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Introduction Conventions and notations

A few words on the conventions and notations

4+ We shall work in units such that ¢ = 7 = 1, and define the Planck mass
tobe M, = (87 G) /2.
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Introduction Conventions and notations

A few words on the conventions and notations

4+ We shall work in units such that ¢ = 7 = 1, and define the Planck mass
tobe M, = (87 G) /2.

4+ We shall assume the background universe to be described by the fol-
lowing spatially flat, Friedmann-Lemaitre-Robertson-Walker (FLRW) line-
element:

ds® = —dt* + a*(t) d&® = a*(n) (—dn* + dz?),

where ¢ is the cosmic time, a(t) is the scale factor and 1 = [ dt/a(t)
denotes the conformal time coordinate.
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Introduction Conventions and notations

A few words on the conventions and notations

4+ We shall work in units such that ¢ = 4 = 1, and define the Planck mass
tobe M, = (87 G) /2.

4+ We shall assume the background universe to be described by the fol-
lowing spatially flat, Friedmann-Lemaitre-Robertson-Walker (FLRW) line-
element:

ds® = —dt* + a*(t) d&® = a*(n) (—dn* + dz?),

where ¢ is the cosmic time, a(t) is the scale factor and 1 = [ dt/a(t)
denotes the conformal time coordinate.

4+ We shall denote differentiation with respect to the cosmic and the confor-
mal times ¢ and 7 by an overdot and an overprime, respectively.
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Introduction Conventions and notations

A few words on the conventions and notations

4+ We shall work in units such that ¢ = 4 = 1, and define the Planck mass
tobe M, = (87 G) /2.

4+ We shall assume the background universe to be described by the fol-
lowing spatially flat, Friedmann-Lemaitre-Robertson-Walker (FLRW) line-
element:

ds® = —dt* + a*(t) d&® = a*(n) (—dn* + dz?),
where ¢ is the cosmic time, a(t) is the scale factor and 1 = [ dt/a(t)

denotes the conformal time coordinate.

4+ We shall denote differentiation with respect to the cosmic and the confor-
mal times ¢ and 7 by an overdot and an overprime, respectively.

4+ Further, as usual, H = a/a shall denote the Hubble parameter associated
with the FLRW universe.
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Bouncing scenarios

Bouncing scenarios: An alternative to inflation’

@ Bouncing models correspond to situations wherein the universe initially
goes through a period of contraction until the scale factor reaches a cer-
tain minimum value before transiting to the expanding phase.

1See, for instance, M. Novello and S. P. Bergliaffa, Phys. Rep. 463, 127 (2008);
D. Battefeld and P. Peter, Phys. Rep. 571, 1 (2015).
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Bouncing scenarios: An alternative to inflation’

@ Bouncing models correspond to situations wherein the universe initially
goes through a period of contraction until the scale factor reaches a cer-
tain minimum value before transiting to the expanding phase.

@ They offer an alternative to inflation to overcome the horizon problem, as
they permit well motivated, Minkowski-like initial conditions to be imposed
on the perturbations at early times during the contracting phase.

1See, for instance, M. Novello and S. P. Bergliaffa, Phys. Rep. 463, 127 (2008);
D. Battefeld and P. Peter, Phys. Rep. 571, 1 (2015).
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Bouncing scenarios

Bouncing scenarios: An alternative to inflation’

@ Bouncing models correspond to situations wherein the universe initially
goes through a period of contraction until the scale factor reaches a cer-
tain minimum value before transiting to the expanding phase.

@ They offer an alternative to inflation to overcome the horizon problem, as
they permit well motivated, Minkowski-like initial conditions to be imposed
on the perturbations at early times during the contracting phase.

@ However, matter fields may have to violate the null energy condition near
the bounce in order to give rise to such a scale factor. Also, there exist
(genuine) concerns whether such an assumption about the scale factor is
valid in a domain where general relativity is expected to fail and quantum
gravitational effects are supposed to take over.

1See, for instance, M. Novello and S. P. Bergliaffa, Phys. Rep. 463, 127 (2008);
D. Battefeld and P. Peter, Phys. Rep. 571, 1 (2015).
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Bouncing scenarios

The resolution of the horizon problem in inflation

CMB

'.» T 5 : \

INFLATION

Left: The radiation from the CMB arriving at us from regions separated by
more than the Hubble radius at the last scattering surface (which subtends an
angle of about 1° today) could not have interacted before decoupling.

2Images from W. Kinney, astro-ph/0301448.
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Bouncing scenarios

The resolution of the horizon problem in inflation

CMB

'.» T 5 : \

INFLATION

Left: The radiation from the CMB arriving at us from regions separated by
more than the Hubble radius at the last scattering surface (which subtends an
angle of about 1° today) could not have interacted before decoupling.

Right: An illustration of how an early and sufficiently long epoch of inflation
helps in resolving the horizon problem?.

2Images from W. Kinney, astro-ph/0301448.
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Bouncing scenarios

Bringing the modes inside the Hubble radius

H = (d/a) = (a'/a®)

3
"
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'M\ ~
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2
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o H = Constant
< }‘v Behaviour of Hubble
A /= radius in non-inflationary
R 7 cosmology
Radjation Radiation
dominated |‘; INFLATION *'| dominated

log a(t)
A schematic diagram illustrating the behavior of the physical wavelength A\,
a (the green lines) and the Hubble radius /~! (the blue line) during inflation
and the radiation dominated epochs?.

3See, for example, E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley Publishing
Company, New York, 1990), Fig. 8.4.
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Bouncing scenarios

Overcoming the horizon problem in bouncing models

1
‘r| matter domination Aok T

tsm| | radiation domination Hubble radius

radiation domination

tl’Il—>I'

matter domination

The evolution of the physical wavelength and the Hubble radius in a typical
bouncing scenario®*.

4Figure from, D. Battefeld and P. Peter, Phys. Rept. 571, 1 (2015).
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Violation of the null energy condition

Recall that, according to the Friedmann equations
H=—47G (p+p).

In any bouncing scenario, the Hubble parameter is negative before the bounce,
crosses zero at the bounce and is positive thereafter.
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Violation of the null energy condition

Recall that, according to the Friedmann equations
H=—47G (p+p).

In any bouncing scenario, the Hubble parameter is negative before the bounce,
crosses zero at the bounce and is positive thereafter.

Evidently, /7 will be positive near the bounce, which implies that (p + p) has
to be negative in this domain. In other words, the null energy condition needs
to be violated in order to achieve a bounce.

Bouncing universes July 25, 2016 9/45

L. Sriramkumar (IIT Madras, Chennai)



Classical bounces and sources

Consider for instance, bouncing models of the form

772 ! q
a(n) = ao <1+r]2> =ao (L+kyn?)",
0
where qg is the value of the scale factor at the bounce (i.e. when n = 0),
1o = 1/kq denotes the time scale of the duration of the bounce and ¢ > 0. We

shall assume that the scale ky associated with the bounce is of the order of
the Planck scale M.
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Classical bounces and sources

Consider for instance, bouncing models of the form

2\ ¢
a(n) = ag <1 + 772> =ap (1+ k§n2)q,
o
where qg is the value of the scale factor at the bounce (i.e. when n = 0),
1o = 1/kq denotes the time scale of the duration of the bounce and ¢ > 0. We
shall assume that the scale ky associated with the bounce is of the order of
the Planck scale M.

The above scale factor can be achieved with the help of two fluids with con-
stant equation of state parameters w, = (1 — ¢)/(3¢) and wy = (2 — q)/(3 ¢q).
The energy densities of these fluids behave as p; = M, /a?9t1)/4 and p, =

My /a? (+0)/9, where My = 12 k3 M2 ay/® and Mz = — M, ay .
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Classical bounces and sources

Consider for instance, bouncing models of the form

772 ! 2 92\q
a(n) = ag <1+2> = ap (1+k077 ) )
o
where qg is the value of the scale factor at the bounce (i.e. when n = 0),
1o = 1/kq denotes the time scale of the duration of the bounce and ¢ > 0. We
shall assume that the scale ky associated with the bounce is of the order of
the Planck scale M.

The above scale factor can be achieved with the help of two fluids with con-
stant equation of state parameters w; = (1 —¢)/(3¢) and ws = (2 — q)/(3q).
The energy densities of these fluids behave as p; = M, /a?9t1)/4 and p, =

My /a? (+0)/9, where My = 12 k3 M2 ay/® and Mz = — M, ay .

Note that, when ¢ = 1, during very early times wherein < —1), the scale
factor behaves as in a matter dominated universe (i.e. a o 71°). Therefore,
the ¢ = 1 case is often referred to as the matter bounce scenario. In suchs
case, py = 12k§ M2 ag/a® and po = —12 ki M2 af/a*.
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Generation of scale invariant magnetic fields in bouncing universes Action, equations of motion and power spectra

The non-minimal action and the equation of motion

We shall consider a case wherein the electromagnetic field is coupled non-
minimally to a scalar field ¢ and is described by the action

1
S[6, A" = — 1o | d'w /=g 2(9) Fuu P,

where F,, denotes the electromagnetic field tensor which is given in terms of
the vector potential A* as follows:

Fu=Av —Apy = Avy — A
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Generation of scale invariant magnetic fields in bouncing universes Action, equations of motion and power spectra

The non-minimal action and the equation of motion

We shall consider a case wherein the electromagnetic field is coupled non-
minimally to a scalar field ¢ and is described by the action

1
S[¢7AM] = _1677'( d4$ vV —3g JZ(QJ)) FMVFMV,

where F,, denotes the electromagnetic field tensor which is given in terms of
the vector potential A* as follows:

Fon=4,,—-A.,, =A,—A,..

The scalar field ¢ could be, for instance, the primary matter field that is driving
the background evolution and J is an arbitrary function of the field.
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Generation of scale invariant magnetic fields in bouncing universes Action, equations of motion and power spectra

Quantization of the electromagnetic field

In a spatially flat, FLRW universe, we can choose to work in the Coulomb
gauge wherein 4, = 0 and 9;A" = 0. In such a gauge, upon quantization, the
vector potential A; can be Fourier decomposed as follows®:

Ain,2) = Vi / 3/2 Z exi(k) [ap Ax(n) e ®® +apt Az (n) e7*2],

where the modes A, satisfy the differential equation

_ J - _
Ag+27A;+k2Ak:0.

5See, for instance, J. Martin and J. Yokoyama, JCAP 0801, 025 (2008);
K. Subramanian, Astron. Nachr. 331, 110 (2010).
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Generation of scale invariant magnetic fields in bouncing universes Action, equations of motion and power spectra

Quantization of the electromagnetic field

In a spatially flat, FLRW universe, we can choose to work in the Coulomb
gauge wherein 4, = 0 and 9;A" = 0. In such a gauge, upon quantization, the
vector potential A; can be Fourier decomposed as follows®:

Ain,2) = Vi / 3/2 Z exi(k) [ap Ax(n) e ®® +apt Az (n) e7*2],

where the modes A, satisfy the differential equation
_ J - _

If we define a new variable A, = J A;, then the above equation simplifies to

A”+<k2 JH)A =0
k _7 k— Y

and one can impose the standard Bunch-Davies initial conditions on the modes
Ay at suitably early times.

5See, for instance, J. Martin and J. Yokoyama, JCAP 0801, 025 (2008);
K. Subramanian, Astron. Nachr. 331, 110 (2010).
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Generation of scale invariant magnetic fields in bouncing universes Action, equations of motion and power spectra

Power spectra of the electric and magnetic fields

The energy densities associated with the electric and magnetic fields can be
written in terms of the vector potential A; and its time and spatial derivatives
as follows:

J2 1] / /
Pe = 87ra2ngiAj’
J2
po = 1o 979" (0 A, — OmAj) (0:;A1 — 01 A;),

where ¢/ = §% /a? denotes the spatial components of the FLRW metric.
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Generation of scale invariant magnetic fields in bouncing universes Action, equations of motion and power spectra

Power spectra of the electric and magnetic fields

The energy densities associated with the electric and magnetic fields can be
written in terms of the vector potential A; and its time and spatial derivatives
as follows:

J2 L7 !/ /
Pe = Sra g7 A A,
Sy
pB = ]_6771— g” g m (a_]Am — 8mA]) (8iAl - 81Ai)a

where ¢/ = §% /a? denotes the spatial components of the FLRW metric.

The expectation values of the corresponding operators, i.e. p,, and p,,, can be
evaluated in the vacuum state annihilated by the operator ;.
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Generation of scale invariant magnetic fields in bouncing universes Action, equations of motion and power spectra

Power spectra of the electric and magnetic fields

The energy densities associated with the electric and magnetic fields can be
written in terms of the vector potential A; and its time and spatial derivatives
as follows:

J2 L7 !/ /
Pe = Sra g7 A A,
Sy
pB = ]_677-‘— g” g (a_]Am — 8mA]) (8iAl - 81Ai)a

where ¢/ = §% /a? denotes the spatial components of the FLRW metric.

The expectation values of the corresponding operators, i.e. p,, and p,,, can be
evaluated in the vacuum state annihilated by the operator ;.

It can be shown that the spectral energy densities of the magnetic and electric
fields are given by

d(0lp,[0) _ J*(m) _K°

Puk) = dlnk 272 a*(n) VLC(U)‘Z,
A 2 3
Pty = Sqeel T g
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Generation of scale invariant magnetic fields in bouncing universes Action, equations of motion and power spectra

Power spectra in power law inflation

For power law inflation described by the scale factor a(n) = a; (—n/n;)° !
and for coupling function of the form J(n) = Jy a™(n), one can show that the
power spectrum of the magnetic field is given by®

Py (k) = F(m) H* (=kn)**2™,

where m = (f+ 1)n=afora <1/2and m =1 — o for a > 1/2, while

—1

F(m) = [(2m) 22T T%(m + 1/2) cos®(mm)]

6See, for instance, J. Martin and J. Yokoyama, JCAP 0801, 025 (2008);
K. Subramanian, Astron. Nachr. 331, 110 (2010).
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Generation of scale invariant magnetic fields in bouncing universes Action, equations of motion and power spectra

Power spectra in power law inflation

For power law inflation described by the scale factor a(n) = a; (—n/n;)° !
and for coupling function of the form J(n) = Jy a™(n), one can show that the

power spectrum of the magnetic field is given by®
Py (k) = Flm) H* (~kn)**",

where m = (f+ 1)n=afora <1/2and m =1 — o for a > 1/2, while

F(m) = [2m) 22" T2 (m +1/2) cos®(mm)] .

The corresponding spectrum for the electric field can be obtained to be
g(m)
272

where m =1+ aifa < —1/2and m = —a for o > —1/2, while

Py (k) = H* (—kn)*2m,

G(m)=[(2m) 2> T?(m +3/2) (;052(7rm)]71 :

6See, for instance, J. Martin and J. Yokoyama, JCAP 0801, 025 (2008);
K. Subramanian, Astron. Nachr. 331, 110 (2010).
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Generation of scale invariant magnetic fields in bouncing universes Action, equations of motion and power spectra

Power spectra in power law inflation

For power law inflation described by the scale factor a(n) = a; (—n/n;)° !
and for coupling function of the form J(n) = Jy a™(n), one can show that the
power spectrum of the magnetic field is given by®

Py (k) = F(m) H* (=kn)*H2™,

where m = (f+ 1)n=afora <1/2and m =1 — o for a > 1/2, while

F(m) = [2m) 22" T2 (m +1/2) cos®(mm)] .

The corresponding spectrum for the electric field can be obtained to be
g(m)
272

where m =1+ aifa < —1/2and m = —a for o > —1/2, while

Py (k) = H* (—kn)*2m,

G(m) = [(2m)2*™ T T?(m + 3/2) cos®*(rm)]

It is evident that m = —2 leads to a scale invariant spectrum for the magnetic
field which corresponds to either « = 3 or a = —2.

6See, for instance, J. Martin and J. Yokoyama, JCAP 0801, 025 (2008);
K. Subramanian, Astron. Nachr. 331, 110 (2010).
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Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

Modeling the bounce and the non-minimal coupling

We shall model the bounce by assuming that the scale factor a(n) behaves as
follows:

2 q
a(n) = ao (14—;]2) = ag (1+k8772)q,
0

which we had discussed earlier.
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Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

Modeling the bounce and the non-minimal coupling

We shall model the bounce by assuming that the scale factor a(n) behaves as

follows: ,

q
a(n) = ao <1+;’2> =ao (L+kin?)?,
0

which we had discussed earlier.

Note that the above scale factor reduces to the simple power law form with
a(n) o< n?9 at very early times (i.e. when —n > ).
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Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

Modeling the bounce and the non-minimal coupling

We shall model the bounce by assuming that the scale factor a(n) behaves as

follows: ,

q
a(n) = ao <1+;’2> =ao (L+kin?)?,
0

which we had discussed earlier.

Note that the above scale factor reduces to the simple power law form with
a(n) o< n?9 at very early times (i.e. when —n > ).

We shall assume that the coupling function can be expressed in terms of the
scale factor as

J(n) = Joa"(n).
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Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

E- -folds

The conventional e-fold N is defined N = log (a/ag) so that a(N) = agexp N.

However, the function ¢ is a monotonically increasing function of .

7L Sriramkumar, K. Atmjeet and R. K. Jain, JCAP 1509, 010 (2015).
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Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

E- -folds

The conventional e-fold N is defined N = log (a/ag) so that a(N) = agexp N.
However, the function ¢ is a monotonically increasing function of .

In a bouncing scenario, an obvious choice for the scale factor seems to be’
a(N) = agexp (N?/2),

with /" being the new time variable that we shall consider for integrating the
differential equation governing A;.

7L Sriramkumar, K. Atmjeet and R. K. Jain, JCAP 1509, 010 (2015).
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Generation of scale invariant magnetic fields in bouncing universes

E- -folds

Numerical analysis

The conventional e-fold N is defined N = log (a/ag) so that a(N) = agexp N
However, the function ¢ is a monotonically increasing function of .

In a bouncing scenario, an obvious choice for the scale factor seems to be’
a(N) = agexp (N?/2),

with /" being the new time variable that we shall consider for integrating the
differential equation governing A;.

For want of a better name, we shall refer to the variable N as e-A -fold since
the scale factor grows roughly by the amount ¢ between A and (A + 1).

7L Sriramkumar, K. Atmjeet and R. K. Jain, JCAP 1509, 010 (2015).
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Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

The behavior of

! ! ! ! ! ! ! ! ! !
—4 —2 0 2 4 —4 -2 0 2 4

The behavior of the quantity /”/.J has been plotted as a function of N for
g = 1and n = 3/2 (on the left) and n = —1 (on the right). Note that the
maximum value of .J”’/.J is roughly of the order of k3.
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Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

Analytical solutions for the modes at early times

At very early times (i.e. for —n > 1), the scale factor simplifies to the power
law form a(n) o n?9. During such times, the non-minimal coupling function ./
also behaves as .J(n) « n?, where we have set v = 2ngq.
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Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

Analytical solutions for the modes at early times

At very early times (i.e. for —n > 1), the scale factor simplifies to the power
law form a(n) o n?9. During such times, the non-minimal coupling function ./
also behaves as .J(n) « n?, where we have set v = 2ngq.

In such a case, we have J”/J ~ ~(y — 1)/n* and it is easy to show that
the solutions to the modes of the electromagnetic vector potential .A;, can be
expressed as

Ai(n) =/ =kn [Cr(k) Jy_1/2(=kn) + Co(k) J_yy1/2(—kn)] -
One finds that, for the Bunch-Davies initial conditions, C; (k) and Cy(k) are

given by
[ e~ im7/2 [ eim(y+1)/2
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Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

Analytical solutions for the modes at early times

At very early times (i.e. for —n > 1), the scale factor simplifies to the power
law form a(n) o n?9. During such times, the non-minimal coupling function ./
also behaves as .J(n) « n?, where we have set v = 2ngq.

In such a case, we have J”/J ~ ~(y — 1)/n* and it is easy to show that
the solutions to the modes of the electromagnetic vector potential .A;, can be
expressed as

Ai(n) =/ =kn [Cr(k) Jy_1/2(=kn) + Co(k) J_yy1/2(—kn)] -
One finds that, for the Bunch-Davies initial conditions, C; (k) and Cy(k) are

given by
T e~ imv/2 T eim(+1)/2
Cilk) = V 4% cos (77) and - (k) = V 4k cos(mny)

It can also be shown that

An) = 2 Auln) = K/~ [ColR) Ty 1o~k n) = Cal) T2l )

L. Sriramkumar (IIT Madras, Chennai) Bouncing universes July 25, 2016 18/45



Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

Analytical solutions near the bounce

Note that, when n > 0, J”/J has a maximum at the bounce. In such a case, for
k< ko, K < J"/.J around the bounce. Hence, upon ignoring the k2 in the equation
governing Ay, we can integrate the equation to yield

J? (1)

J?(n)’

where 7. is a time when k* < J”/.J before the bounce. The above equation can be
integrated to arrive at

Al (n) ~ Al(n.)

_dn
a?n(n)’

Al = Al + An) [ dn 58 = Aun) + Ao ) [

s N«

where we have set the constant of integration to be Ay (7.).
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Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

Analytical solutions near the bounce

Note that, when n > 0, J”/J has a maximum at the bounce. In such a case, for
k< ko, K < J"/.J around the bounce. Hence, upon ignoring the k2 in the equation
governing Ay, we can integrate the equation to yield

J? (1)

J?(n)’

where 7. is a time when k* < J”/.J before the bounce. The above equation can be
integrated to arrive at

Al (n) ~ Al(n.)

_dnp
a?" (n)

Al = Autn) + Atn) [ an 50 = A + Al ) [ 5,

M M

where we have set the constant of integration to be Ay (7.).

When v = 3, we can evaluate the above integral to obtain that

Ay = Aulo)+ At ) o A SEBOP g (1)
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Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

Comparison of the numerical and analytical results

101{4
2
10° 10% |
1057 )
1022 -
1032 )
1027 1010 -
10 B
10% 10
— = s
= o < 10
= - —= 1072
= 10'2 ‘;C«
- 0 — 10
102 1014 |
10-3 10-20 |
1078 102 F
1078 1052k
10718 10-38 L I L ! !
—10 =5 'R/’ 5 10

The behavior of the absolute values of A, (on the left) and its derivative A,
(on the right) has been plotted for the mode & = 100 ky with ko/M,, =
e 2 = 1.389 x 10~ for the case wherein n = 3/2, ¢ = 1, ap = 10710
and J, = 10%. The dashed red curves represent the analytical approximation
around the bounce that can be arrived at for modes such that & < k.

20/45

L. Sriramkumar (IIT Madras, Chennai) Bouncing universes July 25, 2016



Generation of scale invariant magnetic fields in bouncing universes Results

Power spectra of magnetic and electric fields

10*
10%
10°
1072
= 107+
&m 1070
P -8
= 10

=100
10712
107“
10716
10718 5
%0 L L L L L L L L 30 L L L L L L L L
1075 107 107 107 1077 1070 1070 1070 10! 107 107 107" 1070 1007 107 107 107" 10!
k/ko k/ko

The power spectra of the magnetic (in blue) and the electric (in red) fields for
the cases wherein (¢,n) = (1,3/2) (corresponding to v = 3, on the left) and
(¢,n) = (1,—1) (corresponding to v = —2, on the right). We have worked with
the same values of 7, ag and J; as in the previous figure. The power spectra
of the electric field are along expected lines, behaving as £*~27 = k=2 when
v = 3 and k%27 = k? when v = —2 (indicated by the dotted green lines).
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Generation of scale invariant magnetic fields in bouncing universes Results

Spectrum of observable strengths

10% F i
108 | .
1083 - -

1078 .

gé; 107 | i
@: 1008 i

= 0% .
=

1058 - -
10 | .
1048 - -
10/13 - -
38 | 1 1 1 1 1 1 1 1 1
1073210729 10726 1072 10720 10*”]160*’4 1071 10°% 107 1072 10
0
The power spectra with ¢ = 1 and n = —1, corresponding to v = —2 has
been plotted for a wide range of wavenumbers. We have set ko /M, = 1,
ag = 4 x 1072% and J, = 10%, which lead to magnetic fields in the earl
universe that correspond to observable strengths today?®.

8 Sriramkumar, K. Atmjeet and R. K. Jain, JCAP 1509, 010 (2015).
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Generation of scale invariant magnetic fields in bouncing universes Results

The issue of backreaction

1(]110

109()

1070

10%
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— 1010
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2

w1

10750

10—7[)

10790

1(]7110

10—13[)

—150
10 —15 —10 -5 0 5 10 15

The behavior of the energy density in the electric and magnetic fields for the
mode k = 102 k, has been plotted (in blue) along with the energy density of
the background (in red). We have worked with the same values of the various

parameters as in the last figure.
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Duality and scale invariant magnetic fields Analytical solutions for the electromagnetic modes

The behavior of

s J" () /T ()

1072 ! ! ! L L
—15 -10 =5 0 5 10 15

n/m
The behavior of 2 J”/.J, which depends only on 7 /1, has been plotted for
~ = 3 (in blue) and v = 5 (in red). The figure has been plotted over a v
narrow range of 1/, in order to illustrate the presence of a single maxim
for v = 3 and two maxima and one minimum for v = 5. '
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Duality and scale invariant magnetic fields Analytical solutions for the electromagnetic modes

Analytical solutions near the bounce for arbitrary

Recall that, near the bounce, when n > 0, for scales of cosmological interest
such that £ < k¢, we had obtained that

n 9 m
An) = At + o) [ an T = A + Ay |

M+ M

_dn
a*™ (1)’

where 7). is a time when k* < .J”/.J before the bounce and we have set the
constant of integration to be A (n.).

. Chowdhury, L. Sriramkumar and R. K. Jain, arXiv:1604.02143 [gr-qc].
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Analytical solutions near the bounce for arbitrary

Recall that, near the bounce, when n > 0, for scales of cosmological interest
such that £ < k¢, we had obtained that

_dn
@)

n 9 n
An) = At + o) [ an T = A + Ay |

UE M+

where 7). is a time when k* < .J”/.J before the bounce and we have set the
constant of integration to be A (n.).

The above integral can, in fact, be carried out for an arbitrary ~ to arrive at

Ap(n) ~ Ak(m)Jrﬁk(m)a;(g*)

0
1 3 7 1 3
B (5= ) = meaF (55— ) |,
X|:T]2 1(277727 778) T 2 1<2 Y 2 773

where 5 F (a, b, ¢, z) denotes the hypergeometric function®.

. Chowdhury, L. Sriramkumar and R. K. Jain, arXiv:1604.02143 [gr-qc].
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Duality and scale invariant magnetic fields Analytical solutions for the electromagnetic modes

Power spectra before and after the bounce
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o 10-18k i
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z " 20t
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Left: The dimensionless power spectra of the magnetic (in blue) and electric
(in red) fields, evaluated before the bounce at = —a 1y have been plotted as
a function of & /kq for v = 3, ¢ = 1, ap = 8.73 x 10*° and o = 10°.

10p, Chowdhury, L. Sriramkumar and R. K. Jain, arXiv:1604.02143 [gr-qc].
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Duality and scale invariant magnetic fields Analytical solutions for the electromagnetic modes

Power spectra before and after the bounce
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Left: The dimensionless power spectra of the magnetic (in blue) and electric
(in red) fields, evaluated before the bounce at = —a 1y have been plotted as
a function of & /kq for v = 3, ¢ = 1, ap = 8.73 x 10*° and o = 10°.

Right: The corresponding power spectra evaluated after the bounce at n =
Bno, with 3 = 10%2. We should mention that the values of the parameters we
have worked with lead to magnetic fields of observed strengths today cor
sponding to a few femto gauss'©.

10p, Chowdhury, L. Sriramkumar and R. K. Jain, arXiv:1604.02143 [gr-qc].
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Duality and scale invariant magnetic fields Duality invariance

Duality transformations

It is known that the solutions to the equations of motion governing the scalar
and tensor perturbations are invariant under a certain transformation referred
to as the duality transformation’. For instance, it can be shown that the dual
solution to the de Sitter case corresponds to the matter bounce. Both these

cases lead to scale invariant spectra.

11D, Wands, Phys. Rev. D 60, 023507 (1999).
July 25, 2016 27/45
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Duality and scale invariant magnetic fields Duality invariance

Duality transformations

It is known that the solutions to the equations of motion governing the scalar
and tensor perturbations are invariant under a certain transformation referred
to as the duality transformation’. For instance, it can be shown that the dual
solution to the de Sitter case corresponds to the matter bounce. Both these
cases lead to scale invariant spectra.

In the case of electromagnetic fields of our interest here, given a coupling
function J, its dual function, say, .J, which leads to the same .J”/.J is found to
be ) .
7 n
Jn) — Jn)=CJn Ty
) = I =CI0) [ 2305
M
where C' and 7. are constants. These constants can be suitably chosen to
arrive at a physically reasonable form for J

11D, Wands, Phys. Rev. D 60, 023507 (1999).
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Duality and scale invariant magnetic fields Duality invariance

Duality transformations

It is known that the solutions to the equations of motion governing the scalar
and tensor perturbations are invariant under a certain transformation referred
to as the duality transformation’. For instance, it can be shown that the dual
solution to the de Sitter case corresponds to the matter bounce. Both these
cases lead to scale invariant spectra.

In the case of electromagnetic fields of our interest here, given a coupling

function J, its dual function, say, .J, which leads to the same .J”/.J is found to

be ) o
7 n

Jn) — Jn)=CJn Ty

) =) =CIm) | 5

s

where C' and 7. are constants. These constants can be suitably chosen to
arrive at a physically reasonable form for J

It can be shown that the cases corresponding to v+ = 3 and v = —2 in the
bouncing models which had led to scale invariant spectra are dual to each
other.

11D, Wands, Phys. Rev. D 60, 023507 (1999).
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Duality and scale invariant magnetic fields Duality invariance

A symmetric coupling function and its asymmetric dual

1023
1022
1021
102
1019,
1018,
1017
1016
1[)15,
1014
1013
1012 |

1011 ! ! !
—100 =50 0 50 100

/10

The coupling function J (in blue) and its dual .J (in red) have been plotted as a
function of n/ny for v = 3 and ., — —oc. Also, we have chosen the constant
C'to be C'/ky = 5.7 x 102 so that the dual function .J matches the original
coupling function .J after the bounce'?.

J () /o, Jo T (n)

12p, Chowdhury, L. Sriramkumar and R. K. Jain, arXiv:1604.02143 [gr-qc].
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The tensor bi-spectrum in a matter bounce The tensor power spectrum in a matter bounce

Equation governing the tensor perturbations

Upon quantization, the tensor perturbations can be written in terms of the
corresponding modes, say, hy, as follows:

3
sue) = [ ; d)’Z/Q 55 ) el

Z/ 27) 3/2 ks (k) hi(n) Zk:-m—|—I;iijrel?;(k)h2(n)efik~w),

where b3, and b;," are the usual creation and annihilation operators that satisfy
the standard commutation relations, while ;;(k) represents the transverse
and traceless polarization tensor describing gravitational waves.
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Equation governing the tensor perturbations

Upon quantization, the tensor perturbations can be written in terms of the
corresponding modes, say, hy, as follows:

3
sue) = [ ; d)’Z/Q 55 ) el

Z/ 27) 3/2 ks (k) hi(n) Zk:-m—|—I;iijral?;(k)h2(n)efik~w),

where b; and b; " are the usual creation and annihilation operators that satisfy
the standard commutation relations, while ;;(k) represents the transverse
and traceless polarization tensor describing gravitational waves.

The modes h;, are governed by the differential equation
WA+2HR, + k> hy =0
where H = a’/a and, in terms of the variable u, = M, a h;./+/2, the above

equation reduces to
"
- (kQ—a) we = 0.
a

L. Sriramkumar (IIT Madras, Chennai) Bouncing universes July 25, 2016 29/45



The tensor bi-spectrum in a matter bounce The tensor power spectrum in a matter bounce

The tensor power spectrum: Definition

The tensor power spectrum P.. (k) is defined through the relation

gy = B Po(k) 8° (K
<7m1n1 7m2n2>_ 8l€3 mini,mans T( ) ( +p>7

where
k
Hmlnlﬂngnz = Z 8’?711711 (k) gf;’;gnz (k)'

S

13$ee, for example, L. Sriramkumar, Curr. Sci. 97, 868 (2009).
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The tensor power spectrum: Definition

The tensor power spectrum P.. (k) is defined through the relation

. (2m)?
<7m1n1 717)12n2> = 8l€3 {rcnlnl,mgng PT (k) 63 (k +p) 9
where
’rnlnl,?ngnz Z 8m1n1 7n2n2 (k)

In terms of the quantities h;, and uy, the tensor power spectrum P (k) in the
Bunch-Davies vacuum is given by

k?’ 2 8 k |uk\
Pl =tgm =5 o0 ( ’

with the right hand side being evaluated at suitably late times3.

13See, for example, L. Sriramkumar, Curr. Sci. 97, 868 (2009).
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The tensor bi-spectrum in a matter bounce The tensor power spectrum in a matter bounce

The matter bounce

We shall assume that the scale factor describing the bouncing scenario is
given in terms of the conformal time coordinate 7 by the relation

a(n) =ao (L+1%/nd) =ao (1+k3n?).

As we had discussed earlier, at very early times, viz. when n < —);, the scale
factor behaves as in a matter dominated epoch'.

14See, for example, R. Brandenberger, arXiv:1206.4196.
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The matter bounce

We shall assume that the scale factor describing the bouncing scenario is
given in terms of the conformal time coordinate 7 by the relation

a(n) =ao (L+1%/nd) =ao (1+k3n?).

As we had discussed earlier, at very early times, viz. when n < —);, the scale
factor behaves as in a matter dominated epoch'.

The quantity a” /a corresponding to the above scale factor is given by

a” 2 k32

a L+ k3n?’

which has essentially a Lorentzian profile.

14See, for example, R. Brandenberger, arXiv:1206.4196.
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The tensor bi-spectrum in a matter bounce The tensor power spectrum in a matter bounce

The tensor modes in the first domain

Let us divide the period before the bounce into two domains, with the first do-
main be determined by the condition —co < n < —ang, where « is a relatively
large number, which we shall set to be, say, 10°.
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The tensor modes in the first domain

Let us divide the period before the bounce into two domains, with the first do-
main be determined by the condition —co < n < —ang, where « is a relatively
large number, which we shall set to be, say, 10°.

In the first domain, we can assume that the scale factor behaves as a(n) ~
ao k3 n?, so that a”’ Ja = 2/n?. Since the condition k% = ' /a corresponds to,
say, 7. = —/2/k, the initial conditions can be imposed when 7 < 7;.
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The tensor modes in the first domain

Let us divide the period before the bounce into two domains, with the first do-
main be determined by the condition —co < n < —ang, where « is a relatively
large number, which we shall set to be, say, 10°.

In the first domain, we can assume that the scale factor behaves as a(n) ~
ao k3 n?, so that a”’ Ja = 2/n?. Since the condition k% = ' /a corresponds to,
say, 7. = —/2/k, the initial conditions can be imposed when 7 < 7;.

The modes h; can be easily obtained in such a case and the positive fre-
quency modes that correspond to the vacuum state at early times are given

by
hi(n) = Q L (1 _ Z) etk
M., 2k aokEn? kn
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The tensor bi-spectrum in a matter bounce The tensor power spectrum in a matter bounce

The modes in the second domain

Let us now consider the behavior of the modes in the domain —a7y, < n < 0.
Since we are interested in scales much smaller than kg, we shall assume that
nE < —ang, Which corresponds to k < ko /.
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The modes in the second domain

Let us now consider the behavior of the modes in the domain —a7y, < n < 0.
Since we are interested in scales much smaller than kg, we shall assume that
nE < —ang, Which corresponds to k < ko /.

In such a case, upon ignoring the k2 term, the equation governing h;. can be
immediately integrated to yield
n dﬁ
i () = hye(ns) + Ry (ns) a® (1. / 5
( ) ( ) k( ) ( ) - 02(77)
where 7). is a suitably chosen time and the scale factor «(n) is given by the
complete expression.
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The modes in the second domain

Let us now consider the behavior of the modes in the domain —a7y, < n < 0.
Since we are interested in scales much smaller than kg, we shall assume that
nE < —ang, Which corresponds to k < ko /.

In such a case, upon ignoring the % term, the equation governing %, can be
immediately integrated to yield
n dﬁ
i () = hye(ns) + Ry (ns) a® (1. / 5
( ) ( ) k( ) ( ) - 02(77)
where 7). is a suitably chosen time and the scale factor «(n) is given by the
complete expression.

If we choose 7. = —a g, we can make use of the solution in the first domain
to obtain the following solution in the second domain:

hi = A + By f(kon),

where
f(kon) = 077777 +tan™" (kon) .
0
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Evolution of the tensor modes across the bounce

10%
102 | \,
1018 | -
1013 | -
10° | 1
10° | 1

= 10—2 - a
2 |
<o f b
10—17 - -
10722 | .
10727 | .
10—32 - .
10737 | .
1042 L L L L L

A comparison of the numerical results (in blue) with the analytical results (in
red) for the amplitude of the tensor mode || corresponding to the wavenum-
ber k/ko = 10~2°. We have set ay = 10° and, for plotting the analytical resul
we have chosen o = 10°.
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The third domain and the tensor power spectrum

The quantities A, and B, are given by

V2 o1 1 iko\
A — 1 Y ’Lak/ko B
k M. U3k mal ( +ak> e + By, f(a),

V2 o1 1 w2 (3iko 3 ik ok
B, = —_— 1 220 erak/ko,
g MP] 2k 2040042 ( +a) <a2k +OZ k()) ¢
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The third domain and the tensor power spectrum

The quantities A, and B, are given by
V2 1 1 iko\ ok

ve 1 oo iak/ko B

A 3% aoo? ( +ak>e + By, f(a),

Bom Ly (M3 )
My, 2k 2ap «

A =

a2k+a ko

If we evaluate the tensor power spectrum after the bounce at n = 7, we find
that it can be expressed as

Pr(k) =45 |Ak + By, f(B).
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The tensor power spectrum

1010
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k/ko

The behavior of the tensor power spectrum has been plotted as a function of
k/ko for a wide range of wavenumbers. In plotting this figure, we have set
ko/M,, =1, ap = 10°, o = 10° and 3 = 10°. Note that the power spectrumj
scale invariant for k < ko/a.
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The tensor bi-spectrum in a matter bounce The tensor bi-spectrum

Tensor bi-spectrum and non-Gaussianity parameter

The tensor bi-spectrum, evaluated at the conformal time, say, 7., is defined as

3 Bmlnlmgngmgng

ﬁ/,:v,llnl (77e) :Y:‘r?zng (ne) ’A}/fnzns (We)> = (2 7T) Yy (k17 k27 k3)
X 6(3) (kl + ko + k3)

and, for convenience, we shall set

B:;rzyl;zlmrzngmgng (klv kQ, kS) _ (2 7_{_)—9/2 sz;/l’;umzn2m3n3 (kl, kg, k3)

15V, Sreenath, R. Tibrewala and L. Sriramkumar, JCAP 1312, 037 (2013).

L. Sriramkumar (IIT Madras, Chennai) Bouncing universes July 25, 2016



The tensor bi-spectrum in a matter bounce The tensor bi-spectrum

Tensor bi-spectrum and non-Gaussianity parameter

The tensor bi-spectrum, evaluated at the conformal time, say, 7., is defined as

3 Bminimenamsng

AR () AR () RS (ne)) = (2)° B (k1, ko, k3)
X 6(3) (kl + ko + kg)

and, for convenience, we shall set

BILmenamsns (ky, ky, kg) = (27) 2 G (ky, Ky, kig).
As in the scalar case, one can define a dimensionless non-Gaussianity pa-
rameter to characterize the amplitude of the tensor bi-spectrum as follows®:

4 : 3 7.0 minimaonamsn,
hNL(k17k27k3) = = (ﬁ) [k?kgkg G'wl’yl s 3(k17k27k3)]

—1

X [Hf,}ml’mzm H,’ffan&mﬁ ks Pr (k1) Prp(k2) + five permutations

15V, Sreenath, R. Tibrewala and L. Sriramkumar, JCAP 1312, 037 (2013).
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The tensor bi-spectrum in a matter bounce The tensor bi-spectrum

The third order action and the tensor bi-spectrum

The third order action that leads to the tensor bi-spectrum is given by

5 Mgl 3 a2 a2
S vig] = 3 /dn /d x ?’)’lj Yim 010m™Yij — Z%j Yirn O10mYij | -

18, Maldacena, JHEP 0305, 013 (2003).
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The third order action and the tensor bi-spectrum

The third order action that leads to the tensor bi-spectrum is given by

2 2

M ' a? a
S yis) = 5 / dn / GRS [5 5 Yim OuOm Vi = < Vis Yim OO i |-

The tensor bi-spectrum calculated in the perturbative vacuum using the Maldacena
formalism, can be written in terms of the modes h,, as follows:

minimanamsn
GrLAmnamans () o, o)

ming,ij TTmang,im - mgng,lj miny,ij “Tmaong,ml T Tm3ns,ij

1 P
= M, {(Hkl L i W5 = 5 Wi g g ot g i) ot e

+ five permutations}
X [Py (e) Pky (11e) Py (1) Gy (K1, k2, k3) 4+ complex conjugate
where G (k1, k2, k3) is described by the integral
G (1, o, o) = —i' /ne dn a® B, B, B,

i
with 7; denoting the time when the initial conditions are imposed on the perturbatio

18, Maldacena, JHEP 0305, 013 (2003).
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The contributions due to the three domains
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/Ko

The contributions to the non-Gaussianity parameter £, in the equilateral limit
from the first (in green), the second (in red) and the third (in blue) domains
have been plotted as a function of k/k, for k < ko /. Clearly, the third dom
gives rise to the maximum contribution to A, .
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The tensor bi-spectrum in a matter bounce The squeezed limit and the consistency relation

The effect of the long wavelength tensor modes

Since the amplitude of a long wavelength mode freezes on super-Hubble
scales during inflation, such modes can be treated as a background as far
as the smaller wavelength modes are concerned. Let us denote the constant
amplitude of the long wavelength tensor mode as ;.
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In the presence of such a long wavelength mode, the background FLRW met-
ric can be written as
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i.e. the spatial coordinates are modified according to a spatial transformation
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Since the amplitude of a long wavelength mode freezes on super-Hubble
scales during inflation, such modes can be treated as a background as far
as the smaller wavelength modes are concerned. Let us denote the constant
amplitude of the long wavelength tensor mode as ;.

In the presence of such a long wavelength mode, the background FLRW met-
ric can be written as

ds? = —dt* + a®(t) [ ];; d&’ da?,

i.e. the spatial coordinates are modified according to a spatial transformation
of the form =’ = Az, where A;; = [e7"/?],;.

Under such a spatial transformation, the small wavelength tensor perturbation
transforms as'’ B

'yfj — det (A_l) 7{} k
where det (A1) = 1.

173, Kundu, JCAP 1404, 016 (2014).
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The behavior of the two and three-point functions

On using the above results, one finds that the tensor two-point function in the
presence of a long wavelength mode denoted by, say, the wavenumber %, can
be written as

(2 7r)2 11k

(s Wi = gy — 5 Pr(h) 09 (R + ko)
1

n., —3 o
X [1—( T2 )W?jnlinlj:|7

where Ny = kli/kl-

18y Sreenath and L. Sriramkumar, JCAP 1410, 021 (2014).
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be written as

(2 7r)2 11k

<’A}/§111n1 ;Yﬁfzng”f = 9 13 M1nim2n2 P, (k‘1) 5(3) (k1 + kz)
1

n., —3 o
X l:l—( T2 )qununlj},

One can also show that, in the presence of a long wavelength mode, the
tensor bi-spectrum can be written as'®

ki aks Ak 2m)P®? (n, =3
<,7m11n1 7m227L2 me33n3 >k3 = - 4 kili kg T32

x 11k s

mini,mang ~mang,ij

where Ny = kli/kl-

) Py (k1) P (k)

fyi iy 63 (k1 + ko).

18y Sreenath and L. Sriramkumar, JCAP 1410, 021 (2014).
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The complete contribution to
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The behavior of i, in the equilateral (in blue) and the squeezed (in red) limits
plotted as a function of k/k, for k < ko/c«. The resulting h, is considerably
small when compared to the values that arise in de Sitter inflation wherein
3/8 < hy, < 1/2. Moreover, we find that /., behaves as £? in the equilate

and the squeezed limits, with similar amplitudes'®.

19p, Chowdhury, V. Sreenath and L. Sriramkumar, JCAP 1511, 002 (2015).
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@ Scale invariant magnetic fields of observable strengths can be generated
in a class of bouncing models. However, as in the inflationary context,
they are also plagued by the problem of backreaction.
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in a class of bouncing models. However, as in the inflationary context,
they are also plagued by the problem of backreaction.

@ As in the case of the scalar and tensor perturbations, the power spectrum
of the magnetic field remains invariant under a two parameter family of
transformations (called the duality transformations) of the non-minimal
coupling function.

@ In a matter bounce which leads to a scale invariant tensor power spec-
trum as de Sitter inflation does, the amplitude of the tensor bi-spectrum
proves to be considerably smaller. Moreover, due to the rapid growth of
the amplitude of the tensor modes as one approaches the bounce, the
consistency relation governing the tensor bi-spectrum is violated in these
scenarios.
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Summary

Issues confronting bouncing models

@ The growth of the pertubations as one approaches the bounce during the
contracting phase causes serious concerns about the validity of linear
perturbation theory near the bounce. Is it, for instance, sufficient if the
perturbations remain small in specific gauges? Is a divergent curvature
perturbation acceptable? These are issues of considerable importance
and they need to be addressed satisfactorily.

201 E. Allen and D. Wands, Phys. Rev. 70, 063515 (2004).

21V.F. Cai, R. Brandenberger and X. Zhang, Phys. Letts. B 703, 25 (2011).

22,)_Quintin, Z. Sherkatghanad, Y-F. Cai and R. Brandenberger, Phys. Rev. D 92, 062532 (2015).
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@ Analysis in the cases of a few specific examples seem to suggest that
bouncing models lead to a large tensor-to-scalar ratio that is inconsistent
with the observations®. Is it possible to construct models with lower
tensor amplitudes?

@ After the bounce, the universe needs to transit to a radiation dominated
epoch. How can this be achieved? Does this process affect the evolution
of the large scale perturbations®'?

@ Does the growth of perturbations near the bounce naturally lead to large
levels of non-Gaussianities in bouncing models?2?
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