scales (which are constrained
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by the CMB observations) and examine the effects due to the deviations from slow
roll inflation. We show that, in these cases, unless the non-minimal coupling function
is designed in a specific manner and is extremely fine-tuned, it is impossible to avoid
features in the spectra of electromagnetic fields. Moreover, we notice that, in some
cases, the strengths of the magnetic fields can be considerably suppressed over large
scales. We believe that exploring the observational signatures of such features can help
us understand the nature of the non-conformal coupling that is required to generate
magnetic fields of observable strengths.

This chapter is organized as follows. In the next section, we shall discuss
the spectra of electromagnetic fields generated during inflation, when the fields are
coupled to either the inflaton or the scalar curvature. We shall arrive at the spectra
of electromagnetic fields generated in de Sitter inflation when the field is coupled to
the inflaton. We shall also evaluate the spectra in the presence of an additional term
in the action that induces the violation of parity. We shall point out that, even in
slow roll inflation, there arise specific challenges when considering the coupling of
the electromagnetic field to the scalar curvature. In Sec. 2.3, we shall construct specific
non-minimal coupling functions that lead to nearly scale invariant power spectra for the
magnetic fields in some of the popular models of slow roll inflation. In Sec. 2.4, we
shall introduce a few inflationary models that lead to features over large, intermediate
and small scales in the scalar power spectrum. In Sec. 2.5, we shall examine the effects
of deviations from slow roll inflation on the spectra of the electromagnetic fields. In
certain cases, we shall support our numerical computations with analytical estimates of
the amplitude and shape of the electromagnetic power spectra. In Sec. 2.6, with the help
of an example, we shall illustrate that, given an inflationary model leading to features in
the scalar power spectra, a suitably designed non-minimal coupling function can largely
undo the sharp features generated in the spectra of the electromagnetic fields. Finally,
we shall conclude with a summary in Sec. 2.7. We shall relegate some of the details to
App. A.

2.2 GENERATION OF MAGNETIC FIELDS DURING INFLATION

In this section, we shall quickly summarize the essential aspects related to the
generation of electromagnetic fields during inflation. We shall outline the spectra that
arise in situations wherein a coupling function is introduced to break the conformal
invariance of the action describing the electromagnetic fields.
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2.2.1 The non-helical case

As is often done, we shall first consider a coupling between the electromagnetic field
and the inflaton to break the conformal invariance of the standard action describing
electromagnetism. We shall assume that the electromagnetic field is described by the
action (see, for example, Refs. [5, 95])

S[Aµ] = − 1

16π

∫
d4x

√−g J2(ϕ)Fµν F
µν , (2.1)

where J(ϕ) denotes the coupling function and the field tensor Fµν is expressed in terms
of the vector potentialAµ as Fµν = (∂µAν−∂ν Aµ). On working in the Coulomb gauge
wherein Aη = 0 and ∂iAi = 0, one finds that the Fourier modes, say, Āk, describing
the vector potential satisfy the differential equation (see, for example Refs. [95, 207]):

Ā′′
k + 2

J ′

J
Ā′

k + k2Āk = 0. (2.2)

If we write Āk = Ak/J , then this equation reduces to

A′′
k +

(
k2 − J ′′

J

)
Ak = 0. (2.3)

The power spectra associated with the magnetic and electric fields are defined to be [5,
95]

P
B
(k) =

k5

2π2

J2

a4
|Āk|2 =

k5

2π2 a4
|Ak|2, (2.4a)

P
E
(k) =

k3

2π2

J2

a4
|Ā′

k|2 =
k3

2 π2 a4

∣∣∣∣A′
k −

J ′

J
Ak

∣∣∣∣2. (2.4b)

The initial conditions on the quantity Ak can be imposed in the domain wherein k ≫√
J ′′/J and the spectra associated with the electromagnetic fields can be evaluated in

the limit when k ≪
√
J ′′/J .

Let us now arrive at the power spectra of the electromagnetic fields in de Sitter
inflation wherein the scale factor is given by a(η) = −1/(H

I
η), with H

I
denoting the

constant Hubble parameter. Typically, the coupling function J is assumed to depend on
the scale factor as follows (see, for instance, Refs. [5, 95]):

J(η) =

[
a(η)

a(ηe)

]n
=

(
η

ηe

)−n

, (2.5)

where ηe denotes the conformal time at the end of inflation. Note that we have chosen
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the overall constant so that the coupling function reduces to unity at the end of inflation.
We should stress here that the parameter n is a real number and is not necessarily an
integer. In such a case, the Bunch-Davies initial conditions on the electromagnetic
modes Ak can be imposed in the limit k ≫

√
J ′′/J , which, for the above choice of

the coupling function, corresponds to the modes being in the sub-Hubble domain at
early times. For the coupling function (2.5), the solution to Eq. (2.3) that satisfies the
Bunch-Davies initial conditions is given by

Ak(η) =

√
−π η

4
ei (n+1)π/2H(1)

ν (−k η), (2.6)

where ν = n+ (1/2), and H(1)
ν (z) denotes the Hankel function of the first kind.

The spectra of the electromagnetic fields can be evaluated in the limit k ≪√
J ′′/J , which corresponds to the super-Hubble limit in de Sitter inflation for our

choice of the coupling function. In the limit (−k ηe) ≪ 1, the spectra of the magnetic
and electric fields P

B
(k) and P

E
(k) can be obtained to be [5, 95]

P
B
(k) =

H4
I

8 π
F(m) (−k ηe)2m+6, (2.7a)

P
E
(k) =

H4
I

8 π
G(m) (−k ηe)2m+4, (2.7b)

where, recall that, ηe denotes the conformal time at the end of inflation. The quantities
F(m) and G(m) are given by

F(m) =
1

22m+1 cos2(mπ) Γ2(m+ 3/2)
, (2.8a)

G(m) =
1

22m−1 cos2(mπ) Γ2(m+ 1/2)
, (2.8b)

with

m =

n, for n < −1
2
,

−n− 1, for n > −1
2
.

(2.9)

in the case of P
B
(k), and with

m =

n, for n < 1
2
,

1− n, for n > 1
2
.

(2.10)

in the case of P
E
(k). Note that the spectral indices for the magnetic and electric fields,
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say, n
B

and n
E
, can be written as

n
B
=

2n+ 6, for n < −1
2
,

4− 2n, for n > −1
2
,

(2.11)

and

n
E
=

2n+ 4, for n < 1
2
,

6− 2n, for n > 1
2
.

(2.12)

To be consistent with observations, the magnetic field is expected to be nearly scale
invariant and, evidently, this is possible when n ≃ −3 or when n ≃ 2. In these cases, it
is clear that n

E
≃ −2 and n

E
≃ 2, respectively. At late times, n

E
≃ −2 implies that the

energy density in the electric field is significant leading to a large backreaction. In order
to avoid such an issue, one often considers the n = 2 case to lead to a scale invariant
magnetic field with negligible backreaction due to the electric field. Note that, in these
cases, the power spectra reduce to the following simple forms

P
B
(k) =

9H4
I

4 π2
, P

E
(k) =

H4
I

4 π2
(−k ηe)2. (2.13)

2.2.2 The helical case

Recall that, we had considered the action (2.1) to break the conformal invariance of the
electromagnetic field. The action can be extended to include a parity violating term as
follows (in this context, see, for instance, Refs. [97, 99, 167–169, 204]):

S[Aµ] = − 1

16π

∫
d4x

√−g
[
J2(ϕ)Fµν F

µν − γ

2
I2(ϕ)Fµν F̃

µν

]
, (2.14)

where F̃ µν = (ϵµναβ/
√−g)Fαβ , with ϵµναβ being the completely anti-symmetric Levi-

Civita tensor, and γ is a constant. In such a case, the modes of the electromagnetic
field can be decomposed in a suitable helical basis. Also, we can work in the Coulomb
gauge as we had done in the non-helical case. In such a case, it is found that the second
term in the above action amplifies the electromagnetic modes associated with one of
the polarizations when compared to the other, thereby violating parity or, equivalently,
inducing helicity [99, 168, 169, 172, 173].

When we decompose the electromagnetic field in the helical basis, the Fourier
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modes of the field, say, Āσ
k , are found to satisfy the differential equation

Āσ′′
k + 2

J ′

J
Āσ′

k +

(
k2 +

σ γ k

J2

dI2

dη

)
Āσ

k = 0, (2.15)

where σ = ±1 represents positive and negative helicity. Let us define Āσ
k = Aσ

k/J

as we had done in the non-helical case. In terms of the new variable Aσ
k , the above

equation reduces to

Aσ ′′
k +

(
k2 +

2σ γ k I I ′

J2
− J ′′

J

)
Aσ

k = 0. (2.16)

We shall restrict ourselves to the simplest of scenarios wherein I = J . In such a case,
the above equation simplifies to

Aσ ′′
k +

(
k2 +

2σ γ k J ′

J
− J ′′

J

)
Aσ

k = 0. (2.17)

The power spectra of the magnetic and electric fields can be expressed in terms of the
modes Āσ

k and the coupling function J as follows [97, 99, 167, 169]:

P
B
(k) =

k5

4π2

J2

a4

[∣∣Ā+
k

∣∣2 + ∣∣Ā−
k

∣∣2]
=

k5

4π2 a4

[∣∣A+
k

∣∣2 + ∣∣A−
k

∣∣2] , (2.18a)

P
E
(k) =

k3

4π2

J2

a4

[∣∣Ā+′
k

∣∣2 + ∣∣Ā−′
k

∣∣2]
=

k3

4 π2 a4

[∣∣∣∣A+′
k − J ′

J
A+

k

∣∣∣∣2 + ∣∣∣∣A−′
k − J ′

J
A−

k

∣∣∣∣2
]
. (2.18b)

For the form of the coupling function given by Eq. (2.5), the solutions to the
electromagnetic modes satisfying the differential equation (2.17) and the Bunch-Davies
initial conditions can be written as follows (for a recent discussion, see, for example,
Ref. [169]):

Aσ
k(η) =

1√
2 k

eπ σ ξ/2W−i σ ξ,ν(2 i k η), (2.19)

where ν = n + (1/2), ξ = −n γ, and Wλ,µ(z) denotes the Whittaker function. In the
domain z ≪ 1, the Whittaker function Wλ,µ(z) behaves as [208, 209]

Wλ,µ(z) → Γ(−2µ)

Γ(1
2
− λ− µ)

z(1/2)+µ +
Γ(2µ)

Γ(1
2
− λ+ µ)

z(1/2)−µ. (2.20)

Upon using this result and the expression (4.96a), we find that the spectrum of the
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magnetic field evaluated in the limit (−k ηe) ≪ 1 is given by [99, 169]

P
B
(k) =

H4
I

8 π2

Γ2(|2n+ 1|)
|Γ(1

2
+ i n γ + |n+ 1

2
|)|2

(
cosh (nπ γ)

2|2n+1|−2
(−k ηe)5−|2n+1|

)
. (2.21)

Let us now turn to the evaluation of the spectrum of the electric field. In the calculation
of the spectrum, the following relation for the derivative of the Whittaker function [208,
209]:

dWλ,µ(z)

dz
=

(
1

2
− λ

z

)
Wλ,µ(z)−

1

z
W1+λ,µ(z) (2.22)

and the following recursion relation:

Wλ,µ(z) =
√
z W

λ−1
2
,µ−1

2
(z) +

(
1

2
− λ+ µ

)
Wλ−1,µ(z) (2.23)

prove to be helpful. On using the above relations and the behaviour (2.20) of the
Whittaker function, we can obtain the spectrum of the electric field in the helical case
[as defined in Eq. (4.96b)] in the limit (−k ηe) ≪ 1 to be

P
E
(k) =

H4
I

4π2

Γ2(2 |n|)
|Γ(|n|+ i n γ)|2

(
γ2

1 + γ2

) [
cosh (nπ γ)

22 |n|−2

]
(−k ηe)4−2 |n| (2.24)

with the factor γ2/(1 + γ2) arising only for positive values of the index n. Evidently,
the spectral indices for the magnetic and electric fields—viz. n

B
and n

E
—are given by

n
B
= 5− |2n+ 1| , n

E
= 4− 2 |n|. (2.25)

As in the non-helical case, we find that the spectrum of the magnetic field is scale
invariant when n = −3 and n = 2. Interestingly, in the helical case, the spectrum of the
electric field is also scale invariant when n = 2, whereas, when n = −3, the spectrum
has the same tilt (i.e. n

E
= −2) as in the non-helical case.

In our later discussion, we shall be focusing on the n = 2 case. When n = 2, we
find that the spectra of the helical magnetic and electric fields [evaluated in the limit
(−k ηe) ≪ 1] can be written as [209]

P
B
(k) =

9H4
I

4 π2
f(γ), (2.26a)

P
E
(k) =

9H4
I

4 π2
f(γ)

[
γ2 − sinh2(2 π γ)

3 π (1 + γ2) f(γ)
(−k ηe)

+
1

9

(
1 + 23 γ2 + 40 γ4

)
(−k ηe)2

]
, (2.26b)
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where the function f(γ) is given by

f(γ) =
sinh (4π γ)

4π γ (1 + 5 γ2 + 4 γ4)
. (2.27)

We will soon clarify the reason for retaining the second and third terms within the square
brackets [despite the fact that we are considering the (−k ηe) ≪ 1 limit] in the above
expression for P

E
(k). There are two related points that we need to highlight regarding

the results we have arrived at above. Firstly, note that, as γ → 0, f(γ) → 1, and these
spectra reduce to the non-helical results (2.13), as required. Secondly, in the above
spectrum for the electric field, the first two terms go to zero in the limit of vanishing
helicity (i.e. as γ → 0). In other words, even a small amount of helicity modifies the
spectrum of the electric field considerably, making it scale invariant. It is only in the
case of extremely small helicity—to be precise, when γ ≪ (−k ηe) ≃ k/ke, where
ke is the wave number that leaves the Hubble radius at the end of inflation—that the
third term becomes dominant leading to the behaviour that we had encountered in the
non-helical case.

2.2.3 Coupling to the scalar curvature
Let us now turn to the case of the electromagnetic field that is coupled to the scalar
curvature R and is described by the following action [93, 104, 107]:

S[Aµ] = − 1

16 π

∫
d4x

√−g J2(R)Fµν F
µν , (2.28)

where Fµν is the electromagnetic field tensor defined earlier. Evidently, in such a case,
one can work in the Coulomb gauge and the Fourier modes of the electromagnetic
vector potential Āk and the quantity Ak = J Āk would continue to be governed by
the differential equations (2.2) and (2.3). Therefore, if the coupling function J(R) is
chosen so that it depends on the conformal time as in Eq. (2.5), then we can expect scale
invariant spectra for the magnetic field when n = −3 and n = 2.

Earlier, while considering the coupling function (2.5), we had assumed the
background to be that of de Sitter. Note that the scalar curvature R associated with
the FLRW line-element (1.2) can be expressed as

R = 6
a′′

a3
= 6H2 (2− ϵ1) (2.29)

and we should emphasize that this expression is exact. In a de Sitter universe wherein
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H is a constant and ϵ1 vanishes, the above relation implies that the scalar curvature
is time-independent. Therefore, we cannot work in the de Sitter limit. Since we are
interested in potentials which typically lead to slow roll inflation, we can assume the
scale factor to be of the slow roll form. In such a case, it can be shown that the scalar
curvature behaves in terms of the conformal time as R ∝ η2 ϵ1 . This suggests that we
can possibly work with a coupling function of the form

J(R) =

[
R(η)

R(ηe)

]α
, (2.30)

where R(ηe) denotes the scalar curvature at the end of inflation. In slow roll inflation,
such a coupling will behave in terms of the conformal time coordinate as follows:

J(η) ≃
(
η

ηe

)2 ϵ1 α

, (2.31)

which reduces to our original form of the coupling function, as given by Eq. (2.5), if we
choose α = −n/(2 ϵ1). Also, we can expect to arrive at a scale invariant spectrum for
the magnetic field without any backreaction in the case of n = 2.

But, there arises a challenge, which, in fact, proves to be a rather serious one.
When considering a non-conformal coupling of the form J(R), we find that, in the
literature, the scale factor describing the FLRW background is often assumed to be of
a power law form. Such an assumption works well in power law inflationary scenarios
wherein the first slow roll parameter ϵ1 is strictly a constant, but poses difficulties in
realistic slow roll models of inflation wherein ϵ1 evolves towards unity and inflation
ends naturally. Note that, since ϵ1 is rather small at early times in slow roll inflation (in
order to be consistent with the constraints on the tensor-to-scalar ratio r over the CMB
scales; for the latest constraints, see Refs. [52, 210]), the index α = −1/ϵ1 (for n = 2)
turns out to be large in magnitude, typically of the order of 102 or larger. The fact that
the index α has a large magnitude is not surprising and can be easily understood. In
slow roll inflation, R ≃ 12H2 and hence it hardly changes during the initial stages of
inflation. Therefore, one has to raise the scalar curvature to an adequately large power
to achieve the desired time-dependence of the coupling function. Moreover, since, in
any realistic slow roll model of inflation, ϵ1 is not a constant, one has to work with
an α that is determined by, say, the value of ϵ1 when the pivot scale leaves the Hubble
radius. However, because ϵ1 is time-dependent, we are not guaranteed a scale invariant
spectrum for the magnetic field. In order to illustrate this point, in Fig. 2.1, we have
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Figure 2.1: The evolution of the quantity µ2
B
= J ′′/(J a2H2), with J being given by the

coupling function (2.30), as it occurs in the case of slow roll inflation driven
by the quadratic potential (in this context, see Sec. 2.3), has been plotted as
a function of e-folds N . We have set α = −1/ϵ1∗ ≃ −102, where ϵ1∗ is
the value of the first slow roll parameter when the pivot scale k∗ leaves the
Hubble radius. For the value of the parameter m (describing the quadratic
potential) and the initial conditions we have worked with, we find that the
pivot scale k∗ leaves the Hubble radius at the e-fold of N = 18.63. We
find that µ2

B
≃ 6 near N ≃ 18, which is necessary to result in a scale

invariant spectrum for the magnetic field. However, since the first slow roll
parameter ϵ1 is not a constant, µ2

B
changes with time and, actually, grows to

a large value towards the end of inflation. Apart from affecting the shape of
the spectra of the electromagnetic fields, we find that, a large value of α also
leads to exceedingly large values of the electromagnetic vector potential at
either the early or the late stages of inflation.

plotted the quantity µ2
B
= J ′′/(J a2H2) in a slow roll inflationary model described by

the quadratic potential [which we shall introduce later, see Eq. (2.39)]. We have chosen
the parameter α so that µ2

B
≃ 6 when the pivot scale leaves the Hubble radius, which

is required to lead to a nearly scale invariant spectrum for the magnetic field. But,
since ϵ1 changes with time, the quantity µ2

B
grows to large values at later times. Such a

behaviour of µ2
B

not only affects the shape of the spectra of the electromagnetic fields,
it influences their amplitude as well. Importantly, we find that, in general, a large value
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for α leads to rather large values for the electromagnetic vector potential at either early
or late times.

Phenomenologically, the only way out of this difficulty is to choose the index α
in J(R) [cf. Eq. (2.30)] to be dependent on time. In order to arrive at a scale invariant
power spectrum for the magnetic field, one may work with a coupling function of the
following form:

J =

(
R

6H2
e

)α(N)

=

[
H2 (2− ϵ1)

H2
e

]α(N)

(2.32)

and choose α(N) to be

α(N) =
2 (N −Ne)

ln [H2 (2− ϵ1) /H2
e ]
, (2.33)

where He and Ne denote the Hubble parameter and the e-fold at the end of inflation.
Such a choice essentially leads to J(R) ∝ a2, thereby guaranteeing a scale invariant
spectrum for the magnetic field. However, the action (2.28) of the electromagnetic
field described by the coupling function (2.30) with an α that depends on time will not
be invariant under general coordinate transformations. A theory which breaks general
covariance seems unattractive and is also quite likely to be unviable.

2.2.4 Strength of magnetic fields at the present epoch
The spectrum of magnetic fields evaluated at the end of inflation allows us to arrive at
their strengths at the present epoch. In the conventional picture, the epoch of reheating
is supposed to succeed inflation. During reheating, when the energy from the inflaton
is being transferred to the particles constituting matter, the universe is expected to be
filled with a plasma of charged particles. The creation of charged particles results in a
rapid rise in the conductivity of the plasma during reheating and, as a result, the electric
fields are shorted out, i.e. they decay exponentially. Thereafter, the magnetic fields are
supposed to evolve adiabatically with the expansion of the universe due to the fact that
the fluxes freeze in the highly conducting plasma (for a discussion on these points, see,
for instance, Refs. [5, 8]).

Let us consider the simple scenario wherein reheating occurs instantaneously at
the termination of inflation. In such a case, the spectrum of the magnetic field today,
say, P0

B
(k), can be related to the spectrum P

B
(k) at the end of inflation as follows:

P0
B
(k) ≃ P

B
(k)

(
ae
a0

)4

, (2.34)

36



where ae is the scale factor at the end of inflation, while a0 denotes the scale factor
today. The ratio ae/a0 can be determined from the conservation of entropy, i.e. the
constancy of the quantity gs T

3 a3 from the end of inflation until today, where T is
the temperature of radiation at a given epoch and gs represents the effective relativistic
degrees of freedom that contribute to the entropy. As a result, we can write

a0
ae

=

(
gs,e
gs,0

)1/3
Te
T0
, (2.35)

where (Te, gs,e) and (T0, gs,0) denote the temperature and the effective number of
relativistic degrees of freedom at the onset of the radiation dominated epoch and today,
respectively. The quantity Te can be determined using the fact that, in the case of
instantaneous reheating, the energy density at the end of inflation equals that of radiation
at the epoch, leading to ρ

I
≃ 3H2

I
M2

Pl
≃ gr,e (π

2/30)T 4
e , where gr denotes the effective

number of relativistic degrees that contribute to the energy density of radiation. For
simplicity, if we assume that gr ≃ gs, upon using the above relation, we can arrive at

a0
ae

≃
(
ge
g0

)1/3 (90H2
I
M2

Pl

ge π2 T 4
0

)1/4

. (2.36)

If we consider ge = 106.75, since g0 = 3.36 and T0 = 2.725K, we obtain that

a0
ae

≃ 2.8× 1028
(

H
I

10−5M
Pl

)1/2

. (2.37)

Given the scale invariant spectrum (2.26a) for the magnetic field at the end of inflation in
the n = 2, helical case, upon substituting the above expression for a0/ae in Eq. (2.34),
we can estimate the present day strength of the magnetic field, say, B0 (at any scale), to
be

B0 ≃ 4.5× 10−12

(
H

I

10−5M
Pl

)
f 1/2(γ) G, (2.38)

where the function f(γ) is given by Eq. (2.27). Recall that, in the non-helical case, since
γ = 0, we have f(γ) = 1. Therefore, when parity is conserved, if inflation occurs over
energy scales such that 10−10 ≲ H

I
/M

Pl
≲ 10−5, then inflationary magnetogenesis

can be expected to lead to magnetic fields of strength in the range 10−17 ≲ B0 ≲

10−11G today. As we shall discuss later, to avoid backreaction due to the generated
electromagnetic fields, the helicity parameter γ is constrained to be less than about 2.5.
We find that, when parity is violated, the above-mentioned strengths of the magnetic
fields today are amplified by a factor of about 34 when γ ≃ 1 and by a factor of about
4.4× 103 when γ ≃ 2.
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2.3 COUPLING FUNCTION IN SLOW ROLL INFLATIONARY MODELS

Before we go on to discuss inflationary models leading to features in the scalar power
spectrum, we shall evaluate the spectra of electromagnetic fields generated in slow roll
inflation. Specifically, we shall discuss the forms of the coupling function J(ϕ) that are
required to generate nearly scale invariant magnetic fields in slow roll inflation. This
simple exercise proves to be instructive when we later consider situations involving
departures from slow roll.

Note that, in terms of e-folds, the coupling function (2.5) is given by J(N) =

exp [n (N−Ne)], whereNe denotes the e-fold at the end of inflation. Since the evolution
of the field ϕ(N) will depend on the inflationary potential, it should be evident that a
specific function J(ϕ) will not lead to the above-mentioned form of J(N) in all the
models. We shall now construct the coupling functions J(ϕ) that result in the required
J(N) in some of the popular inflationary models that permit slow roll inflation. For
these choices of the coupling functions, assuming n = 2, we shall also numerically
evaluate the power spectra of the electromagnetic fields in these potentials. We shall
impose the initial conditions on the electromagnetic modes when k ≃ 102

√
J ′′/J ,

evolve the modes until late times and evaluate the spectra at the end of inflation.

We shall consider three forms for the potential V (ϕ). The first model we shall
consider is the popular quadratic potential given by

V (ϕ) =
m2

2
ϕ2. (2.39)

(For convenience, we shall refer to the model as QP in the figures.) In such a potential,
it is well known that, under the slow roll approximation, the evolution of the field can
be expressed as

ϕ2(N) ≃ ϕ2
e + 4 (Ne −N)M2

Pl
, (2.40)

where ϕe ≃
√
2M

Pl
denotes the value of the field at the end of inflation. Clearly, we

can arrive at the form of J(N) that we desire if we choose J(ϕ) to be (in this context,
see Refs. [165, 166])

J(ϕ) = exp

[
− n

4M2
Pl

(ϕ2 − ϕ2
e)

]
. (2.41)

Recall that, COBE normalization determines the value of the parameter m, and we find
that we need to choose m = 7.18× 10−6M

Pl
to arrive at the observed scalar amplitude

at the pivot scale [52]. To evolve the background, we shall choose the initial values of
the field and the first slow roll parameter to be ϕi = 16.5M

Pl
and ϵ1i = 7.346 × 10−3,

respectively. In such a case, we find that inflation lasts for 68.6 e-folds in the model.
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The second example we shall consider is the small field model described by the
potential

V (ϕ) = V0

[
1−

(
ϕ

µ

)q]
(2.42)

and we shall focus on the case wherein q = 2. (We shall refer to the model as SFM
in the figures.) On working in the slow roll approximation, the evolution of the field in
such a model can be written as

µ2 ln

(
ϕ

ϕe

)
− 1

2

(
ϕ2 − ϕ2

e

)
≃ 2 (N −Ne)M

2
Pl
, (2.43)

with ϕe again denoting the value of the field at the end of inflation. Hence, we can arrive
at the J(N) of our interest if we choose the coupling function J(ϕ) to be

J(ϕ) ≃
(
ϕ

ϕe

)nµ2/2M2
Pl

exp

[
− n

4M2
Pl

(ϕ2 − ϕ2
e)

]
. (2.44)

If we assume that µ ≫ M
Pl

, then we find that ϕe ≃ µ. We shall choose µ = 10M
Pl

.
We find that COBE normalization leads to V0 = 5.38 × 10−10M4

Pl
. We have set the

initial values of the field and the first slow roll parameter to be ϕi = 1.6M
Pl

and ϵ1i =
5.39× 10−4, which lead to about 68.4 e-folds of inflation.

The third case that we shall consider is the Starobinsky model described by the
potential

V (ϕ) = V0

[
1− exp

(
−
√

2

3

ϕ

M
Pl

)]2
. (2.45)

As we shall consider another model due to Starobinsky later, we shall refer to this
potential as the first Starobinsky model (or, simply as SM1 in the figures). In this model,
the evolution of the field in the slow roll approximation is described by the expression

N−Ne ≃ −3

4

[
exp

(√
2

3

ϕ

M
Pl

)
−exp

(√
2

3

ϕe

M
Pl

)
−
√

2

3

(
ϕ

M
Pl

− ϕe

M
Pl

)]
, (2.46)

where the value of the field at the end of inflation, viz. ϕe, is determined by the relation
exp [

√
(2/3)ϕe/MPl

] ≃ 1+2/
√
3. Therefore, to achieve the desired dependence of the

coupling function on the scale factor, we can choose J(ϕ) in the model to be

J(ϕ) = exp

{
−3n

4

[
exp

(√
2

3

ϕ

M
Pl

)
− exp

(√
2

3

ϕe

M
Pl

)
−
√

2

3

(
ϕ

M
Pl

− ϕe

M
Pl

)]}
.

(2.47)
Again, COBE normalization fixes the overall amplitude of the potential to be V0 =
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1.43 × 10−10M4
Pl

. We have chosen the initial values of the field and the first slow
roll parameter to be ϕi = 5.6M

Pl
and ϵ1i = 1.453 × 10−4. We find that, for the above-

mentioned value of V0, these initial conditions lead to about 69.5 e-folds before inflation
ends.

Let us now try to understand the amplitude and shape of the spectra of the
electromagnetic fields that arise in these models. Evidently, to arrive at a nearly scale
invariant spectrum for the magnetic field, we shall choose to work with n = 2. Since
the inflationary models introduced above will lead to a scale factor of the slow roll
form (rather of the de Sitter type), clearly, we can expect the spectrum of the magnetic
field in both the non-helical and helical cases to exhibit a small tilt. Moreover, in these
situations, the spectrum of the electric field can be expected to be nearly scale invariant
(as the spectrum of the magnetic field) in the helical case, while it can be expected to
behave nearly as k2 in the non-helical case. In Fig. 2.2, we have plotted the spectra
arising in the three slow roll models that we discussed above. Interestingly, we find
that, while the power spectrum for the non-helical magnetic field arising in the case
of the quadratic potential has a small red tilt, the spectral tilt happens to be slightly
blue in the cases of the small field and the Starobinsky models. One may have naively
imagined that, in such situations, it would be possible to express the spectral tilts n

B

and n
E

completely in terms of the slow roll parameters. This would have indeed been
true had we assumed that J ∝ an and worked with the slow roll expression for the scale
factor (in this context, see App. A). However, our choices for the coupling functions
[viz. Eqs. (2.41), (2.44) and (2.47)] do not exactly mimic the behaviour of J ∝ an,
but contain small departures from it. As a result of these deviations, we find that the
spectral indices depend on the parameters describing the potential apart from the slow
roll parameters. In App. A, we show that, a simple analytical estimate of the spectral
indices indeed match the results we have numerically obtained in all these three cases.

Let us now estimate the amplitude of the electromagnetic spectra in the slow roll
models. Let us first consider the non-helical case. It can be easily shown that, when
n = 2, the amplitude of the spectra of the magnetic and electric fields at the pivot
scale k∗ can be expressed as [cf. Eqs. (2.13)]

P
B
(k)

M4
Pl

≃ 9π2

16
(r As)

2 , (2.48a)

P
E
(k)

M4
Pl

≃ P
B
(k)

9M4
Pl

(
k∗
ke

)2

≃ P
B
(k)

9M4
Pl

e−100. (2.48b)
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Figure 2.2: The spectra of the magnetic (on top) and electric (at the bottom) fields
arising in the three slow roll inflationary models, viz. the quadratic potential
(QP, in red), the small field model (SFM, in blue) and the first Starobinsky
model (SM1, in green), have been plotted over the CMB scales. We have
also plotted the corresponding spectra when a step has been introduced in
these potentials (QP-WS, in cyan; SFM-WS, in purple; and SM1-WS, in
orange, respectively), a scenario we shall discuss later in Subsec. 2.5.1.
Moreover, we have plotted the spectra in both the non-helical (as solid lines)
and helical (as dashed lines) cases. We have worked with the parameters
mentioned in the text and we have set n = 2 in arriving at the spectra. In
the helical case, we have set γ = 1. We should mention that the shapes
and amplitudes of these numerically evaluated spectra roughly match the
analytical estimates discussed in the text. For instance, the spectrum of the
magnetic field is nearly scale invariant in all the models (and in both the non-
helical and helical cases), modulo a small step-like feature that arises when
a step is introduced in the potential. Also, the spectrum of the electric field
behaves as k2 in the non-helical case and it is scale invariant and matches
the amplitude of the magnetic field in the helical case, as we had discussed.
Further, clearly, the amplitude of the spectra of the helical magnetic fields
are about 103 larger than the amplitude of the non-helical fields, as expected
when γ = 1.
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In these expressions, As = 2.1 × 10−9 denotes the observed amplitude of the scalar
power spectrum at the pivot scale and r represents the tensor-to-scalar ratio [52, 210].
Note that, we have set ke ≃ −1/ηe, where, as we have indicated earlier, ke is the
wave number that leaves the Hubble radius at the end of inflation. Also, in arriving at
the final equality in the above expression for P

E
(k), we have assumed that the pivot

scale leaves the Hubble radius 50 e-folds before the end of inflation, as we have done
in the numerical evaluation of the electromagnetic spectra plotted in Fig. 2.2. In the
three slow roll inflationary models of our interest, viz. the quadratic potential, the
small field model and the Starobinsky model, the tensor-to-scalar ratio can be easily
estimated to be r ≃ (1.6 × 10−1, 5.79 × 10−2, 4.8 × 10−3). The above expressions
then suggest that these models will generate non-helical magnetic fields of amplitudes
P

B
(k) ≃ (6.27 × 10−19, 8.21 × 10−20, 5.64 × 10−22)M4

Pl
. Moreover, according to

expressions above, P
B
(k) ≃ 10−20M4

Pl
implies that P

E
(k) ≃ 10−66M4

Pl
. These

estimates roughly match the results we have arrived at numerically and have illustrated
in Fig. 2.2. Further, since P

B
(k) ≫ P

E
(k) in the non-helical case, clearly, most of the

energy in the generated electromagnetic fields is in the magnetic field. Lastly, since
P

B
(k)/M4

Pl
≃ (H

I
/M

Pl
)4 ≲ 10−20 in these models, we have P

B
(k)/M4

Pl
≪ ρ

I
/M4

Pl
∼

H2
I
/M2

Pl
, where, recall that, ρ

I
is the energy density of the inflaton. This suggests that

the energy density in the generated electromagnetic field is smaller than the background
energy density and hence these scenarios do not suffer from the backreaction problem
(for an early discussion in this context, see Ref. [166], for more recent discussions, see
Ref. [81, 211]).

Let us now turn to case of the helical electromagnetic fields. In the helical case,
when n = 2, the amplitude of the spectra of the magnetic and electric fields can be
expressed as [cf. Eqs. (2.26)]

P
B
(k)

M4
Pl

≃ 9 π2

16
(r As)

2 f(γ), (2.49a)

P
E
(k)

M4
Pl

≃ P
B
(k)

M4
Pl

γ2, (2.49b)

where f(γ) is given by Eq. (2.27). Note that, in contrast to the non-helical case, the
energy density in the electric field is now comparable to that of the magnetic field and,
in fact, the contribution due to electric fields dominates when γ > 1. Therefore, if we
need to avoid backreaction due to the helical electromagnetic fields which have been
generated, we require that P

B
(k) + P

E
(k) ≪ ρ

I
. Since we are considering inflationary

models wherein H
I
/M

Pl
≲ 10−5, on using the above expressions for the spectra of

the electromagnetic fields, we find that the condition for avoiding backreaction leads to
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f(γ) (1 + γ2) ≲ 1010. This limits the value of γ to be γ ≲ 2.5. In Fig. 2.2, assuming
γ = 1, we have also plotted the spectra of the helical electromagnetic fields in the
three inflationary models discussed above. When γ = 1, we find that f(γ) ≃ 103. As
should be evident from the figure, the spectra of the helical magnetic fields are indeed
amplified by the factor of 103 when compared to the non-helical case in all the models.
Also, it should be clear that, the spectra of the helical electric and magnetic fields are
comparable, as expected.

2.4 INFLATIONARY MODELS LEADING TO FEATURES IN THE SCALAR
POWER SPECTRUM

In this section, we shall discuss specific examples wherein deviations from slow roll
inflation lead to features in the scalar power spectrum. In due course, we shall discuss
the effects of such deviations on the spectra of the electromagnetic fields. When
departures from slow roll occur, in general, the background and the modes describing
the scalar perturbations prove to be difficult to evaluate analytically, and one resorts to
numerics. We shall begin by recalling a few essential points regarding the evaluation of
the scalar power spectrum.

Recall that fk denote the Fourier mode functions associated with the curvature
perturbation. As we had discussed in the last chapter, the mode functions fk satisfy the
differential equation (see, for instance, the reviews [63, 64, 71, 73, 212–218])

f ′′
k + 2

z′

z
f ′
k + k2 fk = 0, (2.50)

where the quantity z is given by z =
√
2 ϵ1MPl

a, with ϵ1 = −Ḣ/H2 being the first
slow roll parameter. Moreover, in terms of the Mukhanov-Sasaki variable vk = fk z,
the above equation reduces to

v′′k +

(
k2 − z′′

z

)
vk = 0. (2.51)

The standard Bunch-Davies initial conditions are imposed on the variable vk at very
early times when k ≫

√
z′′/z, which corresponds to the modes being in sub-Hubble

regime. As we had seen earlier, the scalar power spectrum is defined as

P
S
(k) =

k3

2 π2
|fk|2 =

k3

2π2

|vk|2
z2

. (2.52)

The mode functions fk are evolved from the Bunch-Davies initial conditions and the
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power spectra are evaluated in the super-Hubble regime at late times, i.e. when k ≪√
z′′/z. Since the modes oscillate in the sub-Hubble domain and the amplitude of the

scalar modes are known to freeze on super-Hubble scales, numerically, one often finds
that it is sufficient to evolve the modes from k ≃ 102

√
z′′/z and evaluate the power

spectrum when k ≃ 10−5
√
z/′′z (in this context, see, for instance, Ref. [219]).

2.4.1 Potentials with a step

The first scenario leading to features in the scalar power spectrum that we shall consider
are inflationary potentials wherein a step has been introduced by hand. Given an
inflationary model described by the potential V (ϕ), we shall introduce a step in the
potential as follows (for an early discussion, see Ref. [220]):

Vstep(ϕ) = V (ϕ)

[
1 + α tanh

(
ϕ− ϕ0

∆ϕ

)]
, (2.53)

where, evidently, ϕ0, α and ∆ϕ denote the location, the height and the width
of the step. For the original potential V (ϕ), we shall consider the three models
admitting slow roll we had discussed in the previous section. (We shall refer
to these models with a step in their potentials as QP-WS, SFM-WS and SM1-
WS in the figures.) Also, as far as the parameters regarding the original
potential is concerned, we shall work with the values we had mentioned earlier.
Moreover, we shall work with the following values of the three parameters
describing the step: (ϕ0, α,∆ϕ) = (14.6616M

Pl
, 1.55177 × 10−3, 2.60584 ×

10−2M
Pl
), (2.14M

Pl
,−0.1153×10−3, 0.0070M

Pl
) and (5.3052M

Pl
, 5.0×10−5, 5.0×

10−3M
Pl
) in the cases of the quadratic potential, the small field model and the first

Starobinsky model, respectively.

As we described above, to arrive at the scalar power spectrum, we impose the initial
conditions on the modes when k ≃ 102

√
z′′/z and evaluate the power spectrum when

k ≃ 10−5
√
z′′/z. Moreover, in these three models, we shall assume that the pivot scale

of k∗ = 0.05Mpc−1 leaves the Hubble radius 50 e-folds before the end of inflation.
The scalar power spectrum that arises with the introduction of the step in the quadratic
potential is illustrated in Fig. 2.3. As one would expect, the introduction of the step
in the potential leads to a short period of deviation from slow roll as the field crosses
the step. The deviation from slow roll, in turn, generates a short burst of oscillations in
the scalar power spectrum over wave numbers that leave the Hubble radius during the
period of departure from slow roll. It is known that such features in the power spectrum
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can improve the fit to the CMB data to a certain extent [183, 184].

2.4.2 Suppressing power on large scales

Since the advent of the WMAP data, it has been known that a suppression in power on
large scales comparable to the Hubble radius today leads to an improvement in the fit
to the CMB data (for earlier discussions, see Refs. [178–182, 185, 186]; for a recent
discussion, see Ref. [189]). In this subsection, we shall discuss two models that have
often been considered in this context.

The first example that we shall consider is a model due to Starobinsky, which is
governed by the potential [221]

V (ϕ) =

V0 + A+ (ϕ− ϕ0), for ϕ > ϕ0,

V0 + A− (ϕ− ϕ0), for ϕ < ϕ0.
(2.54)

To distinguish from the Starobinsky model (2.45) which permits slow roll inflation that
we had discussed earlier, we shall refer to the above potential as the second Starobinsky
model (or, simply as SM2 in the figures). Evidently, the model consists of a linear
potential with a sudden change in its slope at the point ϕ0. If we assume that the constant
term V0 in the potential is dominant, then the first slow roll parameter remains small
and the scale factor can be described by the de Sitter form. Under this condition, it is
possible to arrive at analytical solutions for the evolution of the background [221, 222].
We shall discuss the evolution of the field later, when we consider the coupling between
the inflaton and the electromagnetic field. It is found that, as the field crosses ϕ0, while
the first slow roll parameter remains small, the second and the third slow roll parameters
turn large leading to a departure from slow roll. Also, notice that the second derivative
of the potential is described by a Dirac delta function with its peak at ϕ0. It is the
Dirac delta function that dominates the behaviour of the quantity z′′/z that appears
in the Mukhanov-Sasaki equation (2.51). Working in the de Sitter approximation to
describe the scale factor as well as the scalar mode functions fk, the deviation from
slow roll could be accounted for by essentially considering the effects due to the Dirac
delta function. In fact, under these conditions, it is possible to arrive at an analytical
form for the power spectrum [189, 221, 222]. We shall instead arrive at the scalar
power spectrum numerically. In order to permit numerical analysis, we shall modify
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Figure 2.3: The scalar power spectra with features over the CMB and smaller scales
have been plotted in some of the inflationary models that we have
considered. We have plotted the scalar spectra with features over the CMB
scales (on top) in the cases of the quadratic potential with a step (QP-WS,
in red), the second Starobinsky model described by the linear potential with
a sharp change in its slope (SM2, in blue), and the first punctuated inflation
model (PI1, in green). We have also plotted the scalar power spectra with a
peak in power at small scales (at the bottom) that are generated in the ultra
slow roll (USR, in red) and the second punctuated (PI2, in blue) inflation
models. As we shall point out later, the scalar spectra with a sharp rise in
power on small scales are often considered to produce significant amount of
PBHs.
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the potential so that the change in the slope is smooth and not abrupt. We shall assume
that the potential is given by

V (ϕ) = V0 +
1

2
(A+ + A−) (ϕ− ϕ0)

+
1

2
(A+ − A−) (ϕ− ϕ0) tanh

(
ϕ− ϕ0

∆ϕ

)
, (2.55)

and work with the following values of the parameters involved: V0 = 2.98× 10−9M4
Pl

,
A+ = 4.35881 × 10−10M3

Pl
, A− = 2.499 × 10−10M3

Pl
, ϕ0 = 5.628M

Pl
and ∆ϕ =

10−4 ϕ0. We shall choose the initial value of the field and the first slow roll parameter
to be ϕi = 8.4348M

Pl
and ϵ1i = 10−4.

The second model that we shall consider is the so-called punctuated inflationary
model described by the potential (in this context, see Refs. [181, 182, 189])

V (ϕ) =
m2

2
ϕ2 − 2m2

3ϕ0

ϕ3 +
m2

4ϕ2
0

ϕ4. (2.56)

It is easy to see that this potential contains a point of inflection at ϕ0. The point of
inflection leads to two epochs of slow roll sandwiching a brief period of departure
from inflation, which has led to the name of punctuated inflation. As we shall consider
another model of punctuated inflation which leads to enhanced power at small scales
in the following subsection, we shall refer to the above potential as the first model
of punctuated inflation (or, simply as PI1 in the figures). In this case, we shall work
with the following values of the parameters involved: m = 7.17 × 10−8M

Pl
and

ϕ0 = 1.9654M
Pl

. We shall choose the initial values of the field and the first slow
roll parameter to be ϕi = 12.0M

Pl
and ϵ1i = 2× 10−3.

The drawback of these two models is that they lead to much longer epochs
of inflation than the nominally required 60 odd e-folds [189]. In the Starobinsky
model (2.54), we stop the evolution by hand after 72 e-folds, and assume that the pivot
scale leaves the Hubble radius about 44.5 e-folds earlier. In the case of the punctuated
inflationary model (2.56), inflation ends naturally after nearly 110.5 e-folds and the
pivot scale is assumed to exit the Hubble radius about 91 e-folds before the termination
of inflation. The departure from slow roll in these two potentials leads to a step-like
feature in the scalar power spectrum, as illustrated in Fig. 2.3.
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2.4.3 Enhancing power on small scales

Over the last few years, there has been a considerable interest in examining models
of inflation that lead to enhanced power on scales much smaller than the CMB scales
(in this context, see, for example, Refs. [196–200, 202, 203]). Apart from leading to
copious production of PBHs, these models can also generate secondary gravitational
waves of considerable strengths, which can possibly be detected by the current and
forthcoming gravitational wave observatories. Most of these inflationary models
contain a point of inflection (just as the model of punctuated inflation we discussed
in the previous subsection), which permits a brief period wherein the first slow roll
parameter decreases exponentially. Such a period of ultra slow roll proves to be
responsible for enhancing the power on small scales in these models.

We shall consider two potentials that lead to enhanced power on small scales. The
first model that we shall consider, which leads to a brief period of ultra slow roll, is
described by the potential [199]

V (ϕ) = V0

{
tanh

(
ϕ√
6M

Pl

)
+ A sin

[
1

fϕ
tanh

(
ϕ√
6M

Pl

)]}2

. (2.57)

(We shall refer to the model as USR in the figures.) We shall choose to work with
the following values of the parameters involved: V0 = 2 × 10−10M4

Pl
, A = 0.130383

and fϕ = 0.129576. For these values of the parameters, the point of inflection in the
potential is located at ϕ0 = 1.05M

Pl
[202]. Also, if we choose the initial value of the

field to be ϕi = 6.1M
Pl

, with ϵ1i = 10−4, we obtain about 66 e-folds of inflation in the
model. Moreover, we shall assume that the pivot scale exits the Hubble radius about
56.2 e-folds prior to the termination of inflation.

The second model that we shall consider which permits punctuated inflation is
described by the potential [199, 203]

V (ϕ) = V0

[
c0 + c1 tanh

(
ϕ√
6M

Pl

)
+ c2 tanh2

(
ϕ√
6M

Pl

)
+ c3 tanh3

(
ϕ√
6M

Pl

)]2
. (2.58)

(We shall refer to the model as PI2 in the figures.) In this case, we shall work with the
following values for the parameters involved: V0 = 2.1 × 10−10M4

Pl
, c0 = 0.16401,

c1 = 0.3, c2 = −1.426 and c3 = 2.20313. As in the previous model, this potential
also contains a point of inflection. For the above values for the parameters, the point
of inflection is located at ϕ0 = 0.53M

Pl
. If we set the initial value of the field to be
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ϕi = 7.4M
Pl

and choose ϵ1i = 10−3, for the above choice of parameters, we find that
inflation is terminated after about 67.8 e-folds. Also, we shall assume that the pivot
scale leaves the Hubble radius about 54.5 e-folds before the end of inflation.

The scalar power spectra that arise in the above two potentials are illustrated in
Fig. 2.3. Note that the power spectra exhibit a sharp rise in power on small scales in
these models. As has been repeatedly emphasized in the literature, it is the period of
ultra slow roll, with its rather small value for the first slow roll parameter ϵ1, that turns
out to be responsible for the increased power in the scalar power spectrum on small
scales (in this context, see, for instance, Ref. [223]).

2.5 EFFECTS OF DEVIATIONS FROM SLOW ROLL ON THE
ELECTROMAGNETIC POWER SPECTRA

Let us now turn to understand the effects of deviations from slow roll on the power
spectra of electric and magnetic fields.

2.5.1 In potentials with a step
As we discussed earlier and illustrated in Fig. 2.3, the introduction of the step in a
potential which otherwise admits only slow roll inflation leads to a short burst of
oscillations in the scalar power spectrum. In Sec. 2.3, we had constructed coupling
functions J(ϕ) [as given by Eqs. (2.41), (2.44) and (2.47)] in the three slow roll
models (2.39), (2.42) and (2.45) so that they lead to nearly scale invariant spectra for
the magnetic field when n = 2. Even after the introduction of the step, we have chosen
to work with the above mentioned coupling functions J(ϕ) that we had constructed in
the slow roll approximation. In Fig. 2.2, we have plotted the resulting spectra of the
magnetic and electric fields arrived at numerically in both the non-helical and helical
cases. As should be clear from the figure, the step in the inflationary potential only has a
small effect on the spectra of the electromagnetic fields. It essentially generates a small
step-like feature in the power spectra. This is not surprising since, for the choices of
the parameters we have worked with, the step in the potential leads to only a small and
brief departure from slow roll inflation.
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2.5.2 In models leading to suppression of power on large scales

In this context, we shall first consider the second Starobinsky model described by the
potential (2.54). As we had mentioned earlier, in the model, the field rolls slowly until
it reaches ϕ0 where the slope of the potential changes from A+ to A−. In the slow roll
approximation, the evolution of the field prior to it crossing ϕ0 can be determined to
be [221, 222]

ϕ+(N) ≃ −
(
V0
A+

− ϕ0

)
+

[(
ϕi − ϕ0 +

V0
A+

)2

− 2M2
Pl
N

]1/2
, (2.59)

where ϕi is the initial value of the field (i.e. at N = 0). If we choose to work with a
suitably large value of V0 so that it dominates the potential, then the above expression
simplifies to be

ϕ+(N) ≃ ϕi −
A+M

2
Pl

V0
N. (2.60)

Evidently, once the field has crossed ϕ0 and slow roll has been restored, the evolution
of the field can be expressed as

ϕ−(N) ≃ −
(
V0
A−

− ϕ0

)
+

[(
V0
A−

)2

− 2M2
Pl
(N −N0)

]1/2
, (2.61)

where N0 denotes the e-fold when the field crosses ϕ0. If we again assume that V0 is
dominant, then the above expression reduces to

ϕ−(N) ≃ ϕ0 −
A−M2

Pl

V0
(N −N0). (2.62)

We should clarify here that, in arriving at the above expressions for the evolution of the
field after it has crossed ϕ0, we have ignored the effects that arise due to the change in the
slope. As we had described, the change in the slope causes a brief period of departure
from slow roll. If we take into account the effects due to the deviation from slow roll,
the evolution of the field after it has crossed ϕ0 can be obtained to be [221, 222]

ϕ−(N) ≃ ϕ0 +
∆AM2

Pl

3V0

[
1− e−3 (N−N0)

]
− A−M2

Pl

V0
(N −N0), (2.63)

where ∆A = (A− − A+). Upon comparing the above two equations, it should be
obvious that it is the intermediate term that accounts for the departure from slow roll
which occurs as the field crosses ϕ0. On using the above expressions describing the
behaviour of the field, one can show that, while the first slow roll parameter remains
small, the second and the third slow roll parameters turn large as the field crosses ϕ0.
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Let us now turn to constructing the coupling function J(ϕ) for the second
Starobinsky model. As we had done in the case of the models discussed in Sec. 2.3,
we can choose to work with the solutions for the field in the slow roll approximation.
If we choose to do so, we are left with two choices, viz. the slow roll solutions (2.59)
and (2.61) for the field before and after the transition. In other words, we can work with
either of the following choices for the coupling function:

J+(ϕ) = J0+ exp

{
− n

2M2
Pl

[(
ϕ+ − ϕ0 +

V0
A+

)2

−
(
ϕi − ϕ0 +

V0
A+

)2]}
, (2.64a)

J−(ϕ) = J0− exp

{
− n

2M2
Pl

[(
ϕ− − ϕ0 +

V0
A−

)2

−
(
V0
A−

)2

− 2N0M
2
Pl

]}
, (2.64b)

where the constants J0± are to be chosen suitably so that J±(ϕe) = 1, i.e. the value of
J is unity at the end of inflation.

The power spectra of the magnetic field for the two coupling functions J±(ϕ) for
the case of n = 2 are plotted in Fig. 2.4 for both the non-helical and helical cases.
A few points needs to be emphasized regarding the spectra we have obtained. Firstly,
the spectra are scale invariant only over either large or small scales. Let k0 be the
mode which leaves the Hubble radius when the field crosses ϕ0. Then, clearly, for
the choice of the coupling functions J+(ϕ) and J−(ϕ), the magnetic field spectra are
scale invariant only over k < k0 and k > k0, respectively. This should not come as a
surprise as the coupling functions J±(ϕ) have been constructed based on the behaviour
of the field in the slow roll approximation before and after it crosses ϕ0. Secondly,
when n = 2, for the coupling function J+(ϕ), the spectral index of the magnetic field
for k > k0 can be estimated to be n

B
= −4∆A/A+, while for the function J−(ϕ)

the index over large scales can be determined to be n
B
= 4∆A/A−. Since ∆A =

(A− − A+) < 0, n
B
> 0 (i.e. the spectrum is blue) in the first case and n

B
< 0

(i.e. the spectrum is red) in the second. These estimates are indeed corroborated by
the numerical results we have plotted in Fig. 2.4. Thirdly, while the amplitude of the
magnetic field is considerably suppressed over large scales if we work with the coupling
function J+(ϕ), it is considerably enhanced over these scales in the case of J−(ϕ). In
fact, for the choice J−(ϕ), the strength of the electromagnetic fields on large scales are
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Figure 2.4: The power spectra of the magnetic field arising in the second Starobinsky
model for the two choices of coupling functions J+(ϕ) (on top) and J−(ϕ)
(at the bottom) [cf. Eqs. (2.64)] have been plotted for n = 2 in the non-
helical (in solid red) as well as the helical (in dashed red) cases. A linear fit
(indicated in dashed blue) to the non-helical power spectra over the small
and the large scales (on the left and the right) lead to the spectral indices
n

B
= 1.75 and n

B
= −2.72, respectively. For the values of the parameters

we have worked with, the analytical estimates for these indices prove to be
n

B
= 1.71 and n

B
= −2.98, which are close to the numerically determined

values. As in Fig. 2.2, we have set the helicity parameter γ to be unity.
Moreover, note that, for γ = 1, the spectra of the magnetic field over the
scale invariant domain is about 103 times larger in the helical case when
compared to the non-helical one, as we had estimated earlier. Lastly, we
should add that, when the coupling function is given by J−(ϕ), the strength
of the magnetic fields generated is fairly large and hence the scenario will
lead to a significant backreaction.
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considerable and hence they will lead to a significant backreaction.

Let us now turn to the first punctuated inflation model described by the
potential (2.56). It proves to be difficult to obtain an analytical solution for the
evolution of the background scalar field in such a potential. Therefore, we shall solve
for the background numerically to first arrive at ϕ(N). We then choose a quadratic
function of the form N(ϕ) = a1 (ϕ

2/M2
Pl
) + b1 (ϕ/MPl

) + c1 to fit the numerical
solution we have obtained in the initial slow roll regime. When doing so, for the
specific values of the parameters of the potential and the initial conditions that we
have worked with, we obtain the values of the three dimensionless fitting parameters
to be (a1, b1, c1) = (−0.104,−0.0408, 15.949). Finally, to evaluate the spectra of the
electromagnetic fields, we shall work with a coupling function of the form

J(ϕ) = exp

{
n

[
a1

(
ϕ2 − ϕ2

e

M2
Pl

)
+ b1

(
ϕ− ϕe

M
Pl

)]}
(2.65)

and, note that, J(ϕ) reduces to unity at ϕe, as required. In Fig. 2.5, we have plotted the
spectra of the resulting magnetic and electric fields in both the non-helical and helical
cases for n = 2. We need to highlight a few points regarding the figure. The spectra of
the electric and magnetic fields in the helical case and the spectrum of the magnetic field
in the non-helical case are scale invariant over large scale modes that leave the Hubble
radius during the initial stages of slow roll. Also, over the scale invariant domain, the
helical amplitudes are 103 times larger than the non-helical amplitudes, as expected
for γ = 1. For the choice of the coupling function that we have worked with, we find
that, the spectra of both the magnetic and electric fields behave as k4 (in the absence as
well as in the presence of helicity) over the small scale modes which leave the Hubble
radius at later stages. As we shall discuss in more detail in the following section, when
the field approaches the point of inflection in the potential and enters a phase of ultra
slow roll inflation, the coupling function J hardly changes. This implies that J ′′/J ≃ 0,
which is responsible for the k4 behaviour of the spectra at small scales. We should also
point out that this behaviour significantly suppresses the scale invariant amplitude of
the magnetic field over large scales.

The two examples discussed in this subsection point to the fact that unless the
coupling function is suitably chosen, strong departures from slow roll inflation result in
spectra of magnetic fields that contain significant deviations from scale invariance.
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Figure 2.5: The spectra of the magnetic (on top) and electric (at the bottom) fields
arising in the case of the first punctuated inflation model (2.56) have been
plotted for both the non-helical (in solid red) and helical (in dashed red)
cases. In arriving at these spectra, we have worked with the coupling
function (2.65) and, as earlier, we have set the helicity parameter γ to
be unity. As expected, over the large scales, when the modes leave the
Hubble radius during the initial stages of slow roll inflation, the spectra
of the magnetic as well as the electric fields in the helical case are nearly
scale invariant and also have roughly the same amplitude. Moreover, the
strengths of the helical magnetic fields are 103 times greater in amplitude
than the non-helical fields over the scale invariant domain, as one may have
guessed. Further, note that the spectra behave as k4 over small scales. This
behaviour can be attributed to the fact that, as the background scalar field
approaches the point the inflection, leading to an epoch of ultra slow roll
inflation, the non-minimal coupling function J hardly evolves. We should
point out that, in the above plots, we have multiplied the spectra of the
electromagnetic fields by the factor of by a4e (in contrast to the other figures)
since their amplitudes turn out to be extremely small otherwise. As will be
evident from the discussion in the following subsection, the rather small
amplitudes in these cases can be attributed to a very early onset of the ultra
slow roll epoch required to suppress the scalar power on the largest scales.
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2.5.3 In models leading to enhanced power on small scales

Let us now turn to the two models described by the potentials (2.57) and (2.58) that lead
to enhanced scalar power on small scales. As in the case of the first punctuated inflation
model we discussed in the previous subsection, these models too lead to an epoch of
ultra slow roll inflation wherein the first slow roll parameter decreases exponentially
over a short period before it starts rising leading to the end of inflation. It is the sharp
decrease in the first slow roll parameter that is responsible for the rise in the scalar
power in such models (in this context, see Refs. [196–200, 202, 203]).

In these models, one chooses the parameters of the background potential as well
as the initial conditions such that there occurs an extended period of slow roll inflation
which generates scalar and tensor power spectra that are consistent with the CMB
observations on large scales. If we require a nearly scale invariant spectrum of the
magnetic field over the CMB scales, then, evidently, we need to choose a coupling
function J(ϕ) that is based on the evolution of the field during the long initial epoch of
slow roll inflation. Since the potentials (2.57) and (2.58) do not seem to admit simple
analytical solutions, we repeat the exercise we had carried out in the case of the first
punctuated inflation model. Utilizing the numerical solution, we arrive at N(ϕ) and fit
a polynomial to describe the function. We find that we can fit fourth and sixth order
polynomials to describe the N(ϕ) in the potentials (2.57) and (2.58). The coupling
functions that we shall work with in these two cases can be expressed as

J(ϕ) = exp

{
n

[
a2

(
ϕ4 − ϕ4

e

M4
Pl

)
+ b2

(
ϕ3 − ϕ3

e

M3
Pl

)

+ c2

(
ϕ2 − ϕ2

e

M2
Pl

)
+ d2

(
ϕ− ϕe

M
Pl

)]}
, (2.66a)

J(ϕ) = exp

{
n

[
a3

(
ϕ6 − ϕ6

e

M6
Pl

)
+ b3

(
ϕ5 − ϕ5

e

M5
Pl

)
+ c3

(
ϕ4 − ϕ4

e

M4
Pl

)
+ d3

(
ϕ3 − ϕ3

e

M3
Pl

)
+ e3

(
ϕ2 − ϕ2

e

M2
Pl

)
+ f3

(
ϕ− ϕe

M
Pl

)]}
, (2.66b)

with the dimensionless fitting parameters being given by (a2, b2, c2, d2) =

(−0.184, 1.822,−7.040, 10.676) and (a3, b3, c3, d3, e3, f3) = (−1.53 × 10−3, 2.37 ×
10−2,−0.158, 0.439,−0.459,−0.778), respectively.
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Figure 2.6: The spectra of the magnetic (on top) and electric (at the bottom) fields
arising in the ultra slow roll inflationary model (2.57) (USR, in red) and
the second punctuated inflationary model (2.58) (PI2, in blue) have been
plotted in the non-helical (as solid lines) and helical (as dashed lines) cases,
respectively. Note that we have worked with the coupling functions (2.66)
to arrive at these spectra. Also, we have chosen n = 2 and set γ = 1, as
we have done earlier. Clearly, the spectra of the electromagnetic fields in
both the non-helical and helical cases are along expected lines, as we have
discussed in the text. In particular, we should point out that the spectra
in the two models behave as k4 at large wave numbers. This behaviour
arises due to the fact the the coupling functions cease to evolve as the field
approaches the point of inflection in these models. In such a situation, the
electromagnetic modes effectively behave as in the conformally invariant
case, leading to the k4 behaviour. We should also add that, apart from
changing the shape of the spectra at small scales, the background evolution
significantly suppresses the power in the spectra on large scales.
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In Fig. 2.6, we have plotted the spectra of the electromagnetic fields that arise for
the above choices of the coupling functions in the two models of our interest. We should
mention that, in arriving at the spectra, we have set n = 2 and γ = 1, as we have done
before. The following points are clear from the figure. Note that the spectra of the
magnetic fields in both the non-helical and helical cases are nearly scale invariant over
large scales. This is because the coupling functions have been determined by the slow
roll behaviour of the field. Also, as we have seen earlier, the magnitude of the helical
magnetic field is about 103 larger than the non-helical field over the scale invariant
domain. Moreover, over large scales, as expected, the spectrum of the electric field
behaves as k2 in the non-helical case and is nearly scale invariant with an amplitude
comparable to the spectrum of the magnetic field in the helical case. Further, at small
scales, all the spectra behave as k4 for the same reasons as we had encountered in the
case of the first punctuated inflation model (2.56). When the background scalar field
approaches the point of inflection in these models, the coupling functions J hardly
evolve (in this context, see Fig. 2.7) and the electromagnetic modes effectively behave
as in the conformally invariant case leading to the k4 behaviour. Lastly, we should
mention that such a background behaviour not only changes the shape of the spectra
of the electromagnetic fields at small scales, it also suppresses the scale invariant
amplitudes of the spectra at large scales.

2.5.4 An analytical estimate
In this subsection, we shall analytically arrive at the power spectra of the
electromagnetic fields in models which permit ultra slow roll inflation and lead to
enhanced scalar power on small scales.

A simple approximation

Recall that, in these scenarios, we had constructed the coupling function J(ϕ) so that we
obtain a scale invariant spectrum for the magnetic field on large scales [cf. Eqs. (2.66);
also see Eq. (2.65)]. In order to achieve such a scale invariant spectrum, during the
initial stage of slow roll inflation, let us assume that J(η) ∝ a2. Note that, in these
models, for our choices of the dependence of the coupling function on the field, we find
that J freezes when the epoch of ultra slow roll sets in. This is evident from Fig. 2.7
wherein we have plotted the evolution of the coupling function in the first and second
models of punctuated inflation [cf. Eqs. (2.56) and (2.58)] as well as in the model of
ultra slow roll inflation [cf. Eq. (2.57)]. Therefore, we can assume that, after a time,
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say, η1, J(η) ≃ constant. In such a case, during the initial stage, the electromagnetic
modes Ak can be easily obtained to be

AI
k(η) =

1√
2 k

(
1− 3 i

k η
− 3

k2 η2

)
e−i k η. (2.67)

It should be evident that, after η1, the electromagnetic modes can be written as

AII
k (η) =

1√
2 k

(
αk e

−i k η + βk e
i k η
)
. (2.68)

The coefficients αk and βk are to be determined by imposing the matching conditions
on the modes at the transition at η1.

Since J ′ ≃ −2 η21/η
3 prior to η1 and J ′ ≃ 0 after, there is a discontinuity in J ′

at η1. This leads to a Dirac delta function in the behaviour of J ′′/J at the transition
at η1. As a result, the modes in the two domains are related by the matching conditions

AI
k(η1) = AII

k (η1), (2.69a)

AII′
k (η)−AI′

k (η) =
2

η1
AI

k(η1). (2.69b)

These conditions lead to the following expressions for the coefficients αk and βk:

αk = 1 +
2 i k1
k

− 3 k21
2 k2

, (2.70a)

βk =

(
i k1
k

− 3 k21
2 k2

)
e2 i k/k1 , (2.70b)

where we have set k1 = −1/η1, i.e. the wave number which leaves the Hubble radius
at the onset of the ultra slow roll epoch. The power spectra of the magnetic and electric
fields at late times [i.e. in the limit (−k ηe) ≪ 1] can be evaluated to be

P
B
(k) =

H4
I

4 π2
(−k ηe)4 |αk + βk|2, (2.71a)

P
E
(k) =

H4
I

4 π2
(−k ηe)4 |αk − βk|2. (2.71b)

For large k such that k/k1 ≫ 1, we find that αk → 1 and βk → 0 [cf. Eqs. (2.70)].
Therefore, in such a limit, both the above power spectra behave as k4, which is what we
observe numerically (see Figs. 2.5 and 2.6). It can be shown that, in the limit k/k1 ≪ 1,

|αk + βk|2 =
9 k41
k4

, |αk − βk|2 =
16 k21
k2

, (2.72)
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so that the above spectra reduce to the following forms:

P
B
(k) ≃ 9H4

I

4 π2

[
a(η1)

a(ηe)

]4
, (2.73a)

P
E
(k) ≃ H4

I

4π2

(
4 k

k1

)2 [
a(η1)

a(ηe)

]4
. (2.73b)

In other words, on the large scales, we obtain spectral shapes that are expected to
occur when the coupling function behaves as J ≃ a2 [cf. Eqs. (2.13)]. This should
not come as a surprise since these modes leave during the initial slow roll regime.
However, note that the factor [a(η1)/a(ηe)]4 considerably suppresses the amplitudes of
the electromagnetic spectra on large scales. In fact, the earlier the onset of the ultra slow
roll regime, the larger is the suppression. It is for this reason that the electromagnetic
spectra in the first punctuated inflation model had substantially small amplitudes on
large scales (see Fig. 2.5).

Let us now examine the corresponding situation in the helical case. In the case
of the helical field, during the initial stage of slow roll inflation, when n = 2, the
electromagnetic modes Aσ

k are given by [cf. Eq. (2.19)]

AσI
k (η) =

1√
2 k

e−π σ γ W
2 i σ γ,

5
2
(2 i k η). (2.74)

Since the coupling function J hardly evolves after the onset of ultra slow roll, the
electromagnetic modes during the second stage, say, AσII

k , can be expressed just as
in Eq. (2.68) for the non-helical case. Moreover, the matching conditions continue to
be given by Eqs. (2.69). However, we should clarify that the coefficients αk and βk now
depend on the polarization σ. The power spectra of the magnetic and electric fields at
late times, i.e. when (−k ηe) ≪ 1, can be obtained to be

P
B
(k) =

H4
I

8π2
(−k ηe)4

(
|α+

k + β+
k |2 + |α−

k + β−
k |2
)
, (2.75a)

P
E
(k) =

H4
I

8π2
(−k ηe)4

(
|α+

k − β+
k |2 + |α−

k − β−
k |2
)
. (2.75b)

On matching the modes at η1, we obtain the coefficients ασ
k and βσ

k to be

ασ
k = −e−i k/k1 e−π σ γ

2 (k/k1)

[
2 (i+ σ γ)W

2 i σ γ,
5
2
(−2 i k/k1)
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Figure 2.7: The evolution of the non-minimal coupling function J [as given by
Eqs. (2.65) and (2.66)] that we had considered in the models described
by the potentials (2.56), (2.57) and (2.58) has been plotted (PI1, in solid
red; USR, in blue; and PI2, in green, respectively) as a function of the e-
fold N . The onset of the ultra slow roll phase corresponds to the time when
the first slow roll parameter starts to decrease rapidly. We have indicated
the beginning of the ultra slow roll epoch (as dashed vertical lines of the
corresponding color) in all these cases. Recall that, we had constructed
coupling functions J(ϕ) so that they behave as a2 during the initial slow
roll phase. For such choices of J(ϕ), the coupling function does not seem
to change appreciably (until very close to the end of inflation) after ultra
slow has set in.

− iW
1+2 i σ γ,

5
2
(−2 i k/k1)

]
, (2.76a)

βσ
k = −ei k/k1 e−π σ γ

2 (k/k1)

[
2

(
−i− k

k1
− σ γ

)
W

2 i σ γ,
5
2
(−2 i k/k1)

+ iW
1+2 i σ γ,

5
2
(−2 i k/k1)

]
, (2.76b)

where, as earlier, we have set k1 = −1/η1. In the limit k/k1 ≫ 1, we find that ασ
k → 1

and βσ
k → 0, as in the non-helical case. This suggests that the power spectra of both

the electric and magnetic fields behave as k4 in such a limit, which is indeed what we
obtain numerically (see Figs. 2.5 and 2.6). Whereas, in the limit k/k1 ≪ 1, we find
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that [209]

|ασ
k + βσ

k |2 =
9 (1− e−4π σ γ)

4 π σ γ (1 + 5 γ2 + 4 γ4)

(
k

k1

)−4

, (2.77)

|ασ
k − βσ

k |2 =
9σ γ2 (1− e−4π σ γ)

4 π γ (1 + 5 γ2 + 4 γ4)

(
k

k1

)−4

, (2.78)

and hence the spectra (2.75) reduce to the following forms:

P
B
(k) ≃ 9H4

I

4 π2
f(γ)

[
a(η1)

a(ηe)

]4
, (2.79a)

P
E
(k) ≃ 9H4

I

4 π2
f(γ) γ2

[
a(η1)

a(ηe)

]4
, (2.79b)

where, recall that, f(γ) is given by Eq. (2.27). Clearly, over large scales, the spectra
of both the electric and magnetic fields are scale invariant as is expected in the helical
case when J ≃ a2 and the modes cross the Hubble radius during a regime of slow roll.
Moreover, note that, as in the non-helical case, the onset of the ultra slow roll epoch
leads to a suppression in the amplitudes of the power spectra on large scales by the
factor of [a(η1)/a(ηe)]4.

We have been able to understand the shape of the electromagnetic spectra arising
in models involving an epoch of ultra slow roll inflation using analytical arguments.
Let us now compare the numerical results for the amplitudes of the spectra over large
scales with the analytical estimates in both the non-helical and helical cases. In the
case of the ultra slow roll model described by the potential (2.57), we find that, when
the pivot scale leaves the Hubble radius, the value of the Hubble parameter is H

I
=

9.05 × 10−6M
Pl

. The epoch of ultra slow roll inflation can be said to begin when the
first slow roll parameter ϵ1 attains the maximum value (prior to the end of inflation)
and begins to decrease rapidly thereafter. We find that, in the model of our interest
here, ultra slow roll sets in about 22.4 e-folds before the end of inflation. Also, the
value of the wave number that equals

√
|J ′′/J | at the onset of ultra slow roll inflation

proves to be k1 = 2.2 × 1013Mpc−1. For these values, in the non-helical case, the
analytical estimates we have obtained above lead to P

B
(k) ≃ 10−60M4

Pl
and P

E
(k) ≃

10−89M4
Pl

at the pivot scale. Numerically, we have obtained the corresponding values
to be P

B
(k) ≃ 10−63M4

Pl
and P

E
(k) ≃ 10−84M4

Pl
. In the helical case, for γ = 1,

the analytical estimates lead to P
B
(k) = P

E
(k) ≃ 10−57M4

Pl
at the pivot scale. The

corresponding numerical values turn out to be P
B
(k) = P

E
(k) ≃ 10−60M4

Pl
.

Similarly, in the case of the second model of punctuated inflation described by the
potential (2.58), we find that the value of the Hubble parameter at the time when the
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pivot scale exits the Hubble radius is H
I
= 1.01 × 10−5M

Pl
. Moreover, the onset of

the ultra slow roll epoch occurs about 18.3 e-folds prior to the end of inflation, which
implies that k1 ≃ 1.6 × 1014Mpc−1. According to the analytical estimates, in the
non-helical case, these values lead to P

B
(k) ≃ 10−53M4

Pl
and P

E
(k) ≃ 10−84M4

Pl

at the pivot scale. Numerically, we obtain the corresponding values to be P
B
(k) ≃

10−50M4
Pl

and P
E
(k) ≃ 10−83M4

Pl
. In the case of the helical fields, when γ = 1, the

analytical estimates suggest that P
B
(k) = P

E
(k) ≃ 10−50M4

Pl
at the pivot scale, while

the corresponding numerical values turn out to be P
B
(k) = P

E
(k) ≃ 10−47M4

Pl
.

While the analytical estimates broadly match the numerical results, there arise
differences of the order of 103–105 in the values for the power spectra of the
electromagnetic fields. These differences can be attributed to the coarseness of the
analytical modeling and the fact that J evolves to a certain extent as one approaches the
end of inflation.

A closer look at the evolution of the modes at late times

In Fig. 2.7, we had plotted the evolution of the non-minimal coupling function in the
ultra slow roll model and the two punctuated inflation models we have considered. We
had found that, once the epoch of ultra slow roll begins, the coupling function J hardly
evolves. Based on such a behaviour, we had assumed that J ′ and J ′′ were zero and had
arrived at the analytical form for the modes Ak and, eventually, the power spectra of
the electromagnetic fields. While the coupling function J is almost a constant, one can
show that it is not correct to set J ′ and J ′′ to zero in these scenarios. In Fig. 2.8, we have
plotted the evolution of |J ′′/J | in the three models. It is clear from the figure that the
quantity does not vanish once ultra slow begins, as we have assumed earlier. Therefore,
it seems that we need to revise our previous discussion.

One can expect that, since J as well as J ′′/J behave as a2 during the initial slow
roll phase, the power spectra over modes that leave the Hubble radius—to be precise,
when k =

√
|J ′′/J |—will be scale invariant. However, in the ultra slow roll and the

second punctuated inflation models, once the epoch of ultra slow roll comes to an end,
J ′′/J behaves as a5/2 (as illustrated in Fig. 2.8), while J is a constant. Let us now focus
on large wave numbers in these models over which, numerically, we find that the power
spectra of the magnetic as well as electric fields behave as k4. In these cases, at suitably
early times when k ≫

√
|J ′′/J |, the Fourier modes of the non-helical vector potential
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Figure 2.8: The evolution of the quantity J ′′/J corresponding to the three coupling
functions we had illustrated in the previous figure has been plotted as a
function of the e-fold N (with the same choice of colors). The insets
highlight the behaviour of the quantity around the onset of the epoch of
ultra slow roll. We find that J ′′/J ∝ e2N during the initial slow roll phase,
as expected. It is clear J ′′/J does not vanish once ultra slow roll inflation
begins (indicated by the vertical lines). In fact, the quantity is almost a
constant during the period of ultra slow roll and it actually grows (either
as e2N in the case of the first punctuated inflation model or as e5N/2 in the
other two models) when the phase of ultra slow roll is complete and the
first slow roll parameter begins to rise. We should also mention the fact that
J ′′/J can turn negative during these latter stages.

[governed by Eq. (2.3)] can be written as

AI
k(η) =

1√
2 k

e−i k η. (2.80)

Also, since, J is a constant, at late times when k ≪
√

|J ′′/J |, we can express the
non-helical electromagnetic modes as

AII
k (η) =

1√
2 k

[αk + βk η] , (2.81)

where the coefficients αk and βk are to be determined by matching the above solutions
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and their derivatives at the time ηk corresponding to k =
√

|J ′′/J |. The coefficients αk

and βk can be easily obtained to be

αk = (1 + i k ηk) e
−i k ηk , βk = −i k ηk e−i k ηk , (2.82)

and hence, at late times, we have

AII
k (η) =

1√
2 k

[1− i k (η − ηk)] e
−i k ηk . (2.83)

Since J is constant, this implies that the quantity
√
k Āk will have the same value at

late times [i.e. when (−k ηe) ≪ 1] for large wave numbers provided (k ηk) is small.
We shall see below that (k ηk) is indeed small in the models of our interest. In Fig. 2.9,
we have plotted the evolution of the electromagnetic modes at late times in the case of
the ultra slow roll inflation model (2.57) for a range of wave numbers. It is clear from
the figure that, over large enough wave numbers for which ηk occurs after the epoch of
ultra slow roll, the quantity

√
k |Āk| has the same amplitude at late times. This, in turn,

implies that the power spectrum of the magnetic field will behave as k4, which is what
we obtain numerically.

Note that, because of the fact that the first slow roll parameter remains small until
we approach close to the end of inflation, the de Sitter expression for the scale factor
remains valid. As a result, on using the above form for the electromagnetic modes, we
obtain the spectra of the magnetic and electric fields in the limit (−k ηe) ≪ 1 to be

P
B
(k) =

H4
I

4 π2
(−k ηe)4

(
1 + k2 η2k

)
, (2.84a)

P
E
(k) =

H4
I

4 π2
(−k ηe)4. (2.84b)

While P
E
(k) is independent of ηk and evidently behaves as k4 over large wave numbers,

we need to determine ηk in order to understand the shape of P
B
(k). Since J ′′/J ∝ a5/2

at late times, on using the behaviour of the scale factor in de Sitter, based on dimensional
grounds, we can write J ′′/J = (kt η

5)−1/2, where kt is a wave number. The quantity kt
needs to be determined from the numerical value of J ′′/J at the end of the ultra slow
roll phase. Hence, the condition k2 = J ′′/J = (kt η

5
k)

−1/2 leads to k2 η2k = (k/kt)
2/5.

In the ultra slow roll and the second punctuated inflation models, we find that, for our
choices of the coupling functions, kt ≃ 1023Mpc−1, whereas the largest wave number
of our interest is k ≃ 1019Mpc−1. These imply that (k2 η2k) ≲ 10−2. Therefore, we can

64



30 35 40 45 50 55 60 65
N

10−6

10−3

100

103

106

√
k
|R

e.
Ā
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Figure 2.9: The evolution of the electromagnetic modes in the case of the ultra slow
roll inflation model (2.57) has been plotted for the five choices of the
wave numbers k = (1012, 1013, 1014, 1016, 1018) Mpc−1 (in red, blue,
green, cyan, and purple), respectively. We have worked with the coupling
function (2.66a) and have plotted the evolution of the dominant real part
of the quantity

√
k |Āk| in the non-helical case (on top) and the quantity√

k |Ā−
k | in the helical case (at the bottom). We have also indicated the

onset of the ultra slow roll epoch (as the solid vertical line in black) and
the e-folds corresponding to the time ηk, i.e. when k2 = |J ′′/J |, for the
different wave numbers (as dashed vertical lines, with the same choice of
colors as the modes). It is clear that the amplitude of the electromagnetic
modes freeze at late times. Importantly, we find that, for k ≳ 1013Mpc−1,
the late time values of the quantities

√
k |Āk| and

√
k |Ā−

k | are the same
for the different wave numbers, which points to the k4 behaviour for the
spectrum of the magnetic field over small scales.
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expect P
B
(k) to behave as k4 over the wave numbers 1015Mpc−1 ≲ k ≲ 1019Mpc−1,

which is what we observe numerically.

In retrospect, it should be clear that the approaches in the last two subsections
yielded similar results for the behaviour of the spectra at large wave numbers because of
the fact that the modes AII

k as given by Eqs. (2.68) and (2.81) have the same amplitudes
at late times.

2.6 CAN THE FEATURES BE IRONED OUT?

It is now interesting to examine whether the features in the spectra of the
electromagnetic fields can be ironed out so that we arrive at nearly scale invariant
spectra for the magnetic field. In this section, we shall discuss this possibility in the
second Starobinsky model [cf. Eqs. (2.54) and (2.55)] that leads to features in the scalar
power spectrum over the large scales.

Earlier, we had arrived at the spectra of the magnetic field in this model assuming
that the coupling function was given by either J+(ϕ) or J−(ϕ) described by Eqs. (2.64).
In order to remove the strong features that arise in the spectrum of the magnetic field,
it seems reasonable to stitch together these two coupling functions in the following
fashion:

J(ϕ) =
J1

2 J0+

[
1 + tanh

(
ϕ− ϕ0

∆ϕ1

)]
J+(ϕ)

+
J1

2 J0−

[
1− tanh

(
ϕ− ϕ0

∆ϕ1

)]
J−(ϕ), (2.85)

where J1 is constant which is determined by the condition that J(ϕ) reduces to unity
at the end of inflation and ∆ϕ1 is another constant which we shall choose suitably.
Note that, for a small enough ∆ϕ1, the quantities within the square brackets (involving
the hyperbolic tangent functions) in the above expression behave as step functions. It
should then be evident that the above coupling function has been constructed in such a
fashion that it is essentially described by J+(ϕ) when ϕ > ϕ0 and J−(ϕ) when ϕ < ϕ0.
In Fig. 2.10, we have plotted the resulting spectra for the magnetic as well as electric
fields obtained numerically in the non-helical and helical cases. As can be seen from the
figure, there arise two nearly scale invariant regions in the power spectra of the magnetic
field (and in the case of the helical electric field), with a burst of oscillations in between.
Clearly, the scale invariant parts correspond to the evolution of the field over the two
linear parts of the potential and the oscillations arise as the deviations from slow roll
occur when the field crosses ϕ0. Thus, in a model involving a strong departure from
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slow roll, with a suitable choice of the coupling function, we have been able to arrive
at electromagnetic spectra that do not lead to significant backreaction and can also be
largely consistent with the current constraints. However, we should stress the fact that
it has been achieved only at the severe cost of an extremely fine-tuned non-minimal
coupling function.
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Figure 2.10: The spectra of the magnetic (on top) and electric (at the bottom) fields
arising for the choice of the coupling function (2.85) in the second
Starobinsky model (2.55) have been plotted for both the non-helical (in
red) and helical (in blue) cases. As before, we have set n = 2 and γ = 1
when computing the spectra. Note that, with the new coupling function,
the strong features have disappeared and we are left with relatively smaller
features that can be expected to be consistent with the current constraints.
Evidently, the burst of oscillations that remain in the spectra occurs
because of the departure from slow roll as the field crosses the point ϕ0.
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2.7 CONCLUSIONS

A nearly scale invariant primordial scalar power spectrum, as is generated in slow roll
inflationary models, is remarkably consistent with the CMB data [52, 210]. However,
it has been repeatedly noticed that certain features in the scalar power spectrum can
improve the fit to the data. Such features are often generated by considering potentials
that induce departures from slow roll inflation [178–190].

Magnetic fields are generated during inflation by breaking the conformal
invariance of the electromagnetic action. In this chapter, we have investigated the effects
of deviations from slow roll on the spectra of the electromagnetic fields generated
during inflation. Specifically, we have considered a class of inflationary models which
allow transient deviations from slow roll and, as a result, generate localized features
in the scalar power spectrum. When the electromagnetic fields are coupled to the
scalar curvature, we found that it proves to be challenging to obtain nearly scale
invariant magnetic fields of the desired shapes and strengths even in slow roll inflation.
In contrast, this is easy to achieve when the electromagnetic field is coupled non-
minimally to the inflaton, provided we work with model-dependent coupling functions.
Therefore, we focused on situations wherein the electromagnetic field is coupled to
the inflaton and evaluated the spectra of non-helical as well as helical electromagnetic
fields in non-trivial scenarios involving deviations from slow roll. We found that, when
strong departures from slow roll arise, apart from generating features in the scalar
power spectrum, quite generically, these deviations also led to features in the spectra
of electromagnetic fields. Moreover, in certain scenarios, it is also possible that the
strengths of the magnetic fields are considerably suppressed on large scales. While
it seems possible to remove the strong features in the spectra of the electromagnetic
fields allowing us to arrive at nearly scale invariant spectra of required strengths, it is
achieved at the terrible cost of extreme fine-tuning. In summary, if future observations
confirm the presence of strong features in the primordial scalar power spectrum and, if
the electromagnetic fields are to be generated by coupling them to the inflaton that is
responsible for these features, then there seems to arise a severe challenge in being able
to produce magnetic fields of the desired shape and strength in single field models of
inflation. We are currently exploring possible ways of overcoming the challenge.

There are a couple of related points we wish to clarify before we conclude this
chapter. As we have stressed earlier, in this chapter, we have focused on a domain
wherein backreaction due to the electromagnetic fields is negligible [81, 166]. Another
interesting aspect of generating electromagnetic fields during inflation is that they
can induce non-adiabatic pressure perturbations which can source the adiabatic scalar
perturbations on super-Hubble scales (in this context, see, for instance, Refs. [81, 117,
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224]). This additional contribution can lead to distinguishable features in the CMB both
at the level of the power spectrum as well as non-Gaussianities. However, for most of
the models we have considered in this chapter, since the strength of generated magnetic
fields over CMB scales is relatively weak, the effects arising from the induced curvature
perturbations can be expected to be negligible. Nevertheless, it seems important to
investigate these effects more closely in non-trivial scenarios involving departures from
slow roll inflation. We are presently examining such issues.
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CHAPTER 3

CIRCUMVENTING THE CHALLENGES IN THE CHOICE
OF THE NON-CONFORMAL COUPLING FUNCTION IN

INFLATIONARY MAGNETOGENESIS

3.1 INTRODUCTION

Magnetic fields are ubiquitous in the universe. They are observed at different strengths
over a wide range of scales, ranging from planets [O(0.5G)] and stars [O(1G)] to
galaxies and clusters of galaxies [O(10−6G)] (for reviews on magnetic fields, see
Refs. [1–10]). The Fermi/LAT, HESS and MAGIC observations of TeV blazars over
the last decade indicate that even the voids in the IGM may contain magnetic fields
[O(10−15G)] [21–23, 142, 152–155]. While astrophysical processes involving the
battery mechanism may be sufficient to explain the origin of magnetic fields in galaxies
and clusters of galaxies (in this regard, see, for example, Refs. [3, 4]), one may have to
turn to a cosmological phenomenon to explain the magnetic fields observed in voids (in
this context, see the reviews [5, 6, 8–10]).

Without any doubt, the inflationary scenario is presently the most attractive
paradigm to explain the origin of perturbations in the early universe. Hence, it
seems natural to turn to inflation for the generation of the PMFs. However, since
the standard electromagnetic action is conformally invariant and the FLRW universe is
conformally flat, the strengths of minimally coupled electromagnetic fields are diluted
considerably by the end of inflation. Therefore, it becomes necessary to break the
conformal invariance of the action governing the electromagnetic field in order to
generate magnetic fields of observed strengths today.

As we have discussed earlier, the conformal invariance of the electromagnetic
action is typically broken by coupling the electromagnetic field to either the scalar
curvature or the scalar field driving inflation (see, for example, Refs. [81, 93–
95, 98, 104, 107, 117, 161–166, 204]; for discussions on effects due to the addition
of a parity violating term, see Refs. [97, 99, 167–173, 211]). It can be easily established
that, if the non-conformal coupling function, say, J , behaves as e2N , then one can
arrive at a nearly scale invariant spectrum for the magnetic field with a strength that
is dependent on the fourth power of the Hubble scale during inflation. In the previous
chapter, we had argued that while the coupling to the scalar curvature, say, R, works
satisfactorily in power law inflation, it poses a problem in slow roll inflation [225]. The
reason being that, since the scalar curvature hardly varies during slow roll inflation,



one has to raise R to a very high power in order to achieve the desired variation in the
coupling function which leads to magnetic fields with nearly scale invariant spectra. In
contrast, it is relatively easy to achieve the desired evolution of the coupling function
(i.e. J ∝ e2N ) when the electromagnetic field is coupled to the inflaton. However,
there exists no universal form for the coupling function (in terms of the dependence on
the inflaton) and its form has to be chosen depending on the inflationary model being
considered.

There has been a constant interest in the literature towards examining whether
specific features in the inflationary scalar power spectrum improve the fit to the
CMB and the LSS data (in this context, see, for instance, Refs. [178–190, 226]).
Moreover, over the last few years, there has been an interest in investigating the
non-trivial signatures of strong features at small scales which can lead to enhanced
levels of formation of PBHs and also generate secondary gravitational waves of
possibly detectable amplitudes (for a short list of efforts in this regard, see Refs. [196–
200, 202, 203, 227]). Such features are often achieved by considering inflationary
potentials that lead to departures from slow roll inflation. In our recent work [225], we
had shown that, unless the form of the non-conformal coupling function is extremely
fine-tuned, the deviations from slow roll inflation that lead to features in the scalar power
spectrum inevitably lead to features in the spectra of the electromagnetic fields as well.
For instance, in the case of single field models of inflation that permit a brief phase
of ultra slow roll, the spectrum of the magnetic field has a strong scale dependence on
small scales. Moreover, the amplitude of the magnetic fields is strongly suppressed on
large scales depending on the time of onset of the ultra slow roll epoch.

In this chapter, we shall examine whether these challenges can be circumvented in
two field models of inflation (for some recent discussions on generating features in two
field models at large and small scales, see, for example, Refs. [228–233]). The presence
of the additional field permits a richer dynamics in the two field models, and one can
possibly utilize the second field to overcome the challenges faced in single field models.
As we shall see, with suitable choices for the non-conformal coupling function, we are
able to generate magnetic fields of desired strengths even in situations wherein there
arises an intermediate period of ultra slow roll. However, it seems difficult to avoid the
presence of features in the spectra of the electromagnetic fields. In order to understand
the viability of such electromagnetic spectra, we shall consider two specific inflationary
models with suitable couplings, and roughly compare the smoothed strengths of the
generated magnetic fields with the constraints from the CMB data [50]. Moreover,
for one of the two models that we consider, we shall also evaluate the imprints of the
PMFs on the angular power spectra of the CMB using the publicly available codes
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CAMB [234] and MagCAMB [174].

This chapter is organized as follows. In Sec. 3.2, we shall briefly review the
challenges that arise in single field inflationary models and explore possible non-
conformal coupling functions that can help us overcome the challenges. In Sec. 3.3, we
introduce the two field models of inflation that we shall consider. We shall focus on two
models that lead either to a suppression in power on large scales or to an enhancement
in power on small scales. Thereafter, we shall go on to construct suitable non-conformal
coupling functions that allow us to arrive at magnetic fields of desired strengths over the
CMB scales. We shall discuss the cases of non-helical as well as helical magnetic fields.
As we shall illustrate, despite the presence of the additional field, it seems impossible
to completely iron out the features that arise in the spectra of the electromagnetic fields.
In Sec. 3.4, we shall first examine if the amplitudes of the magnetic fields that we
obtain in the two inflationary models are broadly consistent with the constraints on the
PMFs from the CMB data. Then, focusing on the non-helical case, using MagCAMB,
we shall compute the angular power spectra of the CMB generated by the so-called
passive and compensated magnetic modes [174]. We shall carry out such an exercise
for one of the two models which leads to a nearly scale invariant spectrum for the
magnetic field over large scales. We shall also approximately calculate the spectrum of
the curvature perturbations induced by the magnetic field during inflation [131, 224],
and compute the corresponding angular power spectra of the CMB using CAMB [234].
We shall compare these quantities with the contributions due to the primary scalar and
tensor power spectra generated from the Bunch-Davies vacuum. We shall conclude this
chapter in Sec. 3.5 with a summary of the results obtained. We shall relegate some of
the related discussions to the Apps. B, C and D.

3.2 CHALLENGES IN SINGLE FIELD MODELS

In this section, we shall briefly highlight the challenges one faces in certain single field
inflationary models to generate magnetic fields of the desired amplitudes and spectral
shapes. Before we go on to describe these challenges, in order for this chapter to be
self-contained, let us quickly recall a few essential points that we will require later for
our discussion.
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3.2.1 Electromagnetic modes and power spectra

We shall consider electromagnetic fields described by the action [81, 95, 97, 99, 161,
165–173]

S[Aµ] = − 1

16π

∫
d4x

√−g J2(ϕ)

[
Fµν F

µν − γ

2
Fµν F̃

µν

]
, (3.1)

where J(ϕ) denotes the non-conformal coupling function and γ is a constant. As usual,
the field tensor Fµν is expressed in terms of the vector potential Aµ as Fµν = (∂µAν −
∂ν Aµ), while the dual field tensor F̃ µν is defined as F̃ µν = (ϵµναβ/

√−g)Fαβ , with
ϵµναβ being the completely anti-symmetric Levi-Civita tensor. The second term in the
above action leads to violation of parity and, during inflation, this term amplifies the
electromagnetic modes associated with one of the two states of polarization compared
to the other [97, 99, 167–173].

In the spatially flat FLRW background of our interest, to arrive at the solutions
describing the electromagnetic field, it proves to be convenient to work in the Coulomb
gauge wherein Aη = 0 and ∂iAi = 0. We shall denote the Fourier modes of the three-
vector potentialAi as Āk, where the subscript k represents the wave number. If we write
Āk = Ak/J , then, in the Coulomb gauge, the mode functions Ak are found to satisfy
the differential equation [97, 99, 167–173]

Aσ ′′
k +

(
k2 +

2σ γ k J ′

J
− J ′′

J

)
Aσ

k = 0, (3.2)

where σ = ± corresponds to the two helicities. The power spectra of the magnetic and
electric fields, viz. P

B
(k) and P

E
(k), are defined as (see, for example, Refs. [5, 95])

P
B
(k) =

d⟨ρ̂
B
⟩

d ln k
, P

E
(k) =

d⟨ρ̂
E
⟩

d ln k
, (3.3)

where ρ
B

and ρ
E

are the energy densities associated with the magnetic and electric
fields, respectively, while the expectation values are to be evaluated in the Bunch-Davies
vacuum. It is also useful to note here that we shall define the spectral index n

B
of the

magnetic field as n
B
= (d lnP

B
(k)/d ln k), and we shall refer to the case wherein n

B
=

0 as a scale invariant spectrum. The power spectra P
B
(k) and P

E
(k) can be expressed

in terms of the mode functions Ak and their time derivatives A′
k as follows [5, 95, 225]:

P
B
(k) =

k5

4π2 a4

[∣∣A+
k

∣∣2 + ∣∣A−
k

∣∣2] , (3.4a)
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P
E
(k) =

k3

4π2 a4

[∣∣∣∣A+′
k − J ′

J
A+

k

∣∣∣∣2 + ∣∣∣∣A−′
k − J ′

J
A−

k

∣∣∣∣2
]
. (3.4b)

In a de Sitter universe, one often chooses the non-conformal coupling function to
be of the form J(η) = [a(η)/a(ηe)]

2, where ηe denotes the conformal time coordinate
towards the end of inflation. Such a choice for the coupling function leads to a
scale invariant spectrum for the magnetic field (in this context, see, for example,
Refs [5, 9, 95]). In models allowing slow roll inflation, there exists no universal or
model independent form of J(ϕ) that leads to the above-mentioned behaviour in terms
of the scale factor. However, given a model of inflation that permits slow roll, based on
the evolution of the scalar field, it is easy to construct a function J(ϕ) that approximates
the desired behaviour of J ∝ a2 fairly well. As we had discussed in the previous
chapter, for such a choice of the non-conformal coupling function, the power spectra of
the electromagnetic fields, evaluated at late times, i.e. as (k ηe) → 0, can be expressed
as (see, for instance, Ref. [225])

P
B
(k)

M4
Pl

=
9H4

I

4π2
f(γ) =

9 π2

16
(r As)

2 f(γ), (3.5a)

P
E
(k)

M4
Pl

=
P

B
(k)

M4
Pl

[
γ2 − sinh2(2 π γ)

3π (1 + γ2) f(γ)
(−k ηe)

+
1

9

(
1 + 23 γ2 + 40 γ4

)
(−k ηe)2

]
, (3.5b)

where H
I

represents the Hubble scale during inflation, As = 2.1 × 10−9 denotes the
observed amplitude of the scalar power spectrum at the pivot scale, and r represents the
tensor-to-scalar ratio [52, 210]. Also, the function f(γ) is given by [225]

f(γ) =
sinh (4π γ)

4π γ (1 + 5 γ2 + 4 γ4)
, (3.6)

and we should be point out that f(γ) reduces to unity in the limit of vanishing γ.

We shall now make a few clarifying remarks regarding the results we have quoted
above. Let us first discuss the shape of the electromagnetic spectra in slow roll inflation
before we turn to comment on their amplitudes. In the case of helical fields (i.e.
when the parameter γ is non-zero), it is the first term within the square brackets in the
expression (3.5b) for P

E
(k) that dominates, and hence one finds that the power spectra

of both the magnetic and electric fields are scale invariant, with their amplitudes being
determined by the tensor-to-scalar ratio r (or, equivalently, H

I
) and the function f(γ).

When γ vanishes (i.e. in the case of non-helical fields), the function f(γ) reduces to
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unity and one finds that the spectrum of the magnetic field P
B
(k) continues to remain

scale invariant. However, in such a limit, it is the last term within the square brackets in
the expression for P

E
(k) that survives, indicating that the power spectrum of the electric

field behaves as k2.

Let us now understand the amplitudes of the spectra in slow roll inflation. Clearly,
in the helical case, for γ ≃ O(1), the strengths of the scale invariant spectra of the
magnetic and electric fields are comparable and are primarily determined by the tensor-
to-scalar ratio r. But, in the non-helical case, due to the k2 dependence, the spectrum
of the electric field is considerably suppressed over large scales when compared to the
scale invariant amplitude of the magnetic field. We find that, for 10−12 ≲ r ≲ 10−2,
upon assuming instantaneous reheating, inflationary magnetogenesis leads to non-
helical magnetic fields of strength in the range of 10−17 ≲ B0 ≲ 10−11G today. It
should be clear that the function f(γ) grows exponentially with γ [see Eq. (3.6)]. As
a result, the amplitude of the helical fields can be considerably enhanced at late times
when compared to the non-helical case. It can be shown that, for inflationary models
wherein r ≃ 10−2, if the backreaction due to the helical electromagnetic fields has to be
negligible, then one has to work with γ ≲ 2.5 [225]. When considering helical fields,
we shall work with γ = 0.25. For γ = 0.25, we find that f(0.25) ≃ 3, which implies
that the strengths of the helical magnetic fields will be higher by such a factor when
compared to the non-helical case.

3.2.2 Difficulty in ultra slow roll inflation

We had mentioned above that, in models permitting slow roll inflation, based on the
evolution of the field arrived at in the slow roll approximation, it is possible to construct
a function J(ϕ) so that the desired behaviour of J ∝ a2 is achieved. Now, consider
situations wherein there arise deviations from slow roll. In single field models of
inflation involving the canonical scalar field, typically, departures from slow roll occur
because of features in the inflationary potential, such as a step, a bump, a dip, a burst of
oscillation, or a point of inflection. If the deviations from slow roll are small, then one
can work with the form of J(ϕ) that is constructed using the slow roll approximation in
the absence of the feature in the potential. Under such conditions, in the last chapter, we
had shown that the departures from slow roll inflation generate features in the spectra
of the electromagnetic fields in much the same manner as they produce features in
the scalar power spectrum [225]. The small deviations from slow roll induce brief
departures from scale invariance in the spectrum of the magnetic field. However, we
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had found that, for a given choice of the coupling function J(ϕ), say, chosen based on
the slow roll evolution at early or late times, strong departures from slow roll inflation
generically lead to prominent features in the spectra of the electromagnetic fields.

Strong departures from slow roll inflation are usually considered in two contexts.
They are invoked either to suppress the scalar power over large scales in order to explain
the lack of power observed at the low multipoles [178, 181, 182, 185, 186, 189] or to
boost the power over small scales leading to enhanced formation of PBHs [196–200,
202, 203, 227]. These features are often achieved with the aid of an epoch of ultra slow
roll inflation during which the first slow roll parameter decreases exponentially [235,
236]. While the first slow roll parameter remains small during this period, the second
and higher order slow roll parameters prove to be large resulting in a violation of the
slow roll conditions. In single field models of inflation driven by the canonical scalar
field, a period of ultra slow roll, in turn, seems guaranteed, if there is a point of inflection
in the potential. In the last chapter, we had seen that, in models which permit a period
of ultra slow roll inflation, the non-conformal coupling function hardly evolves during
the phase of ultra slow roll [225]. Due to this reason, the spectra of both the magnetic
and electric fields behave as k4 for wave numbers that leave the Hubble radius after the
onset of ultra slow roll inflation. Moreover, the amplitude of the spectra on large scales
are suppressed by the factor of e−4 (Ne−N1), whereN1 andNe represent the e-folds at the
onset of the epoch of ultra slow roll and the end of inflation, respectively. In arriving
at these spectra, we had considered coupling functions that are based on the behaviour
of the scalar field during the initial slow roll regime. One may wonder if it is possible
to arrive at the desired non-minimal coupling function (i.e. one wherein J(ϕ) ∝ a2) by
fitting for the entire evolution of the scalar field. As we have illustrated in Fig. 3.1, we
find that this is indeed difficult to achieve. This primarily occurs due to the fact that,
generically, the scalar field virtually ceases to evolve once the epoch of ultra slow roll
begins, until the very end of inflation. As we shall discuss in this chapter, due to the
additional degree of freedom available, it is possible to circumvent such a challenge in
the case of two field models.
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Figure 3.1: The evolution of the non-conformal coupling function J (on top) and the
quantity µ2

B
= J ′′/(J a2H2) (at the bottom) in a model involving a single,

canonical scalar field that leads to an epoch of ultra slow roll inflation—
the potential (2.57) in the previous chapter [225]—have been plotted as
functions of e-folds N . These plots illustrate the challenge faced in such
scenarios. In the previous chapter, we had worked with a coupling function
J(ϕ) that was arrived at by fitting the numerical solution for the scalar
field with a fourth order polynomial until the onset of the ultra slow roll
regime (plotted here in cyan). Apart from such a choice for the coupling
function, we have plotted the coupling function J(ϕ) as well as the quantity
µ2

B
wherein the entire evolution of the field (i.e. from the initial time until the

end of inflation) has been fit to fourth, sixth and eighth order polynomials
(in red, blue and green, respectively). Note that J ∝ e2N and µ2

B
≃ 6

until the onset of the ultra slow roll regime (indicated by the vertical dashed
black lines in the two figures), which are required to lead to a scale invariant
spectrum for the magnetic field. However, it seems impossible to achieve
such a behaviour for J and µ2

B
after the onset of ultra slow roll. This can

be primarily attributed to the fact that the field hardly evolves during this
period.
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3.3 CIRCUMVENTING THE CHALLENGES IN TWO FIELD MODELS

In this section, we shall illustrate the manner in which the challenges with the epochs
of ultra slow roll inflation can be circumvented in two field models. We shall begin by
introducing the inflationary models of our interest before we go on to discuss the choice
of the non-conformal coupling functions and the resulting spectra of electromagnetic
fields.

3.3.1 Models of interest

We shall consider a system of two scalar fields, say, ϕ and χ, that are described by the
action [237]

S[ϕ, χ] =

∫
d4x

√−g
[
−1

2
∂µϕ ∂

µϕ− f(ϕ)

2
∂µχ∂

µχ− V (ϕ, χ)

]
. (3.7)

Clearly, while ϕ is a canonical scalar field, χ is a non-canonical scalar field due to the
presence of the function f(ϕ) in the term describing its kinetic energy. We shall work
with potentials V (ϕ, χ) that are separable. As a result, the two fields essentially interact
through the function f(ϕ), which we shall assume to be of the form f(ϕ) = e2 b(ϕ).

The equations of motion describing the evolution of the scalar fields are given
by [237]

ϕ̈+ 3H ϕ̇+ Vϕ = bϕ e
2 b χ̇2, (3.8a)

χ̈+ (3H + 2 bϕ ϕ̇) χ̇+ e−2 b Vχ = 0, (3.8b)

where the subscripts ϕ and χ denote differentiation of the potential V (ϕ, χ) and the
function b(ϕ) with respect to the corresponding fields. Also, it is useful to note that the
Hubble parameter and its time derivative are governed by the following equations:

H2 =
1

3M2
Pl

(
ϕ̇2

2
+ e2 b

χ̇2

2
+ V

)
, (3.9)

Ḣ = − 1

2M2
Pl

(
ϕ̇2 + e2 b χ̇2

)
. (3.10)

Let us now discuss the specific models that we shall consider.
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Suppression of power on large scales

The first of the two models that we shall consider leads to a suppression of power
on large scales. In our earlier work, we had discussed the so-called punctuated
inflationary models which result in a suppression of power over large scales that are
comparable to the Hubble radius today. We had also mentioned that such models
can mildly improve the fit to the CMB data (for early discussions in this context, see
Refs. [178–182, 185, 186]; for a recent discussion, see Ref. [189]). We had shown
that the punctuated inflationary models leave strong imprints on the spectra of the
electromagnetic fields. In particular, we had found that the strengths of the magnetic
fields on large scales are considerably suppressed and their spectra behave as k4 on
small scales. Our aim in this section is to investigate whether such challenges can be
overcome in inflationary models involving two fields.

To achieve a suppression in the spectrum of curvature perturbations on the largest
scales, we shall consider a simple quadratic potential for the field ϕ and a KKLTI-like
potential for the field χ [238], so that the complete potential is given by [228]

V (ϕ, χ) =
m2

ϕ

2
ϕ2 + V0

χ2

χ2
0 + χ2

. (3.11)

(For convenience, we shall refer to the model as TFM1 in the figures.) Moreover, we
shall assume that b(ϕ) = b̄ ϕ, where b̄ is a constant. We shall work with the following
two sets of values of the parameters involved: (mϕ/MPl

, V0/M
4
Pl
, χ0/MPl

, b̄M
Pl
) =

(1.672 × 10−5, 2.6 × 10−10,
√
3, 1.0) and (1.688 × 10−5, 2.65 × 10−10,

√
3, 2.0). We

shall choose the initial values of the fields to be ϕi = 8.8M
Pl

, χi = 5.76M
Pl

, and
set ϵ1i = 2.47 × 10−2, for both these sets of parameters. In fact, we shall choose a
very small value of χ̇ so that χ does not evolve at all during the initial phase. For
these choices of the parameters and initial conditions, there arise two stages of inflation
with distinct values of the first slow roll parameter ϵ1. In Fig. 3.2, we have plotted the
evolution of the two scalar fields and the first slow roll parameter in the model for the
above sets of parameters and initial conditions. It should be clear from the figure that
the first stage is driven by the field ϕ with ϵ1 ≃ 10−2. The second stage begins when the
field ϕ has reached the bottom of the quadratic potential and the field χ begins to drive
the accelerated expansion. In other words, there arises a turning in field space. During
the transition, the first slow roll parameter falls exponentially in a manner somewhat
similar to the single field models that admit an epoch of ultra slow roll inflation. The
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Figure 3.2: The evolution of the two scalar fields, viz. ϕ (in solid red and dashed
green) and χ (in solid blue and dashed cyan), in the models described by the
potentials (3.11) and (3.12) (say, TFM1 and TFM2) have been plotted (in the
panels on the left, with TFM1 on top and TFM2 at the bottom, respectively)
as functions of e-folds. We have plotted the results for two sets of values
of the parameters involved (with the first set in solid lines and the second in
dashed lines). We have also plotted the corresponding evolution of the first
slow roll parameter (in solid red and dashed blue, on the right). Moreover,
we have indicated the e-folds (as vertical black lines) when the transition
from the first to the second stage of inflation occurs in the two models of
our interest, viz. around N ≃ 23.7 in the first model (TFM1, on top) and
N ≃ 71 in the second model (TFM2, at the bottom), respectively. Note
that, for a given potential, the primary difference between the values of
the two sets of parameters is the value of b̄. However, it should be clear
from the above plots that the difference in b̄ does not lead to a significant
difference in the evolution of the fields. In the figure, we have also indicated
(as dotted curves) the analytical solutions for the fields ϕ (in purple) and χ
(in orange) that can be arrived at in the slow roll approximation (for details,
see App. B). It should be clear that the analytical solutions are a reasonably
good approximation to the exact numerical results during the two slow roll
regimes. As one would expect, the analytical solutions fail to capture the
dynamics around the point of transition from the first to the second stage of
inflation.
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first slow roll parameter is very small (with ϵ1 ≃ 10−3) during the early phase of the
second stage and it slowly begins to rise leading to the end of inflation. We find that
for the parameters and initial conditions that we have worked with, inflation lasts for
78–79 e-folds.

Enhancement of power on small scales

The second model we shall consider leads to enhanced power on small scales. As in
the first model, this is achieved through a turning in field space, which briefly increases
the strength of the coupling between the curvature and the isocurvature perturbations as
well as induces a tachyonic instability. If the turning occurs at a sufficiently late stage
of inflation, these two effects combine to lead to an enhancement in the spectrum of
curvature perturbations on smaller scales [228–231].

To obtain a peak in the power spectrum at smaller scales, we interchange the
potentials for the two fields we had considered earlier [see Eq. (3.11)]. In other words,
we consider a model of inflation driven by a KKLTI-like potential for ϕ and a simple
quadratic potential for χ, so that the complete potential is given by [231]

V (ϕ, χ) = V0
ϕ2

ϕ2
0 + ϕ2

+
m2

χ

2
χ2. (3.12)

(We shall refer to the model as TFM2 in the figures.) We shall again assume
that b(ϕ) = b̄ ϕ and we shall work with the following two sets of values of the
parameters: (V0/M4

Pl
, ϕ0/MPl

,mχ/MPl
, b̄M

Pl
) = (7.1×10−10,

√
6, 1.19164×10−6, 7.0)

and (7.31×10−10,
√
6, 1.209×10−6, 7.8). We assume that ϕi = 7.0M

Pl
, χi = 7.31M

Pl

and ϵ1i = 4.32 × 10−4. Also, as in the earlier model, we shall choose a small value of
χ̇ so that χ hardly evolves during the first phase. With these choices of the parameters,
we obtain about 84–85 e-folds of inflation. In Fig. 3.2, we have plotted the evolution
of the two fields as well as the behaviour of the first slow roll parameter. Clearly, as in
the previous case, there arise two stages of inflation, with the first stage again driven by
the field ϕ and the second stage driven by the field χ. Moreover, at the transition, the
first slow roll parameter ϵ1 decreases briefly before increasing to unity leading to the
termination of inflation. Further, we find that, in contrast to the single field case, the
first slow roll parameter does not decrease to considerably low values [say, to O(10−9–
10−7)] in order to lead to a significant enhancement in power.
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3.3.2 Scalar and tensor power spectra

Let us now briefly discuss the spectra of curvature and isocurvature perturbations that
arise in the two models we discussed above. Let us begin by recalling a few essential
points regarding the scalar perturbations in two field models. As is well known, in two
field models of inflation, the scalar perturbations can be decomposed into the so-called
adiabatic (say, δσ) and entropy (say, δs) components [214, 237, 239]. In field space,
while the adiabatic perturbations are parallel to the background trajectory, the entropy
perturbations are orthogonal to it.

If δϕ and δχ denote the perturbations in the two scalar fields, the adiabatic and
entropic perturbations are defined as [237, 240]

δσ = cos θ δϕ+ eb sin θ δχ, (3.13a)

δs = − sin θ δϕ+ eb cos θ δχ, (3.13b)

where cos θ = ϕ̇/σ̇, sin θ = χ̇/σ̇, and σ̇2 = ϕ̇2 + e2 b χ̇2. Upon using the background
equations (3.8), one can arrive at the following equations that govern the adiabatic
field σ and the angle θ:

σ̈ + 3H ϕ̇+ Vσ = 0, (3.14a)

θ̇ = −Vs
σ̇

− bϕ σ̇ sin θ, (3.14b)

where the quantities Vσ and Vs are given by

Vσ = cos θ Vϕ + e−b sin θ Vχ, (3.15a)

Vs = − sin θ Vϕ + e−b cos θ Vχ. (3.15b)

In the spatially flat gauge, the Mukhanov-Sasaki variables associated with the
curvature and isocurvature perturbations are given by vσ = a δσ and vs = a δs. The
equations of motion describing the evolution of the Mukhanov-Sasaki variables can be
obtained to be [228, 231, 237, 240]

vσk
′′ +

(
k2 − z′′

z

)
vσk =

1

z
(z ξ vsk)

′, (3.16a)

vsk
′′ +

(
k2 − a′′

a
+ µ2

s a
2

)
vsk = −z ξ

(
vσk
z

)′
, (3.16b)
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where z = a σ̇/H , ξ = −2 a Vs/σ̇, while µ2
s is given by

µ2
s = Vss −

(
Vs
σ̇

)2

+ bϕ
(
1 + sin2 θ

)
cos θ Vσ

+ bϕ cos2 θ sin θ Vs −
(
b2ϕ + bϕϕ

)
σ̇2, (3.17)

with Vss being defined as

Vss = sin2 θ Vϕϕ − e−b sin 2 θ Vϕχ + e−2 b cos2 θ Vχχ. (3.18)

As is done in the case of single field models, the Bunch-Davies initial conditions
are imposed on the Fourier modes when they are sufficiently inside the Hubble radius,
and the scalar and tensor power spectra are evaluated when the modes are well outside
the Hubble radius. While computing the scalar power spectra numerically, we impose
the initial conditions when k ≃ 102

√
z′′/z and evaluate the spectra at the end of

inflation. To ensure that there are no correlations between the curvature and the
isocurvature perturbations at early times, when the modes are inside the Hubble radius,
the scalar perturbations are evolved from two sets of initial conditions [237, 239]. In the
first set, the standard Bunch-Davies initial conditions are imposed on the Mukhanov-
Sasaki variable vσk , while the variable vsk is set to be zero. In the second set, the
initial conditions on vσk and vsk are interchanged. The curvature perturbation Rk

and the isocurvature perturbation Sk are related to the Mukhanov-Sasaki variables as
follows: Rk = vσk/z and Sk = vsk/z [228, 231]. Let (Rk1,Sk1) and (Rk2,Sk2) denote
the curvature and the isocurvature perturbations evolved from the two sets of initial
conditions mentioned above. The spectra of curvature and isocurvature perturbations
are evaluated from both these sets of solutions and are given by [228, 231, 237, 240]

PR(k) =
k3

2 π2

(
|Rk1|2 + |Rk2|2

)
, (3.19a)

PS (k) =
k3

2 π2

(
|Sk1|2 + |Sk2|2

)
. (3.19b)

In our discussion below, we shall focus on the spectrum of curvature
perturbations PR(k). Also, we should mention that the tensor power spectrum is
evaluated in the same manner as in single field inflation.

The evolution of the scalar fields in the two models of our interest can be obtained
by solving the background equations (3.8) numerically as discussed in the previous
subsection. Recall that, we had illustrated the behaviour of the scalar fields and the first
slow roll parameter as functions of e-folds in Fig. 3.2. In the case of the potential (3.11),
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the field ϕ slowly rolls down the potential until it reaches the bottom of the potential
when N ≃ 23.7, while the field χ remains frozen during this period. At this point of
transition, for the set of parameters we have worked with, the values of the fields ϕ
and χ are ϕ1 = 6.55× 10−4M

Pl
and χ1 = 5.722M

Pl
, respectively. After the transition,

while ϕ oscillates about the minimum of the potential, the field χ drives inflation until
the end. Also, the first slow roll parameter ϵ1 decreases exponentially soon after the
transition, giving rise to a brief period of ultra slow roll, before it eventually rises to
unity leading to the end of inflation. A similar behaviour of the fields and the slow roll
parameter are observed in the case of the potential (3.12) as well, with the transition
point occurring at a much later time, viz. at the e-fold N ≃ 71. In this case, we
choose the point of transition to be when the oscillations of the field ϕ have substantially
died down. At the transition point, the values of the fields ϕ and χ are found to be
ϕ1 = 1.694× 10−2M

Pl
and χ1 = 6.3M

Pl
, respectively. In Fig. 3.3, we have presented

the spectra of the curvature and tensor perturbations arising in the two models for the
two sets of parameters we have considered. In the case of the potential (3.11), we
obtain a suppression in power in the spectrum of curvature perturbations on the largest
observable scales, while over the CMB and smaller scales, the scalar power spectrum
is nearly scale invariant. The imprints of these scalar and tensor power spectra on the
anisotropies in the CMB have been discussed earlier (in this context, see Ref. [228]).
For the potential (3.12), we obtain nearly scale invariant scalar and tensor power spectra
over the CMB scales, whereas there is a significant enhancement in scalar power on
small scales. We find that, at the pivot scale of k∗ = 0.05Mpc−1, the scalar spectral
index and the tensor-to-scalar ratio turn out to be n

S
= 0.96 and r = 0.02, which are

consistent with the constraints from the CMB data [52]. As has been illustrated earlier
in the literature, the turning in field space briefly increases the strength of the coupling
between the isocurvature and the curvature perturbations. It also induces tachyonic
instability. These two effects combine to lead to the increased scalar power on smaller
scales over modes which leave the Hubble radius just prior to or during the turning
in field space [228–231]. Earlier, we had seen that for a given potential, despite the
difference in the values of the parameter b̄, the evolution of background scalar fields
were very similar (see Fig. 3.2). However, as should be clear from Fig. 3.3, the resulting
inflationary scalar power spectra are considerably different. This can be attributed to the
difference in µ2

s [cf. Eq. (3.17)] that arises due to the difference in the values of b̄ and
the resulting amplitude of the tachyonic instability that occurs due to the turning in field
space (for a detailed discussion in this context, see Ref. [228]).
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Figure 3.3: The spectra of curvature (in solid red and dashed green) and tensor (in
solid blue and dashed cyan) perturbations, viz. PR(k) and P

T
(k), have been

plotted for the two field inflationary models that we have considered. We
have plotted the spectra with features over the CMB scales (on top) arising
in the potential (3.11) (i.e. in TFM1) and with a peak in the scalar power at
small scales (at the bottom) occurring in the potential (3.12) (i.e. in TFM2),
for the two sets of parameters (as solid and dashed lines) we have mentioned
earlier. In arriving at these spectra, we have assumed that the pivot scale
k∗ = 0.05Mpc−1 leaves the Hubble radius 50 e-folds before the end of
inflation. It is the scalar spectra with a sharp rise in power on small scales
that are often considered to produce a significant number of PBHs. Recall
that, for a given potential, the two sets of parameters primarily differed in
the value of b̄. As we had seen in the previous figure, there was hardly any
difference in the evolution of the background for the two sets of parameters.
However, note that the spectra of curvature perturbations differ significantly
for these two sets. This can be attributed to the tachyonic instability that
arises for non-zero values of b̄. It is found that, even small differences in b̄
can significantly alter the evolution of the curvature perturbations, leading
to very different scalar power spectra.
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3.3.3 Construction of the non-conformal coupling function

Recall that, our main reason for considering two field models of inflation in this chapter
is to circumvent the challenges that we face in single field models, especially those
that permit an epoch of ultra slow roll inflation. Our goal is to overcome these hurdles
and arrive at electromagnetic spectra of desired shapes and strengths. In the previous
chapter, we had shown that, in slow roll inflation driven by a single field, say, ϕ, it
is possible to construct analytical forms for the non-conformal coupling function J(ϕ)
that lead to the required time dependence (viz. J ∝ a2) and therefore generate nearly
scale invariant spectra for the magnetic field [225]. However, when strong departures
from slow roll occur, we had to turn to a numerical approach to construct the coupling
function. Since the dynamics in the two field models of our interest is fairly non-trivial,
we shall adopt the numerical approach here as well. We shall now outline the procedure
to construct the required J(ϕ, χ). We should mention that, in App. B, we have discussed
the construction of an analytical form for the coupling function J(ϕ, χ) and the resulting
power spectra of the electromagnetic fields that we obtain in such a case.

In fact, the procedure that needs to be adopted to construct the desired non-
conformal coupling function J(ϕ, χ) is fairly straightforward. In the two models of
our interest, we have seen that, at any given time during inflation, one of the two slowly
rolling fields largely determines the dynamics of the background. Essentially, we need
to make use of the dominant field to construct the coupling function in a given domain.
Thereafter, we can utilize the step function to stitch together the coupling functions in
the two domains to arrive at the complete function. Let us, for instance, consider the
model described by the potential (3.11). In the model, during the first domain, the field ϕ
rolls down the potential largely determining the background dynamics, while the field χ
remains frozen. After having solved the equations (3.8) numerically to arrive at ϕ(N),
we assume an ansatz for the functional form of N(ϕ). We choose the functional form
of N(ϕ) in the first regime to be given by the following fourth order polynomial:

N(ϕ) = a1
ϕ4

M4
Pl

+ b1
ϕ3

M3
Pl

+ c1
ϕ2

M2
Pl

+ d1
ϕ

M
Pl

+ e1. (3.20)

We then determine the values of the constants (a1, b1, c1, d1, e1) by fitting the
polynomial to the numerical solution for ϕ(N) during the initial regime, thereby
arriving at N(ϕ). Similarly, after the transition, as the field χ starts to dominate the
background dynamics, we chooseN(χ) to be a fourth order polynomial of the following
form:

N(χ) = a2
χ4

M4
Pl

+ b2
χ3

M3
Pl

+ c2
χ2

M2
Pl

+ d2
χ

M
Pl

+ e2. (3.21)
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We fit the polynomial to the solution χ(N) in the second regime to determine the
constants (a2, b2, c2, d2, e2) and arrive at N(χ). We should clarify here that we have
chosen to work with fourth order polynomials for N(ϕ) and N(χ) above since they
seem sufficient to lead to the desired behaviour of J in the two slow roll regimes on
either side of the transition. With the forms ofN(ϕ) andN(χ) at hand, we can combine
them to construct the complete non-conformal coupling function to be

J(ϕ, χ) =
J0
2

{[
1 + tanh

(
χ− χ1

∆χ

)]
exp [nN(ϕ)]

+

[
1− tanh

(
χ− χ1

∆χ

)]
exp [nN(χ)]

}
, (3.22)

where χ1 is the value of the field χ at the transition (that we had mentioned earlier). Note
that the quantity within the square brackets involving the hyperbolic tangent function
in the above form for J(ϕ, χ) essentially acts as a step function for a suitably small
value of ∆χ. Evidently, it is the first and second terms in the above expression that
contribute prior to and after the field crossing χ1. Lastly, we should mention that we
need to choose J0 suitably so that J(ϕ, χ) reduces to unity at the end of inflation. As we
shall soon illustrate, for n = 2, the above coupling function largely behaves as J ∝ a2.

Recall that, in each of the two models described by the potentials (3.11) and (3.12),
we had worked with two sets of the parameters involved. Since the dynamics of the
background fields for these two sets of parameters are not significantly different (in this
context, see Fig. 3.2), we find that the coefficients characterizing the polynomial fitting
functions N(ϕ) and N(χ) [cf. Eqs. (3.20) and (3.21)] largely prove to be the same.
For the model described by the potential (3.11), we obtain the values of the fitting
parameters to be (a1, b1, c1, d1, e1) = (2.7558× 10−3,−0.06, 0.227,−1.8556, 23.1717)

and (a2, b2, c2, d2, e2) = (−0.0421, 5.47 × 10−3,−0.2443,−0.4516, 78.3998).
Similarly, in the case of the potential (3.12), we find that the fitting parameters
are given by (a1, b1, c1, d1, e1) = (−0.01619,−0.1027, 0.3857,−2.0208, 69.4198) and
(a2, b2, c2, d2, e2) = (2.7745 × 10−4,−6.0702 × 10−3,−0.2810,−0.2805, 85.0065).
Moreover, we shall assume that the width of the step described by the hyperbolic
tangent function is given by ∆χ = 10−3M

Pl
. In App. C, we have discussed the

effects of modifying the transition point χ1 and the width ∆χ on the spectra of the
electromagnetic fields. We find that the values of χ1 and ∆χ we shall work with are
optimal, as they do not introduce spurious features in the spectra of the magnetic field.

In Fig. 3.4, we have plotted the evolution of the coupling function J(ϕ, χ) as well
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Figure 3.4: The evolution of the non-conformal coupling function J(ϕ, χ) given by
Eq. (3.22) (on top) and the quantity µ2

B
(at the bottom) have been plotted as a

function of e-folds for the two models described by the potentials (3.11) (i.e.
in TFM1, in red) and (3.12) (i.e. in TFM2, in blue). Since the background
evolution is very similar for the two sets of parameters we have worked
with, the corresponding J(N) prove to be essentially the same in both the
models. The vertical lines (in corresponding colors) represent the points of
transition at N ≃ 23.7 and N ≃ 71, respectively. It is clear from the figures
that J ∝ a2 and µ2

B
≃ 6 for most of the evolution except for the domain

near the transition. Recall that, in the single field case, it was impossible
to achieve such a behaviour for J and µ2

B
after the onset of ultra slow roll.

Clearly, the presence of the additional field in the two field models allows
us to circumvent this difficulty.
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as the quantity µ2
B
= J ′′/(J a2H2) for the two potentials. In contrast to the single field

case, where the coupling function almost ceased to evolve after the onset of ultra slow
roll (see Fig. 3.1), we find that the J’s we have constructed in the two field models grow
as a2 even after the transition. Moreover, clearly, µ2

B
≃ 6 for most of the evolution apart

from the domain around the transition. This behaviour suggests that the spectrum of
the magnetic field will remain scale invariant apart from the effects arising due to the
transition. In Fig. 3.5, we have plotted the resulting spectra of the electromagnetic fields
arising in the two models for the above choices of the coupling functions. In addition
to the non-helical case, in Fig. 3.5, we have plotted the spectra in the helical case. It is
evident that, in the helical case, the spectra of the magnetic and electric fields are nearly
scale invariant and are of the same amplitude apart from the domain over wave numbers
which leave the Hubble radius around the time of the turning in the field space. Around
these wave numbers, the spectra exhibit a burst of oscillations. These oscillations occur
over large scales in the first model described by the potential (3.11), whereas they occur
over small scales in the second model governed by the potential (3.12). While we
have been able to largely iron out very strong features in the power spectra of the
electromagnetic fields, the oscillations are unavoidable unless we further fine tune the
form of the non-minimal coupling function J(ϕ, χ). We shall make some additional
comments on this point in the concluding section.
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Figure 3.5: The power spectra of the magnetic (on top) and the electric (at the bottom)
fields have been plotted in the cases of the models described by the
potentials (3.11) (TFM1, in red) and (3.12) (TFM2, in blue) for the coupling
function J(ϕ, χ) given by Eq. (3.22). Apart from the non-helical case
(plotted as solid curves), we have also plotted the results for the helical
electromagnetic fields (as dashed curves) with γ = 0.25. The spectra of
both the magnetic and electric fields are nearly scale invariant in the helical
case. Also, in the non-helical case, while the spectra of the magnetic field
are nearly scale invariant, the spectra of the electric field behave as k2.
Moreover, as expected, all the spectra exhibit bursts of oscillations over
wave numbers which leave the Hubble radius around the time of the turning
in the field space. This is because of the fact that the coupling function
J(ϕ, χ) contains deviations from the behaviour J ∝ a2 during the time of
the transition. We should mention that we have worked with γ = 0.25
so that the amplitudes of the present day magnetic field generated in the
two models of our interest are approximately consistent with the current
constraints (see our discussion in Sec. 3.4). Note that, since f(0.25) ≃ 3,
the scale invariant non-helical and helical amplitudes differ by a factor of
three.
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3.4 IMPRINTS ON THE CMB

In this section, we shall examine the observational imprints of the PMFs on the
anisotropies in the CMB, which have been extensively discussed in the literature [8, 124,
130, 131, 174, 224, 241–245]. In what follows, we shall adopt the approach discussed
earlier [131, 224] and make use of the publicly available packages CAMB [234] and
MagCAMB [174] to calculate the angular power spectra of the anisotropies in the CMB
generated by the PMFs.

Cosmological magnetic fields can be constrained via the measurement of the
anisotropies in the temperature (T) and polarization (E and B modes) of the CMB (see
Ref. [246]; for bounds from Planck, see Ref. [50]). We are specifically interested in
the angular spectra of the CMB sourced by the PMFs in the epochs before and after
neutrino decoupling. Recall that, neutrino decoupling takes place at an energy scale
of about 1MeV, after which they start streaming freely. However, before that epoch,
neutrinos are strongly bound to the photons and baryons. During this regime, the
anisotropic stresses in the magnetic fields source the scalar and tensor perturbations, and
these contributions are referred to as the passive magnetic modes [124, 224]. After the
neutrinos decouple from the photons, they begin to stream freely and in the process, they
can develop a non-zero anisotropic stress that compensates the anisotropic stress of the
PMFs [245]. During this period, the PMFs generate the so-called compensated modes
which are somewhat similar to the isocurvature perturbations [124, 224]. Apart from
the passive and compensated modes, it has been shown that there arises a contribution
to the angular power spectra of the CMB due to the curvature perturbations induced
by the magnetic fields generated during inflation (in this context, see Refs. [81, 131]).
The spectrum of these secondary curvature perturbations depend on the model being
considered for the generation of the magnetic field. Also, we should clarify that the
secondary curvature perturbations are induced in addition to the primary adiabatic
perturbations generated during inflation. In our analysis below, we shall take into
account the effects arising from all these contributions in the calculation of the angular
power spectra of the anisotropies in the CMB. We should stress that, in this section, we
shall confine our discussion to non-helical magnetic fields.

3.4.1 Contributions due to the passive and compensated modes

In order to evaluate the contributions due to the passive and compensated modes of
the PMFs to the angular power spectra of the CMB, we shall make use of the publicly
available package MagCAMB [174], which is a modification of CAMB [234]. Similar
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to CAMB, the package computes the multipole moments of the CMB, viz. the Cℓ’s,
arising due to various contributions of the PMFs, for a given cosmological model.
However, to reduce the computational complexity in estimating the integrals involved
in arriving at the Cℓ’s, MagCAMB assumes a power law spectrum for the PMFs. In
fact, we find that the power law form for the spectrum is hardcoded in the package.
Note that, among the two inflationary models we have considered—viz. the models
described by the potentials (3.11) and (3.12)—it is only the second potential which
leads to a nearly scale invariant power law spectrum for the magnetic field over the
CMB scales (see Fig. 3.5). Therefore, using MagCAMB, we shall explicitly compute
the angular power spectra of the anisotropies in the CMB generated by the passive and
the compensated modes for the case of the second potential (3.12). Moreover, since the
potential (3.12) permits slow roll inflation during the early stages, as we shall discuss
in the next subsection, it is also possible to approximately evaluate the angular power
spectra of the CMB due to the curvature perturbations induced by the magnetic field.
For the first model described by the potential (3.11), we find that it is challenging to
carry out such an analysis, due to the complicated nature of the power spectrum for the
magnetic field over large scales. Hence, in what follows, we shall only check if the
strength of the magnetic field generated in this model is roughly compatible with the
observational constraints.

Before going on to compute the angular power spectra of the CMB generated
by the passive and compensated modes of the PMFs, let us examine if the magnetic
fields generated in the two inflationary models of interest are broadly consistent with
the current constraints. To do so, we need to evaluate the amplitude of the magnetic
field, say, Bλ, that has been smoothed over a coherence scale λ [8, 174]. In practice,
the quantity B2

λ is obtained by integrating the spectral energy density of the PMFs [i.e.
the spectrum of the magnetic field, see Eq. (3.3)] with a Gaussian window function of
width λ = 1Mpc, and it is defined as

B2
λ =

∫
d3k

4 π k3
e−λ2 k2 P

B
(k). (3.23)

For instantaneous reheating, the smoothed amplitude today, say, B0
λ, is given by

B0
λ = Bλ

(
ae
a0

)2

, (3.24)

where Bλ is the smoothed strength of the magnetic field generated during inflation,
while ae and a0 denote the scale factors at the end of inflation and today, respectively.

93



The ratio of these scale factors is given by [225]

a0
ae

≃ 2.8× 1028
(

H
I

10−5M
Pl

)1/2

, (3.25)

where H
I

is the Hubble parameter during inflation.

Let us now evaluate the quantity B0
λ in the two inflationary models of our interest.

In the case of the first potential (3.11), upon using the resulting power spectrum for the
magnetic field (as illustrated in Fig. 3.5) and carrying out the integral (3.23) numerically
over all scales (viz. 10−5 ≲ k ≲ 1019Mpc−1), we obtain that B2

λ = 1.079× 10−20M4
Pl

.
Thereafter, upon using the relation (3.24), we obtain an estimate of the smoothed
strength of the magnetic field today to be B0

λ ≃ 2.77 × 10−2 nG, corresponding to
H

I
≃ 4.07 × 10−6M

Pl
. We should mention that, to arrive at this result, we have

used the conversion factors 1M
Pl

= 2.43 × 1018GeV and 1G = 6.91 × 10−20GeV2.
Similarly, in the case of the second potential (3.12), for the spectrum of the magnetic
field illustrated in Fig. 3.5, we obtain that B2

λ = 9.69 × 10−21M4
Pl

, which leads to the
present day strength of B0

λ ≃ 2.05× 10−1 nG, corresponding to H
I
≃ 5.26× 10−7M

Pl
.

These estimates suggest that the spectra of the magnetic fields from the two inflationary
models are broadly in agreement with the observational bound of B0

λ ≲ 1 nG on the
strength of the magnetic field today (in this context, see, for instance, Ref. [81]).

Let us now turn to the explicit evaluation of the imprints of the passive and
compensated modes induced by the PMFs on the CMB using MagCAMB. As we have
already mentioned, in MagCAMB, the primordial power spectrum of the magnetic field
is assumed to be of the power law form, say, P

B
(k) ∝ kn̄B , where n̄

B
is the spectral

index. We find that the spectral index n
B

we have defined [see our comments following
Eq. (3.3)] is related to the spectral index n̄

B
of MagCAMB as n̄

B
= −3 + n

B
. The

quantities required to compute due to the PMFs using MagCAMB are the smoothed
amplitude B0

λ that we discussed above and the spectral index n̄
B

[174]. As mentioned
earlier, in the scenario described by the potential (3.11), since the magnetic power
spectrum contains strong features over large scales, we are unable to use MagCAMB.
For the model described by the potential (3.12), as the magnetic power spectrum
is nearly scale invariant over large scales, we have provided MagCAMB with the
smoothed amplitude B0

λ and the spectral index n̄
B

to arrive at the angular spectra of the
CMB corresponding to the passive and compensated modes. We find that the spectral
index over the CMB scales for the spectrum of the magnetic field illustrated in Fig. 3.5
is n

B
= −0.0112. So, we have supplied the following values of the parameters to

MagCAMB: B0
λ = 2.05 × 10−1 nG, n̄

B
= −3.0112, and set the pivot scale to be
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k∗ = 0.05Mpc−1. Using these parameters, we have computed the contributions of the
PMFs to the angular power spectra of the CMB through the passive and compensated
modes. We shall present and discuss the results in Subsec. 3.4.3.

3.4.2 Contributions due to the induced curvature perturbations

Next, we investigate the contributions to the angular power spectra of the CMB due to
the curvature perturbations induced by the magnetic fields generated during inflation,
which are often referred to as the inflationary magnetic modes [131, 224]. These modes
are unique to inflationary magnetogenesis and are absent if the PMFs are generated
after inflation. They remain unaffected by the behaviour of magnetic fields after the
termination of inflation. Once again, to examine the imprints on the angular power
spectrum of the CMB due to these modes, we restrict ourselves to the model described
by the potential (3.12), as the sharp features in the spectrum arise only over small scales
and we can work with the de Sitter approximation to compute the observables over the
CMB scales.

In the slow roll approximation, the strength of the curvature perturbation, say
Rmag

k , induced by the magnetic fields during inflation (for the case wherein J ∝ a2)
can be written as [131, 224]

k3/2Rmag
k (ηe) =

2H2
I

3M2
Pl
ϵ1
C

EM
(k) ln

(
k

ke

)
, (3.26)

where ϵ1 is the first slow roll parameter and ke represents the wave number that
leaves the Hubble radius at the end of inflation (i.e. at ηe), when the strength of the
perturbations is evaluated. The quantity C

EM
(k) is determined by the expression√

k3 P
EM

(k)

ρ2ϕ
=

H2
I

3M2
Pl

C
EM

(k), (3.27)

where P
EM

(k) is the power spectrum of the fluctuations in the energy density of a given
mode of the electromagnetic field which is defined through the relation (D.1), and ρϕ
denotes the energy density of the scalar field(s) driving the inflationary background. In
App. D, we have initially arrived at a generic expression for the power spectrum P

EM
(k)

and have then gone on to evaluate the quantity for the case wherein J ∝ a2, which
leads to a scale invariant spectrum for the magnetic field P

B
(k). But, evidently, in the

model described by the potential (3.12), there arise deviations from slow roll. Also,
the resulting spectrum of the magnetic field is not scale invariant, as should be clear
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from Fig. 3.5. However, note that the departures from slow roll occur at late times
and, due to this reason, the deviations from the nearly scale invariant behaviour arise
only over very small scales. Moreover, the deviations from scale invariance are mostly
in the form of oscillations. Therefore, over the CMB scales, we believe that the slow
roll approximation leads to a reasonable estimate of the power spectrum of the curvature
perturbations induced by the magnetic field. We can arrive at the strength of the induced
curvature perturbation at late times, i.e. Rmag

k (ηe), by using the result (D.4) for P
EM

(k)

in Eqs. (3.26) and (3.27) and the fact that ρϕ = 3H2M2
Pl

. The scalar power spectrum
associated with the inflationary magnetic mode can be obtained to be

Pmag
R (k) ≃ 24

π3

(
P0

S

)2
ln

(
k

kmin

) [
ln

(
k

ke

)]2
, (3.28)

where P0
S
= H2

I
/(8 π2 ϵ1) is the standard scalar power spectrum evaluated in the slow

roll approximation.

Having obtained the spectrum of curvature perturbations induced by the magnetic
field, we proceed to compute the corresponding contributions to the angular power
spectrum of the CMB. We should stress that the contributions due to the inflationary
magnetic mode arise in addition to the contributions due to the primary curvature
perturbations generated from the quantum vacuum during inflation. This enables us
to treat it in the same manner as the primary curvature perturbations and use the
standard apparatus of CAMB to compute the corresponding angular power spectra. To
evaluate the Cℓ’s, we make use of the scalar power spectrum obtained in Eq. (3.28).
Since we are working with the de Sitter approximation over the CMB scales, the
parameters that we require to compute the amplitude P0

S
are H

I
and ϵ1, evaluated

at the e-fold when the pivot scale exits the Hubble radius. Moreover, to obtain
Pmag

R (k), we require kmin and ke. We assume kmin to be 10−7Mpc−1. In the model
of our interest [viz. the potential (3.12)], for the values of parameters we have
worked with, we find that ke ≃ 1019Mpc−1. We should further note that, since the
electromagnetic field possesses anisotropic stress, apart from inducing secondary scalar
perturbations, they will also generate secondary tensor perturbations (in this context,
see, for example, Refs. [99, 247–252]). Such a tensor mode will also contribute to the
B-mode polarization of the CMB, apart from the contributions to the temperature and
E-mode polarizations. We should clarify that we have not calculated these contributions
due to the induced tensor perturbations.
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3.4.3 Angular power spectra of the CMB

In Fig. 3.6, we have illustrated all the contributions to the CMB angular spectra arising
due to the PMFs for the model described by the potential (3.12) which generates
enhanced scalar power on small scales. For reference, we have also plotted the
standard CMB spectra obtained from CAMB, where there are no contributions from
the PMFs. We should mention that these standard spectra of TT, TE, EE and BB
are obtained by supplying the numerically computed scalar and tensor power spectra
from our inflationary model (illustrated in Fig. 3.3) to CAMB. In arriving at these
spectra, we have included the effects due to non-linear lensing. We have then presented
the contributions due to the scalar inflationary magnetic mode, obtained using our
modified setup of CAMB as described above. This mode contributes only to the CMB
temperature and E-mode polarization spectra. We should clarify that, in computing
these spectra, we have ignored the effects due to non-linear lensing. As is evident
from the plots, this contribution is lower in amplitude when compared to the standard
CMB spectra by O(104). We have further illustrated the contributions due to the
passive and compensated modes to the angular power spectra of the CMB, which have
been computed using MagCAMB. We have computed these contributions using the
parameters obtained from the power spectrum of magnetic field arising in the model,
viz. B0

λ = 7.25 × 10−1 nG and n̄
B

= −3.0112. As can be seen clearly, although
the spectra due to the passive and compensated modes have different amplitudes, their
shape is roughly similar to the standard CMB spectra. It is evident from the figure that
the contributions to the CMB angular spectra due to the PMFs are substantially smaller
in magnitude for the model we have considered. The largest contribution arises from
the inflationary magnetic mode and it is still at least O(104) lesser in magnitude than
the standard spectra.

Though we could not carry out a similar exercise for the model described by the
potential (3.11), which leads to a suppression in the scalar power spectrum over large
scales, the estimate of B0

λ in that case suggests that the corresponding contributions to
Cℓ’s would be of amplitudes lesser than the case that we have discussed. Recall that,
for these additional contributions, Cℓ ∝ (B0

λ)
4 and hence the overall amplitude of the

passive and compensated contributions can be expected to be of lesser magnitude for the
model (3.11) than in the model (3.12) wherein we have explicitly have computed these
contributions. However, there can arise a difference in the shape of Cℓ’s at the lower
multipoles due to the sharp features in P

B
(k) over large scales. In particular, the scalar
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Figure 3.6: We have illustrated the contributions of the magnetic modes to the
temperature and polarization angular power spectra of the CMB due
to the total (i.e. scalar plus tensor) passive (in green) and the total
compensated (in cyan) modes. We have arrived at these quantities using
MagCAMB corresponding to a magnetic field with smoothed strength of
B0

1Mpc = 2.05 × 10−1 nG today and a spectral index of n̄
B
= −3.0112.

In addition, using CAMB, we have plotted the standard angular power
spectra of the CMB (in red) induced by the primary scalar and tensor
perturbations. Moreover, we have also presented the contribution due to the
curvature perturbation induced by the magnetic field during inflation (i.e.
the inflationary magnetic mode, in blue), which we have computed using
CAMB. Note that, apart from the contributions due to the primary tensor
perturbations to the angular power spectrum of the CMB (in particular, to
the B-mode polarization, which we have illustrated in red in the plot on the
bottom right corner), there will also arise a contribution due to the tensor
perturbations induced by the magnetic fields during inflation. We should
mention that we have not calculated this additional contribution.

power spectrum associated with the inflationary magnetic mode in this case can have
interesting features, and being the largest of the contributions, it may leave discernible
imprints on the total angular power spectrum of the CMB. But it is challenging to
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compute these contributions induced by the magnetic field using analytical methods
for spectra with strong features. We would have to employ numerical procedures to
compute the induced scalar spectra over large scales. This is a non-trivial exercise and
we believe that it is beyond the scope of the current work.

3.5 CONCLUSIONS

In the previous chapter, we had shown that, in the case of single field models involving
strong deviations from slow roll inflation, there arise certain challenges in obtaining
nearly scale invariant power spectra for the magnetic field [225]. We had shown that
even finely tuned non-conformal coupling functions may not help us avoid strong
features generated in scenarios involving an epoch of ultra slow roll inflation. To
overcome such challenges, in this chapter, we have examined two field models of
inflation where a turning in the background trajectory in the field space gives rise to
departures from slow roll. We have considered two field models where such deviations
from slow roll lead to either a suppression in the scalar power over large scales or to an
enhancement over small scales.

We have constructed model-dependent coupling functions numerically using the
background dynamics of the two fields in these models. Using these coupling functions,
we have been able to obtain the desired amplitude and a nearly scale invariant form for
the power spectra of magnetic fields in the models of interest. While we have been
able to mostly circumvent the challenges faced in single field models, we find that
it is not entirely possible to remove the strong features over the range of scales that
leave the Hubble radius during deviations from slow roll. For the potential that gives
rise to an enhancement in scalar power over small scales, we obtain a power spectrum
for the magnetic field which is nearly scale invariant over large scales, but contains a
rapid burst of oscillations over small scales. Similarly, for the potential that generates a
suppression in the scalar power over large scales, the power spectrum of the magnetic
field exhibits strong oscillations over very large scales and turns scale invariant over
smaller scales. In the first model, the oscillations have higher amplitude than the scale
invariant part, whereas they have same amplitude in the second model. In both these
models, we obtain amplitudes of the smoothed magnetic fields, which lie in the current
range of observations, i.e. 10−16–10−9G.

Further, for the model that generates enhancement in scalar power over small
scales, we have also computed the contributions of the PMFs to the anisotropies in
the CMB using MagCAMB. Apart from calculating the contributions due to the passive
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and compensated modes, using CAMB, we have also evaluated the contribution due
to the curvature perturbation induced by the magnetic field during inflation. These
contributions to the angular power spectra of the CMB are of roughly similar shape
as the standard spectrum, but are of lower amplitudes. Moreover, we find that, the
corresponding value of the smoothed amplitude B0

λ is well within the upper bound on
the parameter obtained earlier (in this context, see Ref. [174]).

To summarize, using two field models, along with suitable choices of coupling
functions, we have been able to largely overcome the challenges faced in the generation
of PMFs in single field models of inflation permitting an epoch of ultra slow roll. Also,
we have been able to approximately evaluate the imprints of the PMFs on the CMB in
the second model that leads to a scale invariant spectrum for the magnetic field over
large scales. But, clearly, there are some limitations to the approach we have adopted.
For instance, it seems fair to assume that the small scale features in the power spectrum
of the magnetic field are unlikely to affect the angular power spectra of the CMB.
However, since there arise departures from slow roll at late times in the second model,
the de Sitter approximation we have worked with to estimate the induced spectrum
of curvature perturbations is likely to be inadequate. Moreover, as we mentioned, the
first model which leads to features in the spectrum of the magnetic field over the CMB
scales needs to be analyzed numerically to evaluate the induced spectrum of curvature
perturbations and the corresponding imprints on the CMB. In addition, to compute
the signatures of the passive and compensated modes in such models, MagCAMB
needs to be suitably modified to take into account features in the power spectra of the
electromagnetic fields. We are presently investigating such issues.
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CHAPTER 4

AMPLIFYING QUANTUM DISCORD DURING
INFLATIONARY MAGNETOGENESIS THROUGH

VIOLATION OF PARITY

4.1 INTRODUCTION

Magnetic fields are observed over a wide range of scales in the universe (for reviews on
magnetic fields, see Refs. [1–10]). They are observed in planets, stars, galaxies, clusters
of galaxies and even in the IGM (for recent discussions of the various observational
constraints, see, for example, Refs. [10, 149]). The magnetic fields observed in planets,
stars and galaxies can be generated through astrophysical mechanisms such as batteries
(in this context, see, for instance, Refs. [3, 4]). However, one may need to invoke
a cosmological mechanism to explain the magnetic fields observed in the IGM [21–
23, 152–155].

As is well known, the inflationary paradigm provides a simple and elegant
mechanism for the origin of perturbations in the early universe (see, for example, the
reviews [63, 64, 71, 73, 212–215, 217, 218]). The scalar and tensor perturbations
arise due to quantum fluctuations when the Fourier modes are in the sub-Hubble
domain during the early stages of inflation, and they are expected to turn classical as
the modes emerge from the Hubble radius and evolve onto super-Hubble scales (for
discussions in this regard, see, for instance, Refs. [253–262]). The magnetic fields can
also be generated in a similar manner. However, since the standard electromagnetic
action is conformally invariant, the strengths of the electromagnetic fields produced
in such a case will be rapidly diluted (as a−2, with a being the scale factor) during
inflation. Therefore, the conformal invariance of the electromagnetic action has to
be broken in order to generate magnetic fields of adequate strengths today (see,
for example, Refs. [93–95, 104, 107, 161–164]). This can be efficiently achieved
by coupling the electromagnetic field to one or more of the scalar fields that drive
inflation [81, 95, 161, 165, 166, 225, 263]. Interestingly, it has been found that the
addition of a parity violating term to the action can significantly enhance the strengths
of the generated electromagnetic fields [97, 99, 167–173, 225, 263].

One of the open problems in cosmology today is to understand the quantum-to-
classical transition of the perturbations generated during inflation. The main challenge
in this regard is to identify observable signatures that can unequivocally point to the
quantum origin of the perturbations. The evolution of the quantum state associated



with the Fourier modes of the scalar and tensor perturbations during inflation has been
studied extensively in the literature (for an intrinsically incomplete list of efforts on this
topic, see Refs. [253–262, 264–267]; for related discussions in alternative scenarios
such as bounces, see Refs. [268–270]). At the linear order in perturbation theory, these
Fourier modes are described by time-dependent, quadratic Hamiltonians and, in such
situations, the unitary evolution operator can be described in terms of what are known
as the squeezing and rotation operators [271, 272]. The evolution of the quantum state
of such systems is often tracked using the Wigner function, which is a quasi-probability
distribution in phase space (in this regard, see, for example, Refs. [273, 274]). The
so-called Wigner ellipse is a contour in phase space corresponding to a given value
of the Wigner function. Usually, the perturbations are assumed to evolve from the
ground state, in which case, the Wigner ellipse is initially a circle. As the nomenclature
suggests, the squeezing and rotation operators typically squeeze the Wigner circle into
an ellipse and rotate it around its center, as the system evolves [275, 276].

At the linear order in perturbation theory, the Fourier modes associated with the
scalar or tensor perturbations corresponding to the different wave numbers evolve
independently. However, interestingly, one finds that, for a given wave number, say,
k, the Hamiltonian describing the scalar or the tensor perturbations contain a term
that describes an interaction between Fourier modes with the opposite wave vectors k
and −k. As a result, the quantum state associated with these wave vectors prove to
be entangled [262, 277]. Over the last decade, it has been realized that the notion of
quantum discord can be utilized as a tool to describe the evolution of the perturbations
in such situations [262, 277, 278]. Discord is a quintessentially quantum property,
i.e. it can be shown to be zero for a classical system. Further, it is more ubiquitous
than entanglement, and discordant systems contain entangled systems as a subset [279].
In other words, a system possessing entanglement will also have a non-zero quantum
discord, but the converse is not true. Since it reflects the quantumness of a system,
quantum discord has been made use of in cosmology to probe the quantum origin of
the cosmological perturbations. The large quantum discord at the end of inflation has
been used to argue that cosmological perturbations are indeed placed in a very quantum
state [262].

While the evolution of the quantum state associated with the primordial scalar and
tensor perturbations have been studied in considerable detail, we notice that there has
only been limited efforts to understand the behaviour in the case of magnetic fields (in
this context, see, for instance, Refs. [100, 280]). Though there are some similarities
between the evolution of scalar or tensor perturbations and magnetic fields, there can
be crucial differences as well. In this chapter, we shall examine the evolution of the
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quantum state of the Fourier modes of the non-conformally coupled and parity violating
electromagnetic field during inflation. Using tools such as the Wigner ellipse, squeezing
parameters and quantum discord, we shall, in particular, investigate the effects that arise
due to the violation of parity. Apart from the standard case of slow roll inflation, we
shall examine the behaviour of these measures when there arise departures from slow
roll. Specifically, we shall show that the violation of parity amplifies the extent of
squeezing and quantum discord associated with one of the two states of polarization.

This chapter is organized as follows. In the following section, we shall arrive at
the action governing the Fourier modes of the electromagnetic field that is coupled non-
conformally to the scalar field driving inflation. We shall also consider the effects of an
additional term in the action that induces the violation of parity. In Sec. 4.3, we shall
carry out the quantization of the electromagnetic modes in the Schrödinger picture. We
shall also discuss the evolution of the quantum state during inflation. In Sec. 4.4, we
shall introduce the different measures, such as the Wigner ellipse, squeezing parameters
and entanglement entropy (or quantum discord), that allow us to describe the evolution
of the quantum state of the electromagnetic field. In Sec. 4.5, we shall discuss the
behaviour of these measures of the quantum state in specific inflationary models. In
addition to discussing the results in models that permit slow roll inflation, we shall
discuss the behaviour in single and two field models that lead to departures from slow
roll. Finally, we shall conclude in Sec. 4.6 with a summary of the main results obtained.
We shall discuss a few related points in Apps. E and F. In App. G, we shall discuss the
similarity between the behaviour of the modes of a parity violating electromagnetic field
and a charged scalar field in the presence of an electric field in a de Sitter background.

4.2 NON-CONFORMALLY COUPLED ELECTROMAGNETIC FIELDS

In this section, we shall describe the actions of our interest and express them in
terms of the Fourier modes of the electromagnetic vector potential. Later, we shall
utilize the reduced action to arrive at the corresponding Hamiltonian while discussing
the quantization of the electromagnetic modes in the Schrödinger picture. As we
mentioned, we shall be interested in examining a situation wherein the electromagnetic
field is coupled non-conformally to the scalar field, say, ϕ, that drives inflation. It proves
to be instructive to first discuss non-helical electromagnetic fields, before we go on to
consider the helical case.
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4.2.1 Non-helical electromagnetic fields

As we have seen, the action describing the non-helical electromagnetic field has the
form

S[Aµ] = − 1

16π

∫
d4x

√−g J2(ϕ)Fµν F
µν , (4.1)

where J(ϕ) denotes the non-conformal coupling function and the field tensor Fµν is
expressed in terms of the vector potential Aµ as Fµν = (∂µAν − ∂ν Aµ). In a spatially
flat, FLRW universe, if we work in the Coulomb gauge wherein Aη = 0 and ∂iAi = 0,
then the above action reduces to

S[Ai] =
1

4 π

∫
dη

∫
d3x J2(η)

(
1

2
A′

iA
i′ − 1

4
Fij F

ij

)
, (4.2)

with the spatial indices raised or lowered with the aid of δij or δij .

Let k denote the comoving wave vector and let k̂ be the corresponding unit vector.
For each vector k, we can define the right-handed orthonormal basis vectors (ε̂k1 , ε̂

k
2 , k̂)

which satisfy the relations

ε̂k1 · ε̂k1 = ε̂k2 · ε̂k2 = 1, ε̂k1 · ε̂k2 = 0, (4.3a)

ε̂k1 × ε̂k2 = k̂, k̂ · ε̂k1 = k̂ · ε̂k2 = 0, (4.3b)

ε̂−k
1 = −ε̂k1 , ε̂

−k
2 = ε̂k2 . (4.3c)

Let us denote the components of the polarization vector as εkλi, where λ = {1, 2}
represents the two states of polarization of the electromagnetic field. It can be shown
that the components εkλi satisfy the condition

2∑
λ=1

εkλi ε
k
λj = δij −

ki kj
k2

= δij − k̂i k̂j, (4.4)

where k̂i denotes the i-th component of unit vector k̂. In terms of the components εkλi,
we can Fourier decompose the vector potential Ai(η,x) in the following manner:

Ai(η,x) =
√
4 π

∫
d3k

(2 π)3/2

2∑
λ=1

εkλi Ā
λ
k(η) e

ik·x. (4.5)

Since Ai(η,x) and εkλi are real, we obtain that

εkλi Ā
λ
k(η) = ε−k

λi Ā
λ∗
−k(η) (4.6)
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and, upon using the properties in Eqs. (4.3), this condition for reality leads to

Ā1
−k = −Ā1∗

k , Ā2
−k = Ā2∗

k . (4.7)

In terms of the Fourier modes Āλ
k, we can express the action (4.2) as follows:

S[Āk] =

∫
dη

∫
d3k

2∑
λ=1

J2(η)

(
1

2
|Āλ

k
′|2 − k2

2
|Āλ

k|2
)
. (4.8)

On varying this action, we obtain the equation of motion governing the modes Āλ
k to

be [95, 207]

Āλ
k
′′ + 2

J ′

J
Āλ

k
′ + k2 Āλ

k = 0. (4.9)

4.2.2 Helical electromagnetic fields

Let us now turn to the case of helical electromagnetic fields. As we have discussed, in
general, the action describing helical electromagnetic fields has the form [97, 99, 167–
173, 225, 263]

S[Aµ] = − 1

16π

∫
d4x

√−g
[
J2(ϕ)Fµν F

µν − γ

2
I2(ϕ)FµνF̃

µν

]
, (4.10)

where I(ϕ) represents another coupling function, while γ is a constant. The dual field
tensor F̃ µν is defined as F̃ µν = ϵµναβ Fαβ , with ϵµναβ = (1/

√−g)Aµναβ . The quantity
ϵµναβ is the totally antisymmetric Levi-Civita tensor and Aµναβ is the corresponding
tensor density with the convention that A0123 = 1 [9]. In a spatially flat, FLRW
universe, when working in the Coulomb gauge, the above action describing the helical
electromagnetic field simplifies to

S[Ai] =
1

4π

∫
dη

∫
d3x

[
J2(η)

(
1

2
A′

iA
i′ − 1

4
Fij F

ij

)
+ γ I2(η) ϵijlA′

i (∂jAl)

]
. (4.11)

where, as before, the spatial indices are raised or lowered using δij or δij , and ϵijl

represents the totally anti-symmetric Levi-Civita tensor in three-dimensional Euclidean
space.

The Fourier modes of the helical field will be coupled in the basis (ε̂k1 , ε̂
k
2 , k̂) that

we had considered in the case of non-helical electromagnetic field. To decouple the
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modes, one can combine the two transverse directions ε̂k1 and ε̂k2 to form the so-called
helicity basis [97, 99, 167–173, 225, 263]. In such a case, we can define an orthonormal
basis of vectors (ε̂k+, ε̂

k
−, k̂), where the vectors ε̂k± are defined as

ε̂k± =
1√
2
(ε̂k1 ± i ε̂k2 ). (4.12)

Using Eqs. (4.3), one can show that these vectors satisfy the following properties:

ε̂k+ · ε̂k∗+ = 1, ε̂k− · ε̂k∗− = 1, ε̂k+ · ε̂k∗− = 0, (4.13a)

ε̂k∗± = ε̂k∓, ε̂
−k
± = −ε̂k∓, i k̂ × ε̂k± = ±ε̂k±. (4.13b)

Let εkσi denote the components of the polarization vector, with σ = ±1 corresponding
to the two helical polarizations in the transverse directions of the wave vectors. It can
be established that ∑

σ=±
εkσi ε

k∗
σj = δij −

ki kj
k2

= δij − k̂i k̂j. (4.14)

In terms of the components εkσi of the polarization vector, we can decompose the
electromagnetic vector potential in terms of the Fourier mode functions Āσ

k as follows:

Ai(η,x) =
√
4π

∫
d3k

(2π)3/2

∑
σ=±

εkσi Ā
σ
k(η) e

ik·x. (4.15)

Note that Āσ
k can be written in terms of Āλ

k as

Āσ
k =

1√
2

(
Ā1

k − i σ Ā2
k

)
(4.16)

so that the reality condition (4.7) becomes

Āσ
−k = −Āσ∗

k . (4.17)

In terms of the Fourier modes Āσ
k, the action (4.11) can be expressed as

S[Āσ
k] =

∫
dη

∫
d3k

∑
σ=±

J2(η)

[
1

2
|Āσ

k
′|2 + σ γ k I2

2 J2

(
Āσ

k
′ Āσ∗

k + Āσ
k
′∗ Āσ

k

)
− k2

2
|Āσ

k|2
]
. (4.18)

On varying this action, we obtain the equation of motion governing the Fourier
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modes Āσ
k to be [97, 99, 167–173, 225, 263]

Āσ′′
k + 2

J ′

J
Āσ′

k + ω̄2 Āσ
k = 0. (4.19)

where the quantity ω̄2 is given by

ω̄2 = k2 +
2σ γ k I I ′

J2
. (4.20)

We should point out that, in contrast to the non-helical case, the two states of
polarization in the helical case (corresponding to σ = ±1) satisfy different equations
and hence evolve differently.

4.3 QUANTIZATION IN THE SCHRÖDINGER PICTURE

In this section, we shall discuss the quantization of the Fourier modes of the
electromagnetic field in the Schrödinger picture.

4.3.1 Identifying the independent degrees of freedom
To proceed in a manner similar to the analysis of the scalar or the tensor perturbations
described in terms of the associated Mukhanov-Sasaki variable, we define the quantity

Aσ
k = i J Āσ

k. (4.21)

We should clarify that the i factor has been introduced so that the reality condition (4.17)
becomes

Aσ
−k = Aσ

k
∗, (4.22)

mirroring the relation for the Fourier components of the Mukhanov-Sasaki variable in
the case of the scalar perturbations [262]. In terms of the quantities Aσ

k, the action (4.18)
can be expressed as

S[Aσ
k] =

∫
dη

∫
d3k

∑
σ=±

[
1

2
|Aσ

k
′|2 − κ

2
(Aσ

k
′ Aσ∗

k +Aσ
k
′∗Aσ

k)−
µ2

2
|Aσ

k|2
]
,

(4.23)
where the quantities µ2 and κ are given by

µ2 = k2 −
(
J ′

J

)2

+
2σ γ k I2 J ′

J3
, (4.24a)
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κ =
J ′

J
− σ γ k I2

J2
. (4.24b)

The above action has the same structure as the action describing the Fourier components
of the Mukhanov-Sasaki variable associated with the scalar perturbations (in this
context, see, for instance, Ref. [262]). But, note that, in the case of the electromagnetic
field, the two values of σ lead to twice as many degrees of freedom for every k. In
the non-helical case (i.e. when γ = 0), the above action, in fact, reduces exactly to the
form of the action describing the scalar perturbations (with the non-conformal coupling
function J replaced by the scalar pump field z). However, in the helical case, there
arises an important difference with the quantities µ2 and κ turning out to be dependent
on the combination (σ γ k).

With the action describing the Fourier modes of the electromagnetic field at hand,
we can construct the Hamiltonian associated with each of these modes. Using the
Hamiltonian, we can carry out the quantization of the modes in the Schrödinger picture.
However, note that the reality condition (4.22) implies that not all the Fourier modes Aσ

k

are independent. In order to focus on only the independent degrees of freedom, we
divide the Fourier space into two parts (such that k and −k occur in different halves)
and express the modes in one half in terms of the modes in the other half using the
relation (4.22) (for a similar discussion in the case of scalar and tensor perturbations,
see, for instance, Refs. [260, 262, 278, 281–283]). The division of the three-dimensional
Euclidean space R3 into two can be carried out by any plane passing through the origin.
Therefore, the resultant integral will be over one-half of the Fourier space (which we
shall denote as R3/2) so that we have

S[Aσ
k] =

∫
dη

∫
R3/2

d3k
∑
σ=±

[
|Aσ

k
′|2 − κ

(
Aσ

k Aσ
k
′∗ +Aσ

k
∗Aσ

k
′)− µ2 |Aσ

k|2
]
.

(4.25)
Later, we shall be focusing on scenarios wherein I = J , with J ′/J vanishing at early
times. In such situations, due to the term involving (σ γ k) in κ, the above action does
not reduce to that of a free harmonic oscillator during the initial stages of inflation1. We
remedy the issue by adding the following total time derivative term to the above action:

− d

dη

[
σ γ k I2

J2
|Aσ

k|2
]
. (4.26)

1Though, we should hasten to clarify that the equation of motion governing Aσ
k indeed reduces to that

of a free harmonic oscillator at such times.
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In such a case, the resulting action turns out to be

S[Aσ
k] =

∫
dη

∫
R3/2

d3k
∑
σ=±

[
|Aσ

k
′|2 − J ′

J

(
Aσ

k Aσ
k
′∗ +Aσ

k
∗Aσ

k
′)− µ̄2 |Aσ

k|2
]
,

(4.27)
where the quantity µ̄2 is defined as

µ̄2 = ω̄2 −
(
J ′

J

)2

(4.28)

with ω̄2 given by Eq. (4.20). In App. E, we shall discuss further the reasons for adding
the total time derivative and working with the modified action.

But, since Aσ
k is not a real variable, it will not lead to a Hermitian operator

on quantization. Hence, we shall perform the quantization in terms of the real and
imaginary parts of the variable. Let Aσ

kR/
√
2 and Aσ

kI/
√
2 denote the real and imaginary

parts of Aσ
k so that we have

Aσ
k =

1√
2
(Aσ

kR + iAσ
kI) . (4.29)

In such a case, we find that the action (4.27) splits into two equivalent terms describing
the real and imaginary parts, which implies that they evolve independently. These
quantities are governed by the following Lagrangian density in Fourier space:

L =
1

2
A′2 − J ′

J
A′ A− µ̄2

2
A2. (4.30)

where A stands for either Aσ
kR or Aσ

kI.

4.3.2 Schrödinger equation and the Gaussian ansatz

Let us now quantize the system in the Schrödinger picture. Given the Lagrangian (4.30),
the canonical conjugate momentum P is given by

P = A′ − J ′

J
A. (4.31)
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The corresponding Hamiltonian density in Fourier space, can be immediately obtained
to be2

H =
P2

2
+
J ′

J
P A+

1

2
ω̄2A2, (4.32)

where ω̄2 is given by Eq. (4.20). If Ψ(A, η) is the wave function describing the system,
then this Hamiltonian leads to the following Schrödinger equation governing the wave
function:

i
∂Ψ

∂η
= −1

2

∂2Ψ

∂A2
− i

2

J ′

J

(
Ψ+ 2A ∂Ψ

∂A

)
+

1

2
ω̄2A2Ψ.

(4.33)

We shall assume that, at very early times, the Fourier modes are in the ground state,
often referred to as the Bunch-Davies vacuum. To take into account such an initial
condition, we shall assume that the wave function is described by the Gaussian ansatz
(see, for instance, Refs. [260, 284–287])

Ψ(A, η) = N (η) exp
[
−Ω(η)A2/2

]
, (4.34)

where N and Ω are, in general, complex quantities. The normalization of the wave
function Ψ(A, η), viz. ∫ ∞

−∞
dA |Ψ(A, η)|2 = 1, (4.35)

immediately leads to the following relation between the functions N (η) and Ω(η):

|N | =
(
ΩR

π

)1/4

, (4.36)

where ΩR = (Ω + Ω∗)/2 denotes the real part of the function Ω. This implies that N
can be determined (modulo an unimportant overall phase factor) if we can obtain Ω.

Upon substituting the ansatz (4.34) for the wave function Ψ(A, η) in the
Schrödinger equation (4.33), we find that the quantity Ω satisfies the differential
equation

Ω′ = −iΩ2 − 2
J ′

J
Ω + i ω̄2. (4.37)

2As with the Lagrangian density L in Fourier space, we shall hereafter refer to H simply as the
Hamiltonian. Also, the Hamiltonian H should not be confused with the conformal Hubble parameter,
which is often denoted in the same manner. We do not make use of the conformal Hubble parameter in
this chapter.
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In order to solve such a differential equation, let us write

Ω = −i g
∗

f ∗ , (4.38)

where
g = f ′ − J ′

J
f. (4.39)

On substituting the above expression for Ω in Eq. (4.37), we arrive at the following
equation governing f ∗:

f ∗′′ + ω2 f ∗ = 0, (4.40)

where the quantity ω2 is given by

ω2 = µ2 − κ′ = ω̄2 − J ′′

J
= k2 − J ′′

J
+

2σ γ k I I ′

J2
. (4.41)

The above differential equation for f ∗ is identical in form to the equation of motion
that governs A [which can be arrived at by substituting the relation (4.21) between Aσ

k

and Āσ
k in Eq. (4.19)]. In other words, if we know the classical solution for A (or,

equivalently, f ), then we can construct the wave function Ψ(A, η) completely.

4.4 MEASURES THAT REFLECT THE EVOLUTION OF THE QUANTUM
STATE

In this section, we shall discuss the ideas of the Wigner ellipse, squeezing parameters
and entanglement entropy (or, equivalently, quantum discord), measures that help us
understand the evolution of the wave function describing the system.

4.4.1 Wigner ellipse

Given a wave function Ψ(A, η), the Wigner function W (A,P , η) is defined as [273,
274]

W (A,P , η) = 1

π

∫ ∞

−∞
dyΨ(A− y, η)Ψ∗(A+ y, η) e2 iP y. (4.42)

For the Gaussian form of Ψ(A, η) in Eq. (4.34), we can easily obtain the Wigner
function to be

W (A,P , η) = 1

π
exp

[
−ΩRA2 − 1

ΩR

(P + ΩIA)2
]
, (4.43)
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where ΩI is the imaginary part of Ω, i.e. ΩI = (Ω−Ω∗)/(2 i). To visualize the evolution
of the Wigner function in the phase space A-P , we can choose to plot the behaviour of
the contour described by the condition

ΩRA2 +
1

ΩR

(P + ΩIA)2 = 1, (4.44)

which is often referred to as the Wigner ellipse [274–276].

At very early times, if we demand that the wave function Ψ(A, η) corresponds to
the Bunch-Davies vacuum, then the function f is expected to behave as

f ≃ 1√
2 k

e−i k η. (4.45)

For a power law form of J (say, when J ∝ η−n, where n is a real number), we have, at
early times (i.e. as η → −∞)

g = f ′ − J ′

J
f ≃ −i

√
k

2
e−i k η. (4.46)

It is useful to note that, for such an initial condition, the Wronskian associated with the
functions f and g is given by

W = f g∗ − g f ∗ = i. (4.47)

The above expressions for f and g lead to ΩR = k and ΩI = 0. If we introduce the
following canonical variables which have the same dimension:

Ā =
√
kA, P̄ =

P√
k
, (4.48)

then the condition (4.44) reduces to

Ā2 + P̄2 = 1. (4.49)

In other words, at early times, the Wigner ellipse is a circle with its centre located at the
origin, as in the case of the scalar perturbations.

4.4.2 Squeezing parameters
The squeezing parameters can be related to the components of the so-called covariance
matrix associated with the wave function. In terms of the conjugate variables A and P ,
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the covariance matrix is defined as (see, for example, Refs. [260, 285])

V =

[
k ⟨Â2⟩ ⟨Â P̂ + P̂ Â⟩/2

⟨Â P̂ + P̂ Â⟩/2 ⟨P̂2⟩/k

]
, (4.50)

where the expectation values are to be evaluated in the state described by the wave
function Ψ(A, η) [cf. Eq. (4.34)]. The covariance matrix can be expressed in terms of
the squeezing amplitude r and the squeezing angle φ as follows [272, 278, 281, 285]

V =
1

2

[
cosh (2 r) + sinh (2 r) cos (2φ) sinh (2 r) sin (2φ)

sinh (2 r) sin (2φ) cosh (2 r)− sinh (2 r) cos (2φ)

]
.

(4.51)
The shape and orientation of the Wigner ellipse has a one-to-one correspondence with
the covariance matrix (in this regard, see Refs. [272, 278, 285]; in particular, see
Ref. [288], App. A). Using the wave function (4.34) and the expressions for N and Ω

in Eqs. (4.36) and (4.38), it can be shown that3

⟨Â2⟩ = |f |2 = 1

2 k
[cosh (2 r) + sinh(2 r) cos (2φ)], (4.52a)

⟨P̂2⟩ = |g|2 = k

2
[cosh (2 r)− sinh (2 r) cos (2φ)], (4.52b)

1

2
⟨Â P̂ + P̂ Â⟩ =

1

2
(f g∗ + f ∗ g) =

1

2
sinh (2 r) sin (2φ), (4.52c)

which can be inverted to arrive at

cosh (2 r) = k |f |2 + |g|2
k
, (4.53a)

cos (2φ) =
1

sinh (2 r)

(
k |f |2 − |g|2

k

)
, (4.53b)

sin (2φ) =
1

sinh (2 r)
(f g∗ + f ∗ g) . (4.53c)

In other words, if we know the solutions to the classical Fourier modes of the
electromagnetic field, we can arrive at the squeezing amplitude r and squeezing angle φ
that describe the evolution of the wave function of the quantum system. We should
point out that, since, at early times, f and g are given by Eqs. (4.45) and (4.46),
we have cosh (2 r) = 1, or, equivalently, r = 0. This essentially indicates that the
electromagnetic mode is in its ground state at early times. Note that, in the same limit,
the squeezing angle φ is undetermined.

3The squeezing amplitude r should not be confused with the tensor-to-ratio, which is also denoted
using the same variable.
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4.4.3 Entanglement entropy and quantum discord
We shall now derive the entanglement entropy and quantum discord that arises
when we make a particular partition of our system of the non-conformally coupled
electromagnetic field into two subsystems. It can be shown that, when the complete
system is in a pure state, quantum discord coincides with the entanglement entropy (for
a discussion in this regard, see, for instance, Refs. [279, 289]). Since our system consists
only of the electromagnetic field, with the coupling to the inflaton being parametrized by
time-dependent coefficients, the quantum state of the system is a pure state. Therefore,
from now on, we shall discuss the entanglement entropy of the system and it is to be
understood that it is the same as the quantum discord.

In Secs. 4.3.2, 4.4.1 and 4.4.2, we had carried out the analysis in terms of the real
or imaginary parts of the variable Aσ

k defined in Eq. (4.29). All these variables are
decoupled and hence we could work with a fiducial variable representing all of them.
In terms of these variables, if we start with an initially unentangled state, there will be
no generation of quantum correlations between the different degrees of freedom and,
hence, no generation of quantum discord. However, we can evaluate the entanglement
entropy or quantum discord between the k and −k sectors, similar to what has been
carried out earlier for the scalar perturbations [262, 277]. In this section, working in the
Schrodinger picture, we shall explicitly derive the entanglement entropy of the system
that has been partitioned in the same manner, i.e. into two sectors of k and −k.

Challenges with the modified action

Recall that we had originally obtained the action (4.23) to describe the Fourier
modes Aσ

k of the electromagnetic field. In order for the action to reduce to that of a
free, simple harmonic oscillator during the early stages of inflation, we had added the
total time derivative (4.26) to eventually arrive at the action (4.27). In this section, we
shall point out that there arises a challenge in working with the action (or, equivalently,
the associated conjugate momentum) to calculate the entanglement entropy between the
electromagnetic modes with wave vectors k and −k.

Let us begin by first rewriting the action (4.27) using the relation (4.22)
between Aσ

−k and Aσ
k as follows:

S[Aσ
k,Aσ

−k] =

∫
dη

∫
R3/2

d3k
∑
σ=±

[
Aσ

k
′ Aσ

−k
′ − J ′

J

(
Aσ

k
′Aσ

−k +Aσ
−k
′ Aσ

k

)
− µ̄2Aσ

k Aσ
−k

]
. (4.54)
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The Lagrangian density in Fourier space associated with this action is clearly given by

L = Aσ
k
′Aσ

−k
′ − J ′

J

(
Aσ

k
′ Aσ

−k +Aσ
−k
′ Aσ

k

)
− µ̄2Aσ

k Aσ
−k. (4.55)

Therefore, the conjugate momenta, say, Pσ
k and Pσ

−k, associated with the variables Aσ
k

and Aσ
−k are given by

Pσ
k =

∂L
∂Aσ

−k
′ = Aσ

k
′ − J ′

J
Aσ

k, (4.56a)

Pσ
−k =

∂L
∂Aσ

k
′ = Aσ

−k
′ − J ′

J
Aσ

−k. (4.56b)

These conjugate momenta satisfy the relation

Pσ
−k = Pσ

k
∗, (4.57)

which is akin to the relation (4.22) between Aσ
k and Aσ

−k. The Hamiltonian of the
system containing the two subsystems k and −k can be obtained to be (for a similar
discussion in the case of scalar perturbations, see, for instance, Ref. [262])

H = Pσ
k Pσ

−k +
J ′

J

(
Aσ

k Pσ
−k +Aσ

−k Pσ
k

)
+ ω̄2Aσ

k Aσ
−k,

(4.58)

where the quantity ω̄2 is given by Eq. (4.20).

The conjugate variables (Aσ
k,Pσ

k ) and (Aσ
−k,Pσ

−k) that appear in the above
Hamiltonian are not real. Hence, they will not turn out to be Hermitian when they
are elevated to be operators on quantization. Motivated by the approach that has been
adopted in the case of the scalar perturbations (in this context, see Refs. [262, 282]), we
can define the new quantities (xσk, p

σ
k) in terms of (Aσ

k,Pσ
k ) and (Aσ

−k,Pσ
−k) as follows:

xσk =
1

2

(
Aσ

k +Aσ
−k

)
+

i

2 ω̄

(
Pσ

k − Pσ
−k

)
, (4.59a)

pσk =
1

2

(
Pσ

k + Pσ
−k

)
− i ω̄

2

(
Aσ

k −Aσ
−k

)
, (4.59b)

and quantize the system in terms of these new variables. Note that, in the non-helical
case wherein γ = 0, the quantity ω̄2 [cf. Eq. (4.20)] reduces to k2, and hence the new
variables are similar to those encountered in the scalar case (with the non-conformal
coupling function J replaced by the pump field z). However, we find that, in the helical
case, i.e. when γ is non-zero, the quantity ω̄2 may not remain positive definite over
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some domains in time, and hence the quantity ω̄ may turn out to be imaginary. This
implies that the quantities (xσk, p

σ
k) will not remain real, and hence cannot be utilized

for carrying out the quantization of the system4. Therefore, in what follows, we shall
turn to the original action (4.23) for quantization and the evaluation of the entanglement
entropy between the electromagnetic modes with wave vectors k and −k.

Working with the original action

Note that the original action (4.25) can be expressed as

S[Aσ
k,Aσ

−k] =

∫
dη

∫
R3/2

d3k
∑
σ=±

[
Aσ

k
′ Aσ

−k
′ − κ

(
Aσ

k
′ Aσ

−k +Aσ
−k
′ Aσ

k

)
−µ2Aσ

k Aσ
−k

]
(4.60)

so that the associated Lagrangian density in Fourier space is given by

L = Aσ
k
′ Aσ

−k
′ − κ

(
Aσ

k
′ Aσ

−k +Aσ
−k
′ Aσ

k

)
− µ2Aσ

k Aσ
−k. (4.61)

The conjugate momenta associated with the variables Aσ
k and Aσ

−k can be easily
obtained to be

Pσ
k =

∂L
∂Aσ

−k
′ = Aσ

k
′ − κAσ

k, (4.62a)

Pσ
−k =

∂L
∂Aσ

k
′ = Aσ

−k
′ − κAσ

−k, (4.62b)

which correspond to the conjugate momentum in Eq. (E.2). In such a case, we find that
the Hamiltonian of the system can be expressed as

H = Pσ
k Pσ

−k + κ
(
Aσ

k Pσ
−k +Aσ

−k Pσ
k

)
+ ω̃2Aσ

k Aσ
−k, (4.63)

where the quantity ω̃2 is given by

ω̃2 = k2
(
1 +

γ2 I4

J4

)
. (4.64)

4One simple way to overcome this difficulty would be to replace ω̄ in Eqs. (4.59) by either k or |ω̄|.
But, the resulting Hamiltonians turn out to be rather cumbersome to deal with. It would be worthwhile to
examine if one can construct other canonical variables which remain real and can be utilized to quantize
the system.
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We should point out here that, in contrast to the quantity ω̄2 [cf. Eq (4.20)] which we
had encountered in the Hamiltonian (4.58) earlier, the quantity ω̃2 that appears in the
above Hamiltonian is clearly positive definite.

We can now make use of the transformations (4.59) with ω̄ replaced by ω̃ to
arrive at the new set of real variables (xσk, p

σ
k). In terms of these variables, the

Hamiltonian (4.63) of the system turns out to be

H =
1

2

(
pσk p

σ
k + pσ−k p

σ
−k

)
+κ

(
xσk p

σ
−k + xσ−k p

σ
k

)
+
ω̃2

2

(
xσk x

σ
k + xσ−k x

σ
−k

)
. (4.65)

For convenience, we shall hereafter refer to xσk and xσ−k simply as x1 and x2. The
Schrodinger equation describing the system can then be written as

i
∂Ψ

∂η
= −1

2

(
∂2Ψ

∂x21
+
∂2Ψ

∂x22

)
− i κ

(
x1

∂Ψ

∂x2
+ x2

∂Ψ

∂x1

)
+
ω̃2

2
(x21 + x22)Ψ. (4.66)

As we had done earlier [cf. Eq. (4.34)], we can consider the following Gaussian ansatz
for the wave function describing the system:

Ψ(x1, x2, η) = N (η) exp

[
−1

2
Ω1(η)

(
x21 + x22

)
− Ω2(η)x1 x2

]
, (4.67)

where, evidently, N is a new, suitable, normalization factor. The normalization of the
wave function leads to the condition

|N | =
(
Ω2

1R − Ω2
2R

π2

)1/4

, (4.68)

where Ω1R = (Ω1+Ω∗
1)/2 and Ω2R = (Ω2+Ω∗

2)/2 are the real parts of the quantities Ω1

and Ω2.

On substituting the wave function (4.67) in the Schrödinger equation (4.66), we
find that the quantities Ω1 and Ω2 satisfy the following differential equations:

Ω′
1 = −i

(
Ω2

1 + Ω2
2

)
− 2κΩ2 + i ω̃2, (4.69a)

Ω′
2 = −2 iΩ1Ω2 − 2κΩ1. (4.69b)

If we now define Ω+ = Ω1 +Ω2, upon combining the above equations for Ω1 and Ω2, it
is easy to show that the quantity Ω+ satisfies the equation

Ω′
+ = −iΩ2

+ − 2κΩ+ + i ω̃2, (4.70)
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where, recall that, the quantity ω̃2 is given by Eq. (4.64). Hereafter, we shall restrict
ourselves to the situations wherein I = J , in which case ω̃2 = k2 (1 + γ2), i.e. it
reduces to a constant. In such situations, it is also straightforward to establish that, if
we define Ω− = Ω1 − Ω2, then the above equations for Ω1 and Ω2 imply that Ω− =

ω̃2/Ω+. Note that the above equation satisfied by Ω+ is the same as Eq. (E.5) that
governs Ω. Therefore, if we use the definition (4.38) for Ω+, with g given by Eq. (E.6),
then f ∗ satisfies the equation of motion (4.40). In other words, as with the wave function
Ψ(A, η) [cf. Eq. (4.34)] that describes the unentangled state associated with the wave
number k, the wave function Ψ(x1, x2, η) [cf. Eq. (4.67)] that carries information about
the interaction between the wave vectors k and −k can also be completely expressed in
terms of the classical solutions to the Fourier modes of the electromagnetic field. With
Ω+ and Ω− at hand, we can obtain Ω1 and Ω2 using the relations

Ω1 =
1

2
(Ω+ + Ω−) =

1

2Ω+

(Ω2
+ + ω̃2), (4.71a)

Ω2 =
1

2
(Ω+ − Ω−) =

1

2Ω+

(Ω2
+ − ω̃2), (4.71b)

which, in turn, allow us to construct the wave function Ψ(x1, x2, η).

Derivation of the entanglement entropy

Note that the complete wave function Ψ(x1, x2, η) of the system of our interest describes
a pure state and hence does not possess any entanglement entropy. We shall trace one
of the two degrees of freedom to arrive at the reduced density matrix and evaluate the
corresponding entanglement entropy5. The reduced density matrix, obtained by tracing
out the degrees of freedom associated with the variable x1, is defined as

ρred(x2, x
′
2, η) =

∫ ∞

−∞
dx1Ψ(x1, x2, η)Ψ

∗(x1, x
′
2, η), (4.72)

with the wave function Ψ(x1, x2, η) given by Eq. (4.67). The Gaussian integral over x1
can be easily evaluated to arrive at the reduced density matrix

ρred(x2, x
′
2, η) = |N |2

√
π

Ω1R

exp

[
−α
2

(
x22 + x′2

2
)
+ β x2 x

′
2

]
,

5As is well known, the entanglement entropy of a bipartite system proves to be the same, independent
of which of the two parts of the system is traced over.
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where |N | is given by Eq. (4.68), while α and β are real quantities which are given by
the expressions

α = Ω1 −
Ω2

2

2Ω1R

=
1

2Ω1R

[
2Ω2

1R −
(
Ω2

2R − Ω2
2I

)]
, (4.73a)

β =
|Ω2|2
2Ω1R

, (4.73b)

with Ω2I = (Ω2 − Ω∗
2)/(2 i) denoting the imaginary part of Ω2. It is also useful to note

here that (α2 − β2) = ω̃2.

Our aim is to now calculate the entanglement entropy associated with the above
reduced density matrix. Since the system of our interest behaves as a time-dependent
oscillator, the entanglement entropy of the system, say, S, can be expressed as

S = −
∞∑
n=0

pn ln pn, (4.74)

where pn denotes the probability of finding the system in the n-th energy eigen state of
the oscillator. Since the entanglement entropy is the same as the quantum discord for
a pure state, we shall hereafter refer to S above as quantum discord δ, in the manner it
is often done in the context of the scalar perturbations [262, 282]. The eigen values pn
of the reduced density matrix ρred(x2, x′2, η) are determined by the relation (for an early
discussion, see Ref. [290]; for a recent discussion in this context, see, for instance,
Ref. [286, 287]) ∫ ∞

−∞
dx′2 ρred(x2, x

′
2, η)ψn(x

′
2, η) = pn ψn(x2). (4.75)

The quantities ψn(x) are the energy eigen states of the harmonic oscillator with unit
mass and frequency ω̃, and are given by

ψn(x) =
1

2n n!

(
ω̃

π

)1/4

Hn

(√
ω̃ x
)

e−ω̃ x2/2, (4.76)

where the function Hn(z) denotes the Hermite polynomial. With the density matrix
ρred(x2, x

′
2, η) and the wave function ψn(x) at hand [as given by Eqs. (4.73) and (4.76)],

it is straightforward to carry out the integral (4.75) and determine the probability pn to
be [291]

pn = (1− ξ) ξn, (4.77)
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where ξ is given by

ξ =
β

ω̃ + α
. (4.78)

With the help of the above expression for pn, we can carry out the sum in the
definition (4.74) of the entanglement entropy (or quantum discord) to arrive at the
following result in terms of ξ (in this context, see, for example, Refs. [286, 287, 290]):

δ = − ln (1− ξ)− ξ

1− ξ
ln ξ. (4.79)

An equivalent expression that is more convenient for later numerical evaluation in
specific inflationary models is given by

δ =
(
1 +

y

2

)
ln

(
1 +

2

y

)
+ ln

(y
2

)
, (4.80)

where y is related to ξ as follows:

y =
2 ξ

1− ξ
. (4.81)

Upon using Eqs. (4.71), (4.73), (4.78) and (4.81), we find that the quantity y can be
expressed as

y =
(ω̃ − Ω+R)

2 + Ω2
+I

2 ω̃Ω+R

, (4.82)

where Ω+R = (Ω++Ω∗
+)/2 and Ω+I = (Ω+−Ω∗

+)/(2 i) denote the real and imaginary
parts of Ω+. If we further use Eq. (4.38), we obtain that

y =
(1− 2 ω̃ |f |2)2 + (f g∗ + g f ∗)2

4 ω̃ |f |2 , (4.83)

with ω̃2 given by Eq. (4.64) (recall that we have set I = J) and g being defined
as in Eq. (E.6). Note that the quantities in the above expression for y depend on
the non-conformal coupling function J and the solution f . In other words, we can
evaluate the quantum discord δ if we know the classical solutions to the Fourier modes
of the electromagnetic vector potential. In the following section, we shall use the
expressions (4.80) and (4.83) to evaluate the quantum discord in different models of
inflation. We should mention that, in App. F, we have provided an alternative derivation
of the quantum discord, obtained from the covariance matrix of the system.

However, before we proceed to calculate the evolution of the different measures
describing the state of the electromagnetic field in specific inflationary scenarios,
we ought to make a few clarifying remarks. Earlier, when we had focused on a
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single wave number of the electromagnetic field (in Secs. 4.3.2, 4.4.1 and 4.4.2), we
had worked with the modified action (4.27), which corresponds to working with the
conjugate momenta (4.56) or (4.31). In contrast, when calculating the quantum discord
between the electromagnetic modes with the wave vectors k and −k, we have instead
worked with the original action (4.23), which leads to the conjugate momenta (4.62)
or (E.2). We have already described the reason for doing so, viz. the fact that the
transformations (4.59) do not lead to real variables when ω̄2 [given by Eq. (4.20)] proves
to be negative. We should also caution that, when ω̄2 turns negative, the derivation of
the entanglement entropy we have outlined above—which is based on the wave function
ψn(x) describing the normal oscillator [cf. Eq. (4.76)]—may not apply.

There is yet another point that we need to make at this stage of our discussion. In
the non-helical case, ω̄ reduces to the wave number k and hence the above-mentioned
problems do not arise. Also, in such a situation, the actions (4.54) and (4.60) [and,
hence, the corresponding conjugate momenta (4.56) and (4.62)] reduce to the same
form and, in fact, exactly resemble the action describing the scalar perturbations, as we
have already mentioned. Under this condition, on using the expressions (4.52) from the
previous section, we find that the quantity y as defined in Eq. (4.83) can be written in
terms of the squeezing amplitude r as follows:

y = cosh (2 r)− 1. (4.84)

On substituting this relation in Eq. (4.80), we can readily obtain an expression for
quantum discord δ in terms of the squeezing amplitude r in the non-helical case.
In fact, at late times during inflation, since the squeezing amplitude r proves to be
large, we have y ∝ exp (2 r) so that the quantum discord behaves as δ ∝ 2 r [cf.
Eqs. (4.84) and (4.80)], as in the case of the scalar perturbations [262]. However, we
should clarify here that, for the helical fields, we do not have an explicit expression
that relates the quantum discord δ and the squeezing amplitude r. Therefore, we shall
work with Eqs. (4.80) and (4.83) to evaluate quantum discord for the parity violating
electromagnetic fields. In the next section, when we discuss the numerical results in
specific inflationary models, we shall see that, even in the helical case, the quantum
discord has a similar relation to the squeezing amplitude (i.e. δ ∝ 2 r) at late times.

4.5 BEHAVIOUR IN DIFFERENT INFLATIONARY SCENARIOS

With various tools to describe the evolution of the quantum state of the electromagnetic
modes at hand, let us examine the evolution of the state in some specific situations.
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In the following sections, we shall examine the evolution of the quantum state in
simple situations involving slow roll as well as in non-trivial scenarios permitting some
departures from slow roll. We shall assume that I = J and focus on the helical case.
Evidently, the results for the non-helical case can be obtained by considering the limit
wherein γ vanishes.

4.5.1 In de Sitter inflation

Let us first discuss the often considered de Sitter case as it permits analytical solutions.
Evidently, we shall require a form of J(η) in order to make progress. The non-
conformal coupling function that breaks the conformal invariance of the standard
electromagnetic action is typically assumed to be of the following form [5, 9, 169, 225,
263]:

J(η) =

[
a(η)

a(ηe)

]n
, (4.85)

where ηe is the conformal time at the end of inflation and the parameter n is a real
number. Note that the non-conformal coupling function reduces to unity at the end of
inflation. As is well known, in the de Sitter case, the above coupling function leads
to a scale invariant spectrum of the magnetic field for n = −3 and n = 2. We shall
restrict our discussion to n = 2 throughout this chapter in order to avoid the issue of
backreaction (in this context, see, for instance, Refs. [81, 225]).

Recall that, in de Sitter inflation, the scale factor describing the FLRW universe is
given by a(η) = −1/(H

I
η), where H

I
is the Hubble parameter which is a constant. In

such a case, J is given by

J(η) =

(
η

ηe

)−n

(4.86)

so that
J ′

J
= −n

η
,

J ′′

J
=
n (n+ 1)

η2
(4.87)

and, hence, the function f which describes the wave function Ψ(A, η) [cf. Eqs. (4.34),
(4.38) and (4.40)] satisfies the differential equation

f ′′ +

[
k2 − 2σ γ k n

η
− n (n+ 1)

η2

]
f = 0. (4.88)

As we had seen in Chap. 2, the solution to this differential equation which satisfies
the Bunch-Davies initial conditions at early times can be written as follows (for recent
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discussions, see, for example, Refs. [169, 225]):

f(η) =
1√
2 k

e−σ π n γ/2Wi σ n γ,ν(2 i k η), (4.89)

where ν = n + (1/2) and Wλ,ν(z) denotes the Whittaker function [291]. We find that,
as (−k η) → ∞, the above function f and the quantity g = f ′ − (J ′/J) f reduce to the
asymptotic forms in Eqs. (4.45) and (4.46), as required. We should mention that, for a
range of values of the Hubble parameter H

I
, the parameter γ and n ≃ 2, the resulting

spectrum of the magnetic field proves to be nearly scale invariant and consistent with
the current constraints from observations [225, 263].

When n = 2, upon using the solution (4.89) for the mode function f in the
expression (4.53a) for the squeezing amplitude r, we obtain that, at late times (i.e. as
η → 0)

cosh (2 r) ≃ 9 e−2π σ γ sinh (2π σ γ)

4 π σ γ (1 + 4 γ2)

(
1

k η

)4

. (4.90)

This result implies that, towards the end of inflation, the squeezing amplitude r behaves
as (since r is large) exp (2 r) ∝ a4 or, equivalently, r ∝ 2N . Actually, in the
following sections, when we analyze the behaviour of the squeezing amplitude in
specific inflationary models, we shall see that such a behaviour arises soon after the
modes leave the Hubble radius. The above result can be inverted to express the
squeezing amplitude r (for large r) as follows:

r ≃ ln

(
3

2

)
− 2 ln

(
k

ke

)
− π σ γ +

1

2
ln

[
sinh (2π σ γ)

π σ γ (1 + 4 γ2)

]
, (4.91)

where ke represents the wave number that leaves the Hubble radius at the end of
inflation. It is useful to note that, for small γ, we find that r behaves as

r ≃ ln

(
3

2

)
+

1

2
ln 2− 2 ln

(
k

ke

)
− π σ γ, (4.92)

which suggests that r is linear in γ in the limit. Also, we had earlier pointed out that,
for large r, the quantum discord δ behaves linearly with r. Later, when we evaluate the
quantum discord δ numerically in the helical case, we shall find that, for small γ, the
quantum discord depends linearly on the helicity parameter γ.

To understand the behaviour of the squeezing angle, we can make use of
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Eqs. (4.52) and write

⟨P̂2⟩
k2 ⟨Â2⟩

=
1− tanh (2 r) cos (2φ)

1 + tanh (2 r) cos (2φ)
=

|g|2
k2 |f |2 . (4.93)

At late times, when the squeezing amplitude r is large, tanh (2 r) tends to unity, and the
above relation simplifies to the following expression for the squeezing angle φ:

tanφ = ± |g|
k |f | . (4.94)

Upon using the solution (4.89) in the de Sitter case, we find that, at late times, the
squeezing angle reduces to

tanφ ≃ −σ γ. (4.95)

This implies that, while the angle φ vanishes for the non-helical modes, it is non-zero
in the helical case and is of opposite signs for the two states of polarization.

Until now, we have focused on the n = 2 case, which leads to a scale invariant
spectrum for the magnetic field. It is now interesting to examine if there can occur a
situation (say, for a specific value of the parameter n) wherein the squeezing amplitude
over large scales is small. In other words, do there exist non-trivial coupling functions
which lead to a small squeezing amplitude r over large scales so that the modes remain
close to the initial vacuum state at late times? To understand this point, it proves to
be helpful to express the squeezing amplitude in terms of the power spectra of the
electromagnetic fields. Recall that the power spectra of the helical magnetic and electric
fields, say, P

B
(k) and P

E
(k), are defined as follows [97, 99, 167, 169]:

P
B
(k) = P+

B
(k) + P−

B
(k) =

k5

4 π2 a4

[∣∣A+
k

∣∣2 + ∣∣A−
k

∣∣2] , (4.96a)

P
E
(k) = P+

E
(k) + P−

E
(k) =

k3

4 π2 a4

[∣∣∣∣A+
k
′ − J ′

J
A+

k

∣∣∣∣2 + ∣∣∣∣A−
k
′ − J ′

J
A−

k

∣∣∣∣2
]
.

(4.96b)

Of course, in the non-helical case, the contributions from the two polarizations to
the power spectra become equal. The above expressions for the power spectra
and Eq. (4.53a) suggest that we can express the squeezing amplitude r for a given
polarization σ as follows:

cosh (2 r) =
4 π2 a4

k4
[
Pσ

B
(k) + Pσ

E
(k)
]
. (4.97)
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Let us first consider the non-helical case. For n > 1/2, we find that, at late times,
we can express the squeezing amplitude as

cosh (2 r) ∝ A1 k
−2n +B1 k

2−2n, (4.98)

whereas for n < −1/2, we have

cosh (2 r) ∝ A2 k
2n+2 +B2 k

2n, (4.99)

where (A1, B1, A2, B2) are constants [225, 263]. Under either of these conditions, one
of the two terms in the above expressions dominates at small k suggesting a large
squeezing amplitude. In the helical case, for either polarization and for a non-zero n,
we have

cosh (2 r) ∝ A3 k
1−|2n+1| +B3 k

−2 |n|, (4.100)

where (A3, B3) are constants. Again, for any n ̸= 0, one of the two terms dominates
at small k leading to a significant squeezing amplitude. The above discussion suggests
that any non-trivial coupling function J leaves the large scale electromagnetic modes in
a highly squeezed state.

4.5.2 In slow roll scenarios

Let us now turn to understand the behaviour of the Wigner ellipse, the squeezing
amplitude r and quantum discord δ in specific inflationary models. We shall first
illustrate the behaviour in slow roll inflation using the popular Starobinsky model. As
we had discussed in Chap. 2, the Starobinsky model is described by the potential

V (ϕ) = V0

[
1− exp

(
−
√

2

3

ϕ

M
Pl

)]2
, (4.101)

where V0 is a constant that is determined by the COBE normalization of the scalar
perturbations. For V0 = 1.43 × 10−10M4

Pl
, it is known that, at the pivot scale of k∗ =

5 × 10−2Mpc−1 (often assumed to leave the Hubble radius about N∗ = 50 e-folds
before the end of inflation), the Starobinsky model leads to the scalar spectral index of
n

S
= 0.965 and the tensor-to-scalar ratio of r ≃ 4.3 × 10−3, which fit the data from

the anisotropies in the CMB very well [52]. (The tensor-to-scalar ratio r should not
be confused with the squeezing amplitude which is denoted in the same manner.) In
the slow roll approximation, the evolution of the field can be described in terms of the
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e-folds N by the expression

N −Ne ≃ −3

4

[
exp

(√
2

3

ϕ

M
Pl

)
− exp

(√
2

3

ϕe

M
Pl

)

−
√

2

3

(
ϕ

M
Pl

− ϕe

M
Pl

)]
, (4.102)

where ϕe is the value of the field at the e-fold Ne when inflation comes to an end.

As we mentioned, we require the non-conformal coupling function to behave as
J(ϕ) ∝ a2 in order to generate magnetic fields with a nearly scale invariant spectrum.
Since the evolution of the field ϕ(N) differs from one model of inflation to another,
to achieve J(N) = exp [2 (N − Ne)], the form of J(ϕ) will depend on the model at
hand [95, 225, 263]. In the Starobinsky model, we can choose the function J(ϕ) to be

J(ϕ) = exp

{
−3

2

[
exp

(√
2

3

ϕ

M
Pl

)
− exp

(√
2

3

ϕe

M
Pl

)

−
√

2

3

(
ϕ

M
Pl

− ϕe

M
Pl

)]}
. (4.103)

The equations governing the non-helical and helical electromagnetic modes
corresponding to such a coupling function can be solved numerically to arrive at the
power spectra of the magnetic and electric fields (in this regard, see Refs. [225, 263]).
We should point that the above coupling function J(ϕ) leads to minor deviations from
the desired behaviour of J ∝ a2 and, as a result, the spectrum of the magnetic field is
nearly scale invariant rather than a strictly scale independent one [225].

With the numerical solutions to the electromagnetic modes Aσ
k at hand, we can

immediately evaluate the Wigner ellipse, the squeezing amplitude r and the quantum
discord δ using the expressions (4.44) (4.53a) and (4.80) [with y determined by
Eq. (4.83)]. In Fig. 4.1, we have illustrated the evolution of the Wigner ellipse for
a typical large scale mode in the Starobinsky model for the non-helical as well as
helical fields. In the figure, we have also included the classical trajectory in phase
space associated with the real parts of the solution f and the corresponding conjugate
momentum g [cf. Eqs. (4.40) and (4.39)] that determine the wave function Ψ(A, η).
In Fig. 4.2, we have plotted the evolution of the quantities r and δ as a function of
the e-folds N in the Starobinsky model for electromagnetic modes with two different
wave numbers. In the figure, we have also plotted the ‘spectra’ r(k) and δ(k), i.e. the
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Figure 4.1: We have plotted the evolution of the Wigner ellipse (in red, blue, green and
cyan) and the classical trajectory (in magenta) in the phase space Ā-P̄ for
the electromagnetic mode in the Starobinsky model with the wave number
corresponding to the CMB pivot scale, i.e. k∗ = 0.05Mpc−1. We have
plotted these quantities for the non-helical (in the middle) as well as the
helical cases (on the left and right for σ = −1 and σ = +1, respectively).
The Wigner ellipses have been plotted at the following times: when the
initial conditions are imposed on the mode in the sub-Hubble regime (in
red, but hidden by the magenta curve), when k =

√
J ′′/J (equivalent to

the time of Hubble exit, in blue), on super-Hubble scales (in green) and
closer to the end of inflation (in cyan). We have set the helicity parameter γ
to be unity in plotting these figures. Clearly, the Wigner ellipse starts as a
circle at early times and it is increasingly squeezed as time passes by. In
the non-helical case, the major axis of the ellipse eventually orients itself
along the Ā axis. However, in the helical case, at late times, the major
axis of the ellipse orients itself along a straight line with a non-vanishing
slope. As suggested by the condition (4.95), while the helical mode with
the polarization state σ = −1 has a positive slope, the state with σ = +1
has a negative slope. Moreover, as the relation (4.94) suggests, we find that,
at late times, the slope of the major axis of the ellipse is the same as that of
the classical trajectory.

values of r and δ evaluated at the end of inflation for a wide range of wave numbers.
In Fig. 4.3, we have plotted the dependence of the quantum discord δ on the helicity
parameter γ for modes with the two different wave numbers. The following points are
clear from these figures. Firstly, as expected, the Wigner ellipse starts as a circle and
is increasingly squeezed with time. Also, as suggested by Eq. (4.94), we find that, at
late times, the slope of the major axis of the Wigner ellipse matches that of the classical
trajectory. Secondly, note that, on super-Hubble scales, the squeezing amplitude and the
quantum discord associated with the σ = −1 helical modes have higher values when
compared to the non-helical modes and the σ = +1 helical modes. In fact, as should be
clear from the inset in Fig. 4.2, their values begin to differ even as they evolve in the sub-
Hubble regime. Thirdly, as expected from the results in the case of de Sitter inflation
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Figure 4.2: The evolution of the squeezing amplitude r(N) (in red and blue) and
quantum discord δ(N) (in green and cyan) have been plotted (on the left)
for electromagnetic modes with two different wave numbers in the slow roll
scenario admitted by the Starobinsky model. We have plotted the evolution
for the CMB pivot scale of k∗ = 0.05Mpc−1 (in red and green) and the
small scale mode with the wave number k = 1010Mpc−1 (in blue and cyan),
which have been computed numerically. The vertical lines (in black, on the
left) indicate the time when k2 = J ′′/J , i.e. roughly the time when the
two modes leave the Hubble radius (at N = 18.75 and N = 44.72). The
inset (on the left, plotted on the log-linear scale) highlights the evolution of
the squeezing amplitude associated with the pivot scale at early times. We
have also plotted (on the right) the ‘spectra’ of the squeezing amplitude r(k)
and the quantum discord δ(k), evaluated at the end of inflation, for a wide
range of wave numbers. Apart from the results for the non-helical case
(which have been plotted as solid curves), we have plotted the results for the
helical case (plotted as dotted and dashed lines, for σ = +1 and σ = −1,
respectively). We have set γ = 1 in arriving at these figures. As we
have discussed in the text, the evolution of the squeezing amplitude and
the quantum discord as well as their spectra behave in the manner expected
from the analytical results in de Sitter inflation discussed earlier.

discussed earlier, after the wave numbers have crossed the Hubble radius, r(N) and
δ(N) behave as 2N and 4N , respectively, in all the cases. Fourthly, in the linear-log
plot, the spectra r(k) and δ(k) of the squeezing amplitude and quantum discord behave
as (k/ke)−2 and (k/ke)

−4, as we had discussed [cf. Eq. (4.91)]. Lastly, it is clear from
Fig. 4.3 that quantum discord δ behaves linearly with the helicity parameter for small γ
[cf. Eq. (4.92)].
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Figure 4.3: The quantum discord δ evaluated at the end of inflation in the case of the
Starobinsky model has been plotted as a function of the helicity parameter γ.
We have plotted the relation for two wave numbers, viz. the CMB pivot
scale k∗ = 0.05Mpc−1 (in red) and k = 1010Mpc−1 (in blue), for the two
helical modes with σ = +1 (as dotted lines) and σ = −1 (as dashed lines).
Note that, for small γ, δ behaves linearly with γ.

4.5.3 In scenarios involving departures from slow roll

Let us now turn to understand the behaviour of the squeezing amplitude r and quantum
discord δ in situations involving departures from slow roll. It is well known that specific
features in the inflationary scalar power spectrum improve the fit to the CMB data, when
compared to the nearly scale invariant power spectra that arise in slow roll scenarios
(for a partial list of efforts in this regard, see Refs. [178, 180–190, 292]). Moreover,
recently, there has been a considerable interest in the literature to study inflationary
models that generate enhanced power on small scales and lead to the formation of a
significant number of PBHs (in this context, see, for instance, Refs. [196–203, 293]). If
such features are to be generated, then the inflationary potential should admit deviations
from slow roll. In fact, the stronger the feature in the scalar power spectrum (as is,
say, required to produce a considerable number of PBHs), the sharper should be the
departures from slow roll inflation. Interestingly, in a recent work, we have illustrated
that such deviations from slow roll inflation also lead to strong features in the spectra
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of magnetic fields [225] We have also shown that, while it is possible to restore scale
invariance of the spectrum of the magnetic field in some situations, it is achieved at the
cost of severe fine tuning [263]. In this section, we shall discuss the behaviour of the
squeezing amplitude and quantum discord in single and two field models of inflation
that permit strong departures from slow roll.

In single field models

We shall first consider two single field models that lead to sharp departures from slow
roll inflation and hence to strong features in the scalar power spectra. The first model
we shall consider is described by the potential [181, 182, 189]

V (ϕ) =
m2

2
ϕ2 − 2m2

3ϕ0

ϕ3 +
m2

4ϕ2
0

ϕ4, (4.104)

and we shall work with the following values of the two parameters involved: m =

7.17 × 10−8M
Pl

and ϕ0 = 1.9654M
Pl

. (As before, we shall refer to this model as
PI1 in the figure below.) Also, we shall choose the initial values of the field and the
first slow roll parameter to be ϕi = 12.0M

Pl
and ϵ1i = 2 × 10−3. For these values

of parameters and initial conditions, inflation lasts for about 110 e-folds in the model,
which is much longer than the duration typically considered. However, if we assume
that the pivot scale exits the Hubble radius about 91 e-folds before the termination of
inflation, we find that the model leads to a suppression in the scalar power spectrum on
the largest scales and thereby to a moderate improvement in the fit to the CMB data (in
this context, see Ref. [189]). The second model that we shall consider is described by
the potential [199]

V (ϕ) = V0

{
tanh

(
ϕ√
6M

Pl

)
+ A sin

[
1

fϕ
tanh

(
ϕ√
6M

Pl

)]}2

. (4.105)

(We shall refer to this model as USR in the figure below.) We shall choose to work
with the following values of the parameters: V0 = 2 × 10−10M4

Pl
, A = 0.130383 and

fϕ = 0.129576. We find that, if we set the initial value of the field to be ϕi = 6.1M
Pl

,
with ϵ1i = 10−4, we obtain about 66 e-folds of inflation in the model. Moreover, we
shall assume that the pivot scale exits the Hubble radius about 56.2 e-folds prior to
the termination of inflation. This model generates enhanced power on small scales
which results in the production of a significant number of PBHs. Both these models
contain a point of inflection. It is located at ϕ0 = 1.9654M

Pl
in the first model and at

ϕ0 = 1.05M
Pl

in the second [189, 202]. The point of inflection leads to an epoch of
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ultra slow roll inflation which is responsible for the sharp features in the power spectra
(for a detailed discussion in this regard, see the recent review [293]).

Due to the strong departures from slow roll, in general, it proves to be challenging
to arrive at analytical solutions for the background scalar field in these models. As
we discussed, to arrive at a nearly scale invariant spectrum for the magnetic field, we
need to choose the non-conformal coupling function to behave as J ∝ a2. Since there
does not exist analytical solutions for the scalar field in the models of our interest, we
are unable to construct an analytical form for J(ϕ) that leads to the desired behaviour,
as we had done in the case of the Starobinsky model [cf. Eq. (4.103)]. Therefore,
we have to resort to a numerical approach to arrive at a suitable non-conformal
coupling function J(ϕ) (for discussions in this regard, see our recent efforts [225, 263]).
However, because of the points of inflection, in these potentials, the non-conformal
coupling function J(ϕ) hardly evolves as the field approaches the point of inflection
and the epoch of ultra slow roll sets in. Such a behaviour generates magnetic fields with
spectra that have a strong scale dependence. The resulting spectra of the magnetic field
are scale invariant over large scales (i.e. over wave numbers that leave the Hubble radius
prior to the onset of the epoch of ultra slow roll) and behave as k4 on small scales (i.e.
over wave numbers that leave the radius after ultra slow roll has set in). Moreover, it is
found that the scale invariant amplitude of the magnetic field on large scales is strongly
suppressed, with the amplitude being lower when the onset of ultra slow roll is earlier.
In Fig. 4.4, we have plotted the spectra of the squeezing amplitude r(k) and quantum
discord δ(k) for the magnetic fields generated in the two inflationary models described
above. Note that, on larger scales (corresponding to the scale invariant domain in the
spectra of the magnetic field), the quantities r(k) and δ(k) behave as in the slow roll
case. However, over smaller scales wherein the spectra of the magnetic field behave
as k4, we find that r(k) and δ(k) are rather small suggesting that the modes have not
evolved significantly from the Bunch-Davies vacuum.

In two field models

We had pointed out above that, in the case of single field models permitting an epoch of
ultra slow roll, the non-conformal coupling function J(ϕ) hardly evolves after the onset
of ultra slow roll. Such a behaviour leads to magnetic field spectra which have strongly
suppressed scale invariant amplitudes on larger scales and k4 dependence on smaller
scales. We have recently shown that these challenges can be circumvented in two field
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Figure 4.4: The ‘spectra’ of the squeezing amplitude r(k) (in red and blue) and quantum
discord δ(k) (in green and cyan) that arise in the single and two field
inflationary models of our interest have been plotted (in PI1 and USR on
top, and in TFM1 and TFM2 at the bottom, respectively) for a wide range of
wave numbers. Note that, in the case of single field models, r(k) and δ(k)
(plotted on top) is rather small over wave numbers that leave the Hubble
radius after the onset of ultra slow roll. However, in the case of the two field
models, the quantities r(k) and δ(k) behave virtually in the same manner as
they do in the slow roll scenario. This behaviour has been achieved with the
aid of the additional field available in the two field models.
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models of inflation [263]. In models involving two fields, it is possible to construct
inflationary scenarios that generate sharp features in the scalar power spectra (on either
large or small scales) and design suitable non-conformal coupling functions that lead to
nearly scale invariant spectra of magnetic fields with the desired amplitudes. We shall
now discuss the behaviour of the squeezing amplitude r and the quantum discord δ in
such models.

We shall consider two models, one which leads to a suppression in the spectrum
of curvature perturbations on large scales and another which leads to an enhancement
in the scalar power on small scales, models we had discussed in the previous chapter.
The two field models are described by the action [228, 231]

S[ϕ, χ] =

∫
d4x

√−g
[
−1

2
∂µϕ ∂

µϕ− f(ϕ)

2
∂µχ∂

µχ− V (ϕ, χ)

]
, (4.106)

where, evidently, while ϕ is a canonical scalar field, χ is a non-canonical scalar field
due to the presence of the function f(ϕ) in the term describing its kinetic energy. We
shall assume that f(ϕ) = exp (2 b̄ ϕ), where b̄ is a constant. The first model we shall
consider is described by the potential [228]

V (ϕ, χ) =
m2

ϕ

2
ϕ2 + V0

χ2

χ2
0 + χ2

. (4.107)

(As we did earlier, we have referred to this model as TFM1 in the figure
above.) We shall work with the following set of values for the parameters
involved: (mϕ/MPl

, V0/M
4
Pl
, χ0/MPl

, b̄M
Pl
) = (1.672 × 10−5, 2.6 × 10−10,

√
3, 1.0).

Also, we shall choose the initial values of the fields to be ϕi = 8.8M
Pl

, χi = 5.76M
Pl

,
and set ϵ1i = 2.47×10−2. For these values of the parameters, we obtain about 78 e-folds
of inflation. The second potential we shall investigate can be arrived at by interchanging
the individual potentials for the two fields we considered above, and is given by [231]

V (ϕ, χ) = V0
ϕ2

ϕ2
0 + ϕ2

+
m2

χ

2
χ2. (4.108)

(As before, we have referred to this model as TFM2 in the figure
above.) We shall work with the following set of values for the parameters
involved: (V0/M4

Pl
, ϕ0/MPl

,mχ/MPl
, b̄M

Pl
) = (7.1× 10−10,

√
6, 1.19164× 10−6, 7.0)

and assume that ϕi = 7.0M
Pl

, χi = 7.31M
Pl

and ϵ1i = 4.32 × 10−4. For these
parameters and initial conditions, we obtain about 84 e-folds of inflation in the model.

These models lead to two stages of slow roll inflation, with each stage being driven
by one of the two fields. There arises a sharp turn in the field space as the transition
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from one stage to another occurs. The transition leads to a tachyonic instability and
the isocurvature perturbations source the curvature perturbations associated with wave
numbers which leave the Hubble radius during the turn in the field space [228, 231]. The
first of the above two models leads to a suppression in scalar power on large scales [231],
while the second leads to an enhancement in power on small scales [228]. In these
models, we can construct non-conformal coupling functions that depend on the field
driving slow roll inflation in each of the two stages. The two functions can then be
combined together to arrive at a complete non-conformal coupling function J(ϕ, χ)

that largely leads to the desired behaviour of J ∝ a2, barring the period around the
transition in the dependence of J on one field to the other (for a detailed discussion in
this regard, see Ref. [263]). We should clarify that the non-conformal coupling function
has to be fine tuned to a certain extent to avoid substantial deviations from the J ∝ a2

behaviour around the transition. The resulting non-conformal coupling function leads
to a nearly scale invariant spectrum for the magnetic field which contains some features
around the range of wave numbers which leave the Hubble radius around the time of the
transition. In Fig. 4.4, we have plotted the spectra of the squeezing amplitude r(k) and
quantum discord δ(k) that arise in the two field models that we have introduced above.
Clearly, the quantities r(k) and δ(k) contain some small wiggles around the domain (in
wave numbers) when the spectra of the magnetic field contain features (for the spectra
of the magnetic field that arise in these cases, see Fig. 3.5 and Ref. [263]). Otherwise,
the spectra of the squeezing amplitude and quantum discord behave in the same manner
as in the slow roll scenario (cf. Fig. 4.2).

4.6 DISCUSSION

In this chapter, we have examined the evolution of the quantum state of non-helical as
well as helical electromagnetic fields generated during inflation. We have tracked the
evolution of the state of the electromagnetic field using measures such as the Wigner
ellipse, squeezing amplitude and quantum discord. We find that, in a manner similar
to the case of the scalar perturbations, the squeezing amplitude and quantum discord
associated with the non-helical electromagnetic modes evolve linearly with e-folds
on super-Hubble scales. Interestingly, in case of the helical electromagnetic field,
the squeezing amplitude as well as the quantum discord of one of the two states of
polarization (σ = −1) is enhanced when compared to the non-helical case, whereas
they are suppressed for the other (i.e. for the polarization state with σ = +1). In fact,
the enhancement (or suppression) occurs as the helical modes leave the Hubble radius
and, on super-Hubble scales, the squeezing amplitude (and quantum discord) behave
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as a function of e-folds just as in the non-helical case. We find that, over the range
of the values of the helicity parameter γ that we have considered, the enhancement of
the squeezing amplitude and quantum discord is not very significant. We had limited
ourselves to γ ≲ 2.5 to avoid the issue of backreaction due to the helical modes on the
background (in this context, see Ref. [225]).

On a related note, we find that there is a similarity between the effects on the
electromagnetic field due to the violation of parity during inflation that we have
discussed and the Schwinger effect associated with, say, a charged scalar field that
arises when a constant electric field is present in the de Sitter spacetime (for relatively
recent discussions on the Schwinger effect in the de Sitter spacetime, see, for instance,
Refs. [294–297]). The electric field provides a direction breaking the isotropy of the
FLRW universe. As a result, the modes of the charged field behave in a fashion akin to
the helical electromagnetic field with the modes propagating along the direction of the
electric field behaving differently from the modes traveling in the opposite direction.
We have discussed these points in some detail in App. G.

Let us conclude by highlighting a few different directions in which further
investigations need to be carried out. Firstly, it will be worthwhile to examine
carefully (including backreaction) the effects due to helicity for larger values of γ [298].
Secondly, due to a technical difficulty, we had faced in the helical case (as described in
Sec. 4.4.3), we have worked with two different conjugate momenta [given by Eqs. (4.31)
and (E.2)] while calculating the squeezing amplitude r and the quantum discord δ.
While we have been able to evaluate the squeezing amplitude r with the wave function
starting in the Bunch-Davies vacuum (as described in Sec. 4.3.2), we have evaluated
the quantum discord δ with the wave function beginning in a slightly squeezed initial
state (arising due to the choice of the conjugate momentum; in this context, see the
discussion in App. E). We need to overcome this challenge and evaluate the quantum
discord of the system associated with the action (4.54). Thirdly, the effects due to
parity violation we have encountered can also occur in the case of tensor perturbations
described by modified theories such as the Chern-Simons theory of gravitation (in this
regard, see, for example, Ref. [299]). It seems worthwhile to examine the effects of
parity violation on the evolution of the quantum state in the case of tensor perturbations.
Lastly, it has been pointed out that the quantum-to-classical transition of the primordial
scalar perturbations can affect the extent of non-Gaussianities generated in the early
universe [300]. It will be interesting to consider the effects that arise due to the
decoherence of the scalar (or the tensor) perturbations and the magnetic fields on
the cross-correlations between the magnetic fields and the curvature (or the tensor)
perturbations [106, 134, 168, 207, 301, 302]. We are presently investigating some of
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these issues.
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CHAPTER 5

SUMMARY AND OUTLOOK

5.1 SUMMARY

The main focus of this thesis has been to explore the generation and evolution of
magnetic fields in non-trivial inflationary scenarios. We have considered inflationary
models which give rise to features in the scalar power spectra over various length scales
and computed the corresponding strengths of the magnetic fields generated in these
models. Further, we have utilized different tools to study the evolution of the quantum
state of the electromagnetic fields during inflation. In this section, we shall provide a
concise summary of the key findings derived from our analyses.

In Chap. 2, we have investigated the origin of magnetic fields in inflationary
models driven by a single, canonical scalar field that lead to features in the scalar power
spectrum. These features are typically generated with the aid of brief departures from
slow roll inflation. We have constructed model-dependent non-conformal coupling
functions to examine whether nearly scale invariant magnetic fields of observable
strengths can be produced in such scenarios. It proves to be difficult to solve the
background equations analytically in some of the models that generate strong features
in the scalar power spectrum. Hence, in these cases, we have solved the background
equations numerically in the initial slowly rolling phase and have constructed coupling
functions using a polynomial fit to the solutions. We have shown that such coupling
functions lead to strong features in the power spectra of the electromagnetic fields.
Specifically, in situations that permit a brief epoch of ultra slow roll inflation, we
find that the electromagnetic spectra exhibit a suppression of power over large scales
and a strong blue tilt over small scales. Although, in some models, it is possible to
overcome the issue with a finely tuned coupling function, generically, the features in
the electromagnetic power spectra seem unavoidable in models that permit non-trivial
dynamics.

In Chap. 3, we have described the manner in which, using two field models, we
can circumvent the challenges that arise in the generation of magnetic fields in single
field inflationary models that permit non-trivial dynamics, in particular, a phase of ultra
slow roll. The presence of a second field in inflationary models involving two fields
provides a richer dynamics. In the two field models, the features in the scalar power
spectrum are generated due to a turn in the field space. With the aid of the fields that are
slowly rolling prior to and after the turn, we have been able to construct non-conformal
coupling functions (using the method of a polynomial fit we alluded to above) that



lead to the required behaviour and hence to magnetic fields of the desired shapes and
strengths. We find that, while it is possible to generate nearly scale invariant spectra
for the magnetic fields, the features can not be removed entirely. Moreover, in one of
the models, we have proceeded to compute the contributions of the PMFs to the CMB
anisotropies. We have utilized MagCAMB to calculate the imprints due to the so-called
passive and compensated modes. Also, using an estimate for the power spectrum of the
scalar perturbations induced by the magnetic field and CAMB, we have also evaluated
the contributions to the angular power spectrum of the CMB due to the inflationary
magnetic mode. We find that, in the inflationary model that we have considered, the
contributions to the angular power spectra of the CMB due to the magnetic fields
are considerably smaller in amplitude when compared to the contributions due to the
primary scalar and tensor perturbations generated from the quantum vacuum.

In Chap. 4, working in the Schrodinger picture, we have utilized different measures
to understand the evolution of the quantum state associated with the Fourier modes
of the electromagnetic fields during inflation. We have examined the behaviour of
the quantum state of the system using measures such as the Wigner function and
the squeezing parameters. We have also evaluated the entanglement entropy (or,
equivalently, the quantum discord in the situation of interest) associated with the system
when it is partitioned into Fourier modes with opposite wave vectors. Interestingly,
we have shown that, in the case of the helical electromagnetic fields, the squeezing
amplitude and quantum discord are enhanced for one of the two states of polarization
when compared to the other and also when compared to the non-helical case.

5.2 OUTLOOK

The main objective of this thesis has been to investigate the generation of PMFs in non-
trivial inflationary scenarios. There are different directions in which these efforts can
be extended. In what follows, we shall highlight some of the ideas that can be explored
further.

We have worked with non-conformal coupling functions that avoid the issue of
backreaction. However, the coupling functions we have constructed suffer from the
strong coupling problem. There have been several attempts in the literature to construct
coupling functions that avoid the backreaction as well as the strong coupling problems
(in this context, see, for instance, Refs. [169, 303]). It will be worthwhile to construct
such model-dependent coupling functions and examine inflationary magnetogenesis in
these situations.
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The imprints of the scalar and the tensor perturbations on the anisotropies in the
CMB have been well investigated in the literature. It is equally important to study the
contributions of the PMFs to the anisotropies in the CMB. To understand these effects,
numerical codes such as MagCAMB (which we made use of to arrive at the results
presented in Chap. 3) have been developed to compute the signatures of the PMFs on
the temperature and polarization angular power spectra of the CMB through the passive
and compensated modes [124]. A limitation with the numerical codes that compute the
signatures of the PMFs on the CMB is that the power spectrum of the magnetic fields is
assumed to be of the power law form (see, for instance, Refs. [131, 174, 304]). A power
law is a good choice for describing the spectra of PMFs generated in slow roll inflation.
However, when there are deviations from slow roll, there arise departures from such a
form. It will be worthwhile to develop a code to compute the angular power spectra of
the CMB induced by the PMFs generated in a generic inflationary scenario.

Another direction that is worth pursuing corresponds to non-Gaussianities
involving the PMFs. There has been a continuing interest in calculating the
cross-correlations between the scalar perturbations and the PMFs generated during
inflation [106, 168]. The imprints of these cross-correlations on the CMB and the
large scale structure have also been investigated [305]. However, we find that most
of these effects have been examined only in the context of slow roll inflation. As
we have discussed in this thesis, deviations from slow roll inflation can lead to
significant features in the spectra of the magnetic fields. It seems timely to examine
the non-Gaussianities involving the magnetic fields generated in non-trivial inflationary
scenarios and their observational signatures.

When the anisotropies in the CMB are measured, they are treated as classical,
stochastic correlations. However, they are expected to be imprints of the scalar and
tensor perturbations as well as of the PMFs, which originate from quantum fluctuations
during inflation. As we have mentioned earlier, the quantum-to-classical transition of
the primordial perturbations is one of the fundamental, open problems in cosmology
today. In this thesis, we have shown that measures such as the squeezing amplitude and
quantum discord of helical magnetic fields are enhanced when compared to the non-
helical fields. In the case of scalar and tensor perturbations, recently, other measures
such as the violation of the Bell’s inequality has been considered to understand if
there are observable effects that can indicate the quantum origin of the primordial
perturbations [306]. Motivated by these efforts, as a next step, we can examine the
behaviour of Bell’s inequalities in observables constructed out of the modes of the
electromagnetic fields. The violation of parity can enhance the measures involved
leading to a possibly observable effect. Another related aspect that is important to
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consider is the issue of decoherence. The impact of decoherence on the scalar power
and bi-spectra due to additional degrees of freedom has been explored over the last
couple of years [300, 307, 308]. It will be interesting to carry out similar analyses in the
case of cross-correlations between the scalar or tensor perturbations and the magnetic
fields.
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APPENDIX A

THE ELECTROMAGNETIC SPECTRAL INDICES
IN SLOW ROLL INFLATION

In this appendix, we shall derive the spectral indices of the non-helical magnetic and
electric fields, viz. n

B
and n

E
, in the slow roll approximation.

Given the form J = [a(η)/a(ηe)]
n for the non-minimal coupling function [cf.

Eq. (2.5)], one finds that
J ′′

J
= H2

(
n2 + n− n ϵ1

)
, (A.1)

where ϵ1 = −Ḣ/H2 is the first slow roll parameter, and we should emphasize that
this relation is exact. Note that the quantity H = a′/a is the conformal Hubble
parameter. As we had discussed earlier [cf. Eq. (1.36)], in the slow roll approximation,
the conformal Hubble parameter can be written as [63, 64, 71, 73, 212–218]

H =
a′

a
≃ − 1

(1− ϵ1) η
. (A.2)

so that, at the first order in the slow roll parameter ϵ1, we have

J ′′

J
≃ 1

η2
[
n2 + n+ (2n2 + n) ϵ1

]
. (A.3)

In such a case, the solution to Eq. (2.3) that satisfies the Bunch-Davies initial conditions
is given by

Ak(η) =

√
−π η

4
ei [ν+(1/2)]π/2H(1)

ν (−k η), (A.4)

where, as we had mentioned earlier, H(1)
ν (z) is the Hankel function of the first kind. For

ϵ1 ≪ 1, at the first order in the slow roll parameter, the index ν is given by

ν ≃
(
n+

1

2

)
+ n ϵ1. (A.5)

We should point out that, when ϵ1 = 0, the above solution reduces to the de Sitter
solution (2.6), as required. Since we are eventually interested in the case n = 2, for
convenience, we shall assume that ν > 1. In such a case, we find that the power spectra
of the magnetic and electric fields evaluated at late times can be expressed as

P
B
(k) ∝ k5−2 ν , P

E
(k) ∝ k7−2 ν , (A.6)



which correspond to the spectral indices of

n
B
= 4− 2n (1 + ϵ1), n

E
= 6− 2n (1 + ϵ1). (A.7)

For n = 2, these correspond to n
B
= −4 ϵ1 and n

E
= 2− 4 ϵ1.

Since 0 < ϵ1 ≪ 1, the above results imply that, for n = 2, in the non-helical case,
the spectrum of the magnetic field should be red in slow roll inflation. However, on
closer inspection of Fig. 2.2, we find that the spectrum of the magnetic field is red in the
case of the quadratic potential (2.39), but is mildly blue in the cases of the small field
model (2.42) and the first Starobinsky model (2.45), which lead to slow roll inflation.
This can be attributed to the fact that the coupling functions (2.41), (2.44) and (2.47) do
not exactly mimic the coupling function J = [a(η)/a(ηe)]

n. In the case of the quadratic
potential, for the choice of the coupling function (2.41), we find that the quantity J ′′/J

can be expressed as

J ′′

J
= a2H2

[
n2H2

m2
(3 ϵ1 − ϵ21)− n ϵ1

+
nH

m

(
3 ϵ1 − ϵ21

)1/2 (
1− ϵ1 +

ϵ2
2

)]
. (A.8)

We should mention that no approximations have been made in arriving at this
expression. It does not seem possible to express the quantity J ′′/J purely in terms
of the slow roll parameters. For n = 2, if we make use of the expression (A.2) for the
conformal Hubble parameter H, we obtain that

J ′′

J
=

1

η2

{
1

(1− ϵ1)2

[
4H2

m2
(3 ϵ1 − ϵ21)− 2 ϵ1

+
2H

m

(
3 ϵ1 − ϵ21

)1/2 (
1− ϵ1 +

ϵ2
2

)]}
. (A.9)

We should clarify that, while the quantity within the square brackets in this expression
is an exact one, the conformal Hubble parameter has been evaluated in the slow roll
approximation. Clearly, in such a case, the solution to the electromagnetic vector
potential can be written in terms of the Hankel function as in Eq. (A.4). The index ν can
be determined by equating the quantity within the curly brackets in the above expression
for J ′′/J to ν2 − (1/4). At the time when the pivot scale leaves the Hubble radius, for
the choice of the parameters we have worked with, we find that ν = 2.513. Since
2 ν > 5, the spectrum of the magnetic field exhibits a red tilt for our choice of the
coupling function in the case of the quadratic potential [cf. Eq. (A.6)].
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We find that, in general, the quantity J ′′/J can be expressed as

J ′′

J
= a2H2 µ2

B
(N), (A.10)

where µ
B
(N) is given by

µ2
B
(N) =

JNN

J
+ (1− ϵ1)

JN
J
, (A.11)

with JN = dJ/dN and JNN = d2J/d2N . If we make use of the conformal Hubble
parameter in the slow roll approximation [cf. Eq. (A.2)], then, we can write

J ′′

J
=

1

η2
µ2

B
(N)

(1− ϵ1)
2 , (A.12)

which implies that ν2 − (1/4) = µ2
B
/(1 − ϵ1)

2, with µ
B

and ϵ1 evaluated, say, when
the pivot scale leaves the Hubble radius. Note that, one obtains a strictly scale invariant
spectrum for the magnetic field when µ2

B
/(1− ϵ1)

2 = 6, which corresponds to 2 ν = 5.
For our choice of the coupling function, in the case of the quadratic potential, at the
time the pivot scale leaves the Hubble radius, we find that µ2

B
/(1− ϵ1)

2 = 6.068, which
leads to ν = 2.513 that we mentioned above. In the cases of the small field and the
first Starobinsky models, for the choices of the coupling functions (2.44) and (2.47),
we find that, when the pivot scale exits the Hubble radius, µ2

B
/(1 − ϵ1)

2 = 5.935 and
5.939 which correspond to ν = 2.487 and 2.488, respectively. Since, 2 ν < 5, we obtain
magnetic field spectra with blue tilts in these two cases.
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APPENDIX B

ANALYTICAL CONSTRUCTION OF THE
NON-CONFORMAL COUPLING FUNCTION

In this appendix, using the solutions for the fields ϕ and χ that can be arrived at in
the slow roll approximation, we shall construct analytical forms for the non-conformal
coupling function J(ϕ, χ) in the two inflationary models we have considered. We shall
then make use of the analytical forms for J(ϕ, χ) to numerically compute the resulting
spectra of the magnetic field and compare them with the spectra we have obtained
earlier.

Let us first discuss the model described by the potential (3.11). As we have seen,
in the two field models of our interest, there arise two stages of inflation, with each
regime being driven by one of the two fields. In the case of inflation driven by the
potential (3.11), during the first stage, the field ϕ rolls down the potential, while the
field χ remains frozen. During this phase, the evolution of the field ϕ in the slow roll
approximation can be expressed as [231]

ϕ2(N) = ϕ2
i − 4M2

Pl
N, (B.1)

where we have assumed that ϕ = ϕi at N = 0. To achieve the desired behavior of
J ∝ a2, in the first stage, we can assume that

J(ϕ) ∝ exp

[
−1

2

(
ϕ2

M2
Pl

− ϕ2
i

M2
Pl

)]
. (B.2)

The first stage dominated by the field ϕ eventually ends and, after a few damped
oscillations, the field settles down at the value

ϕmin ≃ 1

2 b̄
W

(
8V0 b̄

2M2
Pl
χ4
0

3m2
ϕ χ

6
i

)
, (B.3)

where W (z) is the so-called Lambert or the product logarithmic function [309]. The
field χ drives the second stage of inflation and, during this period, the solution for the
field in the slow roll approximation can be written as

χ2(N) =
[(
χ2
0 + χ2

i

)2 − 8M2
Pl
χ2
0 e

−2 b̄ ϕmin (N −N1)
]1/2 − χ2

0, (B.4)

where N1 is the e-fold when ϕ = ϕmin. In a fashion similar to the first phase, to achieve
J ∝ a2, we can choose the coupling function during the second stage of slow roll



inflation to be

J(χ) = exp

{
2N1 −

e2 b̄ ϕmin

4M2
Pl
χ2
0

[(
χ2 + χ2

0

)2 − (
χ2
i + χ2

0

)2]}
. (B.5)

Let us now turn to the second model described by the potential (3.12). During the
first stage driven by the field ϕ, in the slow roll approximation, the evolution of the field
can be expressed as

ϕ2(N) =
[(
ϕ2
i + ϕ2

0

)2 − 8M2
Pl
ϕ2
0N
]1/2

− ϕ2
0, (B.6)

where we have assumed that the field is at ϕi when N = 0. To achieve J ∝ a2, the
coupling function can be chosen to be

J(ϕ) ∝ exp

{
− 1

4M2
Pl
ϕ2
0

[(
ϕ2 + ϕ2

0

)2 − (ϕ2
i − ϕ0

)2]}
. (B.7)

In between the two stages of inflation, ϕ behaves like a massive scalar field and
undergoes damped oscillations around the minimum [231]. It seems difficult to obtain
an analytical solution during this period since the Hubble parameter H and the field χ
experience a jump. We find that ϕ eventually approaches a constant value ϕmin, given
by the minimum of its effective potential. The value of χ at the onset of this period can
be written as χ1i = χi − ∆χ, where ∆χ is the jump in χ. During the second stage of
slow roll inflation, the solution for χ can be written as

χ2(N) = χ2
i − 4 e−2 b̄ [ϕmin+∆ϕ(N)]M2

Pl
(N −N1), (B.8)

where ϕmin = b̄M2
Pl
m2

χ ϕ
2
0/(3V0) and the quantity ∆ϕ is governed by the equation

d2∆ϕ

dN2
+ (3− ϵ1)

d∆ϕ

dN
+
m2

∆ϕ

H2
∆ϕ = 0 (B.9)

with m2
∆ϕ being given by

m2
∆ϕ =

2V0
ϕ2
0

+
4

3
b̄2m2

χ ϕ
2
0. (B.10)

Therefore, the coupling function during the second stage can be chosen to be

J(χ) = exp

{
2N1 −

1

2
e2 b̄ [ϕmin+∆ϕ(N)]

(
χ2

M2
Pl

− χ2
i

M2
Pl

)}
. (B.11)
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With the solutions of the coupling functions in the two stages at hand, we can
combine them [in a manner similar to Eq. (3.22)] to arrive at the following coupling
function:

J(ϕ, χ) = J0

{
1

2

[
1 + tanh

(
χ− χ1

∆χ

)]
J(ϕ)

+
1

2

[
1− tanh

(
χ− χ1

∆χ

)]
J(χ)

}
, (B.12)

where χ1 is the value of χ around the e-fold when the transition from the the first stage
of slow roll region to the second stage occurs. Since we require J to reduce to unity at
the end of inflation, we have

J0 =

{
1

2

[
1 + tanh

(
χe − χ1

∆χ

)]
J(ϕe)

+
1

2

[
1− tanh

(
χe − χ1

∆χ

)]
J(χe)

}−1

, (B.13)

where ϕe and χe denote the values of the fields at the end of inflation.

Earlier, in Fig. 3.2, we had compared the analytical solutions for the background
scalar fields we have obtained above with the exact numerical results. Clearly, while
the analytical solutions are a good approximation to the exact numerical results in
the two domains involving slow roll, they perform poorly around the transition. In
Fig. B.1, we have plotted the non-conformal coupling function J we have arrived at
analytically using the expression (B.12) for the two models of our interest. In the figure,
we have also plotted the quantity µ2

B
= J ′′/(J a2H2) and the resulting power spectra of

magnetic fields P
B
(k) for the two models. As should be evident, though the strengths

of magnetic field roughly match the numerical results we had obtained earlier (plotted
in Fig. 3.5), the shapes of the power spectra are fairly different. This can be attributed to
the discontinuous behavior of the fields around the point of transition in the analytical
case.
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Figure B.1: The coupling functions J(N) constructed analytically using Eq. (B.12) (on
the left), along with the corresponding µ2

B
(N) (in the middle), and the

resulting spectra of the magnetic field (on the right) have been plotted for
the models described by the potentials (3.11) (on top) and (3.12) (at the
bottom). We have indicated the point of transition in the plots of J(N)
and µ2

B
(N) (as vertical black lines). Note that the above spectra of the

magnetic field differ from the spectra we had arrived at earlier in Fig. 3.5.
The differences can be attributed to the inability of the analytical solutions
to capture the dynamics of the fields around the point of transition from the
first stage to the second stage of slow roll inflation.
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APPENDIX C

IMPACT OF THE CHOICE OF THE PARAMETERS
IN THE NON-CONFORMAL COUPLING FUNCTION

Recall that, the non-conformal coupling function J(ϕ, χ) in Eq. (3.22) was constructed
so that its evolution was determined by the field driving the background expansion at
any given time. Such a construction had ensured that the function largely behaves in the
manner that we desire, i.e. as J(ϕ, χ) ∝ a2 (see Fig. 3.4). The point at which J(ϕ, χ)
switches its dependence on the evolution of ϕ to that of χ is determined by χ1. Also, the
range over which this switch happens is determined by ∆χ. Earlier, while arriving at
the power spectra of the electromagnetic fields due to such a coupling function, we had
worked with specific values of these two parameters. In this appendix, we shall discuss
the impact of the choice of these parameters on the power spectrum of the magnetic
field.

It seems natural to choose the value of χ1 to be the point at which the turn in the
trajectory in the field space occurs (as marked in Fig. 3.2). The value of ∆χ can be
chosen to be that it roughly corresponds to the duration of the transition. However,
we ought to consider the effects that may occur due to variation of these parameters
and quantify the dependence of the features in the spectrum of the magnetic field on
such variations. Evidently, we should be cautious so that, even as we try to capture the
features that arise from the intrinsic dynamics of the fields, we do not end up introducing
features from the very construction and parametrization of the coupling function.

We have analyzed the effects of the parameters χ1 and ∆χ on the spectrum of the
magnetic field in the case of the first model described by the potential (3.11). We have
presented the results of the exercise in Fig. C.1. Note that, in our analysis, while we
vary χ1 and ∆χ, we have retained the original values for parameters of the model and
of the fitting functions N(ϕ) and N(χ) [cf. Eqs. (3.20) and (3.21)]. To begin with,
we shall discuss the effects due to variation of ∆χ. The value of ∆χ = 10−3M

Pl

which we have used earlier, seems to be an appropriate choice since, for such a value,
we are able to achieve the desired behavior of J(ϕ, χ) ∝ a2 without considerable
deviations during the transition. However, for larger values of the parameter, say that
lie in the range 10−3M

Pl
≤ ∆χ < 10−1M

Pl
, we observe that, prior to the transition,

the coupling function J(ϕ, χ) turns to be a constant. This essentially arises due to
the smoothing of the hyperbolic tangent function that we had introduced to effect the
transition between the two parts of J(ϕ, χ). A smoother hyperbolic tangent function
suppresses the contribution due to the evolution of ϕ before transition and that of χ after
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Figure C.1: We have presented the behavior of J(ϕ, χ), µ2
B
(N), and the corresponding

power spectrum of the magnetic field P
B
(k) (on top, in the middle, and

bottom rows, respectively) that arise due to the variation of the parameters
∆χ (on the left column) and χ1 (on the right column) in the case of the first
model described by the potential (3.11). The parameters have been varied
around the values of ∆χ = 10−3M

Pl
and χ1 = 5.722M

Pl
that we had

considered earlier. We should mention that we have retained the original
values of the other parameters in arriving at these results. For larger values
of ∆χ, which lead to a smoother transition of J(ϕ, χ), we find that P

B
(k) ∝

k4 over large scales, whereas for smaller values of ∆χ, effecting a sharper
transition, we obtain a nearly scale invariant spectrum in the asymptotic
domains (in wave number) with oscillations that extend over a wider range
of wave numbers. Moreover, while larger values of χ1 lead to the P

B
(k) ∝

k4 behavior over large scales, smaller values result in asymptotically (i.e.
in wave numbers) scale invariant spectra with oscillations that are of higher
amplitude over the intermediate domain.
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the transition. Because of this reason, J(ϕ, χ) settles to a constant over the smoothed
regime. Such a behavior of J(ϕ, χ) leads to extremely small values of J ′′/J , which
invariably results in the spectrum of the magnetic field P

B
(k) behaving as k4 over large

scales (as can seen in the plots in left column of Fig. C.1). Moreover, if we make
the transition sharper, i.e. if we choose ∆χ < 10−3M

Pl
, though the spectrum of the

magnetic field largely retains its shape, there arise oscillations over a wider window of
wave numbers between the two domains of scale invariance. This is expected since a
faster transition leads to a sharp peak in J ′′/J between the two regimes. Hence, we can
conclude that, to avoid any artificial features such as either a suppressed power over
large scales or a prolonged burst of oscillations in the spectrum of the magnetic field,
the choice of ∆χ = 10−3M

Pl
seems optimal.

Let us now turn to understanding the effects due to the variation in χ1. Upon
choosing the value of χ1 to be greater than 5.722M

Pl
, we observe that the non-

conformal coupling function J(ϕ, χ) again turns constant during the initial epoch, and
hence the spectrum of the magnetic field P

B
(k) behaves as k4 over large scales. This

is due to the coupling function switching its dependence from ϕ to χ at an earlier time,
before the turn in the trajectory in the field space occurs. Such a choice suppresses the
dependence of J(ϕ, χ) on ϕ during the initial regime and makes it follow the behavior
of χ which is frozen during this epoch. As a result, J ′′/J drops to very small values
and, as we have already discussed, it leads to the k4 behavior of the spectrum of the
magnetic field over large scales. For χ1 ≤ 5.722M

Pl
, we find that the spectrum regains

its near scale invariance in the two asymptotic domains, but the amplitude of oscillations
over the intermediate domain in wave numbers prove to be larger. Therefore, the ideal
value of χ1 proves to be around 5.722M

Pl
, where the turn occurs in the trajectory in

the field space. Otherwise, one may introduce either a suppression or oscillations with
large amplitudes, which are clearly artifacts induced by a non-optimal value of χ1.

150



APPENDIX D

POWER SPECTRUM OF FLUCTUATIONS IN THE
ENERGY DENSITY OF THE ELECTROMAGNETIC FIELD

Let ρ̂k
EM

(η) denote the operator associated with the energy density corresponding to a
given wave vector k of the electromagnetic field. The power spectrum of fluctuations in
the energy density of the electromagnetic field for a given mode, say, P

EM
(k), is defined

through the relation [131, 224]

⟨ρ̂k†
EM

(ηe) ρ̂
k′

EM
(ηe)⟩ − ⟨ρ̂k†

EM
(ηe)⟩ ⟨ρ̂k

′

EM
(ηe)⟩ = (2π)3 P

EM
(k) δ(3)(k − k′), (D.1)

where, as mentioned earlier, ηe denotes the conformal time coordinate close to the end
of inflation. Note that the expectation values in the above expression are to be evaluated
in the Bunch-Davies vacuum.

Recall that, in the non-helical case, for J ∝ a2, the energy density of the
electric field is negligible at late times. Therefore, the total energy density of the
electromagnetic field for a given mode can be expressed in terms of the Fourier modes
of the magnetic field, say, Bik, as follows:

ρk
EM

(η) =
J2(η)

8 π

∫
d3q

(2 π)3/2
Bi q(η)B

i
(k−q)(η), (D.2)

where Bi = ϵijl (∂
jAl)/a, Bi = gij Bj , and Bik denotes the Fourier modes associated

with the magnetic field. For the case wherein the spectrum of the magnetic field is scale
invariant [i.e. P

B
(k) = 9H4

I
/(4 π2), see Eq. (2.26a)], upon substituting Eq. (D.2) in

Eq. (D.1) and using Wick’s theorem, we find that the power spectrum P
EM

(k) can be
expressed as

P
EM

(k) =
1

2 π2

(
3H2

I

4 π

)4 [∫
d3q

q3 |k − q|3 +

∫
d3q

q5 |k − q|5 [q · (k − q)]2
]
.

(D.3)

Upon carrying out the integrals over q, we obtain that

k3 P
EM

(k) =
16

3π

(
3H2

I

4π

)4

ln

(
k

kmin

)
, (D.4)

where we have introduced the infrared cut-off kmin to regulate the integral. It is this
result for P

EM
(k) that we have utilized to arrive at the power spectrum for the curvature

perturbations induced by the magnetic field, viz. Pmag
R (k), in Eq. (3.28).



APPENDIX E

ON THE CHOICE OF CONJUGATE MOMENTUM

Recall that, initially, we had arrived the action (4.27) to describe the Fourier modes of
the helical electromagnetic field. If we focus on the electromagnetic mode associated
with a single wave number (as we did in Secs. 4.3.2, 4.4.1 and 4.4.2), the fiducial
variable A—which stands for either Aσ

kR or Aσ
kI [introduced in Eq. (4.29)]—is

described by the following Lagrangian density in Fourier space:

L =
1

2
A′2 − κA′ A− µ2

2
A2. (E.1)

In this appendix, we shall explain the reason for adding the total time derivative (4.26)
to the original action (4.25) to arrive at the modified action (4.27) or, equivalently, the
Lagrangian (4.30) for the variable A.

E.1 CHOICES OF MOMENTA AND INITIAL CONDITIONS

Note that the conjugate momentum associated with the original Lagrangian (E.1) is
given by

P = A′ − κA. (E.2)

The corresponding Hamiltonian can be obtained to be

H =
P2

2
+ κP A+

ω̃2

2
A2, (E.3)

where the quantity ω̃2 is given Eq. (4.64). The Schrödinger equation governing the
wave function Ψ(A, η) corresponding to the above Hamiltonian is given by

i
∂Ψ

∂η
= −1

2

∂2Ψ

∂A2
− i κ

2

(
Ψ+ 2A ∂Ψ

∂A

)
+
ω̃2

2
A2Ψ. (E.4)

Upon using the Gaussian ansatz (4.34) for the wave function Ψ(A, η) in this
Schrödinger equation, we obtain that

Ω′ = −iΩ2 − 2κΩ + i ω̃2. (E.5)

If we now use the definition (4.38) of Ω in the above equation, but with g being



given by
g = f ′ − κ f, (E.6)

then we arrive at the same equation for f ∗ that we had obtained earlier, viz. Eq. (4.40).
This should not come as a surprise since, classically, Lagrangians that differ by a total
time derivative lead to the same equation of motion. Moreover, since the wave function
is assumed to be of the same form, we obtain the same Wigner function as had obtained
before, i.e. as in Eq. (4.43), but with P being the new conjugate momentum defined
in Eq. (E.2). However, for I = J and J ∝ η−n, we find that, at early times, while f
behaves as in Eq. (4.45), g behaves as

g = f ′ − κ f ≃ −i
√
k

2
(1 + i σ γ) e−i k η. (E.7)

These f and g lead to the same Wronskian (4.47) that we had obtained earlier. Also, in
such a case, we have ΩR = k and ΩI = σ γ k, resulting in the following condition for
the Wigner ellipse:

Ā2 +
(
P + σ γ Ā

)2
= 1. (E.8)

Moreover, for the above initial conditions on f and g, from Eqs. (4.53), we obtain that
cosh (2 r) = 1 + (γ2/2), while cos (2φ) = ±γ/

√
4 + γ2. These imply that, when γ is

non-zero (i.e. in the helical case), at early times, the Wigner ellipse is not a circle. It
starts as an ellipse with its major axis oriented at the angle φ with respect to the Ā axis.

If we now instead add a different total time derivative to the original
Lagrangian (E.1) as follows

L =
1

2
A′2 − κA′A− µ2

2
A2 +

d

dη

(
1

2
κA2

)
, (E.9)

then it simplifies to the form

L =
1

2
A′2 − 1

2
ω2A2 (E.10)

with ω2 being given by Eq. (4.41). The corresponding conjugate momentum is given
by

P = A′ (E.11)

and the associated Hamiltonian can be immediately obtained to be

H =
1

2
P2 +

1

2
ω2A2. (E.12)
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The Schrödinger equation describing the wave function Ψ(A, η) in such a case is given
by

i
∂Ψ

∂η
= −1

2

∂2Ψ

∂A2
+

1

2
ω2A2Ψ. (E.13)

The Gaussian ansatz (4.34) for the wave function leads to the following equation for Ω:

Ω′ = −iΩ2 + i ω2. (E.14)

Upon substituting the definition (4.38) of Ω in this differential equation, but with

g = f ′, (E.15)

then we obtain Eq. (4.40) for f ∗, as one would have expected. Note that, in such a
situation, as with the Lagrangian (4.30), at early times, f and g reduce to the forms in
Eqs. (4.45) and (4.46) implying that the initial Wigner ellipse is a circle. Also, as in the
original case, we have, at early times, cosh (2 r) = 1, while cos (2φ) is undetermined.

In order to ensure that the system starts in the standard Bunch-Davies vacuum
at early times with no squeezing involved, we have worked with the modified
Lagrangian (4.30) instead of the Lagrangian (E.1). As we have discussed earlier, if
we work in terms of the corresponding conjugate momentum P [cf. Eq. (4.31)], we
obtain a Wigner ellipse which starts as a circle at early times, as desired [cf. Eq. (4.49)].
But, such a behavior of the Wigner ellipse and the squeezing parameters at early times
is also encountered when the system is described by the Lagrangian (E.10)], as we
discussed above. Could we have also worked with the Lagrangian (E.10)? It seems that
the Lagrangian (4.30) is an appropriate choice. Let us illustrate this point with a simple
example.

E.2 A SIMPLE EXAMPLE

To illustrate our point, we shall focus on the non-helical electromagnetic field (i.e. when
γ = 0) and consider the case wherein J = (η/ηe)

−n. The trivial case, of course,
corresponds to the conformally coupled field wherein n = 0. In such a case, all the
momenta P we have encountered, i.e. those given by Eqs. (4.31), (E.2) and (E.11), turn
out to be the same and the quantities f and g are given exactly by Eqs. (4.45) and (4.46)
at all times. Therefore, cosh (2 r) = 1 forever, while cos (2φ) remains undetermined,
and the Wigner ellipse remains a circle. This is not surprising.

Now, consider the non-trivial, n = −1 case. In such a situation, J ′′/J = 0, and
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hence the quantity f is given by Eq. (4.45) at all times. Since γ = 0, the momenta P
defined in Eqs. (4.31) and (E.2) turn out to be the same. If we work with the momentum
defined in Eq. (E.11), then the quantity g is given by Eq. (4.46) at all times so that
the Wigner ellipse and the squeezing parameter behave as in the conformally invariant
case. This seems strange. But, if we work with the conjugate momentum defined in
Eq. (4.31) (as we have done in Secs. 4.3.2, 4.4.1 and 4.4.2), then we have

g = f ′ − J ′

J
f ≃ −i

√
k

2

(
1− i

k η

)
e−i k η. (E.16)

This implies that the Wigner ellipse starts as a circle at early times, while cosh (2 r) = 1.
However, at late times, we have

cosh (2 r) ≃ 1

2

(
1 +

k2e
k2

)
(E.17)

indicating a significant extent of squeezing for large scales. This example confirms that
our choice for the conjugate momentum P as given by Eq. (4.31) to be an appropriate
one.
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APPENDIX F

ANOTHER DERIVATION OF QUANTUM DISCORD

A convenient method to calculate the quantum discord is to write down the covariance
matrix of the canonically conjugate variables and arrive at the quantum discord using
the submatrices of the covariance matrix [277, 288, 310]. But, one has to first choose
an appropriate set of two pairs of canonically conjugate variables, such that tracing over
one set will give us the correct quantum discord to match with the results in the earlier
literature (i.e. one has to identify variables to represent the appropriate subsystem of
the full system) [262, 277].

As we have described in Sec. 4.3.1, the action describing the modes Aσ
k of the

electromagnetic field is similar to the action that governs the Mukhanov-Sasaki variable
characterizing the scalar perturbations. However, there are two differences. The first
difference is that, due to the two states of polarization, the electromagnetic field contains
twice as many degrees of freedom as the scalar perturbations. Secondly, in the helical
case, due to the presence of the term that leads to the violation of parity, the modes
corresponding to the two states of polarization evolve differently. Nevertheless, the two
helical states of polarizations (with σ = ±1) evolve independently, and the method
adopted in the case of the scalar perturbations can be used to characterize the quantum
discord associated with either of the two states of the polarization of the electromagnetic
field.

The quantum discord that we would like to calculate is when the system is
divided into modes with wave vectors k and −k, as in the case of the scalar
perturbations [262, 277]. As we have explained in the main text, the correct variables
to use are the conjugate variables (xσk, p

σ
k) as defined in Eq. (4.59), but with ω̄ replaced

by ω̃ [cf. Eq. (4.64)]. On using our convention of referring to xσk and xσ−k as x1 and x2,
the covariance matrix of the two pairs of canonically conjugate variables (x̂1, p̂1, x̂2, p̂2)
has the form

V =


⟨x̂21⟩ 1

2
⟨x̂1 p̂1 + p̂1 x̂1⟩ ⟨x̂1 x̂2⟩ ⟨x̂1 p̂2⟩

1
2
⟨x̂1 p̂1 + p̂1 x̂1⟩ ⟨p̂21⟩ ⟨x̂2 p̂1⟩ ⟨p̂1 p̂2⟩

⟨x̂1 x̂2⟩ ⟨x̂2 p̂1⟩ ⟨x̂22⟩ 1
2
⟨x̂2 p̂2 + p̂2 x̂2⟩

⟨x̂1 p̂2⟩ ⟨p̂1 p̂2⟩ 1
2
⟨x̂2 p̂2 + p̂2 x̂2⟩ ⟨p̂22⟩

 .
(F.1)

To calculate quantum discord, first we define a scaled covariance matrix as

σ = 2V . (F.2)



We next divide this (4× 4) matrix in terms of (2× 2) sub-blocks as follows:

σ =

[
α γ

γT β

]
, (F.3)

where α, β and γ are (2× 2) matrices. Defining

B = det. β, (F.4)

the entanglement entropy for the (x2, p2) subsystem, say, S2(σ12), can then be directly
calculated to be (in this context, see Ref. [311])

S2(σ12) = F (
√
B), (F.5)

with the function F (x) being given by

F (x) =

(
x+ 1

2

)
ln

(
x+ 1

2

)
−
(
x− 1

2

)
ln

(
x− 1

2

)
. (F.6)

Using the wave function (4.67) and the relations (4.71), the elements of the
matrix β can be evaluated to be

⟨x̂22⟩ =
Ω1R

2 (Ω2
1R − Ω2

2R)
=

|Ω+|2 + ω̃2

4 ω̃2Ω+R

, (F.7a)

⟨p̂22⟩ = ω̃2 ⟨x̂22⟩,
1

2
⟨x̂2 p̂2 + p̂2 x̂2⟩ = 0, (F.7b)

where Ω+R = (Ω+ + Ω∗
+)/2 represents the real part of Ω+. Therefore, the determinant

of β becomes

B = 4 ⟨x̂22⟩ ⟨p̂22⟩ − ⟨x̂2 p̂2 + p̂2 x̂2⟩2 =
(|Ω+|2 + ω̃2)

2

4 ω̃2Ω2
+R

. (F.8)

To connect with the results in the main text, we can use the expression (4.82) for y to
obtain that √

B = y + 1. (F.9)

On substituting this expression for B in Eq. (F.5), we can arrive at the result (4.80) for
the quantum discord we had obtained earlier.
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APPENDIX G

CHARGED SCALAR FIELD UNDER THE INFLUENCE
OF AN ELECTRIC FIELD IN A DE SITTER UNIVERSE

In this appendix, we shall discuss the Schwinger effect in de Sitter spacetime by
considering the evolution of a charged scalar field in the presence of a constant electric
field (for earlier discussions in this regard, see, for instance, Refs. [294–297]). We
should mention that the corresponding results in flat spacetime can be arrived at by
considering the limit wherein the constant Hubble parameter in de Sitter vanishes.

G.1 EQUATION OF MOTION IN AN FLRW UNIVERSE

Consider a complex scalar field, say, ψ, evolving in a curved spacetime. In the presence
of an electromagnetic field described by the vector potential Aµ, the action governing
the complex scalar field is given by

S[ψ] = −
∫

d4x
√−g

[
(Dµψ)

∗ (Dµψ) +m2 ψ ψ∗] , (G.1)

where Dµ = (∂µ − i eAµ) and e denotes the electric charge. On varying the above
action, we obtain the equation of motion governing the scalar field to be

1√−g Dµ

(√−g gµν Dν

)
ψ −m2 ψ = 0. (G.2)

The strength E of the electric field can be expressed in terms of the field tensor Fµν as

F µν Fµν = −2E2. (G.3)

If we choose to work with the vector potential

Aµ = [0, 0, 0,−A(η)], (G.4)

then, in the FLRW universe, the electric field is oriented along the z-direction and its
strength is given by

E =
A′

a2
. (G.5)

If we define the new variable

u(η,x) = a(η)ψ(η,x), (G.6)



then, for the FLRW line-element (1.2) and the vector potential (G.4), the action (G.1)
takes the form

S[u] =

∫
dη

∫
d3x

{
|u′|2 − |∂⊥u|2 − |Dzu|2

− a′

a
(uu′∗ + u∗ u′)−

[
m2 a2 −

(
a′

a

)2
]
|u|2
}
,

(G.7)

where ∂⊥ = (∂x, ∂y) and Dz = ∂z + i eA(η). The symmetries of the FLRW metric
and the fact that the vector potential Aµ depends only on the conformal time coordinate
allows us to decompose the quantity u(η,x) as follows:

u(η,x) =

∫
d3k

(2π)3/2
qk(η) e

ik·x. (G.8)

We should point out that, since u is a complex field, we do not have a condition
connecting the Fourier modes qk and q−k akin to Eq. (4.22). The action in Fourier
space that governs the modes qk can be obtained to be

S[qk] =

∫
dη

∫
d3k

{
|q′k|2 −

a′

a
(qk q

′
k
∗ + q′k q

∗
k)− µ2

q |qk|2
}
, (G.9)

where the quantity µ2
q is given by

µ2
q(η) = k2⊥ + (kz + eA)2 +m2 a2 −

(
a′

a

)2

(G.10)

with k⊥ = (kx, ky) and k⊥ = |k⊥|. Thus, each mode with wave vector k evolves
independently according to identical (though k-dependent) actions.

Let us now express qk as

qk =
1√
2
(qkR + i qkI) , (G.11)

where qkR and qkI are the real and imaginary parts of qk. The actions for qkR and
qkI decouple and are identical in form. Therefore, the dynamics of the system can be
analyzed using the following Lagrangian density in Fourier space:

L =
1

2
q′2 − a′

a
q q′ − 1

2
µ2
q q

2, (G.12)

where q stands for either qkR or qkI. The momentum conjugate to the variable q is given
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by

pq = q′ − a′

a
q. (G.13)

The Lagrangian (G.12) leads to following equation of motion for the Fourier mode q:

q′′ + ω2
q q = 0, (G.14)

where the quantity ω2
q is given by

ω2
q (η) = k2⊥ + (kz + eA)2 +m2 a2 − a′′

a
. (G.15)

G.2 SOLUTIONS IN DE SITTER AND THE BEHAVIOR OF THE
SQUEEZING AMPLITUDE

Let us now discuss the solutions to the modes of the scalar field in the presence of
a constant electric field in de Sitter spacetime and the behavior of the corresponding
squeezing amplitude [294, 296]. Earlier, in Sec. 4.5.1, we had assumed that the scale
factor in de Sitter inflation is given by a(η) = −1/(H

I
η), where H

I
is a constant.

Instead, we shall now assume that the de Sitter spacetime is described by the scale
factor

a(η) =
1

1−H
I
η
, (G.16)

where −∞ < η < H−1
I

. We have chosen such a form since we can obtain the
Minkowski spacetime as the limit H

I
→ 0. Since the strength of the electric field is

given by E = A′/a2 [see Eq. (G.5)], if we require E to be constant, then for the above
choice of the scale factor, the vector potential A(η) is given by

A(η) =
E0

H
I

[a(η)− 1] , (G.17)

where E0 is a constant and we have chosen the constant of integration to be −E0/HI
.

Such a choice allows us to have a well behaved H
I
→ 0 limit of A(η), which reduces

to the usual choice of vector potential considered to examine the Schwinger effect in
Minkowski spacetime.

Evidently, we can quantize the system described by the Lagrangian (G.12) in the
same manner as we quantized the electromagnetic vector potential A in the Schrödinger
picture in Sec. 4.3.2. For the above choices of the scale factor and the vector potential,
we find that the function f that determines the wave function describing the system

160



[given by Eqs. (4.34) and (4.38), and g defined as in Eq. (4.39), with the non-conformal
coupling function J replaced by the scale factor a] satisfies the differential equation

d2f

dτ 2
+

(
k̄2 − 2 ζ k̄z

τ
+
ζ2 + m̄2 − 2

τ 2

)
f = 0, (G.18)

where k̄z = kz − (eE0/HI
), k̄2 = k2⊥ + k̄2z , ζ = eE0/H

2
I
, m̄ = m/H

I
and τ =

η − (1/H
I
). We should point out here the similarity between the above differential

equation and the equation (4.88) governing the evolution of the helical electromagnetic
fields in de Sitter spacetime. Note that, for small m̄ and ζ , their structure are very
similar. Also, for a range of wave numbers, changing the sign of kz (or the direction
of the electric field E) is equivalent to considering the helical electromagnetic mode of
opposite polarization.

Recall that, if the wave function describing the mode is to start from the ground
state corresponding to the Bunch-Davies vacuum, then, as (−k η) → ∞, we require
that the function f behaves as f ∝ exp (−i k̄ η). It is straightforward to show that the
modes with such initial conditions are given by

f(τ) =
1√
2 k̄

e−π ζ k̄z/(2 k̄) e−i k̄/H
I Wi ζ k̄z/k̄,ν(2 i k̄ τ), (G.19)

where Wλ,ν(z) denotes the Whittaker function and ν2 = (9/4) − m̄2 − ζ2 [291]. Note
that, when ζ = 0 and m = 0, the above solution reduces to

f(η) =
1√
2 k

e−i k/H
I W0,3/2(2 i k τ). (G.20)

Since [291]

W0,3/2(z) =

√
z

π
K3/2

(z
2

)
, (G.21)

where K3/2(z) is the modified Bessel’s function given by

K3/2(z) =

√
π

2 z

(
1 +

1

z

)
e−z, (G.22)

we find that the above function f(η) can be expressed as

f(η) =
1√
2 k

[
1− i

k η − (k/H
I
)

]
e−i k η, (G.23)

which is the well known solution describing a massless scalar field in de Sitter
spacetime.
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Figure G.1: The evolution of the squeezing amplitude r(N) for a specific mode of a
charged scalar field in de Sitter inflation has been plotted as a function of e-
folds N for the following choices of the parameters: (k⊥, k̄z) = (0, 10−2),
m̄ = 0 and ζ = (−1, 0, 1) (in dashed, solid and dotted red). Note that,
in a manner similar to that of the σ = −1 helical electromagnetic mode,
the squeezing amplitude r is larger when ζ = −1 than the case wherein
ζ = +1. For the wave number we have worked with, we find that the
modes can be said to leave Hubble radius around N ≃ 7.

The squeezing amplitude associated with the modes of the charged scalar field can
be determined using the relation (4.53a), with f given by Eq. (G.19) and g defined
as in Eq. (4.39), with J replaced by a. In Fig. G.1, we have plotted the evolution of
the squeezing amplitude r (for a specific wave number) as a function of e-folds for
two different sets of values of the parameters ζ , with m̄ set to zero. We have also
plotted for the case wherein ζ vanishes. It should be evident that the behavior of
the squeezing amplitude for opposite signs of ζ is similar to the behavior of the two
states of opposite polarization of the helical electromagnetic mode. In fact, because
of the presence of the additional parameters (such as m), the evolution of the complex
scalar field is considerably richer, but we have chosen to work with values so that the
evolution closely resembles the behavior of the modes of the non-helical and helical
electromagnetic fields.
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