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ABSTRACT

KEYWORDS: Inflation, Non-Gaussianity, Consistency relations

Over the last decade, it has been realized that non-Gaussianities and, in particular, the
scalar bi-spectrum can provide a powerful handle to arrive at a much smaller class of
viable inflationary models. Such an expectation has been corroborated to a substantial
extent by the strong constraints that have been arrived at from the Planck data on the
three non-Gaussianity parameters, viz. (f loc

NL
, f eq

NL
, f ortho

NL
), that are commonly used to char-

acterize the scalar bi-spectrum. While a considerable amount of effort has been dedicated
to understanding the generation and imprints of the scalar bi-spectrum, a rather limited
amount of attention has been paid to investigating the three-point functions involving
the tensor perturbations. This thesis aims at the numerical computation of the three-point
functions in general, with specific focus on understanding their behavior in the squeezed
limit. In what follows, we shall provide a brief outline of the various issues that we have
dealt with in this thesis.

On the scalar consistency relation away from slow roll: The non-Gaussianity parameter
f
NL

, which is often used to characterize the amplitude of the scalar bi-spectrum, can be ex-
pressed completely in terms of the scalar spectral index ns in the squeezed limit, wherein
one of the wavenumbers involved is much larger than the other two. This relation, while
it is largely discussed in the context of slow roll inflation, is actually expected to hold in
any single field model of inflation, irrespective of the dynamics of the underlying model,
provided inflation occurs on the attractor at late times. In this work, we explicitly exam-
ine the validity of the consistency relation, analytically as well as numerically, away from
slow roll. Analytically, we arrive at the relation in the simple case of power law inflation
and the non-trivial but analytically tractable example of the Starobinsky model involv-
ing a linear potential with a sudden change in its slope (which leads to a brief period of
fast roll). We then numerically evaluate the scalar bi-spectrum for an arbitrary triangular
configuration of the wavenumbers in inflationary models that lead to the following fea-
tures in the scalar power spectrum due to departures from slow roll: (i) a sharp cut off at

iii



large scales, (ii) a burst of oscillations over an intermediate range of scales and (iii) small,
but repeated, modulations extending over a wide range of scales, and explicitly illustrate
that, in the squeezed limit, the consistency condition is indeed satisfied even in situations
consisting of strong deviations from slow roll.

Numerical evaluation of the inflationary three-point functions involving tensors: In
this work, utilizing the Maldacena formalism and extending the earlier efforts to com-
pute the scalar bi-spectrum, we construct a numerical procedure to evaluate the three-
point scalar-tensor cross-correlations as well as the tensor bi-spectrum in single field in-
flationary models involving the canonical scalar field. We illustrate the accuracy of the
adopted procedure by comparing the numerical results with the analytical results that
can be obtained in the simpler cases of power law and slow roll inflation. We also carry
out such a comparison in the case of the Starobinsky model, which provides a non-trivial
and interesting (but, nevertheless, analytically tractable) scenario involving a brief period
of deviation from slow roll. We then utilize the code we have developed to evaluate the
three-point correlation functions of interest (and the corresponding non-Gaussianity pa-
rameters that we introduce) for an arbitrary triangular configuration of the wavenumbers
in three different classes of inflationary models which lead to features in the scalar power
spectrum, as have been recently considered by the Planck team. We also discuss the con-
tributions to the three-point functions during preheating in inflationary models with a
quadratic minimum.

Examining the consistency relations involving tensors: In this work, we consider the
consistency relations associated with the three-point cross-correlations involving scalars
and tensors as well as the tensor bi-spectrum in inflationary models driven by a single,
canonical, scalar field. Characterizing the cross-correlations in terms of the dimension-
less non-Gaussianity parameters CR

NL
and Cγ

NL
that we had introduced earlier, we express

the consistency relations governing the cross-correlations as relations between these non-
Gaussianity parameters and the scalar or tensor spectral indices, in a fashion similar to
that of the purely scalar case. We also discuss the corresponding relation for the non-
Gaussianity parameter h

NL
used to describe the tensor bi-spectrum. We analytically es-

tablish these consistency relations explicitly in the following two situations: a simple
example involving a specific case of power law inflation and the non-trivial scenario aris-
ing in the Starobinsky model. We also numerically verify the consistency relations in
three types of inflationary models that permit deviations from slow roll and lead to scalar
power spectra with features which typically result in an improved fit to the data than the
more conventional, nearly scale invariant, spectra.
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Chapter 1

Introduction and background

1.1 The standard cosmological model and beyond

Cosmology as a scientific theory, supported by empirical evidence, has taken giant strides
over the last century. With an array of satellite and terrestrial missions dedicated to high
quality observations of astrophysical and cosmological phenomena over a wide range
of length scales, today, we are in an unprecedented position to test our theories against
various cosmological data. Due to this reason, it is often said that we are in an era of
precision cosmology. The universe as we know today is best described by a theory known
as the standard cosmological model, which has its roots in the discovery of the expansion
of the universe in the early part of the last century. Since then, various observations have
broadened our understanding of the universe. The standard cosmological model can be
said to be based on the following four aspects (in this context, see the texts [1] and the
references therein).

In order to describe the universe, it proves to be convenient to assume that it is homo-
geneous and isotropic. Originally, it was considered to be so for theoretical convenience.
However, in the modern viewpoint, this assumption, which is often referred to as the
cosmological principle, is based on observations such as the exceedingly isotropic nature
of the Cosmic Microwave Background (CMB) [2, 3, 4, 5, 6]. It is also supported by the
observations of the large scale structure in the universe [7, 8]. The observed distribution
of matter in the universe seems to suggest that the universe is indeed homogeneous and
isotropic on length scales of the order of 100Mpc or so (see, for instance, Ref. [9]).

Secondly, the expansion of the universe and the behaviour of the energy densities
of matter and radiation suggest that the universe underwent a hot radiation dominated
phase in its early stages. During this regime, the radiation was strongly coupled to mat-



CHAPTER 1. INTRODUCTION AND BACKGROUND

ter. As the universe expanded, it cooled down, and transited from a radiation dominated
epoch to a regime of matter domination. Moreover, as the universe transited to the matter
dominated phase, the photons decoupled from the electrons and started streaming freely.
It is this stream of photons which we observe today as the CMB. The discovery of the
CMB gave great impetus to the development of the theory that is now popularly referred
to as the hot big bang model. The hot epoch of the early universe is also responsible for
the formation of light elements, a phenomenon that is known as big bang nucleosynthe-
sis. The physics at these energy scales being well understood, we have a good theoretical
grasp of the phenomenon. The theoretical understanding is corroborated to a large ex-
tent by the observations of the abundances of the light elements in the universe (see, for
example, Refs. [10, 11]).

Thirdly, though the CMB is highly isotropic, it contains tiny anisotropies at the level
of one part in 105 [2, 5, 6]. According to the by-now conventional picture, it is these
anisotropies in the CMB that grow through gravitational instability to form the structures
that we see around us today. However, within the hot big bang model, the scales of
cosmological interest are well outside the causally connected domains during the early
epochs of radiation domination. As a result, the hot big bang model is unable to pro-
vide a causal mechanism for the origin of structures in the universe. As we shall describe
in some detail below, often, an epoch of accelerated expansion, referred to as inflation,
is invoked to explain the origin of perturbations in the early universe (see the texts [1]
and the reviews [12]). We should hasten to clarify that the inflationary scenario does not
necessarily form a part of the standard cosmological model. Within the standard cos-
mological model, it is assumed that the primordial perturbations are adiabatic in nature,
with a nearly scale invariant power spectrum. It is these perturbations which, in turn, are
supposed to lead to the observed anisotropies in the CMB and the large scale structure.

Lastly, observations of distant supernovae suggest that the universe is currently under-
going a period of accelerated expansion [13, 14]. Such an accelerated expansion cannot be
achieved by ordinary matter and one requires a source with a relatively peculiar equation
of state to drive the rapid expansion. It is believed that a cosmological constant or, more
generically, dark energy is responsible for this behaviour.

In summary, these four elements, supported by various other observations, indicate
that ours is a spatially flat, homogeneous and isotropic, expanding universe. The obser-
vations also suggest that there was an early phase when the seeds for the formation of
large scale structure were sown. This epoch was followed by eras of radiation and matter
domination and, more recently, by a cosmological constant (or dark energy) dominated

2



1.1. THE STANDARD COSMOLOGICAL MODEL AND BEYOND

regime, which is supposed to be driving the current epoch of accelerated expansion. The
model of our universe based on these aspects is known as the standard cosmological
model [1]. Since the observations point to the fact that roughly 70% of the energy den-
sity of the universe is in form of cosmological constant (Λ), while 25% is in the form of
pressureless Cold Dark Matter (CDM), the standard cosmological model is also called the
ΛCDM model (for the recent constraints from the CMB data on the cosmological param-
eters, see, for example, Refs. [15, 16]).

On cosmological scales, the Newtonian theory of gravitation ceases to be valid and
one needs to consider a relativistic theory to describe gravity. Amongst the relativistic
theories of gravitation, Einstein’s general theory of relativity proves to be the simplest
and seems to be consistent with the various data available at hand (in this context, see,
for instance, Ref. [17]). Hence, in the standard cosmological model, the dynamics of the
universe is assumed to be governed by Einstein’s general theory of relativity. Throughout
this thesis, we shall assume that gravity is described by the general theory of relativity.

An impressive feat of the standard cosmological model is that it has been able to ac-
count for a large set of observations with just six parameters, four of which describe the
background, while two characterize the primordial perturbations [15, 16]. In spite of its
success, the model leaves us with a few open questions. For instance, according to the
model, about 95% of the universe consists of dark matter and dark energy. But, as the
names indicate, we seem to know nothing beyond their equations of state and we are
fairly in the dark about the nature of these constituents. The other crucial issue, which
this thesis will focus on, is the physical process that might have sown the seeds for the for-
mation of structures in the universe. As we mentioned before, within the standard model,
the scales of cosmological interest are well outside the causally connected domain during
the early stages of the radiation dominated era. Hence, we require a mechanism to bring
these scales inside the Hubble radius at early times and lead to the generation of pertur-
bations. Such a mechanism is provided by the inflationary paradigm, according to which,
the universe went through a period of accelerated expansion at a very early stage [1, 12].
Though there exist some alternatives to inflation, such as the bouncing model which as-
sumes that the universe underwent a phase of contraction before it entered the current
expanding phase (see, for instance, the early efforts [18] and the more recent reviews [19]),
none of them seem to perform as effectively against the various cosmological data as infla-
tion is capable of. As we shall discuss later in this chapter, inflation can be easily achieved
with the help of scalar fields that are slowly rolling down a relatively flat potential. How-
ever, the ease with which inflation can be accomplished also leads to a situation wherein

3
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many models perform almost equally well against the cosmological data [20, 21].

Often, inflationary models are compared with the cosmological data at the level of
the power spectra. Over the last decade, it has been realized that non-Gaussianities and,
in particular, the scalar three-point function, also referred to as the scalar bi-spectrum,
can provide a powerful handle on arriving at a much smaller class of viable inflationary
models (for initial efforts in this direction, see, for example, Refs. [22]; for more recent
work, see Refs. [23, 24, 25]). Such an expectation has been corroborated to a substantial
extent by the strong constraints that have been arrived at from the Planck data on the non-
Gaussianity parameters that are commonly used to characterize the scalar bi-spectrum
(for earlier work, i.e. prior to Planck, towards arriving at observational constraints, see,
for instance, Refs. [26, 27]; for the constraints from Planck, see Refs. [28, 29]). While a
considerable amount of effort has been dedicated to understanding the generation and
imprints of the scalar bi-spectrum, a rather limited amount of attention has been paid to
investigating the three-point functions involving the tensor perturbations [30, 31, 32, 33,
34]. Broadly, this thesis can be said to be aimed at investigating the properties of the three-
point functions involving scalars as well as tensors generated during inflation and the
possible contributions to these correlation functions due to non-trivial post-inflationary
dynamics such as preheating.

The remainder of this chapter is organized as follows. In the following two sections,
we shall quickly describe the need for the inflationary paradigm and discuss how infla-
tion can be achieved using a scalar field. In Sec. 1.4, we shall consider cosmological per-
turbation theory at the linear order. After describing the action governing the scalar and
the tensor perturbations at the second order, we shall discuss the definitions of the scalar
and the tensor power spectra and also arrive at the power spectra in the slow roll approx-
imation. We shall also briefly discuss the current constraints on inflationary models at
the level of power spectra. In Sec. 1.5, we shall outline the formalism due to Maldacena
for the calculation of the inflationary three-point functions. We shall also utilize the for-
malism to arrive at all the three-point functions in the slow roll approximation. We shall
further discuss the recent constraints on the scalar bi-spectrum arrived at from the CMB
data. In Sec. 1.6, we shall sketch the basic aspects of preheating. Finally, we shall conclude
this chapter with Sec. 1.7 wherein we describe the organization of this thesis.
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1.2. THE HORIZON PROBLEM AND THE NEED FOR INFLATION

Notations and conventions

Before we proceed, for convenience and clarity, let us summarize certain notations and
conventions that we shall follow throughout this thesis. We shall work with units such
that ~ = c = 1 and assume the Planck mass to be M

Pl
= (8π G)−1/2. We shall always work

with the (3 + 1)-dimensional, spatially flat, Friedmann-Lemaı̂tre-Robertson-Walker (or,
simply, FLRW, hereafter) universe. We shall choose the metric signature to be (−,+,+,+).
Greek indices shall be used to denote the spacetime coordinates, while Latin indices shall
represent the spatial coordinates (except for the index k which shall be reserved for rep-
resenting the wavenumber of the perturbations). The quantities a and H shall denote the
scale factor and the Hubble parameter associated with the FLRW universe. At various
stages, we shall use different notions of time in the Friedmann universe, viz. the cosmic
time t, the conformal time η, or the number of e-folds N , as is convenient. Finally, an
overdot and an overprime shall denote differentiation with respect to the cosmic and the
conformal time coordinates, respectively.

1.2 The horizon problem and the need for inflation

The so-called horizon problem is the primary issue that plagues the hot big bang model [1,
12]. In this section, we shall describe the problem and thereby motivate the need for a
phase of accelerated expansion in the early universe.

As we had discussed in the previous section, the universe as we know today, on av-
eraging over sufficiently large volumes, is homogeneous and isotropic. Upon combining
with the fact that it is spatially flat and expanding, it can be described by the FLRW line-
element, which is given by

ds2 = −dt2 + a2(t) dx2, (1.1)

where, as we mentioned, t denotes the cosmic time coordinate, while x represents the
spatial coordinates, and a(t) is the scale factor describing the expansion of the universe.
In such a background, the size of the causally connected region, which is the distance that
light would have traveled from the big bang to a given time t, viz. the horizon, is defined
as

h(t) = a(t)

∫ t

0

dt̃

a(t̃)
. (1.2)

When we observe the CMB, we are in fact looking at the sky as it was at the time of
last scattering. If we assume that the universe was matter dominated from the time of
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decoupling, say, tdec, till today, say, t0, the linear dimension of the backward light cone on
the last scattering surface as observed today is given by

`B = a(tdec)

∫ t0

tdec

dt̃

a(t̃)
' 3 (t2dec t0)

1/3. (1.3)

Assuming that the universe was dominated by radiation till the time of decoupling, the
size of the forward light cone at tdec is found to be

`F = a(tdec)

∫ tdec

0

dt̃

a(t̃)
' 2 tdec. (1.4)

If we now evaluate the ratio of these backward and forward light cones at the time of
decoupling, we obtain that

R ≡ `B
`F

=
3

2

(
t0
tdec

)1/3

' 70, (1.5)

where we have set tdec ' 105 years and t0 ' 1010 years. This implies that the linear dimen-
sion of the causally connected region at the time of decoupling was about 70 times smaller
than the size of surface of last scattering that we can observe today. Despite the fact that
there exist regions of the sky that were not causally connected at the time of decoupling,
we find that the temperature of the CMB is virtually the same in all the directions of the
sky. This is essentially the horizon problem.

We can also state the horizon problem in another way. As we shall discuss, the homo-
geneity of the background FLRW universe allows us to decompose the perturbations into
Fourier modes to study their evolution. The physical wavelength associated with these
modes, say, λP, is always proportional to the scale factor, i.e. λP ∝ a. If we assume that
the scale factor goes as a ∝ tq, which is the case during radiation and matter domination
wherein q = 1/2 and q = 2/3, respectively, then the Hubble radius behaves as H−1 ∝ a1/q.
Therefore, in such situations, the ratio of the physical wavelength to the Hubble radius is
given by

λp

H−1
∝ a(q−1)/q. (1.6)

This implies that, for q < 1, as we go back in time, the Hubble radius shrinks faster in size
than the physical wavelengths. Or, equivalently, the physical wavelengths are larger than
the Hubble radius at early times (see Fig. 1.1). Hence, within the hot big bang model,
there can exist no causal mechanism to explain the extent of isotropy of the CMB.

In order to overcome the horizon problem, we need to bring the physical wavelengths
associated with the modes of cosmological interest inside the Hubble radius at sufficiently
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| ← Inflation → | Radiation domination

Figure 1.1: A schematic illustration of the evolution of physical wavelengths associated
with the Fourier modes of the perturbations (in blue) and the Hubble radius (in red) in a
FLRW universe during the inflationary and the radiation dominated epochs. It should be
clear from the figure that, in the absence of inflation, the wavelengths of the modes will be
well outside the Hubble radius at early times. A phase of accelerated expansion wherein
the Hubble radius remains roughly a constant, as it occurs in, say, slow roll inflation, can
bring the modes inside the Hubble radius.

early times. Evidently, this would be possible if there exists an epoch in the early universe
wherein the physical wavelengths shrink faster than the Hubble radius as we go back in
time, i.e. when

− d

dt

(
λp

H−1

)
< 0, (1.7)

which is equivalent to the condition ä > 0. In other words, we can overcome the hori-
zon problem if the universe undergoes a period of accelerated expansion during its early
stages. It is such a phase of rapid expansion that is referred to as inflation.

As we shall describe in the following section, it is not possible to achieve inflation with
ordinary forms of matter and one need to resort to scalar fields to drive the accelerated
expansion. However, before we turn to the discussion on achieving the phase of acceler-
ated expansion, let us evaluate the extent of inflation that is required in order to overcome

7



CHAPTER 1. INTRODUCTION AND BACKGROUND

the horizon problem. Let us assume that inflation in the form of exponential (i.e. de Sit-
ter) expansion took place over a time ti to tf , such that 0 < ti < tf < tdec, resulting in a
rapid growth of the scale factor by the amount A. Upon including the expansion due to
inflation, the linear dimension of the forward light cone at decoupling can be shown to
be

`FI = a(tdec)

∫ tdec

0

dt̃

a(t̃)
' A ti

(
tdec
tf

)1/2

. (1.8)

Let us assume that inflation took place at a relatively high energy scale of, say, 1016 GeV.
In such a scenario, if we calculate the ratio of the forward and the backward light cones at
decoupling, one finds that `FI/`B ' A/1026. This implies that the horizon problem can be
surmounted if the universe is rapidly stretched by a factor of 1026 during inflation. Such
a conclusion is often expressed in terms of e-folds, which is defined as

N =

∫ t

ti

dtH. (1.9)

Since during inflation N = logA = log (1026) ' 60, it is often said that one requires about
60 e-folds of inflation to overcome the horizon problem.

1.3 Driving inflation with scalar fields

Having discussed the need for inflation and the duration of inflation required to over-
come the horizon problem, let us turn our attention to the issue of how we can achieve
inflation. As we had discussed earlier, the simplest of the relativistic theories to describe
the dynamics of gravity is Einstein’s general theory of relativity. In the theory, the evo-
lution of the metric is governed by the Einstein’s equations. For the case of the FLRW
line element (1.1), the Einstein’s equations reduce to the Friedmann equations, which are
given by

H2 =
8 π G

3
ρ, (1.10a)

ä

a
= −4 π G

3
(ρ+ 3 p), (1.10b)

where H = ȧ/a, while ρ and p are the total energy density and pressure of all the con-
stituents in the universe. Evidently, in order to achieve accelerated expansion, i.e. ä > 0,
we require that (ρ + 3 p) < 0. This is not possible with ordinary forms of matter such as
non-relativistic matter or radiation which possess positive (or vanishing) energy densities
and pressure.
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Consider a scalar field φ that is described by the action

S[φ] =

∫
d4x

√
−g

[
1

2
∂µφ ∂

µφ− V (φ)

]
, (1.11)

where V (φ) is the potential that governs the dynamics of the field. If we assume that the
field is homogeneous, the energy density and pressure associated with the scalar field are
given by

ρ =
φ̇2

2
+ V (φ), (1.12a)

p =
φ̇2

2
− V (φ). (1.12b)

From these expressions for the energy density and pressure and the second Friedmann
equation (1.10b), it should be clear that, if the scalar field is the dominant source of matter
in the universe, then the condition φ̇2 < V (φ) leads to accelerated expansion wherein
ä > 0. In other words, it is possible to drive inflation with a scalar field provided the
kinetic energy of the field is sub-dominant to the potential energy. It is useful to note that
the scalar field that drives inflation is often referred to as the inflaton.

In a FLRW universe, the equation of motion governing the homogeneous scalar field
φ is given by

φ̈+ 3H φ̇+ Vφ = 0, (1.13)

where Vφ = dV/dφ. While, as we discussed above, inflation can be achieved when the
kinetic energy of the scalar field is sub-dominant to the potential energy, inflation can
be guaranteed if φ̇2 � V (φ), i.e. when the field is rolling slowly down the potential.
Moreover, the velocity of the field should remain small for a sufficiently long period of
time in order to ensure that inflation lasts long enough to overcome the horizon problem.
This would be possible if the acceleration of the field remains suitably small as well, say,
φ̈ � 3Hφ̇. These two conditions lead to what is known as the slow roll approximation.
This approximation is often described in terms of a hierarchy of parameters referred to as
the slow roll parameters. They are given by [35]

ε1 = − Ḣ

H2
, (1.14a)

εi+1 =
d ln |εi|
dN

for i > 1. (1.14b)

Slow roll approximation amounts to assuming that the parameters εi are approximately
constant and much smaller than unity. It should be noted that inflation will be terminated
when ε1 ' 1.
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1.4 Inflationary perturbation theory at the linear order

Inflation, in addition to solving various issues plaguing the hot big bang model, such
as the horizon problem that we had discussed, also provides a causal mechanism for the
generation of the primordial perturbations [1, 12]. As is common knowledge, fluctuations
can be non-zero even when the mean values of quantum operators vanish. It is the quan-
tum fluctuations associated with the inflaton that prove to be responsible for the origin of
the perturbations. The inflationary epoch amplifies and converts the tiny quantum fluc-
tuations into classical perturbations which, in turn, leave their imprints as anisotropies
in the CMB. As we have already pointed out, observations of the CMB indicate that the
anisotropies at the epoch of decoupling are very small, about one part in 105. This implies
that the deviation from homogeneity at earlier times would be even smaller. Therefore,
the generation and evolution of perturbations in the early universe can be studied using
the methods of perturbation theory.

Perturbations to the homogeneous and isotropic FLRW metric can be decomposed
based on their transformation properties under rotations of the spatial coordinates on,
say, hypersurfaces of constant time. Based on these properties, one can easily show that
the perturbations in the metric tensor and, equivalently, in the matter, characterized by
the stress-energy tensor, can be classified into scalars, vectors and tensors. The scalar per-
turbations are the dominant of the three and are primarily responsible for the anisotropies
in the CMB and inhomogeneities in the universe. Vector perturbations can be generated
by rotational velocity fields and, hence, they are also referred to as vorticity modes. The
tensor perturbations are basically gravitational waves and, as is well known, they can be
generated even in the absence of sources.

In (3 + 1)-dimensions, one finds that there exist two independent degrees of freedom
associated with each class of perturbation. In this thesis, we shall be focusing on infla-
tionary scenarios driven by scalar fields. In such a situation, due to the absence of vector
sources, the vector perturbations are not produced at all. Hence, throughout this thesis,
we shall only be concerned with the scalar and the tensor perturbations. Since scalar fields
do not possess any isotropic stress, effectively, there arises only one independent scalar
degree of freedom, which we shall represent by the curvature perturbation R. The two
tensor degrees of freedom correspond to the two polarizations of the gravitational waves.
We shall represent the tensor perturbations as γij , which are essentially the perturbations
to the spatial components of the metric tensor. The tensor perturbations are transverse
and traceless, i.e. they satisfy the conditions ∂jγij = γii = 0, which reduce the number of

10



1.4. INFLATIONARY PERTURBATION THEORY AT THE LINEAR ORDER

true degrees of freedom associated with γij to two. Moreover, at the linear order in the
perturbations, it can be shown that the scalars and tensors evolve independently. How-
ever, as we shall discuss, there can exist cross-correlations between the scalars and tensors
at the higher orders in the perturbations.

A simple and straightforward way to arrive at the equations governing the perturba-
tions and study their evolution would be to perturb the Einstein’s equations up to a given
order and then analyze the resultant equations. However, in order to evaluate the corre-
lation functions beyond the two-point functions using perturbative methods of quantum
field theory, we shall require the actions governing the perturbations at the higher or-
ders. In this thesis, we shall focus on the three-point functions generated during inflation
and for the purpose we shall require the action describing the perturbations at the third
order. For this reason, we shall also obtain the linear equations of motion from the cor-
responding quadratic action. In the following three subsections, after briefly introducing
the so-called Arnowitt-Deser-Misner (ADM) formalism and discussing the scalar and the
tensor perturbations to the FLRW metric, we shall arrive at the quadratic action describ-
ing these perturbations. In the subsequent two subsections, we shall quickly discuss the
quantization of the perturbations and the definitions of the power spectra and outline
the evaluation of the power spectrum in the slow roll approximation. In the last two
subsections, we shall describe the procedure to evaluate the inflationary power spectra
numerically and briefly discuss the recent constraints from the cosmological data on the
inflationary parameters.

1.4.1 The ADM formalism

In order to arrive at the actions governing the perturbations, we shall make use of the
ADM formalism [36]. Recall that, in the ADM formalism, the spacetime metric is ex-
pressed in terms of the lapse function N , the shift vector N i and the spatial metric hij as
follows:

ds2 = −N2
(
dx0
)2

+ hij

(
N i dx0 + dxi

) (
N j dx0 + dxj

)
, (1.15)

where x0 and xi denote the time and the spatial coordinates, respectively. The system of
our interest is Einsteinian gravity which is sourced by a canonical and minimally coupled
scalar field, viz. the inflaton φ, that is described by the potential V (φ). In such a case, the
action describing the complete system can be written in terms of the metric variables N ,
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N i and hij and the scalar field φ as follows [23, 24, 25, 37]:

S[N,N i, hij, φ] =

∫
dx0

∫
d3xN

√
h

{
M2

Pl

2

[
1

N2

(
EijE

ij − E2
)
+(3)R

]
+

[
1

2N2
(∂0φ)

2 − N i

N2
∂0φ ∂iφ− 1

2
hij ∂iφ ∂jφ

+
N iN j

2N2
∂iφ ∂jφ− V (φ)

]}
, (1.16)

where ∂0φ = ∂φ/∂x0, h ≡ det (hij) and (3)R is the spatial curvature associated with the
metric hij . The quantity Eij is given by

Eij =
1

2
(∂0hij −∇iNj −∇jNi) , (1.17)

with E = hij E
ij . As is well known, the variation of the action (1.16) with respect to the

Lagrange multipliers N and N i leads to the so-called Hamiltonian and momentum con-
straints, respectively. Solving these constraint equations and substituting the solutions
back in the original action (1.16) permits us to arrive at the action governing the dynami-
cal variables of interest up to a given order in the perturbations.

1.4.2 The scalar and the tensor perturbations

When the scalar and the tensor perturbations are taken into account, it proves to be con-
venient to work in a specific gauge to arrive at the action governing the perturbations.
We shall choose to work in the so-called co-moving gauge [23]. In such a gauge, the per-
turbation in the scalar field is assumed to be absent, i.e. δφ = 0, so that the scalar field
φ actually depends only on time. Upon taking into account the scalar perturbation de-
scribed by the curvature perturbation R and the tensor perturbation characterized by γij ,
the spatially flat FLRW metric can be expressed as [23]

ds2 = −dt2 + hij(t,x) dx
i dxj, (1.18)

where the quantity hij is given by

hij = a2(t) e2R(t,x)
[
eγ(t,x)

]
ij
. (1.19)

These assumptions for the scalar field φ and the spatial metric hij as well as the solutions
to the Hamiltonian and momentum constraint equations allow us to arrive at the action
describing the perturbations, viz. the quantities R and γij , at a given order [23, 24].
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1.4.3 Actions at the quadratic order

The action at the quadratic order governing the perturbations can be arrived at using the
ADM formalism sketched in Sec. 1.4.1. For instance, working in the comoving gauge, one
can show that the actions at the quadratic order governing the curvature perturbation R
and the tensor perturbation γij are given by [12, 23, 24]

S2
RR[R] =

1

2

∫
dη

∫
d3x z2

[
R′2 − (∂R)2

]
, (1.20a)

S2
γγ [γij] =

M2
Pl

8

∫
dη

∫
d3x a2

[
γ′
ij
2 − (∂γij)

2
]
, (1.20b)

where z =
√
2 ε1MPl

a, with ε1 being the first slow roll parameter. These actions at the
quadratic order will, obviously, lead to the linear equations of motion. In Fourier space,
the modes, say, fk and gk, associated with the scalar and the tensor modes are found to
satisfy the differential equations

f ′′
k + 2

z′

z
f ′
k + k2 fk = 0, (1.21a)

g′′k + 2
a′

a
g′k + k2 gk = 0, (1.21b)

respectively.

1.4.4 Quantization of the perturbations and the power spectra

As we mentioned, in the inflationary paradigm, the primordial perturbations are gener-
ated due to quantum fluctuations. On quantization, the curvature perturbation R̂ and the
tensor perturbation γ̂ij can be written in terms of the scalar and tensor Fourier modes as
follows:

R̂(η,x) =

∫
d3k

(2π)3/2
R̂k(η) e

ik·x

=

∫
d3k

(2π)3/2

(
âk fk(η) e

ik·x + â†k f
∗
k (η) e

−ik·x
)
, (1.22a)

γ̂ij(η,x) =

∫
d3k

(2π)3/2
γ̂k
ij(η) e

ik·x

=
∑
s

∫
d3k

(2π)3/2

(
b̂sk ε

s
ij(k) gk(η) e

ik·x + b̂s†k εs∗ij (k) g
∗
k(η) e

−ik·x
)
. (1.22b)

In these decompositions, the pairs of operators (âk, â
†
k) and (b̂sk, b̂

s†
k ) represent the annihi-

lation and creation operators corresponding to the scalar and the tensor modes associated
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with the wavevector k, and they satisfy the standard commutation relations. The quantity
εsij(k) represents the polarization tensor of gravitational waves with their helicity being
denoted by the index s. The transverse and traceless nature of gravitational waves leads
to the conditions εsii(k) = ki ε

s
ij(k) = 0. We shall work with the normalization condition

εrij(k) ε
s∗
ij (k) = 2 δrs [23].

It is often convenient to rewrite the modes in terms of the Mukhanov-Sasaki variables,
viz. vk = z fk and uk = M

Pl
a gk/

√
2. In terms of these new variables, the equations of

motion governing the scalar and the tensor perturbations reduce to

v′′k +

(
k2 − z′′

z

)
vk = 0, (1.23a)

u′′
k +

(
k2 − a′′

a

)
uk = 0, (1.23b)

respectively. The scalar and the tensor power spectra, viz. P
S
(k) and P

T
(k), are defined

as follows:

〈 R̂k(η) R̂k′(η) 〉 =
(2π)2

2 k3
P

S
(k) δ(3)(k + k′), (1.24a)

〈 γ̂k
ij(η) γ̂

k′

mn(η) 〉 =
(2π)2

2 k3

Πk
ij,mn

4
P

T
(k) δ(3)(k + k′), (1.24b)

where the expectation values on the left hand sides are to be evaluated in the specified
initial quantum state of the perturbations, and the quantity Πk

ij,mn is given by [30, 33]

Πk
ij,mn =

∑
s

εsij(k) ε
s∗
mn(k). (1.25)

The vacuum state |0〉 associated with the quantized perturbations is defined as the state
that satisfies the conditions âk|0〉 = 0 and b̂sk|0〉 = 0 for all k and s. If one assumes the
initial state of the perturbations to be the vacuum state |0〉, then, on making use of the
decompositions (1.22) in the above definitions, the inflationary scalar and tensor power
spectra P

S
(k) and P

T
(k) can be expressed as

P
S
(k) =

k3

2π2
|fk|2, (1.26a)

P
T
(k) = 4

k3

2 π2
|gk|2. (1.26b)

The amplitudes |fk| and |gk| on the right hand sides of the above expressions are to be
evaluated when the modes are sufficiently outside the Hubble radius. It is useful to note
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here that the scalar and tensor spectral indices n
S

and n
T

are defined as

n
S
(k) = 1 +

d lnP
S
(k)

d ln k
, (1.27a)

n
T
(k) =

d lnP
T
(k)

d ln k
. (1.27b)

1.4.5 The power spectra in slow roll inflation

Let us now turn to the evaluation of the power spectra in the slow roll approximation.
The Mukhanov-Sasaki equations (1.23) resemble that of a parametric oscillator with time
dependent frequencies. At the leading order in the slow roll approximation, one can show
that the quantities z′′/z and a′′/a are given by [1, 12]

z′′

z
' 2 + 3 ε1 + 3 ε2/2

η2
, (1.28a)

a′′

a
' 2 + 3 ε1

η2
, (1.28b)

where ε2 is the second slow roll parameter that is related to the first parameter ε1 as fol-
lows: ε2 = ε̇1/(Hε1).

On treating the slow roll parameters as constants, one finds that the solutions to the
variables (vk, uk) that satisfy the standard Bunch-Davies initial conditions in the sub-
Hubble regime, i.e. [vk(η), uk(η)] → (1/

√
2 k) exp − (i k η) as k η → −∞, are given

by [1, 12, 38]

[vk(η), uk(η)] =

(
−π η

4

)1/2

ei π (ν
S,T

+1/2)/2 H(1)
ν
S,T

(−k η), (1.29)

where H
(1)
ν (x) denotes the Hankel function of the first kind, while ν

S
= 3/2+ ε1− ε2/2 and

ν
T
= 3/2 + ε1 are the indices of the Hankel function for the scalar and the tensor modes.

In the super-Hubble limit, i.e. as k η → 0, the scalar and tensor power spectra associated
with the above modes can be obtained to be [39]

P
S
(k) =

H2

8 π2M2
Pl
ε1

[
1− 2 ε1 (C + 1)− ε2C − (2 ε1 + ε2) ln

(
k

k∗

)]
, (1.30a)

P
T
(k) =

2H2

π2 M2
Pl

[
1− 2 ε1 (C + 1)− 2 ε1 ln

(
k

k∗

)]
, (1.30b)

where C = γ
E
− 2 + ln 2, with γ

E
being the Euler constant [40], and k∗ denotes a suitable

pivot scale at which the amplitudes of the power spectra are often quoted. These power
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spectra lead to the following spectral indices: n
S
= 1 − 2 ε1 − ε2 and n

T
= −2 ε1, which

correspond to nearly scale invariant spectra. It is useful to note that, if one ignores the
weak scale dependence in the above expressions, one arrives at the following standard
slow roll result for the tensor-to-scalar ratio: r = P

T
(k)/P

S
(k) ' 16 ε1.

1.4.6 A few words on the numerical evaluation of inflationary power
spectra

In the case of models which are not analytically tractable, one needs to resort to numeri-
cal methods for evaluating the power spectra. Note that the coefficients of the equations
governing the scalar and the tensor perturbations, viz. Eqs. (1.21), depend on the back-
ground variables. Evidently, one needs to first solve the equation (1.13) describing the
homogeneous scalar field before we go on to solve the equations governing the perturba-
tions.

To solve the differential equations numerically, it proves to be efficient to work with
e-folds as the independent variable. In terms of e-folds, the differential equation (1.13)
governing the background scalar field can be expressed as

φNN +

(
3− φ2

N

2M2
Pl

)
φN +

(
3M2

Pl
− φ2

N

2

)
Vφ

V
= 0, (1.31)

where each suffix N denotes a derivative with respect to the e-fold. This equation is
usually solved for by assuming that the field starts on the inflationary attractor. Moreover,
the initial value of the field is chosen to be such that the required number of 60 or so e-
folds is achieved before inflation is terminated at the bottom of the potential.

The solution to the scalar field allows us to construct the coefficients involving the
background quantities that arise in the equations (1.21) describing the perturbations. The
perturbation equations can then be integrated with suitable initial conditions to arrive
at the power spectra. As in case of the background scalar field, one again works with
e-folds as the independent variable. In terms of e-folds, the equations (1.21) that govern
the evolution of the perturbations are given by

fk
NN +

(
1 +

2 zN
z

+
HN

H

)
fk
N +

k2

a2 H2
fk = 0, (1.32a)

gkNN +

(
3 +

HN

H

)
gkN +

k2

a2 H2
gk = 0, (1.32b)

where, for convenience, we have denoted fk and gk as fk and gk and, as we mentioned, the
suffix N represents differentiation with respect to the e-fold. The initial conditions that
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are required to solve these two equations are provided by the standard Bunch-Davies
initial conditions. In the analytical derivation of the power spectra in slow roll infla-
tion discussed in the previous sub-section, we had imposed these initial conditions in
the extreme sub-Hubble domain, i.e. as k/(aH) → ∞. Moreover, we had evaluated the
power spectra in the super-Hubble limit, i.e. as k/(aH) → 0. Obviously, these limits
are impossible to implement numerically. Therefore, in the numerical analysis, one im-
poses the initial conditions when the modes are sufficiently inside the Hubble radius and
evolves the perturbations on to super-Hubble scales. Apart from some peculiar instances,
it is found that the amplitude of the curvature and the tensor perturbations always settle
down to a constant value soon after the modes leave the Hubble radius. This is evident,
for instance, in Fig. (1.2), wherein we have plotted the evolution of the curvature pertur-
bation for a specific mode in a typical inflationary model such as the one described by
the quadratic potential. Due to this reason, it proves to be sufficient to evolve the modes
until a time when they are suitably outside the Hubble radius. Various investigations
suggest that it suffices to impose the initial conditions when k/(aH) ' 100 and evaluate
the power spectra when k/(aH) ' 10−5 [41].

1.4.7 Observational constraints at the level of power spectrum

While comparing inflationary models with the data, one often considers the following
power law forms for the primordial scalar and tensor power spectra:

P
S
(k) = A

S

(
k

k∗

)n
S
−1

, (1.33a)

P
T
(k) = A

T

(
k

k∗

)n
T

, (1.33b)

where A
S

and A
T

represent the scalar and the tensor amplitudes, while the spectral in-
dices n

S
and n

T
are assumed to be constants. The quantity k∗ denotes the so-called pivot

scale at which the amplitudes of the power spectra are quoted. The scalar amplitude
A

S
is well constrained by the data and its value is referred to as the COBE normaliza-

tion [42]. Often, one ignores the weak scale dependence of the tensor power spectra and
the tensor power is referred to in terms of the tensor-to-scalar ratio r, quoted at the pivot
scale. The primordial spectra are compared with the CMB data using Boltzmann codes
such as COSMOMC [43] or CLASS [44]. The template power law spectra (1.33) are found
to lead to a good fit to the recent Planck data as is illustrated in Fig. 1.3 [6, 15, 16, 21].
Fig. 1.4 shows the joint constraint on the parameters r and n

S
arrived at from the most
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Figure 1.2: The evolution of the real (in blue) and the imaginary (in red) parts of the
curvature perturbation fk for a typical cosmological scale in the case of inflation driven
by the quadratic potential has been plotted as a function of e-folds. The evolution has
been plotted for a mode that leaves the Hubble radius around 18 e-folds. Note that the
mode oscillates when it is inside the Hubble radius, but quickly settles down to a constant
value when outside. It is due to this reason that it proves to be sufficient to evaluate the
power spectrum at an instant when the mode is on super-Hubble scales.

recent Planck data [21]. The figure suggests that the data point to a scalar spectral index
of about n

S
' 0.96 and an upper bound of r ' 0.1 for the tensor-to-scalar ratio. It is

notable that the central spot in the r-n
S

plane is occupied by the Starobinsky model that
is governed by an action which is a quadratic function of the spacetime curvature [45].

Instead of working with template power spectra, one can carry out a more detailed
analysis of comparing specific models with the data and examine as to how the Bayesian
evidence for the various models [46] contrast with respect to, say, the above-mentioned
Starobinsky model. Recent comprehensive efforts in this direction seems to suggest that
potentials with a plateau are preferred by the data [47, 48, 49]. It is important to note that
it is the essentially the increasingly tighter constraint on the upper limit of the tensor-to-
scalar ratio r that is responsible for ruling out classes of inflationary models such as the
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Figure 1.3: The observed and the theoretical CMB temperature angular power spectra
have been plotted as a function of multipoles (figure from Ref. [21]). The blue dots with
the error bars denote the recent Planck data, while the red curve represents the best fit
curve associated with a nearly scale invariant power spectrum.

Figure 1.4: Joint constraint on the inflationary parameters r and n
S

arrived at from the
recent Planck temperature and polarization data as well as other cosmological data (figure
from Ref. [21]). Constraints indicate that large field models, which lead to r & 0.1, are
beginning to be completely ruled out by the data.
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large field models. The claims of BICEP2 [50, 51] about the detection of the imprints of
the primordial tensor modes in the B-mode polarization of the CMB had provided hope
on arriving at rather strong constraints on the inflationary models. But, it has since been
realized that the signals detected by BICEP2 can be attributed to emissions from fore-
ground dust [52, 53]. More accurate measurements of the CMB polarization are expected
to yield additional constraints on the inflationary models. However, all these constraints
are nevertheless expected to leave sufficient room for a relatively large class of inflation-
ary models to remain viable. In such a situation, it is believed that, to lift the degeneracy
amongst the prevailing models, we will have to turn to constraints on quantities beyond
the power spectra.

1.5 The Maldacena formalism for evaluating the
inflationary three-point functions

The statistical properties of the primordial perturbations are described by their moments.
If the primordial perturbations were Gaussian, all its statistical properties would have
been contained in the variance or the power spectrum. However, if the perturbations
were non-Gaussian, either its odd moments will be non-zero or its even moments will
have a different functional form. Hence, the first evidence for the non-Gaussian nature
of the primordial perturbations would be non-zero three-point functions. Amongst the
different approaches available, the so-called Maldacena formalism is the most complete
formalism to calculate the three-point functions generated during inflation [23]. In this
section, after introducing the various three-point functions, we shall briefly summarize
the essential aspects of the Maldacena formalism to evaluate the three-point functions
involving scalars as well as tensors. We shall also present the results for the three-point
functions in the slow roll approximation and discuss the recent constraints on the non-
Gaussianity parameters often used to characterize the scalar three-point function.

1.5.1 The three-point functions: Definitions

The scalar bi-spectrum, the two scalar-tensor three-point cross-correlations and the tensor
bi-spectrum in Fourier space, viz. BRRR(k1,k2,k3), Bm3n3

RRγ (k1,k2,k3), Bm2n2m3n3
Rγγ (k1,k2,k3)

and Bm1n1m2n2m3n3
γγγ (k1,k2,k3), evaluated towards the end of inflation at the conformal
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time, say, ηe, are defined as [23, 30, 31, 32, 33]

〈 R̂k1(ηe) R̂k2(ηe) R̂k3(ηe) 〉 ≡ (2π)3 BRRR(k1,k2,k3) δ
(3) (k1 + k2 + k3) , (1.34a)

〈 R̂k1(ηe) R̂k2(ηe) γ̂
k3
m3n3

(ηe) 〉 ≡ (2π)3 Bm3n3
RRγ (k1,k2,k3) δ

(3) (k1 + k2 + k3) , (1.34b)

〈 R̂k1(ηe) γ̂
k2
m2n2

(ηe) γ̂
k3
m3n3

(ηe) 〉 ≡ (2π)3 Bm2n2m3n3
Rγγ (k1,k2,k3) δ

(3) (k1 + k2 + k3) , (1.34c)

〈 γ̂k1
m1n1

(ηe) γ̂
k2
m2n2

(ηe) γ̂
k3
m3n3

(ηe) 〉 ≡ (2π)3 Bm1n1m2n2m3n3
γγγ (k1,k2,k3) δ

(3) (k1 + k2 + k3) .

(1.34d)

For convenience, hereafter, we shall write these correlators as

BABC(k1,k2,k3) = (2π)−9/2 GABC(k1,k2,k3), (1.35)

where A, B and C refer to either R or γ.

1.5.2 The actions governing the three-point functions

As we mentioned, the most comprehensive method to study the generation of non-
Gaussianities during inflation is the approach due to Maldacena. The primary aim of
Maldacena’s approach is to obtain the cubic order action that governs the scalar and the
tensor perturbations using the ADM formalism [36]. Then, based on the action, one ar-
rives at the corresponding three-point functions using the standard rules of perturbative
quantum field theory [23, 24, 25, 30, 31, 32, 33].

We had pointed out that, while the scalars and the tensors evolve independently at the
linear order in the perturbations, they interact at the higher orders. Therefore, in the co-
moving gauge, at the cubic order in the perturbations, apart from the terms such as RRR
and γγγ, the action governing the perturbations will also consist of terms of the form
RRγ and Rγγ. The terms involving RRR and γγγ will evidently lead to the scalar and
the tensor bi-spectra. Similarly, the terms involving RRγ and Rγγ will lead to the two
three-point scalar-tensor cross-correlations. The actions that lead to these correlations are
found to be (see, for example, Refs. [23, 30, 31, 32, 33])

S3
RRR[R] = M2

Pl

∫
dη

∫
d3x

[
a2 ε21 RR′2 + a2 ε21R (∂R)2 − 2 a ε1R′ ∂iR ∂iχ

+
a2

2
ε1 ε

′
2R2 R′ +

ε1
2
∂iR ∂iχ∂2χ+

ε1
4
∂2R (∂χ)2

+ aF1(R)
δL2

RR
δR

]
, (1.36a)
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S3
RRγ[R, γij] = M2

Pl

∫
dη

∫
d3x

[
a2 ε1 γij ∂iR ∂jR+

1

4
∂2γij ∂iχ∂jχ

+
a ε1
2

γ′
ij ∂iR ∂jχ+ F2

ij(R)
δL2

γγ

δγij
+ F3(R, γij)

δL2
RR

δR

]
, (1.36b)

S3
Rγγ[R, γij] =

M2
Pl

4

∫
dη

∫
d3x

[
a2 ε1
2

R γ′
ij γ

′
ij +

a2 ε1
2

R ∂lγij ∂lγij

− a γ′
ij ∂lγij ∂lχ+ F4

ij(R, γmn)
δL2

γγ

δγij

]
, (1.36c)

S3
γγγ [γij] =

M2
Pl

2

∫
dη

∫
d3x

[
a2

2
γlj γim ∂l∂mγij −

a2

4
γij γlm ∂l∂mγij

]
, (1.36d)

where the quantities F1(R), F2
ij(R), F3(R, γij) and F4

ij(R, γmn) are given by

F1(R) =
1

2 aH

{[
a2 H ε2R2 + 4 aHRR′ + ∂iR ∂iχ− 1

H
(∂R)2

]
δL2

RR
δR

+
[
∂iR ∂2χ+ ∂2R ∂iχ

]
δij ∂j

[
∂−2

(
δL2

RR
δR

)]
+

1

H
δim δjn ∂iR ∂jR ∂m∂n

[
∂−2

(
δL2

RR
δR

)]}
, (1.37a)

F2
ij(R) = − 1

a2 H2
∂iR ∂jR+

1

a2H
(∂iχ∂jR+ ∂jχ∂iR), (1.37b)

F3(R, γij) = − 1

4 aH
γ′
ij ∂

−2∂i∂jR, (1.37c)

F4
ij(R, γmn) =

1

aH
γ′
ij R. (1.37d)

In these actions, the quantity χ is determined by the relation ∂2χ = a ε1R′, while the
quantities L2

RR and L2
γγ are the second order Lagrangian densities corresponding to the

actions (1.20a) and (1.20b), respectively. One can show that the terms involving δL2
RR/δR

or δL2
γγ/δγij and the quantities F1(R), F2

ij(R), F3(R, γij) and F4
ij(R, γmn) can be removed

by the following field redefinitions (for further details, see Refs. [23, 31]):

R → R+ F1(R) + F3(R, γij), (1.38)

γij → γij + F2
ij(R) + F4

ij(R, γmn), (1.39)

thereby reducing the actions to simpler forms.

1.5.3 Generation of three-point functions during inflation

In order to calculate the three-point correlation functions using the methods of quantum
field theory, one requires the interaction Hamiltonian corresponding to the above actions.
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1.5. THE MALDACENA FORMALISM

One can show that, at the cubic order, the interaction Hamiltonian Hint is related to the
interaction Lagrangian Lint through the relation: Hint = −Lint [23, 24, 25, 30, 31, 32, 33]. In
what follows, we shall refer to Hint corresponding to the various actions as HABC, where
each of (A,B,C) can be either a R or a γ. Given the interaction Hamiltonian, ĤABC , the
corresponding three-point function can be evaluated using the standard rules of pertur-
bative quantum field theory.

The scalar bi-spectrum

At the leading order in perturbation theory, the scalar bi-spectrum can be expressed in
terms of the corresponding interaction Hamiltonian as follows [23]:

〈R̂k1(ηe) R̂k2(ηe) R̂k3(ηe)〉 = −i

∫ ηe

ηi

dη 〈[R̂k1(ηe) R̂k2(ηe) R̂k3(ηe), ĤRRR(η)]〉, (1.40)

where the expectation value has to be calculated in the perturbative vacuum. Note that
the action (1.36a) which governs the scalar three-point function contains six terms. There-
fore, the scalar bi-spectrum receives a contribution from each of these ‘vertices’. In fact,
there also occurs a seventh term which arises due to the field redefinition that we men-
tioned above. The scalar bi-spectrum can be evaluated from the above expression upon
using the Fourier decomposition of the curvature perturbation, the expression for ĤRRR

and Wick’s theorem [23, 24, 25]. One can show that the complete contribution to the scalar
bi-spectrum in the perturbative vacuum can be written as [37, 54, 55]

GRRR(k1,k2,k3) ≡
7∑

C=1

GRRR (C)(k1,k2,k3)

≡ M2
Pl

6∑
C=1

{
[fk1(ηe) fk2(ηe) fk3(ηe)] GC

RRR(k1,k2,k3)

+ complex conjugate

}
+GRRR(7)(k1,k2,k3), (1.41)

where fk are the Fourier modes in terms of which we had decomposed the curvature
perturbation at the linear order in the perturbations [cf. Eq. (1.22a)]. In the above expres-
sion, the quantities GC

RRR(k1,k2,k3) with C = (1, 6) correspond to the six vertices in the
interaction Hamiltonian (obtained from the third order action), and are described by the
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integrals

G1
RRR(k1,k2,k3) = 2 i

∫ ηe

ηi

dη a2 ε21
(
f ∗
k1
f ′∗
k2
f ′∗
k3
+ two permutations

)
, (1.42a)

G2
RRR(k1,k2,k3) = −2 i (k1 · k2 + two permutations)

∫ ηe

ηi

dη a2 ε21 f
∗
k1
f ∗
k2
f ∗
k3
, (1.42b)

G3
RRR(k1,k2,k3) = −2 i

∫ ηe

ηi

dη a2 ε21

[(
k1 · k2

k2
2

)
f∗
k1
f ′∗
k2
f ′∗
k3
+ five permutations

]
,

(1.42c)

G4
RRR(k1,k2,k3) = i

∫ ηe

ηi

dη a2 ε1 ε
′
2

(
f ∗
k1
f∗
k2
f ′∗
k3
+ two permutations

)
, (1.42d)

G5
RRR(k1,k2,k3) =

i

2

∫ ηe

ηi

dη a2 ε31

[(
k1 · k2

k2
2

)
f ∗
k1
f ′∗
k2
f ′∗
k3
+ five permutations

]
, (1.42e)

G6
RRR(k1,k2,k3) =

i

2

∫ ηe

ηi

dη a2 ε31

{[
k2
1 (k2 · k3)

k2
2 k

2
3

]
f ∗
k1
f ′∗
k2
f ′∗
k3
+ two permutations

}
.

(1.42f)

These integrals are to be evaluated from a sufficiently early time, say, ηi, when the initial
conditions are imposed on the modes until very late times, say, towards the end of infla-
tion at ηe. The additional, seventh term G7(k1,k2,k3) arises due to the field redefinition
and its contribution to the bi-spectrum G(k1,k2,k3) is given by

GRRR (7)(k1,k2,k3) =
ε2(ηe)

2

(
|fk1(ηe)|2 |fk2(ηe)|2 + two permutations

)
. (1.43)

The scalar-tensor cross-correlations

The two three-point scalar-tensor cross-correlations can be expressed in terms of the cor-
responding interaction Hamiltonians ĤRRγ and ĤRγγ [obtained from the actions (1.36b)
and (1.36c)] as follows [23]:

〈R̂k1(ηe) R̂k2(ηe) γ̂
k3
m3n3

(ηe)〉 = −i

∫ ηe

ηi

dη 〈[R̂k1(ηe) R̂k2(ηe) γ̂
k3
m3n3

(ηe), ĤRRγ(η)]〉, (1.44)

〈R̂k1(ηe) γ̂
k2
m2n2

(ηe) γ̂
k3
m3n3

(ηe)〉 = −i

∫ ηe

ηi

dη 〈[R̂k1(ηe) γ̂
k2
m2n2

(ηe) γ̂
k3
m3n3

(ηe), ĤRγγ(η)]〉.

(1.45)

One can show that the scalar-scalar-tensor cross-correlation Gm3n3
RRγ (k1,k2,k3), when
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evaluated in the perturbative vacuum, can be written as [30, 31, 32, 56]

Gm3n3
RRγ (k1,k2,k3) =

3∑
C=1

Gm3n3

RRγ (C)(k1,k2,k3)

= M2
Pl
Πk3

m3n3,ij
n̂1i n̂2j

3∑
C=1

[
fk1(ηe) fk2(ηe) gk3(ηe)

× GC
RRγ(k1,k2,k3) + complex conjugate

]
, (1.46)

where the quantities GC
RRγ(k1,k2,k3) are described by the integrals

G1
RRγ(k1,k2,k3) = −2 i k1 k2

∫ ηe

ηi

dη a2 ε1 f
∗
k1
f ∗
k2
g∗k3 , (1.47a)

G2
RRγ(k1,k2,k3) =

i

2

k2
3

k1 k2

∫ ηe

ηi

dη a2 ε21 f
′∗
k1
f ′∗
k2
g∗k3 , (1.47b)

G3
RRγ(k1,k2,k3) =

i

2

1

k1 k2

∫ ηe

ηi

dη a2 ε21
[
k2
1 f

∗
k1
f ′∗
k2
+ k2

2 f
′∗
k1
f∗
k2

]
g′∗k3 . (1.47c)

Note that, for a given wavevector k, n̂ denotes the unit vector n̂ = k/k. Hence, the
quantities n̂1i and n̂2i represent the components of the unit vectors n̂1 = k1/k1 and n̂2 =

k2/k2 along the i-spatial direction.

Similarly, the scalar-tensor-tensor cross-correlation Gm2n2m3n3
Rγγ (k1,k2,k3), evaluated in

the perturbative vacuum, can be expressed as [30, 31, 32, 56]

Gm2n2m3n3
Rγγ (k1,k2,k3) =

3∑
C=1

Gm2n2m3n3

Rγγ (C) (k1,k2,k3)

= M2
Pl
Πk2

m2n2,ij
Πk3

m3n3,ij

3∑
C=1

[
fk1(ηe) gk2(ηe) gk3(ηe)

× GC
Rγγ(k1,k2,k3) + complex conjugate

]
, (1.48)

with the quantities GC
Rγγ(k1,k2,k3) being given by

G1
Rγγ(k1,k2,k3) =

i

4

∫ ηe

ηi

dη a2 ε1 f
∗
k1
g′∗k2 g

′∗
k3
, (1.49a)

G2
Rγγ(k1,k2,k3) = − i

4
(k2 · k3)

∫ ηe

ηi

dη a2 ε1 f
∗
k1
g∗k2 g

∗
k3
, (1.49b)

G3
Rγγ(k1,k2,k3) = − i

4

∫ ηe

ηi

dη a2 ε1 f
′∗
k1

[
k1 · k2

k2
1

g∗k2 g
′∗
k3
+

k1 · k3

k2
1

g′∗k2 g
∗
k3

]
. (1.49c)
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The tensor bi-spectrum

The tensor bi-spectrum Bm1n1m2n2m3n3
γγγ (k1,k2,k3) can be expressed in terms of the Hamil-

tonian Ĥγγγ as [32, 33, 56]

〈γ̂k1
m1n1

(ηe) γ̂
k2
m2n2

(ηe) γ̂
k3
m3n3

(ηe)〉 = −i

∫ ηe

ηi

dη 〈[γ̂k1
m1n1

(ηe) γ̂
k2
m2n2

(ηe) γ̂
k3
m3n3

(ηe), Ĥγγγ(η)]〉.

(1.50)
The corresponding quantity Gm1n1m2n2m3n3

γγγ (k1,k2,k3) can be arrived in the same fash-
ion as the scalar bi-spectrum and the scalar-tensor cross-correlations from the cor-
responding action S3

γγγ [γij] [cf. Eq. (1.36d)]. One finds that the tensor bi-spectrum
Gm1n1m2n2m3n3

γγγ (k1,k2,k3), calculated in the perturbative vacuum, can be written as [23,
32, 33, 56]

Gm1n1m2n2m3n3
γγγ (k1,k2,k3) = M2

Pl

[(
Πk1

m1n1,ij
Πk2

m2n2,im
Πk3

m3n3,lj

− 1

2
Πk1

m1n1,ij
Πk2

m2n2,ml Π
k3
m3n3,ij

)
k1m k1l + five permutations

]
×
[
gk1(ηe) gk2(ηe) gk3(ηe)Gγγγ(k1,k2,k3)

+ complex conjugate
]
, (1.51)

where the quantity Gγγγ(k1,k2,k3) is described by the integral

G1
γγγ(k1,k2,k3) = − i

4

∫ ηe

ηi

dη a2 g∗k1 g
∗
k2
g∗k3 , (1.52)

and we should emphasize that (k1i, k2i, k3i) denote the components of the three wavevec-
tors (k1,k2,k3) along the i-spatial direction1.

1.5.4 The three-point functions in the slow roll approximation

We shall now turn to the evaluation of the three-point functions in slow roll inflation. As
we have discussed, at the leading order in the slow approximation, the first two slow
roll parameters, viz. ε1 and ε2, can be assumed to be constant. In order to evaluate the
three-point functions, apart from the slow roll parameters, we shall require the behavior
of the scale factor and the scalar and the tensor mode functions fk and gk. It proves to be

1Such an emphasis seems essential to avoid confusion between k1, k2 and k3 which denote the
wavenumbers associated with the wavevectors k1, k2 and k3, and the quantity ki which represents the
component of the wavevector k along the i-spatial direction. We have made similar clarifications below
wherever we are concerned some confusion in the notation may arise.
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sufficient to assume that the scale factor as well as the modes fk and gk are given by their
de Sitter forms. The de Sitter limit of the mode functions can be obtained by setting the
slow roll parameters in the index of Hankel function in (1.29) to zero and are given by

fk(η) =
iH0

2M
Pl

√
k3 ε1

(1 + i k η) e−i k η, (1.53a)

gk(η) =

√
2

M
Pl

iH0√
2 k3

(1 + i k η) e−i k η. (1.53b)

To arrive at the three-point functions, it is now a matter of substituting these quantities in
the various integrals and calculating the integrals involved. All the integrals prove to be
straightforward to calculate. However, there are two points that need to be noted. Firstly,
all the integrands oscillate highly in the extreme sub-Hubble domain, i.e. as k η → −∞,
and one needs to regulate the integrals by introducing a cut-off of the form eκ k η, where κ

is a small positive quantity. Theoretically, such a cut-off proves to be essential in order to
identify the correct perturbative vacuum. Secondly, the integrals corresponding to certain
contributions to the three-point functions can diverge in the super-Hubble limit, i.e. as
k η → 0, and they need to be handled with care. One can easily show that though some
integrals may diverge in the late time limit, the complete contribution to the three-point
function remains perfectly finite.

The scalar bi-spectrum

As we have discussed, the slow roll approximation amounts to assuming the slow roll pa-
rameters to be much smaller than unity. Hence, while evaluating the scalar bi-spectrum,
at the leading order in the slow roll parameters, we need to consider only the contri-
butions due to the first three vertices and the contribution due to the field redefinition.
Upon substituting the mode (1.53a) in the expressions (1.42a), (1.42b), (1.42c) and (1.43),
carrying out the integrals involved, and making use of Eq. (1.41), one finds that the scalar
bi-spectrum can be expressed as the sum of the four contributions as follows:

GRRR(k1,k2,k3) = GRRR (1)(k1,k2,k3) +GRRR (2)(k1,k2,k3)

+GRRR (3)(k1,k2,k3) +GRRR (7)(k1,k2,k3), (1.54)

where the different contributions are given by

GRRR (1)(k1,k2,k3) =
H4

0

16M4
Pl
ε1

1

(k1 k2 k3)3

×
[
k2
2 k

2
3

(
1

k
T

+
k1
k2

T

)
+ twopermutations

]
, (1.55a)
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GRRR (2)(k1,k2,k3) =
H4

0

16M4
Pl
ε1

k1 · k2 + k2 · k3 + k3 · k1

(k1 k2 k3)3

×
[
−k

T
+

(k1k2 + k2k3 + k3k1)

k
T

+
k1k2k3
k2

T

]
, (1.55b)

GRRR (3)(k1,k2,k3) =
−H4

0

16M4
Pl
ε1

1

(k1 k2 k3)3

×
[
k1 · k2

k2
2

(
1

k
T

+
k1
k2

T

)
+ five permutations

]
, (1.55c)

GRRR (7)(k1,k2,k3) =
H4

0

32M4
Pl

ε2
ε21

[
1

k3
1k

3
2

+
1

k3
2k

3
3

+
1

k3
3k

3
1

]
, (1.55d)

with k
T
= k1 + k2 + k3.

The scalar-scalar-tensor cross-correlation

Note that the second and the third of the three integrals (1.47) depend quadratically on
the first slow parameter, while the first depends linearly. Hence, it is the first term which
dominates in slow roll approximation. On using the scalar and the tensor modes (1.53),
evaluating the integral involved and finally using Eq. (1.46), we obtain the scalar-scalar-
tensor three-point function to be

Gm3n3
RRγ (k1,k2,k3) =

H4
0

4M4
Pl
ε1

k1 k2
(k1 k2 k3)3

Πk3
m3n3,ij

n̂1i n̂2j

×
[
−k

T
+

k1 k2 + k2 k3 + k3 k1
k

T

+
k1 k2 k3

k2
T

]
. (1.56)

The scalar-tensor-tensor cross-correlation

The contributions from the three vertices to the scalar-tensor-tensor correlation are of the
same order in first slow roll parameter and, hence, we need to evaluate all of them in
the slow roll approximation. Upon performing the integrals (1.49) using the modes (1.53)
and substituting the resultant expressions in Eq. (1.48), one can express the scalar-tensor-
tensor three-point function as

Gm2n2m3n3
Rγγ (k1,k2,k3) = Gm2n2m3n3

Rγγ (1) (k1,k2,k3) +Gm2n2m3n3

Rγγ (2) (k1,k2,k3)

+Gm2n2m3n3

Rγγ (3) (k1,k2,k3), (1.57)
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where the three contributions are given by

Gm2n2m3n3

Rγγ (1) (k1,k2,k3) =
H4

0

8M4
Pl

k2
2 k

2
3

(k1 k2 k3)3
Πk2

m2n2,ij
Πk3

m3n3,ij

[
1

k
T

+
k1
k2

T

]
, (1.58a)

Gm2n2m3n3

Rγγ (2) (k1,k2,k3) =
H4

0

8M4
Pl

k2 · k3

(k1k2k3)3
Πk2

m2n2,ij
Πk3

m3n3,ij

×
[
−k

T
+

k1 k2 + k2 k3 + k3 k1
k

T

+
k1 k2 k3

k2
T

]
, (1.58b)

Gm2n2m3n3

Rγγ (3) (k1,k2,k3) = − H4
0

8M4
Pl

1

(k1k2k3)3
Πk2

m2n2,ij
Πk3

m3n3,ij

×
[
(k1 · k2) k

2
3

(
1

k
T

+
k2
k2

T

)
+ (k1 · k3) k

2
2

(
1

k
T

+
k3
k2

T

)]
. (1.58c)

The tensor bi-spectrum

The tensor bi-spectrum can be evaluated in a similar way in the slow roll approximation.
It can be arrived at upon using the tensor mode (1.53b), carrying out the integral (1.52)
and substituting the result in the expression (1.51). The tensor bi-spectrum in the slow
roll approximation can be written as

Gm1n1m2n2m3n3
γγγ (k1,k2,k3) =

H4
0

2M4
Pl

1

(k1 k2 k3)3

[(
Πk1

m1n1,ij
Πk2

m2n2,im
Πk3

m3n3,lj

− 1

2
Πk1

m1n1,ij
Πk2

m2n2,ml Π
k3
m3n3,ij

)
k1m k1l

+five permutations

]
×
[
−k

T
+

k1 k2 + k2 k3 + k3 k1
k

T

+
k1 k2 k3

k2
T

]
. (1.59)

1.5.5 Observational constraints on non-Gaussianities

Needless to say, it will be interesting to arrive at constraints on the extent of primordial
non-Gaussianities from the CMB and other cosmological data and thereby converge on,
possibly, a smaller class of viable inflationary models than are permitted by the power
spectra. As in the case of the primordial spectra, such constraints are usually arrived
at by assuming certain template scalar bi-spectra. There are three templates that are
usually assumed, which are referred to as the local, equilateral and the orthogonal tem-
plates [25]. While the local form is largely independent of the wavenumbers and peaks in
the squeezed limit of the bi-spectrum (wherein one of the wavenumbers is much smaller
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that the other two), the equilateral form peaks in the equilateral limit (wherein the three
wavenumbers are equal). The orthogonal form has a shape which is represented by nei-
ther the local or the equilateral forms. The local shape is generated in multi-field mod-
els of inflation and in certain post-inflationary scenarios such as the curvaton scenario.
The equilateral shape is produced in inflationary models involving non-canonical scalar
fields, whereas generating the orthogonal shape requires a special class of models involv-
ing higher derivatives of the field. The local, the equilateral and the orthogonal shapes
are expressed in terms of the scalar power spectra as follows [5, 25]:

Gloc
RRR(k1,k2,k3) = f loc

NL

6

5

[
(2π2)

2

k3
1 k

3
2 k

3
3

] [
k3
1 PS

(k2)PS
(k3) + two permutations

]
,

(1.60a)

Geq
RRR(k1,k2,k3) = f eq

NL

3

5

[
(2π2)

2

k3
1 k

3
2 k

3
3

] [
6 k2 k

2
3 PS

(k1)P2/3
S

(k2)P1/3
S

(k3)

− 3 k3
3 PS

(k1)PS
(k2)− 2 k1 k2 k3P2/3

S
(k1)P2/3

S
(k2)P2/3

S
(k3)

+five permutations

]
, (1.60b)

Gorth
RRR(k1,k2,k3) = f orth

NL

3

5

[
(2π2)

2

k3
1 k

3
2 k

3
3

] [
18 k2 k

2
3 PS

(k1)P2/3
S

(k2)P1/3
S

(k3)

− 9 k3
3 PS

(k1)PS
(k2)− 8 k1 k2 k3 P2/3

S
(k1)P2/3

S
(k2)P2/3

S
(k3)

+five permutations

]
. (1.60c)

The quantities (f loc
NL

, f eq
NL
, f ortho

NL
) are dimensionless parameters which reflect the amplitude

associated with the three shapes. It is these parameters that are expected to be constrained
by the data.

The constraints from Planck on these non-Gaussianity parameters are given by: f loc
NL

=

0.8±5.0, f eq
NL

= −4±43 and f ortho
NL

= −26±21 [29]. Note that the constraints are consistent
with a Gaussian primordial perturbation at 2-σ. From the expressions for the scalar bi-
spectrum that we had obtained earlier in the slow roll case, it can be shown that the corre-
sponding non-Gaussianity parameter f

NL
(for the relation between the scalar bi-spectrum

and the non-Gaussianity parameter, see Subsec. 2.2.1) is of the order of the first slow
roll parameter ε1. Therefore, the above constraints from Planck on the non-Gaussianity
parameters suggest that slow roll models involving the canonical scalar field which are
consistent with the data at the level of the power spectra are also consistent at the level of
non-Gaussianities.
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1.6 Preheating

As the field rolls down the potential, typically, the first slow roll parameter ε1 steadily
increases and inflation is terminated when the parameter becomes greater than unity. At
the end of inflation, the inflaton, which is coupled to the other standard model fields, is
expected to decay into relativistic particles described by these fields. These relativistic
particles are then supposed to thermalize, thus leading to the radiation dominated era as
described by the hot big bang model. In many models, soon after inflation comes to an
end, the scalar field oscillates at the minimum of the potential with an ever decreasing
amplitude. This phase of damped oscillatory motion soon after inflation is referred to as
preheating [57, 58].

In this phase, as the scalar field oscillates at the minimum of the potential, the fields
coupled to the inflaton can undergo parametric resonance which may lead to a rapid pro-
duction of particles. Such a phenomenon can, in principle, enhance the amplitude of the
otherwise frozen, primordial perturbations [12]. Moreover, recently, it has been shown
that the constraints on the inflationary models can depend on the details of reheating [59].
In such a situation, clearly, post inflationary scenarios such as preheating need to be taken
into account while considering the imprints of the primordial perturbations on the CMB
or the large scale structure in order to arrive at meaningful constraints on the inflationary
models.

1.7 Organization of the thesis

The rest of the thesis, consisting of four more chapters, is organized as follows. In Chap. 2,
we shall investigate the consistency relation obeyed by scalar bi-spectrum in the squeezed
limit in inflationary models permitting deviations from slow roll. In Chap. 3, we shall
discuss a numerical procedure to compute the three-point functions involving tensors for
an arbitrary triangular configuration of the wavenumbers. We shall also make use of the
code developed based on the procedure to evaluate the three-point functions in a class
of inflationary models that lead to features in the scalar power spectrum. In Chap. 4, we
shall examine the validity of consistency relations obeyed by the three-point functions
involving tensors. Finally, we shall conclude the thesis in Chap. 5 with a discussion of the
results obtained and a brief outlook.
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Chapter 2

On the scalar consistency relation away
from slow roll

2.1 Introduction

Over the past two decades, cosmologists have dedicated a considerable amount of at-
tention to hunting down credible models of inflation. As discussed before, the infla-
tionary scenario, which is often invoked to resolve puzzles such as the horizon problem
that plague the hot big bang model, is well known to provide an attractive mechanism
for the origin of perturbations in the early universe [1, 12]. In the modern viewpoint,
it is the primordial perturbations generated during inflation that leave their signatures
as anisotropies in the CMB and later lead to the formation of the large scale structure.
Ever since the discovery of the CMB anisotropies by COBE [2], there has been a con-
stant endeavor to utilize cosmological observations to arrive at stronger and stronger
constraints on models of inflation. While the CMB anisotropies have been measured with
ever increasing precision by missions such as WMAP [3, 4, 5], Planck [6, 15, 20, 21] and
by BICEP2 [50, 51], it would be fair to say that we still seem rather far from converging
on a small class of well motivated and viable inflationary models (in this context, see
Refs. [47, 48, 49]).

The difficulty in arriving at a limited set of credible models of inflation seems to lie in
the simplicity and efficiency of the inflationary scenario. Inflation can be easily achieved
with the aid of one or more scalar fields that are slowly rolling down a relatively flat po-
tential. Due to this reason, a plethora of models of inflation have been proposed, which
give rise to the required 60 or so e-folds of accelerated expansion that is necessary to
overcome the horizon problem. Moreover, there always seem to exist sufficient room to
tweak the model parameters in such a way so as to result in a nearly scale invariant power
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spectrum of the scalar perturbations that lead to a good fit to the CMB data. In such a sit-
uation, non-Gaussianities in general and the scalar bi-spectrum in particular have been
expected to lift the degeneracy prevailing amongst the various inflationary models. For
convenience, the extent of non-Gaussianity associated with the scalar bi-spectrum is often
expressed in terms of the parameter commonly referred to as f

NL
[60], a quantity which is

a dimensionless ratio of the scalar bi-spectrum to the power spectrum. The expectation re-
garding non-Gaussianities alluded to above has been largely corroborated by the strong
limits that have been arrived at by the Planck mission on the value of the f

NL
parame-

ter [29]. As we had pointed out in Subsec. 1.5.5, these bounds suggest that the observed
perturbations are consistent with a Gaussian primordial distribution. Also, the strong
constraints imply that exotic models which lead to large levels of non-Gaussianities are
ruled out by the data.

Despite the strong bounds that have been arrived at on the amplitude of the scalar
bi-spectrum, there exist many models of inflation that remain consistent with the cosmo-
logical data at hand. The so-called scalar consistency relation is expected to play a pow-
erful role in this regard, ruling out, for instance, many multi-field models of inflation,
if it is confirmed observationally (for early discussion in this context, see, for instance,
Refs. [23, 61]; for recent discussions, see Refs. [62]; for similar results that involve the
higher order correlation functions, see, for example, Refs. [63]). According to the con-
sistency condition, in the squeezed limit of the three-point functions wherein one of the
wavenumbers associated with the perturbations is much smaller than the other two, the
three-point functions can be completely expressed in terms of the two-point functions1.
In the squeezed limit, for instance, the scalar non-Gaussianity parameter f

NL
can be ex-

pressed completely in terms of the scalar spectral index n
S

as f
NL

= 5 (n
S
− 1)/12 [23, 61].

As we shall briefly outline later, the consistency conditions are expected to hold [64]
whenever the amplitude of the perturbations freeze on super-Hubble scales, a behavior
which is true in single field models where inflation occurs on the attractor at late times
(see Refs. [65]; in this context, also see Refs. [66, 67]). While the scalar consistency re-
lation has been established in the slow roll scenario, we find that there has been only a
limited effort in explicitly examining the relation in situations consisting of periods of
fast roll [68, 69]. Moreover, it has been shown that there can be deviations from the con-
sistency relation under certain conditions, particularly when the field is either evolving

1It should be added here that, in a fashion similar to that of the purely scalar case, one can also arrive
at consistency conditions for the other three-point functions which involve tensors (in this context, see
Chap. 4).
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away from the attractor [70] or when the perturbations are in an excited state above the
Bunch-Davies vacuum [71]. In this chapter [72], our aim is to verify the validity of the
scalar consistency relation in inflationary models which exhibit non-trivial dynamics. By
considering a few examples, we shall explicitly show, analytically and numerically, that
the scalar consistency relation holds even in scenarios involving strong deviations from
slow roll.

The remainder of this chapter is organized as follows. In the next section, we shall
quickly introduce the scalar non-Gaussianity parameter f

NL
. We shall also briefly revisit

the proof of the scalar consistency relation in the squeezed limit. In the succeeding sec-
tion, we shall explicitly verify the validity of the consistency condition analytically in the
cases of power law inflation and the Starobinsky model which is described by a linear
potential with a sudden change in its slope. We shall then evaluate the scalar bi-spectrum
numerically for an arbitrary triangular configuration of the wavenumbers in three in-
flationary models that lead to features in the scalar power spectrum, and examine the
consistency condition in the squeezed limit. We shall conclude the chapter with a brief
discussion on the results we obtain.

2.2 The scalar bi-spectrum in the squeezed limit

In this section, we shall first introduce the scalar non-Gaussianity parameter and arrive at
an expression for the quantity in terms of the scalar bi-spectrum and power spectrum. We
shall also sketch a simple proof of the consistency relation obeyed by the non-Gaussianity
parameter in the squeezed limit of the scalar bi-spectrum.

2.2.1 The scalar non-Gaussianity parameter f
NL

In order to compare the primordial three-point functions with the data, it proves to be
convenient to quantify the extent of non-Gaussianity in the scalar bi-spectrum in terms of
a dimensionless parameter. This parameter, known as the scalar non-Gaussianity param-
eter f

NL
, is introduced through the relation [60]

R(η,x) = R
G
(η,x)− 3 f

NL

5

[
R2

G
(η,x)−

〈
R2

G
(η,x)

〉]
, (2.1)

where R
G

denotes the Gaussian part of the curvature perturbation.
Recall that the scalar bi-spectrum is defined through the relation (1.34a). Upon Fourier

transforming the above expression for R and using Wick’s theorem (which applies to
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Gaussian random variables), one can arrive at the following expression for the dimen-
sionless non-Gaussianity parameter f

NL
in terms of the bi-spectrum GRRR(k1,k2,k3)

[cf. Eq. (1.35)] and the scalar power spectrum P
S
(k) [cf. Eq. (1.26a)]:

f
NL
(k1,k2,k3) = −10

3

1

(2π)4
(k1 k2 k3)

3 GRRR(k1,k2,k3)

×
[
k3
1 PS

(k2) PS
(k3) + two permutations

]−1
. (2.2)

In the next subsection, we shall outline a derivation of the consistency relation obeyed
by the non-Gaussianity parameter f

NL
in the squeezed limit.

2.2.2 The consistency relation

The squeezed limit refers to the case wherein one of the wavenumbers of the triangular
configuration vanishes, say, k3 → 0, leading to k2 = −k1. Or, equivalently, one of the
modes is assumed to possess a wavelength which is much larger than the other two. The
long wavelength mode would be well outside the Hubble radius. In models of inflation
driven by a single scalar field, the amplitude of the curvature perturbation freezes on
super-Hubble scales, provided the inflaton evolves on the attractor at late times [66, 70].
As a result, the long wavelength mode simply acts as a background as far as the other
two modes are concerned. If RB is the amplitude of the curvature perturbation associ-
ated with the long wavelength mode, then the unperturbed part of the original FLRW
metric (1.1) will be modified to

ds2 = −dt2 + a2(t) e2R
B

dx2. (2.3)

In other words, the effect of the long wavelength mode is to modify the scale factor lo-
cally, which is equivalent to a spatial transformation of the form x′ = Λx, with the com-
ponents of the matrix Λ being given by Λij = eR

B
δij . Under such a transformation, the

modes of the curvature perturbation transform as Rk → det (Λ−1)RΛ−1k. Further, we
have |Λ−1 k| = (1−RB ) k and δ(3)(Λ−1 k1+Λ−1 k2) = det (Λ) δ(3)(k1+k2). Utilizing these
relations, the scalar two-point function can be written, up to the leading order in RB , as

〈R̂k1 R̂k2〉k =
(2π)2

2 k3
1

P
S
(k1) [1− (n

S
− 1)RB ] δ(3)(k1 + k2), (2.4)

where the suffix k on the two-point function indicates that the correlator has been evalu-
ated in the presence of a long wavelength perturbation and the quantity n

S
is the scalar

spectral index defined by the relation (1.27a). Upon using the above expression for the

36



2.3. ANALYTICALLY EXAMINING THE CONDITION AWAY FROM SLOW ROLL

scalar power spectrum, we can write the scalar three-point function in the squeezed limit
as [32, 61, 64, 72]

〈 R̂k1 R̂k2 R̂k3 〉k3 ≡ 〈 〈 R̂k1 R̂k2 〉k3 R̂k3 〉

= − (2π)5/2

4 k3
1 k

3
3

(n
S
− 1) P

S
(k1)PS

(k3) δ
3(k1 + k2). (2.5)

On making use of this expression for the scalar bi-spectrum in the squeezed limit and the
definition of the scalar non-Gaussianity parameter (2.2), one can immediately arrive at
the consistency relation for f

NL
[23, 61, 62], viz. f

NL
= 5 (n

S
− 1)/12.

2.3 Analytically examining the validity of the condition
away from slow roll

As was outlined in the previous section, the only requirement for the validity of the con-
sistency relation is the existence of a unique clock during inflation. Hence, in principle,
this relation should be valid for any single field model of inflation irrespective of the de-
tailed dynamics, if the field is evolving on the attractor at late times. Therefore, it should
be valid even away from slow roll. In this section, we shall analytically examine the valid-
ity of the consistency condition in scenarios consisting of deviations from slow roll. After
establishing the relation first in the simple case of power law inflation, we shall consider
the Starobinsky model which involves a brief period of fast roll.

2.3.1 The simple example of power law inflation

We shall first consider the case of power law inflation with no specific constraints on the
power law index, so that the behavior of the scale factor can be far different from that of
its behavior in slow roll inflation. In power law inflation, the scale factor can be written
as

a(η) = a1

(
η

η1

)γ+1

, (2.6)

where a1 and η1 are constants, and γ < −2. In such a background, the Fourier modes
fk associated with the curvature perturbation that satisfy the Bunch-Davies initial condi-
tions are found to be [54, 73]

fk(η) =
1√

2 ε1MPl
a(η)

√
−π η

4
e−i π γ/2 H

(1)
−(γ+1/2)(−k η), (2.7)

37



CHAPTER 2. ON THE SCALAR CONSISTENCY CONDITION

where the first slow roll parameter ε1 is a constant given by ε1 = (γ + 2)/(γ + 1). Note
that H(1)

ν (x) denotes the Hankel function of the first kind [40], while the scale factor a(η)
is given by Eq. (2.6). For real arguments, the Hankel functions of the first and the second
kinds, viz. H

(1)
ν (x) and H

(2)
ν (x), are complex conjugates of each other [40]. Moreover, as

x → 0, the Hankel function has the following form

lim
x→0

H(1)
ν (x) =

i

π ν

[
Γ(1− ν) e−i π ν

(x
2

)ν
− Γ(1 + ν)

(x
2

)−ν
]
. (2.8)

Upon using this behavior, one can show that the corresponding scalar power spectrum,
evaluated at late times, i.e. as η → 0, is given by

P
S
(k) =

1

2 π3M2
Pl
ε1

(
|η1|γ+1

a1

)2 ∣∣∣∣Γ[−(γ + 1/2)]

∣∣∣∣2 (k

2

)2 (γ+2)

, (2.9)

where Γ(x) represents the Gamma function [40]. The scalar spectral index corresponding
to such a power spectrum is evidently a constant and can be easily determined to be
n

S
= 2 γ + 5. If the consistency condition is true, it would then imply that the scalar

non-Gaussianity parameter has the value f
NL

= 5 (γ + 2)/6 in the squeezed limit.

Let us now evaluate the scalar bi-spectrum in the squeezed limit using the Maldacena
formalism and see whether it indeed leads to the above consistency condition for f

NL
.

From Sec. 1.5.3, it should be clear that, in order to arrive at the complete scalar bi-
spectrum, we first need to carry out the integrals (1.42) associated with the six vertices,
calculate the corresponding contributions GRRR (C)(k1,k2,k3) for C = (1, 6), and lastly
add the contribution GRRR (7)(k1,k2,k3) [cf. Eq. (1.43)] that arises due to the field redefi-
nition. However, since ε1 is a constant in power law inflation, the second slow roll param-
eter ε2 vanishes identically. As a result, the contributions corresponding to the fourth term
that is determined by the integral (1.42d) as well as the seventh term GRRR (7)(k1,k2,k3)

prove to be zero. Moreover, in the squeezed limit of our interest, i.e. as k3 → 0, the
amplitude of the mode fk3 freezes and hence its time derivative goes to zero. Therefore,
terms that are either multiplied by the wavenumber corresponding to the long wave-
length mode or explicitly involve the time derivative of the long wavelength mode do
not contribute, as both vanish in the squeezed limit. Due to these reasons, we find that
it is only the first and the second terms, determined by the integrals (1.42a) and (1.42b),
that contribute in power law inflation. After an integration by parts, we find that, in the
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squeezed limit, these two integrals can be combined to be expressed as

lim
k3→0

[
G1
RRR(k,−k,k3) + G2

RRR(k,−k,k3)
]

= lim
k3→0

2 i ε21 f
∗
k3

[(
a2 f ′∗

k f∗
k

)0
−∞ + 2 k2

∫ 0

−∞
dη a2 f∗2

k

]
, (2.10)

where we have set ηi = −∞ and ηe = 0. One can show that the derivative f ′
k can be

written as

f ′
k(η) =

−k√
2 ε1 MPl

a(η)

√
−π η

4
e−i π γ/2H

(1)
−(γ+3/2)(−k η). (2.11)

Therefore, upon using this expression for the derivative f ′
k, the behavior (2.8), the follow-

ing asymptotic form of the Hankel function

lim
x→∞

H(1)
ν (x) =

√
2

π x
ei (x−π ν/2−π/4) (2.12)

and the integral [40]∫
dxx

[
H(1)

ν (x)
]2

=
x2

2

{[
H(1)

ν (x)
]2 −H

(1)
ν−1(x)H

(1)
ν+1(x)

}
, (2.13)

we find that the bi-spectrum in the squeezed limit can be written as

lim
k3→0

k3 k3
3 GRRR(k,−k,k3) = −8 π4 (γ + 2)P

S
(k)P

S
(k3). (2.14)

This expression and the definition (2.2) for the scalar non-Gaussianity parameter then
leads to f

NL
= 5 (γ + 2)/6, which is the result suggested by the consistency relation. We

should add here that such a result has been arrived at earlier using a slightly different
approach (see the third reference in Refs. [62]).

2.3.2 A non-trivial example involving the Starobinsky model

The second example that we shall consider is the Starobinsky model. In the Starobinsky
model, the inflaton rolls down a linear potential which changes its slope suddenly at a
particular value of the scalar field [74]. The governing potential is given by

V (φ) =

{
V0 + A+ (φ− φ0) for φ > φ0,

V0 + A− (φ− φ0) for φ < φ0,
(2.15)

where V0, A+, A− and φ0 are constants. An important aspect of the Starobinsky model
is the assumption that it is the constant V0 which dominates the value of the potential
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around φ0. Due to this reason, the scale factor always remains rather close to that of de
Sitter. This in turn implies that the first slow roll parameter ε1 remains small throughout
the domain of interest. However, the discontinuity in the slope of the potential at φ0

causes a transition to a brief period of fast roll before slow roll is restored at late times.
One finds that the transition leads to large values for the second slow roll parameter ε2

and, importantly, the quantity ε̇2 grows to be even larger. In fact, it behaves as a Dirac
delta function at the transition. As we shall discuss, it is this behavior that leads to the
most important contribution to the scalar bi-spectrum in the model [37, 75, 76].

Clearly, it would be convenient to divide the evolution of the background quantities
and the perturbation variables into two phases, before and after the transition at φ0. In
what follows, we shall represent the various quantities corresponding to the epochs be-
fore and after the transition by a plus sign and a minus sign respectively (in the super-
script or subscript, as is convenient), while the values of the quantities at the transition
will be denoted by a zero. Let us quickly list out the behavior of the different quantities
which we shall require to establish the consistency relation.

The first slow roll parameter before and after the transition is found to be [37, 74, 75, 76]

ε1+(η) '
A2

+

18M2
Pl
H4

0

, (2.16a)

ε1−(η) '
A2

−

18M2
Pl
H4

0

[
1− ∆A

A−

(
η

η0

)3
]2

, (2.16b)

where ∆A = A− − A+, H0 is the Hubble parameter determined by the relation H2
0 '

V0/(3M
2
Pl
), and η0 denotes the conformal time when the transition takes place. The second

slow roll parameter is given by

ε2+(η) = 4 ε1+, (2.17a)

ε2−(η) =
6∆A

A−

(η/η0)
3

1 − (∆A/A−) (η/η0)
3 + 4 ε1−. (2.17b)

In fact, to determine the modes associated with the scalar perturbations and to evaluate
the dominant contribution to the scalar bi-spectrum, we shall also require the behavior of
the quantity ε̇2. One can show that ε̇2 can be expressed as

ε̇2 = −2Vφφ

H
+ 12H ε1 − 3H ε2 − 4H ε21 + 5H ε1ε2 −

H

2
ε22, (2.18)

where Vφφ = d2V/dφ2 and it should be stressed that this is an exact relation. It should be
clear that the first term in the above expression involving Vφφ will lead to a Dirac delta
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function due to the discontinuity in the first derivative of the potential in the case of the
Starobinsky model. Hence, the dominant contribution to ε̇2 at the transition can be written
as [75, 76]

ε̇ 02 ' 2∆A

H0

δ(1)(φ − φ0)

=
6∆A

A+ a0
δ(1)(η − η0), (2.19)

where a0 denotes the value of the scale factor when η = η0 . Post transition, the dominant
contribution to ε̇2 is found to be [37]

ε̇2− ' −3H ε2− − H

2
ε22−

' −18H0 ∆A

A−

(η/η0)
3[

1− (∆A/A−) (η/η0)
3]2 . (2.20)

Due to the fact that the potential is linear and also since the first slow roll parameter
remains small, the modes fk governing the curvature perturbation can be described by the
conventional de Sitter modes to a good approximation before the transition. For the same
reasons, one finds that the scalar modes can be described by the de Sitter modes soon after
the transition as well. However, due to the transition, the modes after the transition are
related by the Bogoliubov transformations to the modes before the transition. Therefore,
the scalar mode and its time derivative before the transition can be written as [37, 74, 75,
76]:

f+
k (η) =

iH0

2M
Pl

√
k3 ε1+

(1 + i k η) e−i k η, (2.21a)

f+
k

′(η) =
iH0

2M
Pl

√
k3 ε1+

[
3 ε1+
η

(1 + i k η) + k2 η

]
e−i k η, (2.21b)

whereas the mode and its derivative after the transition can be expressed as follows:

f−
k (η) =

iH0 αk

2M
Pl

√
k3 ε1−

(1 + i k η) e−i k η − iH0 βk

2M
Pl

√
k3 ε1−

(1− i k η) ei k η, (2.22a)

f−
k

′(η) =
iH0 αk

2M
Pl

√
k3ε1−

[(
ε1− +

ε2−
2

) 1

η
(1 + i k η) + k2 η

]
e−i k η

− iH0 βk

2M
Pl

√
k3ε1−

[(
ε1− +

ε2−
2

) 1

η
(1− i k η) + k2 η

]
ei k η, (2.22b)

with αk and βk denoting the Bogoliubov coefficients. Upon matching the above modes
and their time derivatives at the transition, the Bogoliubov coefficients can be determined

41



CHAPTER 2. ON THE SCALAR CONSISTENCY CONDITION

to be

αk = 1 +
3 i∆A

2A+

k0
k

(
1 +

k2
0

k2

)
, (2.23a)

βk = −3 i∆A

2A+

k0
k

(
1 +

i k0
k

)2

e2 i k/k0 , (2.23b)

where k0 = −1/η0 = a0 H0 denotes the mode that leaves the Hubble radius at the transi-
tion. At late times, the scalar mode behaves as

f−
k (ηe) =

iH0

2M
Pl

√
k3 ε1−(ηe)

(αk − βk) , (2.24)

where ε1−(ηe) = A2
−/(18M

2
Pl
H4

0 ). Therefore, the scalar power spectrum, evaluated as
η → 0, can be expressed as

P
S
(k) =

(
H0

2π

)2 (
3H2

0

A−

)2

|αk − βk|2

=

(
H0

2π

)2 (
3H2

0

A−

)2 [
I(k) + Ic(k) cos

(
2 k

k0

)
+ Is(k) sin

(
2 k

k0

)]
, (2.25)

where the quantities I(k), Ic(k) and Is(k) are given by

I(k) = 1 +
9

2

(
∆A

A+

)2 (
k0
k

)2

+ 9

(
∆A

A+

)2 (
k0
k

)4

+
9

2

(
∆A

A+

)2 (
k0
k

)6

, (2.26a)

Ic(k) =
3∆A

2A+

(
k0
k

)2
[(

3A−

A+

− 7

)
− 3∆A

A+

(
k0
k

)4
]
, (2.26b)

Is(k) = −3∆A

A+

k0
k

[
1 +

(
3A−

A+

− 4

) (
k0
k

)2

+
3∆A

A+

(
k0
k

)4
]
. (2.26c)

Note that, because of the features in the power spectrum, the corresponding scalar spec-
tral index n

S
depends on the wavenumber k, and is found to be

n
S
(k) =

1

2

[
I(k) + Ic(k) cos

(
2 k

k0

)
+ Is(k) sin

(
2 k

k0

)]−1

×
[
J (k) + Jc(k) cos

(
2 k

k0

)
+ Js(k) sin

(
2 k

k0

)]
, (2.27)
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where J (k), Jc(k) and Js(k) are given by

J (k) = 2− 9

(
∆A

A+

)2 (
k0
k

)2

− 54

(
∆A

A+

)2 (
k0
k

)4

− 45

(
∆A

A+

)2 (
k0
k

)6

, (2.28a)

Jc(k) = −3∆A

A+

[
4 +

(
15A−

A+

− 23

) (
k0
k

)2

+
12∆A

A+

(
k0
k

)4

− 15∆A

A+

(
k0
k

)6
]
,

(2.28b)

Js(k) = −6∆A

A+

k0
k

[(
3A−

A+

− 7

)
− 2

(
3A−

A+

− 4

) (
k0
k

)2

− 15∆A

A+

(
k0
k

)4
]
. (2.28c)

If the consistency condition is indeed satisfied, then the scalar non-Gaussianity parameter,
as predicted by the relation, would prove to be

f
NL
(k) =

5

12
[n

S
(k)− 1]

=
5

24

[
I(k) + Ic(k) cos

(
2 k

k0

)
+ Is(k) sin

(
2 k

k0

)]−1

×
{
[J (k)− 2 I(k)] + [Jc(k)− 2 Ic(k)] cos

(
2 k

k0

)
+ [Js(k)− 2 Is(k)] sin

(
2 k

k0

)}
. (2.29)

Let us now examine whether we do arrive at the same result upon using the Maldacena
formalism to compute the scalar bi-spectrum. It is known that, when there exist devia-
tions from slow roll, it is the fourth vertex that leads to the most dominant contribution to
the bi-spectrum. In other words, we need to focus on the contribution GRRR (4)(k1,k2,k3)

that is governed by the integral (1.42d). Notice that the integral involves the quan-
tity ε′2. In the Starobinsky model, at the level of approximation that we are working in,
ε2+ = 4 ε1+, with ε1 being a constant [cf. Eqs. (2.16a) and (2.17a)]. Hence, ε′2 as well as
the integral G4

RRR(k1,k2,k3) vanish during the initial slow roll phase, prior to the tran-
sition. However, as we discussed above, due to the discontinuity at φ0, ε̇2 is described
by a delta function at the transition [cf. Eq. (2.19)], whereas post transition, it is given by
Eq. (2.20). Since the mode fk and its derivative are continuous, the contribution due to the
delta function at the transition can be easily evaluated using the modes f+

k and the corre-
sponding derivative f+

k
′ [cf. Eqs. (2.21)]. Since we are interested in the squeezed limit, the

contribution at the transition can be written as

lim
k3→0

G0
RRR (4)(k,−k,k3) = lim

k3→0

12 i a20 ε1+ ∆A

A+

[
f+∗
k (η0) f

+′∗
k (η0) f

∗
k3
(η0)

]
. (2.30)
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The corresponding contribution to the bi-spectrum can be easily evaluated using the late
time behavior (2.24) of the mode fk. The contribution after the transition is governed by
the integral

lim
k3→0

G−
RRR (4)(k,−k,k3) = lim

k3→0
2 i

∫ ηe

η0

dη a2 ε1− ε′2− f−∗
k f−′∗

k f−∗
k3

. (2.31)

We find that the resulting integral, arrived at upon making use of the behavior (2.16b)
and (2.20) of the slow roll parameters and the modes (2.22), can be easily evaluated. On
adding the above two contributions at the transition and post transition, we can show
that the bi-spectrum in the squeezed limit can be written as

lim
k3→0

GRRR (4)(k,−k,k3) = − 81H12
0

8A2
+A2

−

{
[J (k)− 2 I(k)] + [Jc(k)− 2 Ic(k)] cos

(
2 k

k0

)
+ [Js(k)− 2 Is(k)] sin

(
2 k

k0

)}
, (2.32)

where the quantities [I(k), Ic(k), Is(k)] and [J (k),Jc(k),Js(k)] are given by Eqs. (2.26)
and (2.28).

There are a few points concerning this result that require emphasis. The above bi-
spectrum goes to a constant value at large scales, while it is found to oscillate with a
constant amplitude in the small scale limit. In the equilateral limit, the contribution at the
transition is known to lead to a term that grows linearly with k at large wavenumbers [75,
76]. This essentially arises due to the infinitely sharp transition in the Starobinsky model.
In the squeezed limit, we do not encounter such a growing term, but the sharpness of
the transition is reflected in the oscillations of a fixed amplitude that persist indefinitely.
Clearly, one can expect these oscillations to die down at suitably large wavenumbers if
one smoothens the transition [76]. As far as our primary concern here, viz. the validity
of the consistency condition, we find that upon making use of the expression (2.32) for
the bi-spectrum and (2.25) for the power spectrum, we indeed recover the f

NL
as given

by Eq. (2.29). This implies that the consistency relation does hold even in the case of
the infinitely sharp Starobinsky model. Moreover, it is important to appreciate the point
that while it is the contribution at the transition that dominates the amplitude of the non-
Gaussianity parameter at large wavenumbers, the contribution after the transition proves
to be important for establishing the consistency relation at small wavenumbers. This
suggests that the contribution after the transition is essential in order to arrive at the
complete bi-spectrum in the Starobinsky model [37, 76].
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2.4 Numerical verification of the relation during
deviations from slow roll

In this section, we shall numerically examine the validity of the consistency relation in
three models that lead to features in the scalar power spectrum due to deviations from
slow roll. We shall investigate three models that result in the following types of features:
(i) a sharp drop in power at low multipoles, roughly associated with the Hubble scale
today (see Refs. [77, 78, 79]; for recent discussions, see Ref. [80]), (ii) a burst of oscillations
around scales corresponding to the multipoles of ` ' 20–40 [81, 82, 83] and (iii) small and
repeated modulations extending over a wide range of scales [84, 85, 86, 87, 88, 89, 90].
Such features are known to result in a better fit to the cosmological data than the more
simple and conventional, nearly scale invariant, spectra. It should be highlighted that
it is essentially these three types of spectra that have been considered by the Planck
team while examining the possibility of features in the primordial spectrum [20, 21]. We
should also clarify that, though the fit to the data improves in the presence of features,
the Bayesian evidence does not necessarily alter significantly, as the improvement in the
fit is typically achieved at the cost of a few extra parameters [20, 21, 46, 47, 48, 76]. Nev-
ertheless, we believe that the possibility of features require to be explored further since
repeated exercises towards model independent reconstruction of the primordial power
spectrum seem to point to their presence [91].

2.4.1 Inflationary models of interest

In what follows, we shall first briefly describe three models that lead to the above men-
tioned power spectra with features. We shall then numerically evaluate the scalar non-
Gaussianity parameter f

NL
for an arbitrary triangular configuration of wavenumbers in

these models. Using the numerical results, we shall then go on to verify whether the
consistency relation is indeed valid in these cases involving deviations from slow roll.

Punctuated inflation

Measurements of the CMB anisotropies from the very early days of COBE have consis-
tently indicated lower power at the quadrapole than that expected from a nearly scale
invariant power spectrum. There have been various attempts to construct inflationary
models which achieve this drop in power at large scales (see Refs. [77, 78, 79]; for more
recent efforts in this direction, see Refs. [80]). One such model is punctuated inflation [79].
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It corresponds to a situation wherein a short period of departure from inflation is sand-
wiched between two epochs of slow roll inflation.

Such a background behavior can be produced by the following potential which con-
tains a point of inflection:

V (φ) =
m2

2
φ2 −

√
2λ (n− 1)m

n
φn +

λ

4
φ2 (n−1), (2.33)

where n ≥ 3. This potential is known to arise in certain minimal supersymmetric exten-
sions to the standard model of particle physics. Amongst the three scenarios which lead
to features in the power spectrum due to deviation from slow roll that we shall consider,
punctuated inflation is an extreme case wherein inflation is interrupted for a brief period
of time. We shall repeatedly consider this scenario in this thesis and, throughout, we shall
work with n = 3 and m/M

Pl
= 1.5012× 10−7. The parameter λ can be expressed in terms

of the point of inflection in the potential, say, φ0, as

λ =
2m2

(n− 1)φ
2 (n−2)
0

, (2.34)

and we shall set φ0/MPl
= 1.95964. Also, we shall assume that the field starts from rest at

a sufficiently large value in order to achieve the required number of e-folds. In Fig. 2.1,
we have plotted the scalar power spectrum generated in the model for the above values
of the parameters [79].

Quadratic potential with a step

It has been repeatedly noticed that a burst of oscillations in the power spectrum over
intermediate scales improves the fit to the CMB data around the multipoles ` = 22–40 [81,
82, 83]. Such a burst of oscillations can be generated with the introduction of a step in
a potential that otherwise admits only slow roll. The step causes a brief period of fast
roll which leads to oscillations in the power spectrum over scales which leave the Hubble
radius during this period. We shall consider the case wherein a step has been introduced
in the conventional quadratic potential. The complete potential is given by

V (φ) =
m2

2
φ2

[
1 + α tanh

(
φ− φ0

∆φ

)]
, (2.35)

where, evidently, φ0, α and ∆φ represent the location, the height and the width of the
step, respectively [81, 82, 83]. Throughout this thesis, we shall work with the following
values of potential parameters: m/M

Pl
= 7.147378×10−6, α = 1.606×10−3, φ0/MPl

= 14.67
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Figure 2.1: The scalar power spectra with features in the three models of our interest
that permit deviations from slow roll. While punctuated inflation leads to a sharp drop
in power at large scales (in blue), a step in the quadratic potential results in a burst of
oscillations at intermediate scales (in green), whereas the axion monodromy model leads
to continued oscillations running over a wide range of scales (in red).

and ∆φ/M
Pl
= 3.11×10−2. The scalar power spectrum corresponding to these values (see

Fig. 2.1) is known to fit the WMAP and the Planck data better than the more conventional,
nearly scale invariant, primordial spectrum [82, 83].

Axion monodromy model

While punctuated inflation and the quadratic potential with the step lead to localized
features in the primordial power spectrum, models which contain oscillatory terms in the
potential lead to modulations extending over a wide range of scales. A classic example of
such models is the so-called axion monodromy model [86, 88, 89]. In this thesis, we shall
consider a particular case of the axion monodromy model wherein the linear potential is
modulated by a cosine term. The potential in such an example is given by

V (φ) = λ

[
φ+ α cos

(
φ

β
+ δ

)]
, (2.36)
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where 1/β represents the frequency of the oscillations in the potential and δ is a phase.
The repeated modulations in the power spectrum generated by the oscillations in the
potential (see Fig. 2.1) has been shown to result in an improved fit to the CMB data [86,
88, 89]. The parameters that give rise to the best fit to the data are known to be: λ/M3

Pl
=

2.512× 10−10, α/M
Pl
= 1.83979× 10−4, β/M

Pl
= 4.50299× 10−4 and δ = 0.336033 [88].

2.4.2 f
NL

for an arbitrary triangular configuration of the wavenumbers

It should be clear from the Maldacena formalism that, in order to arrive at the scalar
bi-spectrum and the non-Gaussianity parameter, one first requires the behavior of the
background quantities (such as, say, the scale factor and the slow roll parameters) and
the scalar modes. Then, it is a matter of computing the various integrals that govern
the scalar bi-spectrum. Given an inflaton potential and the initial conditions for the
scalar field, the evolution of the background quantities can be arrived at by solving equa-
tion (1.31) which governs the dynamics of the field. Once we have the solution to the
background, the scalar modes can be obtained by solving the corresponding differen-
tial equation, viz. Eq. (1.21a), with the standard Bunch-Davies initial conditions. With
these at hand, the integrals involved, i.e. Eqs. (1.42), can be evaluated and substituted in
the expression (1.41) to obtain the bi-spectrum. Since the scalar modes have been com-
puted, the corresponding power spectrum can also be evaluated and substituted in the
expression (2.2) to arrive at the non-Gaussianity parameter f

NL
(k1,k2,k3). In order to

carry out the numerical computations, we have made use of the Fortran 90 code BI-
spectra and Non-Gaussianity Operator, or simply, BINGO [54]. The code is based on
the Maldacena formalism, and it efficiently computes all the various contributions to the
bi-spectrum in the manner described above. We should add here that we have indepen-
dently reproduced the results from BINGO using a different code as well. The latter code
was originally used to calculate the scalar-tensor three-point functions and the tensor bi-
spectrum [56], and it has been modified suitably to calculate the scalar bi-spectrum and
the corresponding non-Gaussianity parameter. We shall discuss the latter code in detail
in the next chapter.

In the context of power spectrum (see Subsec. 1.4.6), it is well known that it is sufficient
to evolve the modes from a time when they are sufficiently inside the Hubble radius, say,
from k/(aH) = 102, till they are well outside, say, when k/(aH) = 10−5 [41]. One finds
that, in order to arrive at the bi-spectrum, it suffices to carry out the integrals involved
over roughly the same domain in time [56, 55, 92, 93]. However, two points need to be
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emphasized in this regard. Firstly, in the case of the bi-spectrum, while evaluating for an
arbitrary triangular configuration, one needs to make sure that the integrals are carried
out from a time when the largest of the three modes (in terms of wavelength) is well
inside the Hubble radius to a time when the smallest of the three is sufficiently outside.
To achieve the accuracy we desire (say, of the order of 2–3% or better), we perform the
integrals from the time when the largest mode satisfies the condition k/(aH) = 102 until
a time when the smallest mode satisfies the condition k/(aH) = 10−5. (This is so barring
the case of the axion monodromy model wherein we have to integrate from deeper inside
the Hubble radius—actually, from k/(aH) = 250 for the values of the parameters that we
work with—to take into account the resonances that occur in the model [86].) Secondly,
due to continued oscillations in the sub-Hubble domain, it is well known that the integrals
require a cut-off in order for them to converge. We have introduced a cut-off of the form
exp −[κ k/(aH)] and have worked with κ = 0.1, which is known to lead to consistent
results [55, 56].

Before we go on to consider the consistency relation in the squeezed limit, let us
make use of BINGO to understand the shape and structure of the bi-spectrum or, equiv-
alently, the non-Gaussianity parameter f

NL
, for an arbitrary triangular configuration of

the wavenumbers. Usually, the scalar bi-spectrum and the parameter f
NL

are illustrated
as density plots, plotted as a function of the ratios k3/k1 and k2/k1, for a fixed value of
k1 (in this context, see, for instance, Ref. [55]). While the actual value of k1 will not play
a significant role in simple slow roll scenarios, the structure of the bi-spectrum revealed
in such density plots will depend on choice of k1 in models which lead to features. In
Fig. 2.2, we have plotted the scalar non-Gaussianity parameter arising in the three infla-
tionary models of our interest, for suitable values of the quantity k1. We find that, in the
cases of punctuated inflation and the quadratic potential with a step, since the features
are localized over a small range of scales, the structure of the plot changes to a certain
extent with the choice of k1. However, in the case of axion monodromy model, because
of the reason that the oscillations extend over a wide range of scales, the choice of k1 does
not alter the structure of the plots significantly.

In Figs. 2.3, 2.4 and 2.5, we have attempted to capture the complete structure and
shape of the bi-spectrum (actually, the corresponding non-Gaussianity parameter f

NL
)

using three-dimensional contour plots. We have made use of Mayavi and Python to cre-
ate the three-dimensional plots [94]. We have plotted the parameter f

NL
for a wide range

of the wavenumbers k1, k2 and k3, over the allowed domain wherein the correspond-
ing wavevectors satisfy the triangularity condition. It is known that the triangularity
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Figure 2.2: Density plots of the scalar non-Gaussianity parameter f
NL

, plotted as function
of k3/k1 and k2/k1, with fixed values of k1, in the three models of our interest, viz. punc-
tuated inflation (on top), quadratic potential with a step (in the middle) and axion mon-
odromy model (at the bottom). We have chosen the wavenumber k1 to be 10−3 Mpc−1 in
the case of punctuated inflation, while we have set it to be 2 × 10−3 Mpc−1 for the other
two models. We find that, when the features are localized, as in the cases of punctuated
inflation and the quadratic potential with a step, the structure of f

NL
varies considerably

with the choice of k1. However, in the case of the axion monodromy model, wherein there
arises continued oscillations, the shape of f

NL
is more or less independent of the choice

of k1.
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Figure 2.3: Three-dimensional contour plots of the non-Gaussianity parameter f
NL

, plot-
ted against the three wavenumbers k1, k2 and k3, in the case of punctuated inflation. We
have shown two different projections of the plots in the figure. The projection in the top
clearly indicates the symmetry along the three different axes, as is expected in an isotropic
background. The figure at the bottom illustrates the fact that the allowed wavenum-
bers are confined to a ‘tetrapyd’ and that the bi-spectrum peaks in the equilateral limit,
i.e. along the line k1 = k2 = k3.
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Figure 2.4: Three-dimensional contour plots of the parameter f
NL

, plotted against the
three wavenumbers k1, k2 and k3, in the case of the quadratic potential with a step. As in
the previous figure, we have shown two different views to illustrate the symmetry along
the three axis and the fact that the wavenumbers of interest are confined to a ’tetrapyd’.
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Figure 2.5: Three-dimensional contour plots of the parameter f
NL

, plotted as in the last
two figures, in the case of the axion monodromy model.
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condition restricts the wavenumbers to a ‘tetrapyd’, as is evident from the figures. In
the figures, we have presented two projections of the three-dimensional plot. One of
the views clearly shows the fact that the bi-spectrum is symmetric along the three axes,
as is expected in an isotropic background. The second illustrates the fact that the non-
Gaussianity parameter peaks in the equilateral limit, i.e. when k1 = k2 = k3.

2.4.3 f
NL

in the squeezed limit

Let us now turn to examine the consistency relation in the three models of our inter-
est. Towards this end, we have made use of BINGO to evaluate the non-Gaussianity
parameter f

NL
in the squeezed limit, using the Maldacena formalism. As we had pointed

out, BINGO can be made use of to evaluate the power spectrum as well. Using the ex-
pression (1.27a) and the scalar power spectrum, we arrive at the scalar spectral index
n

S
, which we then utilize to verify the consistency condition f

NL
(k) = 5 [n

S
(k)− 1] /12.

Before we go on to illustrate the results for the three models that we are focusing on, a
couple of points concerning the squeezed limit needs to be made. We should stress that
we choose the wavenumber of the squeezed mode to be smallest wavenumber that is
numerically tenable in the sense that the mode is sufficiently inside the Hubble radius
at a time close to when the integration of the background begins. Moreover, it should
be noted that, since the squeezed mode has a finite and non-zero wavenumber, in the
squeezed limit of our interest, the numerically evaluated bi-spectrum is expected to be
more accurate at larger wavenumbers than the smaller ones. In Fig. 2.6, we have plotted
the quantity f

NL
obtained from the Maldacena formalism as well as the quantity arrived

at from the consistency relation. It is clear from the figure that the two quantities match
very well (they match at the level of a few percent) thus confirming the validity of the
consistency relation even in scenarios displaying highly nontrivial dynamics.

2.5 Discussion

At the level of the three-point function, the consistency condition relates the scalar bi-
spectrum to the power spectrum in the squeezed limit wherein the wavelength of one of
the three modes is much longer than the other two. As we had discussed, the consistency
condition applies to any situation wherein the amplitude of the long wavelength mode
freezes. Since the amplitude of the curvature perturbation settles down to a constant
value on super-Hubble scales in most single field models of inflation, the consistency
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Figure 2.6: The behavior of the non-Gaussianity parameter f
NL

in the squeezed limit has
been plotted as a function of k for the case of punctuated inflation (on top), the quadratic
potential with a step (in the middle) and axion monodromy model (at the bottom). The
blue curve represents the f

NL
calculated using the Maldacena formalism, while the red

dashed line corresponds to the same quantity arrived at from the consistency relation.
The excellent match between the two curves indicate that the consistency relation is valid
even in non-trivial scenarios involving brief departures from inflation.
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relation is expected to be valid in such models. It is easy to analytically establish the con-
sistency relation in slow roll scenarios. In contrast, one needs to often resort to numerical
methods to analyze situations involving departures from slow roll. In this chapter, we
had examined the validity of the scalar consistency condition, analytically as well as nu-
merically, in a class of models permitting deviations from slow roll. We find that the
condition is indeed satisfied even in situations consisting of strong departures from slow
roll, such as the punctuated inflationary scenario.
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Chapter 3

Numerical evaluation of the three-point
functions involving tensors

3.1 Introduction

Most of the efforts towards understanding non-Gaussianities generated by the inflation-
ary models and arriving at constraints from the observational data have focused on the
scalar bi-spectrum and the corresponding non-Gaussianity parameter f

NL
(for the theo-

retical efforts, see, for instance, Refs. [23, 24, 25]; for efforts on arriving at observational
constraints, see, for example, Refs. [26, 27, 28, 29]). There have also been some theoret-
ical efforts aimed at analyzing the behavior of the tensor bi-spectrum (see, for example,
Refs. [23, 33, 34]). But, we find that there have been relatively limited attempts at studying
the scalar-tensor cross-correlations (see, for instance, Refs. [23, 30, 31]). It will be interest-
ing to closely examine the behavior of these quantities and, eventually, try to arrive at
observational constraints on the corresponding non-Gaussianity parameters that can be
constructed to characterize these quantities. The fact that tensors remain to be detected
at the level of the power spectrum could have been a dissuading factor in the limited
attention devoted to the cross-correlations and the tensor bi-spectrum. However, it is im-
portant to bear in mind that popular models, such as those described by the quadratic and
quartic potentials involving the canonical scalar field, are being ruled out by the Planck
data primarily by the upper limits on the tensor-to-scalar ratio [20, 47]. We believe that the
three-point functions involving the scalars and the tensors can play a similar role leading
to additional constraints on the inflationary models.

The aims of this chapter can be said to be three-fold. Firstly, we shall describe our ef-
forts [56] to devise a numerical procedure to evaluate the three-point scalar-tensor cross-
correlations and the tensor bi-spectrum as well as the corresponding non-Gaussianity pa-
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rameters that we introduce. Secondly, utilizing the developed numerical procedure, we
shall evaluate these quantities in the models which lead to features in the scalar power
spectrum (see Subsec. 2.4.1) but do not permit analytical calculation of these quantities.
Thirdly, we shall consider the contribution to these quantities during the period of pre-
heating, viz. the epoch which immediately follows inflation [57, 58].

The plan of this chapter is as follows. In the next section, along the lines of the def-
inition of scalar non-Gaussianity parameter, we shall introduce parameters to quantify
the extent of non-Gaussianity in the three-point scalar-tensor cross-correlations and the
tensor bi-spectrum. In Sec. 3.3, we shall outline the numerical procedure that we adopt
for evaluating the scalar-tensor cross-correlations and the tensor bi-spectrum. We shall
begin by showing that as in the case of the scalar bi-spectrum (in this context, see, for in-
stance, Refs. [54, 55]), the super-Hubble contributions to the other three-point correlation
functions too turn out to be negligible. Further, as in the pure scalar case, one needs to
introduce a suitable cut-off in the sub-Hubble domain in order to deal with the continued
oscillations that would otherwise arise. Under these conditions, we shall illustrate that it
proves to be sufficient to evolve the scalar and the tensor modes from sufficiently inside
the Hubble radius to a suitably late time when they are well outside, and evaluate the in-
tegrals involved over this period. In order to demonstrate the accuracy of the numerical
procedure, we shall compare our numerical results with the analytical results available
in the cases of power law and slow roll inflation as well as in the case of the Starobinsky
model [37, 74, 75]. In Sec. 3.4, we shall use the validated numerical code to study the
three-point functions that arise in three types of models which involve deviations from
slow roll, viz. the punctuated inflationary scenario [79], the quadratic potential with a
step [82, 81, 83] and the axion monodromy model [86, 88, 89], that we had discussed in
the last chapter. In Sec. 3.5, we shall consider the contributions to the cross-correlations
and the tensor bi-spectrum during preheating and show that the contributions prove to
be completely insignificant. We shall conclude this chapter in Sec. 3.6 with a quick sum-
mary of the results we have obtained. We shall relegate some of the details pertaining to
the evaluation of the three-point functions in the Starobinsky model to Appendix A.

3.2 Non-Gaussianity parameters for the three-point
functions involving tensors

Recall that, often, the scalar bi-spectrum is essentially characterized by the dimension-
less non-Gaussianity parameters f

NL
(see Subsecs.1.5.5 and 2.2.1). The basic set of three
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non-Gaussianity parameters, viz. (f loc
NL

, f eq
NL
, f ortho

NL
), do not always capture the complete

structure of the scalar bi-spectrum, in particular, when there exist deviations from the
conventional scenario of slow roll inflation driven by the canonical scalar field (and, of
course, the assumption that the perturbations are in the standard Bunch-Davies vac-
uum [1, 12, 38]). Nonetheless, they prove to be a convenient tool in understanding the
amplitude and shape of the scalar bi-spectrum in many situations.

In a similar manner, the cross-correlations and the tensor bi-spectrum can be charac-
terized by parameters that are suitable dimensionless ratios of the three-point functions
and the scalar or the tensor power spectra. We can generalize the conventional way of
introducing the f

NL
parameter to write the scalar and tensor perturbations R and γij as

follows:

R(η,x) = R
G
(η,x)− 3 f

NL

5

[
R2

G
(η,x)−

〈
R2

G
(η,x)

〉]
−CR

NL
R

G
(η,x) γG

m̄n̄(η,x), (3.1a)

γij(η,x) = γG
ij(η,x)− h

NL

[
γG
ij(η,x) γ

G
m̄n̄(η,x)− 〈γG

ij(η,x) γ
G
m̄n̄(η,x)〉

]
−Cγ

NL
γG
ij(η,x) RG

(η,x), (3.1b)

where R
G

and γG
ij denote the Gaussian quantities. Note that the overbars on the indices

of the Gaussian tensor perturbation imply that the indices should be summed over all
allowed values1. Upon using the above definitions along with the Wick’s theorem to
calculate the three-point functions (but retaining terms only to the linear order in the
non-Gaussianity parameters), we find that we can write the parameters CR

NL
, Cγ

NL
and h

NL

as follows:

CR
NL
(k1,k2,k3) = − 4

(2π2)2
[
k3
1 k

3
2 k

3
3 G

m3n3
RRγ (k1,k2,k3)

]
×
(
Πk3

m3n3,m̄n̄

)−1
{[

k3
1 PS

(k2) + k3
2 PS

(k1)
]
P

T
(k3)

}−1

, (3.2a)

1It should be apparent that such a procedure is required to ‘remove’ the additional polarization indices
that would otherwise occur when the parameters CR

NL
, Cγ

NL
and hNL are introduced in the above fashion.

Also, clearly, this procedure is not unique, and there exist other ways of ‘removing’ the additional indices.
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Cγ
NL
(k1,k2,k3) = − 4

(2π2)2
[
k3
1 k

3
2 k

3
3 G

m2n2m3n3
Rγγ (k1,k2,k3)

]
×
{
P

S
(k1)

[
Πk2

m2n2,m3n3
k3
3 PT

(k2) + Πk3
m3n3,m2n2

k3
2 PT

(k3)
]}−1

, (3.2b)

h
NL
(k1,k2,k3) = − 42

(2π2)2
[
k3
1 k

3
2 k

3
3 G

m1n1m2n2m3n3
γγγ (k1,k2,k3)

]
×
[
Πk1

m1n1,m3n3
Πk2

m2n2,m̄n̄ k3
3 PT

(k1) PT
(k2) + five permutations

]−1
,

(3.2c)

where the quantity Πk
m1n1,m2n2

is defined in Eq. (1.25). While we notice that a parame-
ter such as h

NL
to characterize the tensor bi-spectrum has been discussed earlier (see, for

instance, Refs. [30, 33]), to our knowledge, the non-Gaussianity parameters CR
NL

and Cγ
NL

describing the cross-correlations do not seem to have been considered before in the litera-
ture. In retrospect though, the introduction and the utility of these parameters in helping
to characterize and eventually constrain inflationary models seem evident.

3.3 The numerical procedure for evaluating the three-point
functions

For a general inflationary model, it proves to be difficult to analytically calculate the
scalar-tensor cross-correlations and the tensor bi-spectrum. It is therefore useful to de-
velop a numerical approach to evaluate these three-point correlations. It is evident from
the discussion in Subsec. 1.5.3 that the three-point functions involve integrals over the
background quantities as well as the scalar and the tensor modes from the early stages of
inflation till its very end. Recently, in the context of the scalar bi-spectrum, it was shown
that the corresponding super-Hubble contributions prove to be negligible and it suffices
to carry out the integrals numerically over a suitably smaller domain in time [55]. We
find that similar arguments apply for the other three-point functions too. In this section,
we shall first show that the super-Hubble contributions to the three-point functions of
our interest here are indeed insignificant and then, based on this result, go on to con-
struct a numerical method to evaluate the correlation functions. We shall also illustrate
the accuracy of our numerical procedure by comparing them with the analytical results
that can be obtained in the cases of power law inflation, the quadratic potential and the
non-trivial scenario involving departures from slow roll that occurs in the Starobinsky
model [37, 74, 75].
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3.3.1 Insignificance of the super-Hubble contributions

As we had described earlier, the evolution of scalar and the tensor modes are governed
by the Mukhanov-Sasaki equations (1.23). During slow roll inflation, we can show that
z′′/z ' a′′/a ' 2H2, where H = aH denotes the conformal Hubble parameter [1, 12].
On super-Hubble scales during inflation, i.e. when k/H � 1, we can ignore the k2 term
in the above equations in comparison to z′′/z and a′′/a, thereby obtaining the following
solutions for fk and gk:

fk(η) = Ak +Bk

∫ η dη̃

z2(η̃)
, (3.3a)

gk(η) =

√
2

M
Pl

(
Ck +Dk

∫ η dη̃

a2(η̃)

)
, (3.3b)

where Ak, Bk, Ck and Dk are k-dependent constants that are determined by the initial
conditions imposed on the modes at early times when they are well inside the Hubble ra-
dius. Moreover, the overall factor of

√
2/M

Pl
has been introduced in the solution for gk by

convention, so as to ensure that the resulting tensor power spectrum [cf. Eq. (1.26b)] is di-
mensionless. The first terms in the above expressions for fk and gk are the growing (actu-
ally, constant) solutions, while the second represent the decaying (i.e. the sub-dominant)
ones. Therefore, at late times, we have

fk ' Ak, (3.4a)

gk '
√
2Ck/MPl

(3.4b)

and, since the derivative of the first terms vanish, we also have, at the leading order,

f ′
k ' Bk/z

2 = B̄k/
(
a2 ε1

)
, (3.5a)

g′k '
√
2Dk/

(
M

Pl
a2
)
, (3.5b)

where B̄k = Bk/(2M
2
Pl
). Let us now make use of the above super-Hubble behavior

of the modes to arrive at the corresponding contributions to the three point functions
Gm3n3

RRγ (k1,k2,k3), Gm2n2m3n3
Rγγ (k1,k2,k3) and Gm1n1m2n2m3n3

γγγ (k1,k2,k3).

Let us first focus on Gm3n3
RRγ (k1,k2,k3). Let ηs denote the conformal time when the

largest of the three wavenumbers k1, k2 and k3 is well outside the Hubble radius (in
this context, we would refer the reader to Fig. 1 of Ref. [55]). It is then straightforward
to show using the above behavior of the modes that the super-Hubble contributions to
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Gm3n3
RRγ (k1,k2,k3) are given by

G
m3n3 (se)
RRγ (1) (k1,k2,k3) ' −4 i Πk3

m3n3,ij
k1i k2j |Ak1|2 |Ak2 |2 |Ck3 |2

× [I(ηe, ηs)− I∗(ηe, ηs)] , (3.6a)

G
m3n3(se)
RRγ (2) (k1,k2,k3) ' iΠk3

m3n3,ij
k1i k2j

[
k2
3/
(
k2
1 k

2
2

)]
|Ck3 |2 J(ηe, ηs)

×
(
Ak1 Ak2 B̄

∗
k1
B̄∗

k2
− A∗

k1
A∗

k2
B̄k1 B̄k2

)
, (3.6b)

G
m3n3 (se)
RRγ (3) (k1,k2,k3) ' iΠk3

m3n3,ij

[
k1i k2j/

(
k2
1 k

2
2

)]
K(ηe, ηs)

×
[
k2
1 |Ak1 |2

(
Ak2 B̄

∗
k2
Ck3 D

∗
k3
− A∗

k2
B̄k2 C

∗
k3
Dk3

)
+ k2

2 |Ak2 |2
(
Ak1 B̄

∗
k1
Ck3 D

∗
k3
− A∗

k1
B̄k1 C

∗
k3
Dk3

)]
, (3.6c)

where the super-script (se) implies that they correspond to the contributions over the
time domain ηs to ηe, and the quantities I(ηe, ηs), J(ηe, ηs) and K(ηe, ηs) are described by
the integrals

I(ηe, ηs) =

∫ ηe

ηs

dη a2 ε1, (3.7a)

J(ηe, ηs) =

∫ ηe

ηs

dη

a2
, (3.7b)

K(ηe, ηs) =

∫ ηe

ηs

dη

a2
ε1. (3.7c)

Note that, since I(ηe, ηs) is real, the term G
m3n3 (se)
RRγ (1) (k1,k2,k3) vanishes identically and,

hence, the super-Hubble contributions arise only due to the other two terms.
In a similar fashion, we can show that the super-Hubble contributions to the quantity

Gm2n2m3n3
Rγγ (k1,k2,k3) are given by

G
m2n2m3n3 (se)
Rγγ (1) (k1,k2,k3) ' i

M2
Pl

Πk2
m2n2,ij

Πk3
m3n3,ij

|Ak1 |2K(ηe, ηs)

×
(
Ck2 Ck3 D

∗
k2
D∗

k3
− C∗

k2
C∗

k3
Dk2 Dk3

)
, (3.8a)

G
m2n2m3n3 (se)
Rγγ (2) (k1,k2,k3) ' − i

M2
Pl

Πk2
m2n2,ij

Πk3
m3n3,ij

(k2 · k3) |Ak1 |2 |Ck2 |2 |Ck3 |2

× [I(ηe, ηs)− I∗(ηe, ηs)] , (3.8b)

G
m2n2m3n3 (se)
Rγγ (3) (k1,k2,k3) ' − i

M2
Pl

Πk2
m2n2,ij

Πk3
m3n3,ij

J(ηe, ηs)

×
[
k1 · k2

k2
1

|Ck2|2
(
Ak1 B̄

∗
k1
Ck3 D

∗
k3
− A∗

k1
B̄k1 C

∗
k3
Dk3

)
+

k1 · k3

k2
1

|Ck3 |2
(
Ak1 B̄

∗
k1
Ck2 D

∗
k2
− A∗

k1
B̄k1 C

∗
k2
Dk2

)]
. (3.8c)
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Clearly, the contribution G
m2n2m3n3 (se)
Rγγ (2) (k1,k2,k3) vanishes for the same reason as

G
m3n3 (se)
RRγ (1) (k1,k2,k3) had and, as a result, it is only the remaining two terms that contribute

on super-Hubble scales to Gm2n2m3n3
Rγγ (k1,k2,k3).

Lastly, let us turn to the tensor bi-spectrum, viz. Gm1n1m2n2m3n3
γγγ (k1,k2,k3). In this case,

we have, on super-Hubble scales

G
m1n1m2n2 (se)
γγγ (1) (k1,k2,k3) = − 2 i

M4
Pl

(
Πk1

m1n1,ij
Πk2

m2n2,im
Πk3

m3n3,lj
k1m k1l + five permutations

)
× |Ck1 |2 |Ck2 |2 |Ck3 |2 [L(ηe, ηs)− L∗(ηe, ηs)] , (3.9a)

G
m1n1m2n2 (se)
γγγ (2) (k1,k2,k3) =

i

M4
Pl

(
Πk1

m1n1,ij
Πk2

m2n2,ml Π
k3
m3n3,ij

k1m k1l + five permutations
)

× |Ck1 |2 |Ck2 |2 |Ck3 |2 [L(ηe, ηs)− L∗(ηe, ηs)] , (3.9b)

where the quantity L(ηe, ηs) is described by the integral

L(ηe, ηs) =

∫ ηe

ηs

dη a2. (3.10)

We should mention that we have expressed the quantity Gm1n1m2n2m3n3
γγγ (k1,k2,k3)

[cf. Eq. (1.51)] as two separate terms above for convenience. Both of the above expres-
sions obviously vanish since L(ηe, ηs) is real. In other words, the super-Hubble contribu-
tions to the tensor bi-spectrum and the corresponding non-Gaussianity parameter h

NL
are

identically zero.
It is now worthwhile to estimate the extent of the super-Hubble contributions to the

other two non-Gaussianity parameters CR
NL

and Cγ
NL

. In order to carry out such an esti-
mate, let us focus on power law inflation wherein the scale factor is given by (2.6). In such
a situation, the first slow roll parameter is a constant and is given by ε1 = (γ + 2)/(γ + 1).
Also, since z′′/z = a′′/a in power law inflation, the solutions to the scalar and the tensor
modes fk and gk are exactly the same functions, barring overall constants. In fact, the so-
lutions to the Mukhanov-Sasaki equations (1.23) can be expressed in terms of the Bessel
functions Jν(x) as follows (see, for instance, Refs. [54, 73]):

vk(η) = uk(η) =
√

−k η [Ak Jν(−k η) + Bk J−ν(−k η)] , (3.11)

where ν = γ + 1/2. The quantities Ak and Bk are k-dependent constants which are deter-
mined by demanding that the above solutions satisfy the Bunch-Davies initial conditions
at early times [1, 12, 38]. They are found to be

Ak = −Bk e
−i π (γ+1/2), (3.12a)

Bk =

√
π

k

ei π γ/2

2 cos (π γ)
. (3.12b)
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In the super-Hubble limit, i.e. as −k η → 0, the solutions for vk(η) and uk(η) in (3.11) can
be compared with the general solutions (3.3) to arrive at the following expressions for the
quantities Ak, Bk, Ck and Dk:

Ak =
Ck√

2 ε1MPl

=
2−(γ+1/2)

Γ(γ + 3/2)

(−k η1)
γ+1

√
2 ε1 a1MPl

Ak, (3.13a)

Bk =
√
2 ε1 MPl

Dk = − (2 γ + 1) 2γ+1/2

Γ(−γ + 1/2)

√
2 ε1 a1MPl

η1
(−k η1)

−γ Bk. (3.13b)

Moreover, the scalar and tensor power spectra in power law inflation, evaluated in the
super-Hubble limit, can be shown to be

P
S
(k) =

k3

2 π2
|Ak|2 =

P
T
(k)

16 ε1
, (3.14)

a well known result that is also valid in slow roll inflation [1, 12].
We now have all the quantities required to arrive at an estimate for the super-Hubble

contributions to the parameters CR
NL

and Cγ
NL

[cf. Eqs. (3.2a) and (3.2b)] in power law
inflation. Let us restrict ourselves to the equilateral limit, i.e. k1 = k2 = k3, for simplicity.
In such a case, upon using the results we have obtained above, we can show, after a bit of
algebra [54, 55], that

CR (se)
NL

=
3

4
Cγ (se)

NL

=
3

16π
Γ2

(
γ +

1

2

)
22 γ+1 (2 γ + 1) (γ + 2) |γ + 1|−2 (γ+1) sin (2 π γ)

×
[
1− Hs

He

e−3 (Ne−Ns)

] (
k

asHs

)−(2 γ+1)

, (3.15)

where (Ns, Ne) and (Hs, He) denote the number of e-folds and the Hubble parameter at
the conformal times (ηs, ηe). We should also add that, in arriving at the above expression,
we have ignored overall factors involving Πk

mn,ij , which can be assumed to be of order
unity without any loss of generality. Further, we have set the constant a1 to be as, viz. the
scale factor at the time ηs. If we now choose γ ' −(2 + δ), where δ � 1, we obtain that

CR (se)
NL

=
3

4
Cγ (se)

NL
' − δ2

(
ks

asHs

)3

. 10−19, (3.16)

where ks is the largest wavenumber of interest and, in arriving at the final inequality, we
have assumed that ks/(asHs) = 10−5 and δ ' 10−2. As we shall see later, this value always
proves to be considerably smaller than the corresponding values generated as the modes
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leave the Hubble radius during inflation. This implies that we can safely ignore the super-
Hubble contributions to the scalar-tensor cross correlations and the tensor bi-spectrum as
well as the corresponding non-Gaussianity parameters.

3.3.2 Details of the numerical method

Let us now turn to discuss the numerical procedure for evaluating the three-point func-
tions. It should be clear by now that evaluating the three-point functions and the non-
Gaussianity parameters involves solving for the evolution of the background and the
perturbations and, eventually, computing the integrals involved. Given the inflationary
potential V (φ) that describes the scalar field and the values for the parameters, the back-
ground evolution is completely determined if the initial conditions on the scalar field are
specified. Typically, the initial value of the scalar field is chosen so that one achieves about
60 or so e-folds of inflation (as is required to overcome the horizon problem) before the
accelerated expansion is terminated as the field approaches a minima of the potential.
Further, the initial velocity of the field is often chosen such that the field starts on the
inflationary attractor (in this context, see, for example, Refs. [41]).

Once the background has been solved for, the scalar and the tensor perturbations are
evolved from the standard Bunch-Davies initial conditions using the governing equa-
tions (1.21) [1, 12, 38]. Then, in order to arrive at the three-point functions, it is a matter of
being able to carry out the various integrals involved. Recall that, when calculating the
power spectra, the initial conditions are imposed on the modes when they are sufficiently
inside the Hubble radius, typically, when k/(aH) ' 102. The spectra are evaluated in
the super-Hubble domain, when the amplitudes of the modes have reached a constant
value, which often occurs when k/(aH) ' 10−5 (see, for instance, Refs. [41, 66]). Since the
super-Hubble contributions to the three-point functions are negligible, as in the purely
scalar case discussed in the previous chapter, it suffices to carry out the integrals from
the earliest time ηi when the smallest of the three wavenumbers (k1, k2, k3) is well inside
the Hubble radius to the final time ηs when the largest of them is sufficiently outside.
However, there is one point that needs to be noted. In the extreme sub-Hubble domain,
the modes oscillate rapidly and, theoretically, a cut-off is required in order to identify the
correct perturbative vacuum [23, 24, 25]. This proves to be handy numerically, as the in-
troduction of a cut-off ensures that the integrals converge quickly (for the original discus-
sion on this point, see Refs. [92]). Motivated by the consistent results arrived at earlier in
the case of the scalar bi-spectrum [55], we introduce a cut-off of the form exp− [κ k/(aH)],
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where κ is a small parameter. As we shall discuss below, a suitable combination of κ, ηi
and ηs (or, Ni and Ns, in terms of e-folds) ensure that the final results are fairly robust
against changes in their values.

We solve the background and the perturbation equations using the fifth order Runge-
Kutta algorithm (see, for instance, Ref. [95]), with e-folds as the independent variable. We
carry out the integrals involved using the so-called Bode’s rule to arrive at the three-point
functions and the non-Gaussianity parameters2. In Figs. 3.1 and 3.2, with the help of an
example (viz. the three different contributions to the cross-correlation Gm3n3

RRγ (k1,k2,k3),
evaluated in the equilateral limit), we demonstrate the robustness of the procedure we
have described above for a specific mode evolving in the popular quadratic potential. In
arriving at the first figure, we have fixed the values of Ni and κ, and varied Ns, whereas
the second figure corresponds to a few different values of Ni, but a fixed value of Ns. It
is clear from the figures that the choice of Ns corresponding to k/(aH) of 10−5, and the
combination of Ni corresponding to k/(aH) of 102 and κ of 0.1 leads to consistent results.

We have carried out similar exercises for all the models that we shall discuss in this
chapter, and we have found that the above set of values for Ni, Ns and κ lead to robust
results in all the cases. Also, as we shall illustrate in the following subsection, the numer-
ical results arrived at in such a fashion are consistent with the various analytical results
that are available. Actually, we find that, the numerical results obtained with a κ of 0.1
and an Ni corresponding to k/(aH) of 102 matches the analytical results at the level of
5%, just as it had in the case of the scalar bi-spectrum [55]. The match improves to 1–2% if
we work with a κ of, say, 0.02, and simultaneously integrate from an Ni corresponding to
k/(aH) of 103. We should emphasize here that we have worked with these set of values
in arriving at all the latter figures (i.e. Fig. 3.3 and thereafter).

3.3.3 Comparison with the analytical results

In this section, as it was done in the context of the scalar bi-spectrum (see Ref. [55]), we
shall compare the numerical results for the three-point functions (or, equivalently, for
the non-Gaussianity parameters) with the spectral dependence that can be arrived at in
power law inflation in the equilateral and the squeezed limits and the results for an arbi-
trary triangular configuration that can be obtained in the slow roll scenario (as applied to

2There seems to be some confusion in the literature regarding whether it is the Bode’s or the Boole’s
rule! Following Ref. [95], we have called it the Bode’s rule.

66



3.3. THE NUMERICAL PROCEDURE FOR EVALUATING THE THREE-POINT FUNCTIONS

15 20 25 30 35
N

S

10−20

10−19

10−18

10−17

10−16

10−15

10−14

10−13

10−12
k
6
|G

m
3
n
3

R
R
γ
(C

)(
k
)|

10−810−710−610−510−410−310−210−1100101102 10−810−710−610−510−410−310−210−1100101102 10−810−710−610−510−410−310−210−1100101102
k/(aH)

Figure 3.1: The absolute value of the different contributions to the scalar-scalar-tensor
cross-correlation evaluated in the equilateral limit, i.e. k6Gm3n3

RRγ (k), have been plotted for
a specific mode (which leaves the Hubble radius at about 18 e-folds ), evolving in the
background driven by the conventional quadratic potential, as a function of the upper
limit of integration Ns. In this figure and in the three figures that follow, we shall adopt
the following choice of colors to represent the different contributions to the three-point
functions. The first, the second and the third terms of the three-point functions will al-
ways be represented by red, green and blue curves, in that order, respectively. We should
also mention here that we shall ignore factors such as Πk

mn,ij in plotting these quantities.
It is clear from the above figure that the different contributions settle down to their final
value soon after the mode has emerged from the Hubble radius [say, by k/(aH) ' 10−2].
We find that all the contributions to the other three-point functions too exhibit the same
behavior.

the case of the quadratic potential). With the motivation to consider a nontrivial situation
involving departures from slow roll, we shall also evaluate the three-point functions for
the case of the Starobinsky model analytically and compare them with the corresponding
numerical results. We shall relegate some of the details of the calculation in the case of
the Starobinsky model to Appendix A.
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Figure 3.2: The absolute value of the different contributions to the scalar-scalar-tensor
cross-correlation in the equilateral limit, viz. k6 Gm3n3

RRγ (k), discussed in the previous fig-
ure, have been plotted for the same model and mode for a few different combinations of
Ni and κ, but with a fixed Ns [corresponding to k/(aH) of 10−5]. The solid, the dashed
and the dotted lines correspond to integrals evaluated from different Ni, corresponding
to k/(aH) of 102, 103 and 104, respectively. We should point out that too large a value of
κ (say, much beyond κ ' 0.1) brings down the values of the integrals, as it then essen-
tially kills the contributions that occur as the modes leave the Hubble radius. It is also
evident that the choice of κ = 0.1 and an Ni corresponding to k/(aH) = 102 leads to con-
sistent results (as all the curves converge over this domain). Again, we find that the same
conclusions apply to all the contributions to the other three-point functions as well.

The case of power law inflation

As we have already discussed, power law inflation is described by the scale factor (2.6).
Also, in such a scenario, the scalar and the tensor modes vk and uk can be obtained ana-
lytically [cf. Eq. (3.11)]. Note that these modes depend only on the combination k η. Due
to this reason, interestingly, we find that, with a simple rescaling of variables, the spectral
dependence (but, not the amplitudes) of all the contributions to the scalar-tensor cross
correlations as well as the tensor bi-spectrum can be arrived at without actually having to
evaluate the integrals involved [55]. Since the solutions to the scalar as well as the tensor
modes are of the same form, in the equilateral limit, i.e. when k1 = k2 = k3 = k, one finds
that all the contributions to the three-point functions have the same spectral dependence,
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viz. k6GABC (C)(k) ∝ k4 (γ+2).
In fact, in power law inflation, we find that the spectral dependence of all the contri-

butions can also be arrived at in the squeezed limit, which corresponds to setting two of
the wavenumbers to be the same, while allowing the third to vanish. Note that, as far as
the cross-correlations go, in the squeezed limit, there exist two possibilities. We can either
consider the limit wherein the wavenumber of a scalar mode goes to zero or we can con-
sider the situation wherein the wavenumber of a tensor mode vanishes. We obtain the
following behavior for Gm3n3

RRγ (C)(k1,k2,k3) when k1 = k2 = k and k3 → 0 (i.e. when the
wavenumber of the tensor mode vanishes):

k3 k3
3 G

m3n3

RRγ (1)(k, k3) ∝ k2 (γ+2) k
2 (γ+2)
3 , (3.17a)

k3 k3
3 G

m3n3

RRγ (2)(k, k3) ∝ k2 (γ+1) k
2 (γ+3)
3 , (3.17b)

k3 k3
3 G

m3n3

RRγ (3)(k, k3) ∝ k2 (γ+1) k
2 (γ+3)
3 , (3.17c)

whereas we find that all the terms have the following spectral dependence as k1 → 0

(i.e. as the wavenumber of a scalar mode goes to zero) and k2 = k3 = k:

k3
1 k

3Gm3n3

RRγ (C)(k1, k) ∝ k2 γ+5
1 k2 γ+3. (3.18)

Similarly, in the case of Gm2n2m3n3

Rγγ (C) (k1,k2,k3), when k2 = k3 = k and k1 → 0 (i.e. when the
wavenumber of the scalar mode vanishes), we obtain that

k3
1 k

3 Gm2n2m3n3

Rγγ (1) (k1, k) ∝ k
2 (γ+2)
1 k2 (γ+2), (3.19a)

k3
1 k

3 Gm2n3m3n3

Rγγ (2) (k1, k) ∝ k
2 (γ+2)
1 k2 (γ+2), (3.19b)

k3
1 k

3 Gm2n3m3n3

Rγγ (3) (k1, k) ∝ k
2 (γ+3)
1 k2 (γ+1), (3.19c)

whereas we find that all the terms have the following spectral dependence when k1 =

k2 = k and k3 → 0 (i.e. as the wavenumber of the tensor mode goes to zero):

k3 k3
3 G

m2n2m3n3

Rγγ (C) (k, k3) ∝ k2 (γ+1) k
2 (γ+3)
3 . (3.20)

Lastly, we can show that in power law inflation, in the squeezed limit, say, when k2 =

k3 = k and k1 → 0, the two contributions to the tensor bi-spectrum behave as

k3
1 k

3 Gm1n1m2n2m3n3

γγγ (C) (k1, k) ∝ k
2 (γ+2)
1 k2 (γ+2). (3.21)

In Figs. 3.3 and 3.4, we have compared the spectral dependences obtained above in the
equilateral and the squeezed limits for all the different contributions to the three-point
functions of interest with the corresponding numerical results. We find the agreement
between the analytical and the numerical results to be quite good (about 1-2%, as we
have alluded to before).

69



CHAPTER 3. COMPUTATION OF THE THREE-POINT FUNCTIONS INVOLVING TENSORS

Figure 3.3: A comparison of the numerical results (plotted as solid lines) with the ana-
lytical results (marked with dots) for the various contributions to the three-points func-
tions in the equilateral limit, viz. k6 times the absolute values of Gm3n3

RRγ (C)(k) (on top),
Gm2n2m3n3

Rγγ (C) (k) (in the middle) and Gm1n1m2n2m3n3

γγγ (C) (k) (at the bottom), for power law infla-
tion (on the left) and the Starobinsky model (on the right). In the case of power law
inflation, in plotting the analytical, spectral dependences, we have chosen the amplitude
by hand so that they match the numerical result at a specific wavenumber. The hierar-
chy of the different contributions are clear from the above figure. Note that, in the cases
of the scalar-tensor-tensor cross-correlation and the tensor bi-spectrum, as is expected
from their dependence on the first slow roll parameter ε1, the different contributions to
these quantities prove to be of the same order. Whereas, in the case of the scalar-scalar-
tensor cross-correlation, the second and the third terms are of the same order, but are
sub-dominant to the first term.
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Figure 3.4: A comparison of the analytic and the numerical results in the squeezed limit
for the same set of quantities and models as in the previous figure. Note that, in arriving at
the theoretical spectral dependences in the squeezed limit, we have taken the wavenum-
ber of the tensor mode to zero in the case of Gm3n3

RRγ (k1,k2,k3) and we have assumed that
the wavenumber of the scalar mode vanishes in the case of Gm2n2m3n3

Rγγ (k1,k2,k3). Clearly,
the numerical results match the analytical results quite well in the equilateral limit. How-
ever, in the squeezed limit, while the match is good at large k, there is a noticeable dif-
ference between the theoretical and the numerical results at small k in some cases. This
difference essentially arises because, to achieve the squeezed limit numerically, one has
to work with a non-zero but suitably small value for the wavenumber that permits the
evolution of the modes and the evaluation of the integrals. If needed, the match can be
improved by working with a smaller wavenumber, but the effort can become taxing.
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Comparison in the case of the Starobinsky model

As we have already discussed in the last chapter, the Starobinsky model is characterized
by a linear potential with a sharp change in slope at a specific point [74]. In order to
calculate the scalar-tensor three-point functions and the tensor bi-spectrum, in addition
to the various quantities described in Subsec. 2.3.2, we shall also require the behavior of
the tensor modes. As we had discussed, it is the term V0 which dominates the potential
over the domain of our interest. Hence, the behavior of the scale factor can be assumed
to be that of de Sitter. Since the evolution of the tensor mode depends only on the scale
factor [cf. Eq. (1.23b)], we can work with the de Sitter solution (1.53b) for the tensor
modes throughout the evolution of the field, both before as well as after the transition.
Due to this reason, the resulting tensor bi-spectrum will be given by the same expression
that we had arrived at earlier in the slow roll approximation [cf. Eq. (1.59)].

Though the tensor modes behave in the same fashion before as well as after the tran-
sition, as we had discussed, the first slow roll parameter and the scalar modes behave
differently on either side of the transition. Hence, while evaluating the scalar-tensor
cross-correlations, we need to divide the integrals involved into two and carry out the
integrals before and after the transition separately, just as it was done in the context of
the scalar bi-spectrum [37, 75]. We find that the cross-correlations can be evaluated com-
pletely analytically for an arbitrary triangular configuration of the wavenumbers (which,
in fact, proves to be difficult to carry out for the scalar bi-spectrum). Since the calcula-
tions and the expressions involved turn out to be rather long and cumbersome, we have
relegated the calculations to Appendix A. In Figs. 3.3 and 3.4, we have compared the
analytic results that we have obtained with the corresponding numerical results for the
cross-correlations and the tensor bi-spectrum in the equilateral and the squeezed limits.
Note that we have worked with the following values of the potential parameters in ar-
riving at these results: φ0/MPl

= 0.707, V0/M
4
Pl

= 2.37 × 10−12, A+/M
3
Pl

= 3.35 × 10−14

and A−/M
3
Pl

= 7.26 × 10−15. These values have been chosen so that the assumptions of
the Starobinsky model, under which the analytical results have been arrived at, are valid
(in this context, see, for instance, Ref. [37]). We should also mention here that, in order to
solve the problem numerically, the discontinuity in the potential of the Starobinsky model
has been suitably smoothened [55, 76]. The figures suggest that the match between the
analytic and the numerical results is very good.
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The case of the quadratic potential

As is well known, the conventional quadratic potential leads to slow roll and hence, in
this case, one can utilize the three-point functions evaluated in the slow roll limit (see
Subsec. 1.5.4) to compare with the numerical results. For the sake of completeness, we
shall write down the entire expressions for the non-Gaussianity parameters evaluated in
the slow roll approximation. We find that, if we ignore factors involving Πk

mn,ij , they are
given by

CR
NL
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n
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, (3.22c)

where ki|j = ki/kj , ki|∗ = ki/k∗, k
T|1 = 1+k2|1+k3|1 and k

T|3 = k1|3+k2|3+1, and the quantity
k∗ denotes the pivot scale. Recall that, in the slow roll approximation, n

S
= 1 − 2 ε1 − ε2,

while n
T
= −2 ε1. In Fig. 3.5, we have plotted the above analytical results for the non-

Gaussianity parameters and the corresponding numerical results for an arbitrary trian-
gular configuration of the wavenumbers for the case of the quadratic potential. There is
clearly a striking similarity between the structure of the numerical results and the corre-
sponding analytical estimates. We find that the numerical and analytical results match to
better than 1% over a large region of the wavenumbers involved.
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Figure 3.5: Density plots of the non-Gaussianity parameters CR
NL

(on top), Cγ
NL

(in the mid-
dle) and h

NL
(at the bottom) for an arbitrary triangular configuration of the wavenumbers

for the case of the conventional, quadratic potential. In arriving at the above figures,
when k1 and k3 appear in the denominators of the two axes, we have chosen them to be
the pivot scale k∗. Evidently, the strong similarity between the numerical results (on the
left) and the corresponding quantities arrived at using the slow roll approximation (on
the right) indicates the robustness of the numerical procedure we have adopted to com-
pute the three-point functions. We find that the numerical results match the analytical
estimates to better than 1% over a large domain of the wavenumbers of interest.
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3.4 The three-point functions involving tensors in models
leading to features

As we had discussed in Sec. 2.4, there has been considerable interest in studying the
possibility of features in the scalar power spectrum over the last decade. Specifically, a
large amount of attention has been focused on models leading to three types of features,
viz. a sharp cut-off on large scales, a burst of oscillations over an intermediate range of
scales and small but repeated oscillations over a wide range of scales (in this context, see
Refs. [77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89]). Not surprisingly, it is exactly such
classes of models have been considered by the Planck team [20, 21].

In this section, we shall utilize our code to study the behavior of the three-point func-
tions of interest in models leading to deviations from slow roll. We shall consider the three
different models which lead to features in the scalar power spectrum of the three types,
viz. punctuated inflation, the quadratic potential with a step and the axion monodromy
model, that we had discussed in the last chapter (see Sec. 2.4). We should mention that
we have worked with the same values for the parameters of the models as we had done
earlier, values which had led to an improved fit to the WMAP seven [4] or nine-year
data [5]. It is important that we stress here that models such as the quadratic potential
with the step and the axion monodromy model have very recently been compared with
the Planck data (see Refs. [83, 89, 90]). These investigations suggest that the resulting
features lead to an improved fit to the Planck data too. Moreover, models similar to punc-
tuated inflation, which lead to suppression of power on large scales, continue to attract
attention as well (in this context, see Refs. [80]). In Figs. 3.6, 3.7 and 3.8, we have plot-
ted the density plots for the three non-Gaussianity parameters, viz. CR

NL
, Cγ

NL
and h

NL
,

for the cases of punctuated inflation, the quadratic potential with a step and the axion
monodromy model, respectively.

Let us now highlight certain aspects of the results that we have obtained. We had
earlier pointed out (see the caption of Fig. 3.3) the hierarchy of the various contributions to
the three-point functions. We find that the hierarchy is maintained even when deviations
from slow roll occur. This is not surprising because the tensor bi-spectrum is independent
of the slow roll parameters, whereas the cross-correlations, at the most, depend on the
first slow roll parameter ε1. Since the first slow roll parameter cannot remain large for an
extended period without completely terminating inflation, the hierarchy of the different
contributions is preserved even in situations involving departures from slow roll.

It is clear from Figs. 3.6, 3.7 and 3.8 that the tensor bi-spectrum in the cases of the

75



CHAPTER 3. COMPUTATION OF THE THREE-POINT FUNCTIONS INVOLVING TENSORS

0.0 0.2 0.4 0.6 0.8 1.0
k3/k1

0.5

0.6

0.7

0.8

0.9

1.0

k
2
/k

1

0.786

1.835

2.884

0.0 0.2 0.4 0.6 0.8 1.0
k1/k3

0.5

0.6

0.7

0.8

0.9

1.0

k
2
/k

3

-0.052

-0.0259

0.0001

0.0 0.2 0.4 0.6 0.8 1.0
k3/k1

0.5

0.6

0.7

0.8

0.9

1.0

k
2
/k

1

-0.111

0.195

0.501

Figure 3.6: Density plots of the non-Gaussianity parameters CR
NL

(on top), Cγ
NL

(in the
middle) and h

NL
(at the bottom), evaluated numerically, have been plotted as function

of k3/k1 and k2/k1 or k1/k3 and k2/k3, with a fixed value of k1 or k3 (when they appear
in the denominators), for the case of the punctuated inflationary scenario. As discussed
before, it should be evident that, in models leading to features, the shape of the three-
point functions as plotted against k3/k1 and k2/k1 in the cases of CR

NL
and h

NL
or, against

k1/k3 and k2/k3 in the case of Cγ
NL

, will depend on the choices of denominators k1 and k3.
In order to capture the non-trivial shapes that this model leads to, we have fixed k1 and
k3 (when appearing in the denominators) to be 10−3 Mpc−1.
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Figure 3.7: Density plots of the non-Gaussianity parameters CR
NL

(on top), Cγ
NL

(in the
middle) and h

NL
(at the bottom), plotted in the same fashion as in the previous figure, for

the quadratic potential with a step. In order to capture the non-trivial shapes that this
model leads to, we have fixed k1 and k3 (when they appear in the denominators) to be
2× 10−3 Mpc−1.
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Figure 3.8: Density plots of the non-Gaussianity parameters CR
NL

(on top), Cγ
NL

(in the
middle) and h

NL
(at the bottom), plotted as in the last two figures, for the case of the axion

monodromy model. In arriving at this figure, we have fixed k1 and k3 (when they appear
in the denominators) to be 5× 10−2Mpc−1.
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quadratic potential with a step and the axion monodromy model resemble each other
very closely. In fact, they have virtually the same amplitude and shape as in the slow roll
case illustrated in Fig. 3.5. This should not be surprising. After all, since the deviations
from slow roll are rather minimal in these models, the tensors are hardly affected. In
contrast, punctuated inflation, because of the brief departure from accelerated expansion
that occurs, leads to a rather large effect on the tensors, with the tensor amplitude being
considerably suppressed on small scales [79]. This is reflected in the non-trivial shape of
the associated h

NL
parameter. The ringing effects on the scalars that arise due to the res-

onance encountered in the monodromy model (see, for example, Refs. [86, 88]) is clearly
reflected in the amplitudes and shapes of the corresponding CR

NL
and the Cγ

NL
parame-

ters. It is this resonance that leads to a substantially larger value for the CR
NL

parameter,
as it does for the scalar non-Gaussianity parameter f

NL
(in this context, see, for instance,

Ref. [55]). Note that, apart from the ringing, the shape of the Cγ
NL

parameter is somewhat
similar in the cases of the quadratic potential with the step and the monodromy model.
In the case of punctuated inflation, the shapes of the CR

NL
and Cγ

NL
parameters are consid-

erably influenced by the contrasting fall and rise of the amplitudes of the scalar and the
tensor power spectra at large scales. This behavior results in a larger value for the CR

NL

parameter than the corresponding value encountered in, say, the case of the model with
a step.

3.5 The contributions during preheating

In most models of inflation, immediately after inflation and before the inflaton starts de-
caying, there exists a brief domain when the scalar field oscillates at the bottom of the
potential and continues to dominate the background evolution. This brief epoch is re-
ferred to as preheating (see Sec. 1.6). Since the scalar field is the dominant source of the
background, the perturbations (both scalar and tensor) continue to be governed by the
same actions and equations of motion as they were during inflation. It is interesting then
to investigate the contributions to the three-point functions that we have considered due
to this epoch. In fact, the contributions to the scalar bi-spectrum during preheating in
single field inflationary models were evaluated recently [54]. Our aim in this section is to
extend the analysis to the case of the other three-point functions.

In order to do so, as should be clear by now, we shall require the behavior of the
background as well as the perturbations during the epoch of preheating. If one considers
single field inflationary models with quadratic minima, say, V (φ) ' m2 φ2/2, it can be

79



CHAPTER 3. COMPUTATION OF THE THREE-POINT FUNCTIONS INVOLVING TENSORS

shown that, during the epoch of preheating, the first slow roll parameter behaves as [54,
57, 58]

ε1 ' 3 cos2(mt+∆), (3.23)

where t is the cosmic time (measured since the end of inflation), while ∆ is an arbitrary
phase, chosen suitably to match the transition from inflation to preheating. The average
value of the above slow roll parameter is 3/2, which corresponds to a matter dominated
era. Note that all perturbations of cosmological interest are on super-Hubble scales dur-
ing the domain of preheating. Naively, one may imagine that the super-Hubble solutions
for the scalar and the tensor perturbations during inflation, as given by Eqs. (3.3), will
continue to hold during the epoch of preheating too. The tensor modes are governed by
the quantity a′′/a, which behaves monotonously during inflation as well as preheating.
Therefore, the k2 term in Eq. (1.23b) can indeed be ignored when compared to a′′/a even
during preheating, so that the super-Hubble solutions to the tensor modes, viz. Eq. (3.3b),
continue to be applicable [58]. However, the quantity z′′/z, as it involves the scalar field,
behaves differently during inflation and preheating. While it grows monotonically dur-
ing the later stages of inflation, the quantity can even vanish during preheating (since
the scalar field is oscillating at the minimum of the potential). Hence, it is not a pri-
ori clear that the inflationary super-Hubble solutions will remain valid once the acceler-
ated expansion has terminated. A careful analysis however illustrates that, under certain
conditions which are easily achieved in quadratic minima (for details, see, for instance,
Refs. [54, 58]), the inflationary super-Hubble solutions for the scalar modes continue to
be applicable during preheating.

Recall that the contributions to the tensor bi-spectrum (and hence to the corresponding
non-Gaussianity parameter h

NL
) on super-Hubble scales during inflation is strictly zero.

This is true even during the epoch of preheating. For simplicity, let us ignore the oscilla-
tions at the bottom of the quadratic minima and use the average value of the first slow
roll parameter, viz. that ε1 ' 3/2. In such a case, if we focus on the equilateral limit, we
can show that the contribution to the non-Gaussianity parameters CR

NL
and Cγ

NL
arising

due to the evolution from the end of inflation to the e-fold, say, Nf , during preheating can
be expressed as

CR (ef)
NL

(k) =

(
4 γ + 5

5 γ + 7

)
Cγ (ef)

NL
(k) =

12

115

(
4 γ + 5

γ + 2

)
f (ef)
NL

(k), (3.24)

where f (ef)
NL

is the contribution due to preheating to the non-Gaussianity parameter asso-
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ciated with the scalar bi-spectrum and is given by [55]

f (ef)
NL

(k) =
115 (γ + 2)

288π (γ + 1)
Γ2

(
γ +

1

2

)
22 γ+1 (2 γ + 1)2 sin (2 π γ)

× |γ + 1|−2 (γ+1) [1− e−3 (Nf−Ne)/2
]

×

[(
π2 geff
30

)−1/4

(1 + zeq)
1/4 ρ

1/4
cri

Trh

]−(2 γ+1) (
k

anow Hnow

)−(2 γ+1)

. (3.25)

We should mention here that we have arrived at this expression assuming inflation to
be of the power law form, with the scale factor being given by Eq. (2.6) and with ε1 =

(γ + 2)/(γ + 1), as we have pointed out earlier. In the above expression, the quantity
geff denotes the effective number of relativistic degrees of freedom at reheating, Trh the
reheating temperature and zeq the redshift at the epoch of equality. Also, ρcri, anow and
Hnow represent the critical energy density, the scale factor and the Hubble parameter today,
respectively3. It should be clear from the above expression that the contribution due
to preheating is mainly determined by the quantity ρ

1/4
cri /Trh. For an inflationary model

wherein γ ' −2 and Trh ' 1010 GeV, one obtains that f (ef)
NL

∼ CR (ef)
NL

∼ Cγ (ef)
NL

∼ 10−60

for the modes of cosmological interest (i.e. for wavenumbers such that k ' anow Hnow).
Needless to add, these values are simply unobservable (also see Ref. [96]; in this context,
however, see Ref. [97]). In other words, as in the case of the scalar parameter f

NL
, the

contribution to the other non-Gaussianity parameters due to the epoch of preheating is
completely insignificant.

3.6 Summary

In this work, based on the Maldacena formalism and extending the recent effort towards
calculating the scalar bi-spectrum, we have developed a numerical procedure for calcu-
lating the other three-point functions of interest. Motivated by the parameters often in-
troduced to characterize the scalar and the tensor bi-spectra, we have introduced dimen-
sionless non-Gaussianity parameters to describe the scalar-tensor cross-correlations. We
have compared the performance of the code with the analytical results that are available
in different situations and have utilized the code to calculate the three-point functions
and the corresponding non-Gaussianity parameters in models that lead to features in the

3Since we have already made use of a0 and H0 to denote the scale factor at the transition and the Hubble
parameter around the transition in the Starobinsky model, to avoid degeneracy, we have used the less
conventional anow and Hnow to denote the scale factor and the Hubble parameter today!
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scalar power spectrum. We have also shown that, as in the case of the scalar bi-spectrum,
the contribution to the other three-point functions during the epoch of preheating proves
to be completely negligible. In fact, we have made available a sample of the numeri-
cal code that we have worked with to arrive at the results discussed in this chapter at the
following URL: https://www.physics.iitm.ac.in/~sriram/tpf-code/registration.html. The sample
code corresponds to the specific case of the quadratic potential with a step that we have
considered. The code can be easily extended to other inflationary models.

We believe that the non-Gaussianity parameters CR
NL

and Cγ
NL

which we have intro-
duced here provide additional quantities to characterize an inflationary model. It will be
interesting to arrive at constraints on these parameters as well from observational data
and understand their implications. We are currently investigating these issues.
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Chapter 4

The consistency relations for the
scalar-tensor cross-correlations and the
tensor bi-spectrum

4.1 Introduction

In the previous chapter, we had constructed a procedure (and developed a code) for nu-
merically evaluating the three-point cross-correlations comprising of scalars and tensors
as well as the tensor bi-spectrum for an arbitrary triangular configuration of the three
wavenumbers involved [56]. We had also introduced dimensionless non-Gaussianity pa-
rameters, which we denoted as CR

NL
and Cγ

NL
, to characterize the amplitude of the three-

point scalar-tensor cross-correlations. As we had discussed in Chap. 2, in the squeezed
limit, wherein one of the wavenumbers is much smaller than the other two, the inflation-
ary scalar bi-spectrum generated by a single scalar field can be expressed completely in
terms of the scalar power spectrum, a result that is referred to as a consistency relation
(for the original results, see, for instance, Refs. [23, 61]; for more recent discussions in
this context, see Ref. [62]; for similar results involving higher order correlation functions,
see, for example, Ref. [63]). Equivalently, the scalar non-Gaussianity parameter f

NL
can

be written purely in terms of the scalar spectral index. However, most of the work on
the consistency relations have focussed on the scalar bi-spectrum, and it seems natural
to expect that similar consistency relations will be satisfied by the three-point functions
that involve the tensor perturbations as well (in this context, see Refs. [23, 31, 32, 34]).
Our aim in this chapter is to investigate the validity of consistency relations involving the
three-point scalar-tensor cross-correlations and the tensor bi-spectrum. We shall first ex-
press the corresponding consistency relations as relations between the non-Gaussianity
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parameters (CR
NL

and Cγ
NL

[56], and the quantity h
NL

that is used to describe the purely
tensor case [33]) and the scalar or the tensor spectral indices. We shall then analytically
as well as numerically examine the validity of these consistency conditions in specific sit-
uations. As we shall illustrate, the consistency relations hold generically, and they prove
to be valid even in scenarios involving substantial deviations from slow roll.

The structure of this chapter is as follows. In the following section, we shall quickly ar-
rive at a few essential relations describing the three-point functions involving the tensor
perturbations in the squeezed limit. In the subsequent section, we shall outline a proof
of the consistency relations which describe the behavior of the three-point functions in
the squeezed limit, wherein they can be expressed in terms of the scalar and the tensor
power spectra. We shall also state the consistency conditions as relations between the
non-Gaussianity parameters of interest, viz. CR

NL
, Cγ

NL
and h

NL
, and the scalar and the

tensor spectral indices n
S

and n
T

. In Sec. 4.4, we shall explicitly establish the consistency
relations for the three non-Gaussianity parameters in the two analytically tractable ex-
amples that we have considered before—the simple situation involving (a specific case
of) power law inflation and the non-trivial scenario arising in the Starobinsky model. In
Sec. 4.5, we shall numerically investigate the validity of the consistency relations involv-
ing CR

NL
, Cγ

NL
and h

NL
in models which permit deviations from slow roll. We shall consider

the three models which we had focussed on in the last two chapters and show numeri-
cally that the consistency relations hold in each of these cases. Finally, in Sec. 4.6, we shall
conclude with a brief discussion of the results.

4.2 The inflationary three-point functions involving
tensors in the squeezed limit

In this section, we shall summarize the essential expressions describing the three-point
functions involving the tensors in the squeezed limit. As we have discussed, the delta
functions that appear in the definitions (1.34) of the three-point functions imply that the
wavevectors k1, k2 and k3 form a triangle. The squeezed limit of the three-point func-
tions corresponds to the situation wherein one of the three wavenumbers, i.e. k1, k2 or
k3, vanishes. In the two cases of the scalar-tensor cross-correlations, the squeezed limit
can evidently be arrived at by choosing the wavenumber of either the scalar or the tensor
mode to be zero. However, the contributions to the scalar-scalar-tensor three-point func-
tion either explicitly involve the wavenumber of the scalar mode or its time derivative,
both of which go to zero in the large scale limit. As a result, the scalar-scalar-tensor three-
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point function itself vanishes in the large scale limit of either of the scalar modes. For the
same reason, we find that the scalar-tensor-tensor cross-correlation also vanishes in the
limit wherein the wavenumber of any of the two tensor modes goes to zero. Therefore,
in order to understand the behavior in the squeezed limit, we shall consider the large
scale limits of the tensor and the scalar modes in the cases of the scalar-scalar-tensor and
the scalar-tensor-tensor cross-correlations, respectively. In the squeezed limit, the expres-
sions for the cross-correlations Gm3n3

RRγ (k1,k2,k3) and Gm2n2m3n3
Rγγ (k1,k2,k3), and the tensor

bi-spectrum Gm1n1m2n2m3n3
γγγ (k1,k2,k3) can be written as [cf. Eqs. (1.46), (1.48) and (1.51)]

lim
k3→0

Gm3n3
RRγ (k1,k2,k3) = lim

k3→0

3∑
C=1

Gm3n3

RRγ (C)(k,−k,k3)

= − lim
k3→0

M2
Pl
Πk3

m3n3,ij
n̂i n̂j

3∑
C=1

[
fk(ηe) fk(ηe) gk3(ηe)

× GC
RRγ(k,−k,k3) + complex conjugate

]
, (4.1a)

lim
k1→0

Gm2n2m3n3
Rγγ (k1,k2,k3) = lim

k1→0

3∑
C=1

Gm2n2m3n3

Rγγ (C) (k1,k,−k)

= lim
k1→0

M2
Pl
Πk

m2n2,ij
Π−k

m3n3,ij

3∑
C=1

[
fk1(ηe) gk(ηe) gk(ηe)

× GC
Rγγ(k1,k,−k) + complex conjugate

]
= lim

k1→0
2M2

Pl
Πk

m2n2,m3n3

3∑
C=1

[
fk1(ηe) gk(ηe) gk(ηe)

× GC
Rγγ(k1,k,−k) + complex conjugate

]
, (4.1b)

lim
k3→0

Gm1n1m2n2m3n3
γγγ (k1,k2,k3) = lim

k3→0
Gm1n1m2n2m3n3

γγγ (k,−k,k3)

= − lim
k3→0

M2
Pl
Πk

m1n1,ij
Π−k

m2n2,ij
Πk3

m3n3,ml km kl

×
[
gk(ηe) gk(ηe) gk3(ηe)Gγγγ(k,−k,k3)

+ complex conjugate
]

= − lim
k3→0

2M2
Pl
Πk

m1n1,m2n2
Πk3

m3n3,ml km kl

×
[
gk(ηe) gk(ηe) gk3(ηe)Gγγγ(k,−k,k3)

+ complex conjugate
]
, (4.1c)

where, for simplicity, we have set k1 = −k2 = k in the first and the third expressions,
and k2 = −k3 = k in the second. The overall minus sign in the above scalar-scalar-
tensor correlation arises due to the fact that, in the squeezed limit, n̂1i = −n̂2i = n̂i.

85



CHAPTER 4. CONSISTENCY RELATIONS FOR FUNCTIONS INVOLVING TENSORS

The polarization factors in the tensor bi-spectrum simplify in the squeezed limit due to
the transverse nature of the gravitational waves, i.e. ki εsij(k) = 0. Moreover, it is the
normalization of the polarization tensor, viz. εrij(k) εs∗ij (k) = 2 δrs, that leads to the
overall factor of two in the cases of the scalar-tensor-tensor correlation and the tensor
bi-spectrum. Note that the two three-point cross-correlations contain three independent
terms. It is straightforward to argue that, in the squeezed limit of the tensor mode, it is
only the first term that contributes in the case of the scalar-scalar-tensor correlation (as
the other two contributions either depend explicitly on the wavenumber of the squeezed
mode or its time derivative). Similarly, in the case of the scalar-tensor-tensor correlation,
we find that the third term does not contribute in the squeezed limit of the scalar mode.

In the next section, we shall briefly outline a proof of the consistency relations obeyed
by the different three-point functions and the corresponding non-Gaussianity parameters
in the squeezed limit.

4.3 Consistency relations in the squeezed limit

A consistency relation basically links the three-point function to the two-point function
in a particular limit of the wavenumbers involved1. As we saw in Chap. 2, the scalar
bi-spectrum obeys a consistency relation in the squeezed limit [23, 61, 62]. In terms of the
scalar non-Gaussianity parameter f

NL
, it can be expressed as f

NL
= 5 (n

S
−1)/12, where n

S

is the scalar spectral index [cf. Eq. (1.27)]. The scalar consistency relation is expected to be
valid for any single field inflationary model, irrespective of the detailed dynamics of the
field [61]. As we had discussed earlier, this essentially occurs because of the fact that the
amplitude of the long wavelength scalar modes freezes on super-Hubble scales. Due to
this reason, their effects on the smaller wavelength modes can be treated as though they
are evolving in a background with modified spatial coordinates. Since the tensor modes
too behave in the same fashion as the scalar modes when they are sufficiently outside the
Hubble radius (i.e. their amplitudes freeze as well), it seems natural to expect that there
should exist similar consistency relations describing the three-point scalar-tensor cross-
correlations and the tensor bi-spectrum [31, 32, 34]. In the remainder of this section, we
shall arrive at the consistency relations governing the three-point functions involving the
tensors in the squeezed limit.

1In fact, depending on the symmetries associated with the action governing the field(s) of interest, quan-
tum field theory suggests such relations can exist between generic N -point and (N−1)-point correlation
functions. Clearly, similar connections can be expected to arise for the various correlation functions gener-
ated during inflation as well (in this context, see, for instance, Refs. [63]).
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As we have already pointed out, the amplitude of a long wavelength scalar or tensor
mode would be a constant, since it would be well outside the Hubble radius (in this
context, see, for instance, Refs. [66]). Due to the fact that the amplitude has frozen, it can
be treated as a background as far as the smaller wavelength modes are concerned. Let us
denote the constant amplitudes (i.e. as far as their time dependence is concerned) of the
long wavelength scalar and tensor modes as, say, RB and γB

ij , respectively. In the presence
of such modes, the background metric will take the form

ds2 = −dt2 + a2(t) e2R
B

[eγ
B

]ij dx
i dxj, (4.2)

i.e. the long wavelength modes lead to modified spatial coordinates. Such a modification
is, in fact, completely equivalent to a spatial transformation of the form x′ = Λx, with
the components of the matrix Λ being given by Λij = eR

B
[eγ

B /2]ij . Under such a spa-
tial coordinate transformation, we can easily show that the Fourier modes of the small
wavelength scalar and tensor perturbations transform as follows: Rk → det (Λ−1) RΛ−1 k

and γk
ij → det (Λ−1) γΛ−1 k

ij , where, evidently, Λ−1 represents the inverse of the origi-
nal matrix Λ. Upon using the property that the determinant of the exponential of a
matrix is the exponential of its trace and the fact that γij is traceless, we arrive at the
result det (Λ−1) = e−3RB . At the leading order in RB and γB , we can also obtain
that |Λ−1 k| = [1 − RB − γB

ij ki kj/(2 k
2)] k, where, as we have clarified earlier, ki de-

notes the component of the wavevector k along the i-spatial direction. Moreover, since
δ(3)(Λ−1 k1 +Λ−1 k2) = det (Λ) δ(3)(k1 + k2), on combining the above results, we find that
the scalar and the tensor two-point functions in the presence of a long wavelength mode
denoted by, say, the wavenumber k, can be written as

〈R̂k1 R̂k2〉k =
(2π)2

2 k3
1

P
S
(k1) δ

(3)(k1 + k2)

×
[
1− (n

S
− 1)RB −

(
n

S
− 4

2

)
γB
ij n̂1i n̂1j

]
, (4.3a)

〈γ̂k1
m1n1

γ̂k2
m2n2

〉k =
(2π)2

2 k3
1

Πk1
m1n1,m2n2

4
P

T
(k1) δ

(3)(k1 + k2)

×
[
1− n

T
RB −

(
n

T
− 3

2

)
γB
ij n̂1i n̂1j

]
, (4.3b)

where, as we have mentioned, n̂1i = k1i/k1.

The above expressions for the two-point functions can then be utilized to arrive at the
three-point functions involving the tensors in the squeezed limit. We find that, in the

87



CHAPTER 4. CONSISTENCY RELATIONS FOR FUNCTIONS INVOLVING TENSORS

presence of a long wavelength mode, the three-point functions can be obtained to be

〈 R̂k1 R̂k2 γ̂
k3
m3n3

〉k3 ≡ 〈 〈R̂k1 R̂k2 〉k3 γ̂k3
m3n3

〉

= − (2π)5/2

4 k3
1 k

3
3

(
n

S
− 4

8

)
P

S
(k1)PT

(k3)

×Πk3
m3n3,ij

n̂1i n̂1j δ
3(k1 + k2), (4.4a)

〈 R̂k1 γ̂
k2
m2n2

γ̂k3
m3n3

〉k1 ≡ 〈 R̂k1 〈 γ̂k2
m2n2

γ̂k3
m3n3

〉k1 〉

= − (2π)5/2

4 k3
1 k

3
2

n
T

4
P

S
(k1)PT

(k2)Π
k2
m2n2,m3n3

δ3(k2 + k3), (4.4b)

〈 γ̂k1
m1n1

γ̂k2
m2n2

γ̂k3
m3n3

〉k3 ≡ 〈 〈 γ̂k1
m1n1

γ̂k2
m2n2

〉k3 γ̂k3
m3n3

〉

= − (2π)5/2

4 k3
1 k

3
3

(
n

T
− 3

32

)
P

T
(k1)PT

(k3)

×Πk1
m1n1,m2n2

Πk3
m3n3,ij

n̂1i n̂1j δ
3(k1 + k2), (4.4c)

where, in the cases of the scalar-scalar-tensor cross-correlation and the tensor bi-spectrum,
we have considered k3 to be the squeezed mode, while we have considered k1 to be the
squeezed mode in the case of the scalar-tensor-tensor cross-correlation. Upon making use
of the above expressions for the three-point functions in the definitions (3.2) for the non-
Gaussianity parameters, we can express the consistency relations in the squeezed limit as
follows:

lim
k3→0

CR
NL
(k,−k,k3) =

[
n

S
(k)− 4

4

] (
Πk3

m3n3,m̄n̄

)−1
Πk3

m3n3,ij
n̂i n̂j, (4.5a)

lim
k1→0

Cγ
NL
(k1,k,−k) =

n
T
(k)

2

(
Πk

m2n2,m3n3

)−1
Πk

m2n2,m3n3
, (4.5b)

lim
k3→0

h
NL
(k,−k,k3) =

[
n

T
(k)− 3

2

] (
2Πk

m1n1,m2n2
Πk3

m3n3,m̄n̄ +Πk
m1n1,m̄n̄Π

k3
m3n3,m2n2

+Πk
m̄n̄,m2n2

Πk3
m3n3,m1n1

)−1

×Πk
m1n1,m2n2

Πk3
m3n3,ij

n̂i n̂j, (4.5c)

where we have explicitly illustrated the point that n
S

and n
T

are, in general, dependent on
the wavenumber [a dependence which can be arrived at from the corresponding power
spectra through the expressions (1.27)]. It is useful to note here that, during slow roll
inflation, while the non-Gaussianity parameter Cγ

NL
is of the order of the first slow roll

parameter [cf. Eq. (3.22b)], the quantities CR
NL

and h
NL

prove to be of the order of unity
[cf. Eqs. (3.22a) and (3.22c)]. This does not imply that the parameters CR

NL
and h

NL
are
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‘large’. They are of the order of unity due to the manner in which they have been intro-
duced.

Finally, we would like to stress here the fact that we have arrived at the above con-
sistency relations essentially assuming that the perturbations are initially in the Bunch-
Davies vacuum and that the amplitudes of the scalar and the tensor perturbations are
frozen on super-Hubble scales. While we have focussed on single field models of infla-
tion driven by the canonical scalar field, the amplitude of the perturbations are known to
be conserved in any single field model. For this reason, one can expect the consistency
relations to hold even in non-canonical models of inflation, provided the perturbations
are in the Bunch-Davies vacuum [32].

4.4 Analytical examples

In this section, we shall explicitly confirm the validity of the above consistency relations
involving the tensors in two analytically tractable examples. We shall first consider a
particular case of power law inflation and then discuss the Starobinsky model which, as
we have seen, permits a brief period of departure from slow roll.

4.4.1 A power law case

Power law inflation corresponds to the situation wherein the scale factor is given by
Eq. (2.6). In such a situation, as the first slow roll parameter proves to be a constant,
z ∝ a and, hence, the scalar and the tensor modes can be described in terms of the same
Hankel function [see Eq. (2.7)]. The perturbation spectra in power law inflation can be
arrived at from the amplitudes of the Hankel functions, evaluated at late times, i.e. as
η → 0 [cf. Eq. (2.8)]. The tensor power spectrum is related to the scalar power spectrum
as follows: P

T
(k) = 16 ε1 PS

(k), with the scalar power spectrum being given by Eq. (2.9).
Note that the scalar and tensor spectral indices corresponding to these power spectra are
constants, and are given by n

S
− 1 = n

T
= 2 (γ + 2). If the consistency relations (4.5) are

indeed satisfied, then, upon setting each of the factors involving the polarization of the
tensor perturbations to be unity, the above spectral indices would lead to the following
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values of non-Gaussianity parameters of our interest:

CR
NL

=
n

S
− 4

4
=

2 γ + 1

4
, (4.6a)

Cγ
NL

=
n

T

2
= γ + 2, (4.6b)

h
NL

=
n

T
− 3

8
=

2 γ + 1

8
, (4.6c)

which are constants independent of the wavenumber. Our task now would be to evaluate
the three-point functions using the Maldacena formalism and examine if we indeed arrive
at these values in the squeezed limit.

Ideally, it would have been desirable to arrive at analytic expressions describing the
three-point functions in power law inflation for an arbitrary index γ. This clearly requires
having to calculate the various integrals describing the correlations that we had summa-
rized earlier in Subsec. 1.5.3. In fact, the spectral dependences of the three-point functions
in power law inflation can be easily arrived at (in, say, the equilateral and the squeezed
limits) without actually having to carry out the integrals involved (in this context, see
Subsec. 3.3.3) [55, 56]. These results for the squeezed limit then immediately point to the
fact that the non-Gaussianity parameters would be independent of scale. But, in order
to be able to establish the consistency conditions (4.6) explicitly, apart from the spectral
dependences, we shall require the amplitude of the integrals as well. But care is required
in handling the integrals in the extreme sub-Hubble limit (i.e. as η → −∞) wherein the
integrands oscillate with increasing frequency. This aspect seems to make it difficult to
carry out the integrals and express them in a closed analytic form for a generic γ.

For the above reason, in order to establish the consistency relations, we shall focus on
the specific case of γ = −3 or, equivalently, ν = −5/2. In this case, the scalar and tensor
modes simplify to

fk(η) =
gk(η)√

2
= − 1√

2 k5 M
Pl

1

a1 η21

(
3 + 3 i k η − k2 η2

)
e−i k η, (4.7)

so that the corresponding derivatives are given by

f ′
k(η) =

g′k(η)√
2

=
−i√

2 k3M
Pl

1

a1 η21

(
k2 η2 − i k η

)
e−i k η. (4.8)

As η → 0, the scalar and tensor modes reduce to

lim
η→0

fk(η) = lim
η→0

gk(η)√
2

= − 3√
2 k5 M

Pl

1

a1 η21
. (4.9)
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We can arrive at the three-point functions of interest upon substituting the above scalar
and tensor modes, their derivatives and their asymptotic behavior at late times, in the
expressions (1.46), (1.48) and (1.51), and evaluating the various integrals involved. We
find that, upon setting the factors containing the polarization tensor to be unity, in the
squeezed limit, the three-point functions of interest are given by

lim
k3→0

k3 k3
3 G

m3n3
RRγ (k,−k,k3) =

5

4

(
3

M
Pl
a1 η21

)4
1

k2 k2
3

, (4.10a)

lim
k1→0

k3
1 k

3 Gm2n2m3n3
Rγγ (k1,k,−k) =

(
3

M
Pl
a1 η21

)4
1

k2
1 k

2
, (4.10b)

lim
k3→0

k3 k3
3 G

m1n1m2n2m3n3
γγγ (k,k,−k3) =

5

2

(
3

M
Pl
a1 η21

)4
1

k2 k2
3

. (4.10c)

The non-Gaussianity parameters corresponding to these three-point functions can be eas-
ily obtained to be CR

NL
= −5/4, Cγ

NL
= −1 and h

NL
= −5/8. These values exactly match

the results (4.6) with γ = −3, which implies that the consistency conditions are indeed
satisfied in this case.

4.4.2 The case of the Starobinsky model

The second example that we shall consider is the Starobinsky model. In order to cal-
culate the three-point functions of our interest, evidently, we shall require the behavior
of the scale factor, the first slow roll parameter ε1, and the scalar and the tensor modes
[cf. Eqs. (1.46), (1.48) and (1.51)]. The forms of all these quantities except that of the tensor
mode have been discussed in Subsec. 2.3.2. As we had discussed in Subsec. 3.3.3, since
the scale factor behaves as in de Sitter, the tensor modes can be assumed to be given by
the de Sitter solution, viz. Eq. (1.53b).

Upon using the background quantities and the expression (2.22a) for the scalar mode
after the transition, we can arrive at the scalar power spectrum [cf. Eq. (2.25)] and the
corresponding scalar spectral index n

S
[cf. Eq. (2.27)] in the Starobinsky model. From

the expression for n
S
, upon suitably ignoring overall factors containing the polarization

tensor, we can obtain the non-Gaussianity parameter CR
NL

to be

CR
NL
(k) =

n
S
(k)− 4

4

=
1

8

[
I(k) + Ic(k) cos

(
2 k

k0

)
+ Is(k) sin

(
2 k

k0

)]−1{
J (k)− 8 I(k)

+ [Jc(k)− 8 Ic(k)] cos

(
2 k

k0

)
+ [Js(k)− 8 Is(k)] sin

(
2 k

k0

)}
, (4.11)
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where the functions [I(k), Ic(k), Is(k)] and [J (k),Jc(k),Js(k)] are given by Eqs. (2.26)
and (2.28). We shall require the tensor spectral index n

T
in order to evaluate the other

two non-Gaussianity parameters Cγ
NL

and h
NL

using the consistency relations (4.5). Since
the tensor modes are described by the standard de Sitter solution, the resulting tensor
spectrum is given by

P
T
(k) =

2H2
0

π2M2
Pl

, (4.12)

where H2
0 ' V0/(3M

2
Pl
). In other words, the tensor power spectrum is strictly scale in-

variant at the level of approximation we are working with. Therefore, the corresponding
spectral index n

T
vanishes identically. Moreover, note that as the tensor modes remain

unaffected by the transition, the tensor bi-spectrum will be of the same form as in the de
Sitter case, a situation wherein it is easy to establish analytically that h

NL
= −3/8 in the

squeezed limit (see, for instance, Refs. [23, 33, 56]). In order to establish the consistency
relation for the parameter Cγ

NL
, we shall evaluate the tensor spectral index numerically,

and compare the result with the analytical expressions that we shall obtain from the Mal-
dacena formalism for the three-point functions in the squeezed limit.

The scalar-scalar-tensor cross-correlation in the Starobinsky model can be calculated
analytically by dividing the integrals involved into two parts, corresponding to the
epochs before and after the transition, and making use of the expressions for the first
slow roll parameter and the scalar and the tensor modes. In the squeezed limit of the
tensor mode, on ignoring the polarization tensors, we find that the scalar-scalar-tensor
three-point function can be written as

lim
k3→0

k3 k3
3 G

m3n3
RRγ (k,−k,k3) =

9H8
0

8M2
Pl
A2

−

{
8 I(k)− J (k) + [8 Ic(k) − Jc(k)] cos

(
2 k

k0

)
+ [8 Is(k) − Js(k)] sin

(
2 k

k0

)}
, (4.13)

with J (k), Jc(k) and Js(k) being given by Eqs. (2.28). Upon making use of this expression
and the power spectra (2.25) and (4.12) in the definition (3.2a) of the parameter CR

NL
(and

suitably ignoring the factors involving the polarization tensors), we find that one exactly
arrives at the result (4.11), thereby establishing the consistency relation for this case.

Similarly, in the squeezed limit of the scalar mode, the scalar-tensor-tensor correlation
in the Starobinsky model can be obtained to be

lim
k1→0

k3
1 k

3 Gm2n2m3n3
Rγγ (k1,k,−k) =

H4
0

8M4
Pl

[
K(k) +Kc(k) cos

(
2 k

k0

)
+Ks(k) sin

(
2 k

k0

)]
,

(4.14)
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Figure 4.1: The non-Gaussianity parameter Cγ
NL

in the Starobinsky model, evaluated in
the squeezed limit, has been plotted as a function of k/k0. The solid blue curve rep-
resents the parameter arrived at from the analytical results for the scalar-tensor-tensor
cross-correlation (obtained using the Maldacena formalism) and the scalar and the tensor
power spectra. The dashed red curve corresponds to the non-Gaussianity parameter ob-
tained from consistency condition (4.5b), with the tensor spectral index being determined
numerically. Evidently, there is good agreement between the two results, indicating that
the consistency relation holds even when departures from slow roll occur. Note that we
have worked with the same values of the potential parameters of the Starobinsky model
as we had in the previous chapter.

where the quantities K(k), Kc(k) and Ks(k) are given by

K(k) = 4

(
A−

A+

)2

+ 9

(
∆A

A+

)2 (
k0
k

)6

, (4.15a)

Kc(k) =
3∆A

A+

(
k0
k

)2
[
2 + 6

∆A

A+

(
k0
k

)2

− 3∆A

A+

(
k0
k

)4
]
, (4.15b)

Ks(k) =
3∆A

A+

(
k0
k

)3
[(

3A−

A+

− 4

)
− 6∆A

A+

(
k0
k

)2
]
. (4.15c)

In Fig. 4.1, we have plotted the Cγ
NL

that results from the above analytical expression for
the scalar-tensor-tensor cross-correlation and the power spectra (2.25) and (4.12). In the
same figure, we have also plotted the Cγ

NL
that arises from the numerical determination of
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the tensor spectral index and the consistency condition (4.5b). It is clear from the figure
that these two quantities match very well, indicating the fact that the consistency relation
is valid in this case as well.

4.5 Numerical investigation of scenarios involving devia-
tions from slow roll

In the last section, we had investigated the validity of the consistency relations compris-
ing the tensor perturbations in two specific situations that had proved to be analytically
tractable. It is well known that the scalar consistency relation is valid in slow roll infla-
tion [23, 61, 62], and its applicability in situations containing departures from slow roll
was thoroughly discussed in Chap. 2. Our general arguments in Sec. 4.3 as well as the
analysis of the Starobinsky model in the previous section suggest that the consistency re-
lations involving tensors too can be expected to be valid even in scenarios consisting of
deviations from slow roll. It will be interesting to explicitly examine these relations in dif-
ferent models containing brief periods of fast roll. We shall consider for our investigation
the three models that had been considered in the previous two chapters, viz. punctu-
ated inflation, the quadratic potential with a step, and the axion monodromy model (see
Subsec. 2.4.1).

We shall now numerically examine the validity of the consistency relations involv-
ing the tensor perturbations in the above-mentioned models. As we had described in
the previous chapter, we have developed a numerical procedure and constructed a For-
tran code for evaluating the three-point scalar-tensor cross-correlations and the tensor
bi-spectrum [56]. We shall make use of the code to compute the three-point functions in
the squeezed limit as well as the scalar and the tensor spectral indices, in order to check
the consistency conditions (4.5). We shall work with values of the parameters for the
potentials that have been shown to lead to an improved fit to the CMB data (cf. Sub-
sec. 2.4.1). Also, we shall essentially follow the numerical procedure outlined in the last
chapter. However, there are three points that we need to emphasize in this regard. Firstly,
to achieve higher levels of numerical accuracy, say, of the order of 1–3% or better, for
the three-point functions, one may have to integrate from a time when the modes are
deeper inside the Hubble radius than k/(aH) ' 102. In our calculations, we shall choose
to integrate from k/(aH) ' 103 in the cases of punctuated inflation and the quadratic
potential with a step. The oscillating nature of the potential in the axion monodromy
model leads to certain resonant behavior (see the first of the references in Ref. [68] and
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Refs. [55, 56]), and it typically requires one to integrate from further deep inside the Hub-
ble radius, even in the case of the power spectrum. For this reason, we shall choose to
integrate from k/(aH) ' 104 in this case. Secondly, as we have discussed, due to the
rapid oscillations of the modes when they are inside the Hubble radius, a cut-off in the
integrands is required to regulate the integrals at early times. As earlier, we shall work
with a cut off of the form exp−[κ k/(aH)], with the parameter κ to be chosen according
to the initial time from which the integrations are to be carried out. For instance, the ear-
lier the initial time, the smaller the quantity κ has to be [55, 56]. Since we shall integrate
from k/(aH) ' 103 in the cases of punctuated inflation and the quadratic potential with a
step, we shall work with κ = 1/50 in these cases, which is known to lead to a good accu-
racy [55, 56]. However, as we integrate from deeper inside the Hubble radius in the axion
monodromy model, we shall work with κ = 1/500 in this case. The third and the last
point concerns the implementation of the squeezed limit. To achieve this limit, we shall
work with the smallest wavenumber (say, the largest scale mode that leaves the Hubble
radius at the earliest possible time) that is numerically tenable, as we had done while
examining the scalar consistency relation in Chap. 2. As a result, inherently, there will
arise a weak wavenumber dependent effect when attempting to establish the consistency
conditions numerically, with the smaller scale modes satisfying the condition better than
the longer ones.

In Figs. 4.2, 4.3 and 4.4 we have plotted the numerical results for the non-Gaussianity
parameters CR

NL
, Cγ

NL
and h

NL
for the three models discussed above. We find that the

results from the spectral indices match the numerical results for the non-Gaussianity pa-
rameters obtained using Maldacena formalism at the level of 3% or better in the cases
of punctuated inflation and the quadratic potential with the step, with the largest differ-
ences arising for the smallest wavenumbers for the reasons discussed above. The match
is slightly poorer in the axion monodromy model (with differences of about 7% for some
wavenumbers), but the match improves if we carry out the integrals over a longer du-
ration in time. (We should mention here that the seeming difference in the cases of the
model with the step and the axion monodromy model in the last row of Figs. 4.3 and
4.4 is due to the fact that the non-Gaussianity parameter h

NL
has been plotted over a

rather small range in amplitude to highlight the mild variations.) Clearly, the consistency
relations hold true even in inflationary models that contain deviations from slow roll in-
flation.

95



CHAPTER 4. CONSISTENCY RELATIONS FOR FUNCTIONS INVOLVING TENSORS

10−5 10−4 10−3 10−2 10−1

k

−500

−400

−300

−200

−100

0

100

C
R N
L
(k
)

10−4 10−3 10−2 10−1

−2

−1

0

1

2

10−4 10−3 10−2 10−1

k

−4

−3

−2

−1

0

1

2

C
γ N
L
(k
)

10−4 10−3 10−2 10−1

k

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

h
N
L
(k
)

Figure 4.2: The non-Gaussianity parameters, CR
NL

(on top), Cγ
NL

(in the middle) and h
NL

(at the bottom), arrived at using the Maldacena formalism and from the scalar and tensor
spectral indices through the consistency conditions, have been plotted as a function of the
wavenumber for the case of punctuated inflation. While the solid blue lines correspond
to the numerical results for the parameters obtained using the Maldacena formalism, the
dashed red lines represent the values arrived at from the spectral indices and the con-
sistency relations. The two results match at the level of 3% or better, with the largest
differences arising for the smallest wavenumbers due to the inherent limitation in imple-
menting the squeezed limit numerically.
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Figure 4.3: The non-Gaussianity parameters, CR
NL

(on top), Cγ
NL

(in the middle) and h
NL

(at the bottom), plotted as in previous figure for the case of the quadratic potential with
a step. At a first look, the difference in the last row may seem striking. But, we should
clarify here that it is simply due to the fact that the non-Gaussianity parameter h

NL
has

been plotted over a rather small range in amplitude to highlight the mild variations.
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Figure 4.4: The non-Gaussianity parameters, CR
NL

(on top), Cγ
NL

(in the middle) and h
NL

(at the bottom), have been plotted for the case of axion monodromy model as in the pre-
vious two figures. Though the match that we obtain is slightly poorer in this model (with
differences of the order of 7% for certain wavenumbers), we find that the match can be
improved by integrating for a longer duration. Further, as clarified in the previous fig-
ure, the seemingly large difference in the last row is simply due to the fact that the non-
Gaussianity parameter h

NL
has been plotted over a rather small range in amplitude to

highlight the mild variations. Needless to add, these three figures confirm the validity of
the consistency relations in single field inflationary models even in situations that allow
strong departures from slow roll.
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4.6 Discussion

Consistency relations link the three-point functions in the squeezed limit to the scalar and
tensor power spectra. They essentially indicate that, in the squeezed limit, the three-point
functions carry the same amount of information as the two-point functions do. Evidently,
the consistency conditions can be conveniently expressed as relations between the non-
Gaussianity parameters (two of which we had introduced in the last chapter) and the
scalar or the tensor spectral indices. The consistency relations arise essentially because
of the fact that inflaton is the only clock in single field inflationary models. Due to this
reason, the amplitude of the long wavelength modes freeze in such situations. As we had
discussed in Sec. 4.3, this implies that in the squeezed limit of interest, the long wave-
length modes simply modify the background spatial coordinates. In this chapter, we have
explicitly examined, both analytically and numerically, the validity of the consistency re-
lations involving the tensor perturbations in single field inflationary models. Corroborat-
ing the general arguments that have been outlined earlier, we find that the consistency
conditions hold true even in non-trivial scenarios involving drastic deviations from slow
roll, such as what occurs in the case of punctuated inflation.
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Chapter 5

Summary and outlook

With the emergence of increasingly precise cosmological data, it has been recognized that
correlation functions beyond the power spectrum can act as powerful probes of the early
universe. However, as we had discussed in the introductory section, despite the rela-
tively strong bounds that have been arrived at on the scalar non-Gaussianity parameter
f
NL

, there exists a wide range of models that remains consistent with the data. In such a
situation, the possible observational bounds on the three-point functions involving ten-
sors and the consistency relations involving the three-point functions can be expected to
play a crucial role in arriving at a smaller class of viable inflationary models. With this
goal in mind, in this thesis, we have investigated the computation and characteristics of
inflationary three-point functions in general and those involving the tensors in particular.

In Chap. 2, we had investigated the scalar consistency relation in models involving
deviations from slow roll. The consistency relations can play a very important role in
constraining inflationary models. For instance, if the consistency relations are observa-
tionally confirmed, they can rule out many multi-field models of inflation and even, pos-
sibly, alternate scenarios such as the bouncing models (in this context, see, for instance,
Refs. [19, 98] and references therein). In the chapter, we had analytically showed that the
scalar consistency relation is valid in the cases of power law inflation and the Starobin-
sky model. Further, we had first numerically evaluated the complete scalar bi-spectra
generated in punctuated inflation, the quadratic potential with a step and the axion mon-
odromy model. We had then computed their squeezed limits and explicitly showed that
the scalar consistency relation is valid even in situations involving deviations from slow
roll.

In Chap. 3, we had constructed a numerical procedure to evaluate the inflationary
three-point functions involving the tensor perturbations. Along the lines of the param-
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eter f
NL

that is used to characterize the scalar bi-spectrum, we had introduced two new
parameters, viz. CR

NL
and Cγ

NL
, to quantify the extent of non-Gaussianity in the three-

point scalar-tensor cross-correlations. In addition, we had considered the parameter h
NL

to describe the amplitude of the tensor bi-spectrum. We had utilized the numerical proce-
dure to compute these quantities for the various models that we had considered earlier in
Chap. 2. Lastly, we had estimated the contribution to these parameters due to the epoch
of preheating in the case of inflationary potentials with a quadratic minimum.

In Chap. 4, we had studied the consistency relations obeyed by the three-point func-
tions involving the tensors in the squeezed limit. We had expressed the consistency re-
lations in terms of the newly introduced non-Gaussianity parameters and had examined
the relations explicitly in a class of examples that we had discussed in the previous two
chapters. We had found that, as in the purely scalar case considered in Chap. 2, the con-
sistency conditions involving the tensors prove to be valid even away from slow roll.

In the light of the work described in this thesis, there are several open issues that can
be pursued in the near future. In this thesis, we had described a numerical procedure
and a code to compute the inflationary three-point functions involving tensors. As we
had discussed, there already exists a fast and efficient code, BINGO [54], to calculate the
scalar bi-spectrum for any inflationary model involving a single canonical scalar field. We
need to modify and parallelize our code and integrate it with BINGO. Such a code will
provide us with an effective code to calculate all the four non-Gaussianity parameters for
any canonical single field inflationary model. Further, the codes need to be extended to
include other classes of models such as those involving non-canonical scalar fields and
models containing more than one field.

Consistency conditions, as described in this thesis, arise due to the fact that the am-
plitude of the perturbations freeze as they exit the Hubble radius during inflation. Such
a soft, frozen, mode acts as a spatial diffeomorphism as far as the other modes are con-
cerned, leading to these relations. Currently, it is understood that the consistency rela-
tions involving the three point functions are a particular case of a larger property which
connects (N + 1)-point functions to N -point functions in the presence of a soft scalar or
tensor mode. It has been shown that these conditions arise from a master relation which
is derived from the Slavnov-Taylor identity associated with the spatial diffeomorphisms
(see Refs. [63], especially, the fourth reference). It would be interesting to explore the con-
sistency relations from this perspective. Moreover, while the scalar consistency relation
is known to hold in most situations involving single field inflationary models, there exist
exceptions. An important class of exceptions are scenarios where in the field is evolving
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away from the attractor [70]. In such a case, the supposedly decaying mode begins to
grow on super-Hubble scales, causing a violation of the consistency relations. It will be
interesting to examine the validity of the consistency relations involving tensors in these
situations as well as in other scenarios such as the bouncing models. It also seems worth-
while to closely investigate the conditions under which the consistency relations hold in,
say, two-field models (see, for example, Ref. [99]) and, in particular, examine in some
detail the role the iso-curvature perturbations may play in this regard.

In all the calculations we have performed in this thesis, we have assumed that the per-
turbations are in the standard Bunch-Davies vacuum. However, it has been argued that
high energy effects can lead to a situation wherein the perturbations can be in an excited
state above the Bunch-Davies vacuum (in this context, see, for instance, Ref. [100]). The
effect of such initial conditions on the inflationary scalar bi-spectrum has been explored to
some extent. However, the corresponding effects on the three-point functions involving
the tensors do not seem to have been studied adequately. For instance, it will be worth-
while to investigate if the consistency relations hold true when the perturbations are in
an excited state above the Bunch-Davies vacuum [71].

In this thesis, we had evaluated the contribution to the three-point functions involving
tensors due to preheating, wherein a single scalar field was oscillating in potentials with
a quadratic minimum. It would be interesting to extend our analysis to scenarios wherein
the inflaton is coupled to another scalar field, as in two-field models [97]. Furthermore,
it would be important to carry out in detail a careful analysis of the effects of other post-
inflationary scenarios, such as reheating, on the three-point functions [58, 59].

As we have repeatedly discussed, the comparison of models with the CMB data has
been carried out mostly at the level of the power spectrum. A similar comparison at
the level of the three-point functions can be numerically taxing. Due to this reason, one
works with certain analytical templates for the scalar bi-spectrum to arrive at constraints
on the extent of primordial non-Gaussianity [cf. Eqs. (1.60)]. However, the templates often
considered cover only a limited range of possibilities (see, for instance, Ref. [101]). With
future applications in mind, it will be helpful to arrive at similar templates for a wider
range of models, including those which permit deviations from slow roll.

Lastly, needless to say, the efforts to introduce new non-Gaussianity parameters, such
as those to characterize the three-point cross-correlations, will remain incomplete unless
one also attempts to arrive at constraints on the values of these parameters. With such
a goal in mind, it becomes necessary to systematically calculate the imprints of the in-
flationary three-point functions consisting of scalars and tensors on the CMB angular
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three-point functions.
We are presently exploring along these directions.
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Appendix A

Three-point functions involving tensors
in the Starobinsky model

In this appendix, we shall provide some of the essential details for arriving at the analyti-
cal results for the three-point functions involving the tensors in the case of the Starobinsky
model [37, 74, 75]. In Subsecs. 2.3.2 and 3.3.3, we have already discussed the behavior of
the background as well as the perturbations in the model. It is just a matter of substi-
tuting the various quantities in the integrals that describe the three-point functions and
being able to carry out the integrals involved. As we had pointed out earlier, due to the
transition at the discontinuity in the potential, the integrals need to be divided into two.
The integrals up to the transition essentially lead to the slow roll results, but with suitable
modifications that arise because of the reason that the integrals are not to be carried out
until late times. Though slow roll is violated briefly due to the discontinuity, we find that
all the integrals can be evaluated in terms of simple functions to arrive at the three-point
correlations. Since the scale factor is always of the de Sitter form, as we had mentioned,
the tensor bi-spectrum proves to be the same as the one arrived at in the slow roll approx-
imation [23, 33]. Therefore, we do not discuss it here. In what follows, we shall list out
the results of the integrals involved in arriving at the two cross-correlations.

A.1 Calculation of GC
RRγ

Evidently, the quantities GC
RRγ(k1,k2,k3), with C = (1, 2, 3) [cf. Eqs. (1.47a)–(1.47c)], need

to be first evaluated in order to arrive at the cross-correlation Gm3n3
RRγ (k1,k2,k3). Upon

dividing the integrals into two, we find that the contributions before the transition are
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given by the following expressions:
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where, as we have indicated earlier, k
T
= k1 + k2 + k3. Similarly, after the transition, upon

substituting the corresponding modes describing the perturbations, we find that, we can
write
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A.2. CALCULATION OF GC
Rγγ

The expressions for the functions I1i
RRγ(k1, k2, k3), I2i

RRγ(k1, k2, k3) and I3i
RRγ(k1, k2, k3) as

well as J 3i
RRγ(k1, k2, k3), where i = 1, 2, 3, 4, are furnished in the last sub-section.

A.2 Calculation of GC
Rγγ

In this case, the contributions before the transition are given by
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The corresponding quantities after the transition are found to be
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The forms of the expressions Mi(k1, k2, k3) with i = 1, 2, 3 are given in the next sub-
section.

A.3 Evaluation of integrals

The quantity I11
RRγ(k1, k2, k3) is described by the integral
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which can be easily evaluated to be
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We find that the rest of the functions I1i
RRγ(k1, k2, k3) with i = 2, 3, 4 can be expressed in

terms of I11
RRγ(k1, k2, k3) as follows: I12
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with ε2− being given by Eq. (2.17b). We find that this quantity can be written as
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where
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Moreover, it can be shown that I22
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where ε1− is the slow roll parameter after the transition, which is given by Eq. (2.16b).
The above integral can be evaluated to yield
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We find that the rest of the quantities can be written in terms of I31
RRγ(k1, k2, k3) as follows:

I32
RRγ(k1, k2, k3) = I31
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RRγ(k1, k2, k3) =

I31
RRγ(−k1,−k2, k3), J 31

RRγ(k1, k2, k3) = I31
RRγ(k2, k1, k3), J 32

RRγ(k1, k2, k3) = J 31
RRγ(k1,−k2, k3),

J33
RRγ(k1, k2, k3) = J 31

RRγ(−k1, k2, k3) and J 34
RRγ(k1, k2, k3) = J 31

RRγ(−k1,−k2, k3).

Lastly, the quantities Mi(k1, k2, k3), with i = 1, 2, 3, are given by

M1(k1, k2, k3) =
1

k
T

+
k1
k2

T

− 6 i ρ3

k4
T

− 24 i k1 ρ
3

k5
T

−
[
1

k
T

+ k1

(
i

k
T
k0

+
1

k2
T

)
+ ρ3

(
− 1

k
T
k3
0

+
3 i

k2
T
k2
0

+
6

k3
T
k0

− 6 i

k4
T

)
+ ρ3 k1

(
− i

k
T
k4
0

− 4

k2
T
k3
0

+
12 i

k3
T
k2
0

+
24

k4
T
k0

− 24 i

k5
T

)]
e−i k

T
/k0 ,

(A.12a)
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APPENDIX A. THREE-POINT FUNCTIONS IN THE STAROBINSKY MODEL

M2(k1, k2, k3) = lim
ηe→0

(
−i ei kT ηe

ηe

)
− k1 k2 + k1 k3 + k2 k3

k
T

− k1 k2 k3
k2

T

+
3 i ρ3

k2
T

+
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T

+
24 i ρ3 k1 k2 k3
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T
k0

− k1 k2 k3
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+
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T
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T
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k4
T

)
(A.12b)

− ρ3 k1 k2 k3
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T

)]
e−i k

T
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