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Introduction

This talk is based on

J. Martin and L. Sriramkumar, The scalar bi-spectrum in the Starobinsky
model: The equilateral case, JCAP 1201, 008 (2012).
D. K. Hazra, L. Sriramkumar and J. Martin, BINGO: A code for the effi-
cient computation of the scalar bi-spectrum, JCAP 1305, 026 (2013).
V. Sreenath, R. Tibrewala and L. Sriramkumar, Numerical evaluation of
the three-point scalar-tensor cross-correlations and the tensor bi-spectrum,
JCAP 1312, 037 (2013).
V. Sreenath and L. Sriramkumar, Examining the consistency relations
involving the three-point scalar and tensor correlations, In preparation.
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Introduction

A few words on the conventions and notations

F We shall work in units such that c = ~ = 1, and define the Planck mass
to be M

Pl
= (8πG)−1/2.

F As is often done, particularly in the context of inflation, we shall assume
the background universe to be described by the spatially flat, Friedmann
line-element.

F We shall denote differentiation with respect to the cosmic and the confor-
mal times t and η by an overdot and an overprime, respectively.

F Moreover, N shall denote the number of e-folds.
F Further, as usual, a and H = ȧ/a shall denote the scale factor and the

Hubble parameter associated with the Friedmann universe.
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Some essential remarks on the evaluation of inflationary power spectra

The curvature perturbation and the governing equation
On quantization, the operator corresponding to the curvature perturbation
R(η,x) can be expressed as1

R̂(η,x) =

∫
d3k

(2π)3/2
R̂k(η) eik·x

=

∫
d3k

(2π)3/2

[
âk fk(η) eik·x + â†k f

∗
k(η) e−ik·x

]
,

where âk and â†k are the usual creation and annihilation operators that satisfy
the standard commutation relations.

The modes fk are governed by the differential equation

f ′′k + 2
z′

z
f ′k + k2 fk = 0,

where z = aM
Pl

√
2 ε1, with ε1 = −d lnH/dN being the first slow roll param-

eter.

1See, for instance, L. Sriramkumar, Curr. Sci. 97, 868 (2009).
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Some essential remarks on the evaluation of inflationary power spectra

The Bunch-Davies initial conditions
While studying the evolution of the curvature perturbation, it often proves to
be more convenient to work in terms of the so-called Mukhanov-Sasaki vari-
able vk, which is defined as vk = z fk. In terms of the variable vk, the above
equation of motion for fk reduces to the following simple form:

v′′k +

(
k2 − z′′

z

)
vk = 0.

The initial conditions on the perturbations are imposed when the modes are
well inside the Hubble radius during inflation.

Usually, it is the so-called Bunch-Davies initial conditions that are imposed
on the modes, which amounts to demanding that the Mukhanov-Sasaki vari-
able vk reduces to following Minkowski-like positive frequency form in the sub-
Hubble limit2:

lim
k/(aH)→∞

vk =
1√
2 k

e−i k η.

2T. Bunch and P. C. W. Davies, Proc. Roy. Soc. Lond. A 360, 117 (1978).
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Some essential remarks on the evaluation of inflationary power spectra

The behavior of modes during inflation

Radiation Radiation
dominateddominated

radius in non−inflationary
cosmology
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A schematic diagram illustrating the behavior of the physical wavelength λ
P
∝

a (the green lines) and the Hubble radius H−1 (the blue line) during inflation
and the radiation dominated epochs3.

3See, for example, E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley Publishing
Company, New York, 1990), Fig. 8.4.
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Some essential remarks on the evaluation of inflationary power spectra

The scalar power spectrum
The dimensionless scalar power spectrum PS(k) is defined in terms of the
correlation function of the Fourier modes of the curvature perturbation R̂k as
follows:

〈R̂k(η) R̂p(η)〉 =
(2π)2

2 k3
P

S
(k) δ(3) (k + p) .

In the Bunch-Davies vacuum, say, |0〉, which is defined as âk|0〉 = 0 ∀ k, we
can express the scalar power spectrum in terms of the quantities fk and vk
as

P
S
(k) =

k3

2π2
|fk|2 =

k3

2π2

(
|vk|
z

)2

and, analytically, the spectrum is evaluated in the super-Hubble limit, i.e. when
k/(aH)→ 0.
As is well known, numerically, the Bunch-Davies initial conditions are imposed
on the modes when they are well inside the Hubble radius, and the power
spectrum is evaluated at suitably late times when the modes are sufficiently
outside4.

4See, for example, D. S. Salopek, J. R. Bond and J. M. Bardeen, Phys. Rev. D 40, 1753 (1989);
C. Ringeval, Lect. Notes Phys. 738, 243 (2008).

L. Sriramkumar (IIT Madras, Chennai) Inflationary three-point functions April 10, 2014 8 / 35



Some essential remarks on the evaluation of inflationary power spectra

Equations governing the tensor perturbations
Upon quantization, the tensor perturbations can be written in terms of the
corresponding modes, say, gk, as follows:

γ̂ij(η,x) =

∫
d3k

(2π)
3/2

γ̂kij(η) eik·x

=
∑
s

∫
d3k

(2π)3/2

(
b̂sk ε

s
ij(k) gk(η) eik·x + b̂s†k εs∗ij (k) g∗k(η) e−ik·x

)
,

where b̂sk and b̂sk
† are the usual creation and annihilation operators that satisfy

the standard commutation relations, while εsij(k) represents the transverse
and traceless polarization tensor describing gravitational waves.

The modes gk are governed by the differential equation

g′′k + 2H g′k + k2 gk = 0

and, in terms of the variable uk = M
Pl
a gk/

√
2, the above equation reduces

to

u′′k +

(
k2 − a′′

a

)
uk = 0.
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Some essential remarks on the evaluation of inflationary power spectra

The tensor power spectrum
The tensor power spectrum PT(k) is defined through the relation

〈γ̂km1n1
γ̂pm2n2

〉 =
(2π)2

8 k3
Πk
m1n1,m2n2

PT(k) δ3 (k + p) ,

where
Πk
m1n1,m2n2

=
∑
s

εsm1n1
(k) εs∗m2n2

(k).

In terms of the quantities gk and uk, the tensor power spectrum P
T

(k) in the
Bunch-Davies vacuum is given by

P
T

(k) = 4
k3

2π2
|gk|2 =

8

M2
Pl

k3

2π2

(
|uk|
a

)2

,

with the right hand side being evaluated, as in the scalar case, when the
modes are sufficiently outside the Hubble radius5.

5See, for example, L. Sriramkumar, Curr. Sci. 97, 868 (2009).
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Evaluation of the scalar bi-spectrum generated during inflation

The scalar bi-spectrum
The scalar bi-spectrum BRRR(k1,k2,k3) is related to the three-point corre-
lation function of the Fourier modes of the curvature perturbation, evaluated
towards the end of inflation, say, at the conformal time ηe, as follows6:

〈R̂k1
(ηe) R̂k2

(ηe) R̂k3
(ηe)〉 = (2π)

3 BRRR(k1,k2,k3) δ(3) (k1 + k2 + k3) .

For convenience, we shall set

BRRR(k1,k2,k3) = (2π)
−9/2

GRRR(k1,k2,k3).

6D. Larson et al., Astrophys. J. Suppl. 192, 16 (2011);
E. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011).
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Evaluation of the scalar bi-spectrum generated during inflation

The non-Gaussianity parameter f
NL

The observationally relevant non-Gaussianity parameter fNL is basically intro-
duced through the relation7

R(η,x) = R
G

(η,x)− 3 f
NL

5

[
R2

G
(η,x)−

〈
R2

G
(η,x)

〉]
,

where RG denotes the Gaussian quantity, and the factor of 3/5 arises due
to the relation between the Bardeen potential and the curvature perturbation
during the matter dominated epoch.

Utilizing the above relation and Wick’s theorem, one can arrive at the three-
point correlation function of the curvature perturbation in Fourier space in
terms of the parameter f

NL
. It is found to be

〈R̂k1 R̂k2 R̂k3〉 = −3 fNL

10
(2π)5/2

(
1

k3
1 k

3
2 k

3
3

)
δ(3)(k1 + k2 + k3)

×
[
k3

1 PS
(k2) P

S
(k3) + two permutations

]
.

7E. Komatsu and D. N. Spergel, Phys. Rev. D 63, 063002 (2001).
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Evaluation of the scalar bi-spectrum generated during inflation

The relation between f
NL

and the scalar bi-spectrum
Upon making use of the above expression for the three-point function of the
curvature perturbation and the definition of the scalar bi-spectrum, we can, in
turn, arrive at the following relation8:

f
NL

(k1,k2,k3) = −10

3
(2π)1/2

(
k3

1 k
3
2 k

3
3

)
BRRR(k1,k2,k3)

×
[
k3

1 PS
(k2) P

S
(k3) + two permutations

]−1

= −10

3

1

(2π)4

(
k3

1 k
3
2 k

3
3

)
GRRR(k1,k2,k3)

×
[
k3

1 PS(k2) PS(k3) + two permutations
]−1

.

8J. Martin and L. Sriramkumar, JCAP 1201, 008 (2012).
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Evaluation of the scalar bi-spectrum generated during inflation

The action at the cubic order
It can be shown that, the third order term in the action describing the curvature
perturbation is given by9

S3
RRR[R] = M2

Pl

∫
dη

∫
d3x

[
a2 ε21RR′2 + a2 ε21R (∂R)2

− 2 a ε1R′ (∂iR) (∂iχ) +
a2

2
ε1 ε
′
2R2R′ + ε1

2
(∂iR) (∂iχ) (∂2χ)

+
ε1
4

(∂2R) (∂χ)2 + F1

(
δL2
RR
δR

)]
,

where F1(δL2
RR/δR) denotes terms involving the variation of the second or-

der action with respect to R, while χ is related to the curvature perturbation
R through the relation

∂2χ = a ε1R′.

9J. Maldacena, JHEP 0305, 013 (2003);
D. Seery and J. E. Lidsey, JCAP 0506, 003 (2005);
X. Chen, M.-x. Huang, S. Kachru and G. Shiu, JCAP 0701, 002 (2007).
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Evaluation of the scalar bi-spectrum generated during inflation

Evaluating the scalar bi-spectrum
At the leading order in the perturbations, one then finds that the scalar three-
point correlation function in Fourier space is described by the integral10

〈R̂k1(ηe) R̂k2
(ηe) R̂k3

(ηe)〉

= −i
∫ ηe

ηi

dη a(η)
〈[
R̂k1(ηe) R̂k2(ηe) R̂k3(ηe), ĤI(η)

]〉
,

where ĤI is the Hamiltonian corresponding to the above third order action,
while ηi denotes a sufficiently early time when the initial conditions are im-
posed on the modes, and ηe denotes a very late time, say, close to when
inflation ends.

Note that, while the square brackets imply the commutation of the operators,
the angular brackets denote the fact that the correlations are evaluated in the
given initial state, say, the Bunch-Davies vacuum.

10See, for example, D. Seery and J. E. Lidsey, JCAP 0506, 003 (2005);
X. Chen, Adv. Astron. 2010, 638979 (2010).
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Evaluation of the scalar bi-spectrum generated during inflation

The various times of interest

The exact behavior of the physical wavelengths and the Hubble radius plotted
as a function of the number of e-folds in the case of the archetypical quadratic
potential, which allows us to illustrate the various times of our interest,
viz. ηi, ηs and ηe.
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Evaluation of the scalar bi-spectrum generated during inflation

Results from BINGO

A comparison of the analytical results (on the left) for the non-Gaussianity
parameter fNL with the numerical results (on the right) from the BIspectra and
Non-Gaussianity Operator (BINGO) code for a generic triangular configuration
of the wavevectors in the case of the standard quadratic potential11. The
maximum difference between the numerical and the analytic results is found
to be about 5%.

11D. K. Hazra, L. Sriramkumar and J. Martin, JCAP 05, 026 (2013).
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Constraints from Planck on the scalar bi-spectrum

Template bispectra
For comparison with the observations, the scalar bi-spectrum is often expressed as
follows12:

GRRR(k1,k2,k3) = f
loc

NL
G

loc
RRR(k1,k2,k3) + f

eq

NL
G

eq
RRR(k1,k2,k3) + f

orth

NL
G

orth
RRR(k1,k2,k3),

where f loc
NL

, feq
NL

and forth
NL

are free parameters that are to be estimated, and the local,
the equilateral, and the orthogonal template bi-spectra are given by:

G
loc
RRR(k1,k2,k3) =

6

5

[ (
2π2

)2
k31 k

3
2 k

3
3

] (
k
3
1 PS

(k2)P
S

(k3) + two permutations
)
,

G
eq
RRR(k1,k2,k3) =

3

5

[ (
2π2

)2
k31 k

3
2 k

3
3

) (
6 k2 k

2
3 PS

(k1)P2/3

S
(k2)P1/3

S
(k3)− 3 k

3
3 PS

(k1)P
S

(k2)

−2 k1 k2 k3 P2/3

S
(k1)P2/3

S
(k2)P2/3

S
(k3) + five permutations

)
,

G
orth
RRR(k1,k2,k3) =

3

5

[ (
2π2

)2
k31 k

3
2 k

3
3

] (
18 k2 k

2
3 PS

(k1)P2/3

S
(k2)P1/3

S
(k3)− 9 k

3
3 PS

(k1)P
S

(k2)

−8 k1 k2 k3 P2/3

S
(k1)P2/3

S
(k2)P2/3

S
(k3) + five permutations

)
.

The basis (f loc
NL
, feq

NL
, forth

NL
) for the scalar three-point function is considered to be large

enough to encompass a range of interesting models.
12C. L. Bennett et al., arXiv:1212.5225v1 [astro-ph.CO].
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Constraints from Planck on the scalar bi-spectrum

Illustration of the template bi-spectra

An illustration of the three template basis bi-spectra, viz. the local (top left),
the equilateral (bottom) and the orthogonal (top right) forms for a generic tri-
angular configuration of the wavevectors13.

13E. Komatsu, Class. Quantum Grav. 27, 124010 (2010).
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Constraints from Planck on the scalar bi-spectrum

Constraints on f
NL

The constraints on the non-Gaussianity parameters from the recent Planck
data are as follows14:

f loc
NL

= 2.7± 5.8,

f eq
NL

= −42± 75,

forth
NL

= −25± 39.

It should be stressed here that these are constraints on the primordial values.

Also, the constraints on each of the f
NL

parameters have been arrived at
assuming that the other two parameters are zero.

We should also add that these constraints become less stringent if the primor-
dial spectra are assumed to contain features.

14P. A. R. Ade et al., arXiv:1303.5084 [astro-ph.CO].
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Are features in the power spectrum consistent with small non-Gaussianities?

Does the primordial power spectrum contain features?
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Left: Reconstructed primordial spectra, obtained upon assuming the concor-
dant background ΛCDM model. Recovered spectra improve the fit to the
WMAP nine-year data by ∆χ2

eff ' 300, with respect to the best fit power law
spectrum15.
Right: Three different spectra with features that lead to an improved fit (of
∆χ2

eff ' 10) to the Planck data16.

15D. K. Hazra, A. Shafieloo and T. Souradeep, JCAP 1307, 031 (2013).
16P. A. R. Ade et al., arXiv:1303.5082 [astro-ph.CO].
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Are features in the power spectrum consistent with small non-Gaussianities?

Inflationary models permitting deviations from slow roll

Illustration of potentials that admit departures from slow roll17.
17J. Martin and L. Sriramkumar, JCAP 1201, 008 (2012);

D. K. Hazra, L. Sriramkumar and J. Martin, JCAP 1305, 026 (2013).
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Are features in the power spectrum consistent with small non-Gaussianities?

Spectra leading to an improved fit to the WMAP data
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Starobinsky model

Punctuated inflation

Quadratic potential with a step

Axion monodromy model

The scalar power spectra in the different inflationary models that lead to a
better fit to the CMB data than the conventional power law spectrum18.

18R. K. Jain, P. Chingangbam, J.-O. Gong, L. Sriramkumar and T. Souradeep, JCAP 0901, 009 (2009);
D. K. Hazra, M. Aich, R. K. Jain, L. Sriramkumar and T. Souradeep, JCAP 1010, 008 (2010);
M. Aich, D. K. Hazra, L. Sriramkumar and T. Souradeep, Phys. Rev. D 87, 083526 (2013).
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Are features in the power spectrum consistent with small non-Gaussianities?

f loc
NL

in models with a step
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L
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Quadratic potential with a step
Small field model with a step

The non-Gaussianity parameter f loc
NL

evaluated in the equilateral limit when a step has
been introduced in the conventional chaotic inflationary model19 involving the quadratic
potential (in blue). The f loc

NL
that arises in a small field model with a step20 has also

been illustrated (in red).
19X. Chen, R. Easther and E. A. Lim, JCAP 0706, 023 (2007); JCAP 0804, 010 (2008);

P. Adshead, W. Hu, C. Dvorkin and H. V. Peiris, Phys. Rev. D 84, 043519 (2011);
P. Adshead, C. Dvorkin, W. Hu and E. A. Lim, Phys. Rev. D 85, 023531 (2012).

20D. K. Hazra, L. Sriramkumar and J. Martin, JCAP 05, 026 (2013).
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Are features in the power spectrum consistent with small non-Gaussianities?

f loc
NL

in the axion monodromy model
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Axion monodromy model

The non-Gaussianity parameter f loc
NL

evaluated in the equilateral limit in the ax-
ion monodromy model21.The modulations in the potential give rise to a certain
resonant behavior22, leading to a large f loc

NL
.

21D. K. Hazra, L. Sriramkumar and J. Martin, JCAP 05, 026 (2013).
22S. Hannestad, T. Haugbolle, P. R. Jarnhus and M. S. Sloth, JCAP 1006, 001 (2010);

R. Flauger and E. Pajer, JCAP 1101, 017 (2011).
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Evaluating the other three-point functions

The cross-correlations and the tensor bi-spectrum

The cross-correlations involving two scalars and a tensor and a scalar and
two tensors are defined as

〈R̂k1
(ηe) R̂k2

(ηe) γ̂k3
m3n3

(ηe) 〉 = (2π)
3 Bm3n3

RRγ (k1,k2,k3) δ(3) (k1 + k2 + k3) ,

〈R̂k1
(ηe) γ̂k2

m2n2
(ηe) γ̂k3

m3n3
(ηe)〉 = (2π)

3 Bm2n2m3n3

Rγγ (k1,k2,k3)

× δ(3) (k1 + k2 + k3) ,

while the tensor bi-spectrum is given by

〈γ̂k1
m1n1

(ηe) γ̂k2
m2n2

(ηe) γ̂k3
m3n3

(ηe)〉 = (2π)
3 Bm1n1m2n2m3n3

γγγ (k1,k2,k3)

× δ(3) (k1 + k2 + k3) .

As in the pure scalar case, we shall set

BABC(k1,k2,k3) = (2π)
−9/2

GABC(k1,k2,k3),

where each of (A,B,C) can be either a R or a γ.
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Evaluating the other three-point functions

The corresponding non-Gaussianity parameters
As in the scalar case, one can define dimensionless non-Gaussianity parameters to
characterize the scalar-scalar-tensor and the scalar-tensor-tensor cross-correlations
and the tensor bi-spectrum, respectively, as follows23:

CR
NL

(k1,k2,k3) = − 4

(2π2)2

[
k3

1 k
3
2 k

3
3 G

m3n3
RRγ (k1,k2,k3)

]
×
(

Πk3
m3n3,m̄n̄

)−1
{[
k3

1 PS(k2) + k3
2 PS(k1)

]
PT(k3)

}−1

,

Cγ
NL

(k1,k2,k3) = − 4

(2π2)2

[
k3

1 k
3
2 k

3
3 G

m2n2m3n3
Rγγ (k1,k2,k3)

]
×
{
PS(k1)

[
Πk2
m2n2,m3n3

k3
3 PT(k2) + Πk3

m3n3,m2n2
k3

2 PT(k3)
]}−1

,

hNL(k1,k2,k3) = −
(

4

2π2

)2 [
k3

1 k
3
2 k

3
3 G

m1n1m2n2m3n3
γγγ (k1,k2,k3)

]
×
[
Πk1
m1n1,m2n2

Πk2
m3n3,m̄n̄ k

3
3 PT(k1) PT(k2) + five permutations

]−1

.

23V. Sreenath, R. Tibrewala and L. Sriramkumar, JCAP 1312, 037 (2013).
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Evaluating the other three-point functions

The actions governing the three-point functions
The actions that lead to the correlations involving two scalars and one tensor,
one scalar and two tensors and three tensors are given by24

S3
RRγ [R, γij ] = M2

Pl

∫
dη

∫
d3x

[
a2 ε1 γij ∂iR ∂jR+

1

4
∂2γij ∂iχ∂jχ

+
a ε1
2

γ′ij ∂iR ∂jχ+ F2
ij(R)

δL2
γγ

δγij
+ F3(R, γij)

δL2
RR
δR

]
,

S3
Rγγ [R, γij ] =

M2
Pl

4

∫
dη

∫
d3x

[
a2 ε1

2
R γ′ij γ′ij +

a2 ε1
2
R ∂lγij ∂lγij

− a γ′ij ∂lγij ∂lχ+ F4
ij(R, γmn)

δL2
γγ

δγij

]
,

S3
γγγ [γij ] =

M2
Pl

2

∫
dη

∫
d3x

[
a2

2
γlj γim ∂l∂mγij −

a2

4
γij γlm ∂l∂mγij

]
.

The quantities L2
RR and L2

γγ are the second order Lagrangian densities com-
prising of two scalars and tensors which lead to the equations of motion.

24J. Maldacena, JHEP 0305, 013 (2003).
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Evaluating the other three-point functions

Comparison for an arbitrary triangular configuration
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A comparison of the analytical results (at the bottom) for the non-Gaussianity
parameters CR

NL
(on the left), Cγ

NL
(in the middle) and h

NL
(on the right) with

the numerical results (on top) for a generic triangular configuration of the
wavevectors in the case of the standard quadratic potential25. As in the case
of the scalar bi-spectrum, the maximum difference between the numerical and
the analytic results is about 5%.

25V. Sreenath, R. Tibrewala and L. Sriramkumar, JCAP 1312, 037 (2013).
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Evaluating the other three-point functions

Three-point functions for models with features
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Density plots of the non-Gaussianity parameters CR
NL

(on top), Cγ
NL

(in the mid-
dle) and h

NL
(at the bottom) evaluated numerically for an arbitrary triangular

configuration of the wavenumbers for the case of the punctuated inflationary
scenario (on the left), the quadratic potential with the step (in the middle) and
the axion monodromy model (on the right).
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The squeezed limit and the consistency relations

The consistency relation for scalars
In the so-called squeezed limit of the scalar bi-spectrum, i.e. when k1 = −k2

and k3 → 0, it can be shown that the non-Gaussianity parameter f
NL

can be
expressed as26

f
NL

(k) =
5

12
(n

S
− 1) ,

where n
S

is the scalar spectral index defined as

nS = 1 +
d lnP

S
(k)

d ln k
.

The above expression is often referred to as the consistency relation27.

26J. Maldacena, JHEP 0305, 013 (2003).
27P. Creminelli and M. Zaldarriaga, JCAP 0410, 006 (2004).
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The squeezed limit and the consistency relations

Consistency relations involving scalars and tensors
In the squeezed limit, it can be shown that one can arrive at the following
consistency relations for the non-Gaussainity parameters describing the other
three-point functions28:

CR
NL

(k) =
nS

4
− 1,

Cγ
NL

(k) =
nT

2
,

hNL(k) =
1

2
(3− nT) ,

where, for simplicity, we have ignored quantities involving Πk
m1n1,m2n2

, while
n

T
is the tensor spectral index defined as

n
T

=
d lnP

T
(k)

d ln k
.

Note that, while writing down the consistency relation for CR
NL

, we have taken
the tensor mode to be the squeezed mode. Similarly, in the case of Cγ

NL
, we

have considered the scalar mode to be the squeezed mode.
28D. Jeong and M. Kamionkowski, Phys. Rev. Lett. 108, 251301 (2012);

L. Dai, D. Jeong and M. Kamionkowski, Phys. Rev. D 87, 103006 (2013); Phys. Rev. D 88, 043507 (2013);
S. Kundu, arXiv:1311.1575 [astro-ph.CO].
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The squeezed limit and the consistency relations

Examining the consistency relation away from slow roll

The quantities CR
NL

(on the left), Cγ
NL

(in the middle) and h
NL

(on the right)
plotted as a function of the wavenumber in the case of the quadratic potential
with a step29. The red lines represent the numerical results obtained from
the three-point functions, while the blue dashed lines denote those arrived at
numerically using the consistency relations. We find the match between the
two to be better than 2%.

29V. Sreenath and L. Sriramkumar, In preparation.
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Outlook

Outlook
The strong constraints on the non-Gaussianity parameter fNL from Planck
suggests that inflationary and post-inflationary scenarios that lead to rather
large non-Gaussianities are very likely to be ruled out by the data.
In contrast, various analyses seem to point to the fact that the scalar
power spectrum may contain features30. The possibility of such features
can provide a strong handle on constraining inflationary models.
Else, one may need to carry out a systematic search involving the scalar
and the tensor power spectra31, the scalar and the tensor bi-spectra and
the cross-correlations to arrive at a small subset of viable inflationary
models. The recent observations of the imprints of the tensor modes
on the CMB by BICEP232 suggest that it may be possible to arrive at
observational constraints on the non-Gaussainity parameters involving
tensors in the not-too-distant future.
The consistency relations seem to be a powerful tool in this regard, as
establishing them observationally would unambiguously point to inflation
driven by a single scalar field.

30P. A. R. Ade et al., arXiv:1303.5082 [astro-ph.CO].
31In this context, see, J. Martin, C. Ringeval and V. Vennin, arXiv:1303.3787 [astro-ph.CO].
32P. A. R. Ade et al., arXiv:1403.3985 [astro-ph.CO].
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Thank you for your attention
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