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Introduction Conventions and notations

A few words on the conventions and notations

F We shall work in units such that c = ~ = 1, and define the Planck mass
to be M

Pl
= (8πG)−1/2.

F We shall assume the background universe to be described by the fol-
lowing spatially flat, Friedmann-Lemaître-Robertson-Walker (FLRW) line-
element:

ds2 = −dt2 + a2(t) dx2 = a2(η)
(
−dη2 + dx2

)
,

where t is the cosmic time, a(t) is the scale factor and η =
∫

dt/a(t)
denotes the conformal time coordinate.

F We shall denote differentiation with respect to the cosmic and the confor-
mal times t and η by an overdot and an overprime, respectively.

F Further, as usual,H = ȧ/a shall denote the Hubble parameter associated
with the FLRW universe.
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Bouncing scenarios

Bouncing scenarios: An alternative to inflation1

Bouncing models correspond to situations wherein the universe initially
goes through a period of contraction until the scale factor reaches a cer-
tain minimum value before transiting to the expanding phase.

They offer an alternative to inflation to overcome the horizon problem, as
they permit well motivated, Minkowski-like initial conditions to be imposed
on the perturbations at early times during the contracting phase.
However, matter fields may have to violate the null energy condition near
the bounce in order to give rise to such a scale factor. Also, there exist
(genuine) concerns whether such an assumption about the scale factor is
valid in a domain where general relativity is expected to fail and quantum
gravitational effects are supposed to take over.

1See, for instance, M. Novello and S. P. Bergliaffa, Phys. Rep. 463, 127 (2008);
D. Battefeld and P. Peter, Phys. Rep. 571, 1 (2015).
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Bouncing scenarios

The resolution of the horizon problem in inflation

Left: The radiation from the CMB arriving at us from regions separated by
more than the Hubble radius at the last scattering surface (which subtends an
angle of about 1◦ today) could not have interacted before decoupling.

Right: An illustration of how an early and sufficiently long epoch of inflation
helps in resolving the horizon problem2.

2Images from W. Kinney, astro-ph/0301448.
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Bouncing scenarios

Bringing the modes inside the Hubble radius
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A schematic diagram illustrating the behavior of the physical wavelength λ
P
∝

a (the green lines) and the Hubble radius H−1 (the blue line) during inflation
and the radiation dominated epochs3.

3See, for example, E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley Publishing
Company, New York, 1990), Fig. 8.4.
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Bouncing scenarios

Overcoming the horizon problem in bouncing models
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ĤAS

|Ainii �! |Aki

�k

| 
AS
i =

X

i

ci|'ii ⌦ |Ainii �!
X

i

(ci|'ii ⌦ |Aii)

1

inflation post-inflation
t

Hubble radius
horizon

=)

`Pl � / k�1
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The evolution of the physical wavelength and the Hubble radius in a typical
bouncing scenario4.

4Figure from, D. Battefeld and P. Peter, Phys. Rept. 571, 1 (2015).
L. Sriramkumar (IIT Madras, Chennai) Bouncing universes July 25, 2016 8 / 45



Bouncing scenarios

Violation of the null energy condition
Recall that, according to the Friedmann equations

Ḣ = − 4πG (ρ+ p) .

In any bouncing scenario, the Hubble parameter is negative before the bounce,
crosses zero at the bounce and is positive thereafter.

Evidently, Ḣ will be positive near the bounce, which implies that (ρ+ p) has
to be negative in this domain. In other words, the null energy condition needs
to be violated in order to achieve a bounce.
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Bouncing scenarios

Classical bounces and sources
Consider for instance, bouncing models of the form

a(η) = a0

(
1 +

η2

η2
0

)q
= a0

(
1 + k2

0 η
2
)q
,

where a0 is the value of the scale factor at the bounce (i.e. when η = 0),
η0 = 1/k0 denotes the time scale of the duration of the bounce and q > 0. We
shall assume that the scale k0 associated with the bounce is of the order of
the Planck scale M

Pl
.

The above scale factor can be achieved with the help of two fluids with con-
stant equation of state parameters w1 = (1− q)/(3 q) and w2 = (2− q)/(3 q).
The energy densities of these fluids behave as ρ1 = M1/a

(2 q+1)/q and ρ2 =

M2/a
2 (1+q)/q, where M1 = 12 k2

0 M
2
Pl
a

1/q
0 and M2 = −M1 a

1/q
0 .

Note that, when q = 1, during very early times wherein η � −η0, the scale
factor behaves as in a matter dominated universe (i.e. a ∝ η2). Therefore,
the q = 1 case is often referred to as the matter bounce scenario. In such a
case, ρ1 = 12 k2

0 M
2
Pl
a0/a

3 and ρ2 = −12 k2
0 M

2
Pl
a2

0/a
4.
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Generation of scale invariant magnetic fields in bouncing universes Action, equations of motion and power spectra

The non-minimal action and the equation of motion
We shall consider a case wherein the electromagnetic field is coupled non-
minimally to a scalar field φ and is described by the action

S[φ,Aµ] = − 1

16π

∫
d4x
√−g J2(φ)FµνF

µν ,

where Fµν denotes the electromagnetic field tensor which is given in terms of
the vector potential Aµ as follows:

Fµν = Aν;µ −Aµ;ν = Aν,µ −Aµ,ν .

The scalar field φ could be, for instance, the primary matter field that is driving
the background evolution and J is an arbitrary function of the field.
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Generation of scale invariant magnetic fields in bouncing universes Action, equations of motion and power spectra

Quantization of the electromagnetic field
In a spatially flat, FLRW universe, we can choose to work in the Coulomb
gauge wherein A0 = 0 and ∂iAi = 0. In such a gauge, upon quantization, the
vector potential Âi can be Fourier decomposed as follows5:

Âi(η,x) =
√

4π

∫
d3k

(2π)3/2

2∑

λ=1

ε̃λ i(k)
[
âλk Āk(η) eik·x + âλk

† Ā∗k(η) e−ik·x
]
,

where the modes Āk satisfy the differential equation

Ā′′k + 2
J ′

J
Ā′k + k2 Āk = 0.

If we define a new variable Ak = J Āk, then the above equation simplifies to

A′′k +

(
k2 − J ′′

J

)
Ak = 0,

and one can impose the standard Bunch-Davies initial conditions on the modes
Ak at suitably early times.

5See, for instance, J. Martin and J. Yokoyama, JCAP 0801, 025 (2008);
K. Subramanian, Astron. Nachr. 331, 110 (2010).
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Âi(η,x) =
√

4π

∫
d3k

(2π)3/2

2∑

λ=1

ε̃λ i(k)
[
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Generation of scale invariant magnetic fields in bouncing universes Action, equations of motion and power spectra

Power spectra of the electric and magnetic fields
The energy densities associated with the electric and magnetic fields can be
written in terms of the vector potential Ai and its time and spatial derivatives
as follows:

ρ
E

=
J2

8π a2
gij A′iA

′
j ,

ρ
B

=
J2

16π
gij glm (∂jAm − ∂mAj) (∂iAl − ∂lAi) ,

where gij = δij/a2 denotes the spatial components of the FLRW metric.

The expectation values of the corresponding operators, i.e. ρ̂E and ρ̂B , can be
evaluated in the vacuum state annihilated by the operator âλk.

It can be shown that the spectral energy densities of the magnetic and electric
fields are given by

P
B

(k) =
d〈0|ρ̂B |0〉

d ln k
=
J2(η)

2π2

k5

a4(η)
|Āk(η)|2,

P
E
(k) =

d〈0|ρ̂E |0〉
d ln k

=
J2(η)

2π2

k3

a4(η)
|Ā′k(η)|2.
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Generation of scale invariant magnetic fields in bouncing universes Action, equations of motion and power spectra

Power spectra in power law inflation
For power law inflation described by the scale factor a(η) = a1 (−η/η1)β+1

and for coupling function of the form J(η) = J0 a
n(η), one can show that the

power spectrum of the magnetic field is given by6

P
B

(k) = F(m)H4 (−k η)4+2m,

where m = (β + 1)n = α for α ≤ 1/2 and m = 1− α for α ≥ 1/2, while

F(m) =
[
(2π) 22m+1 Γ2(m+ 1/2) cos2(πm)

]−1
.

The corresponding spectrum for the electric field can be obtained to be

PE(k) =
G(m)

2π2
H4(−k η)4+2m,

where m = 1 + α if α ≤ −1/2 and m = −α for α ≥ −1/2, while

G(m) =
[
(2π) 22m+3 Γ2(m+ 3/2) cos2(πm)

]−1
.

It is evident that m = −2 leads to a scale invariant spectrum for the magnetic
field which corresponds to either α = 3 or α = −2.

6See, for instance, J. Martin and J. Yokoyama, JCAP 0801, 025 (2008);
K. Subramanian, Astron. Nachr. 331, 110 (2010).
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Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

Modeling the bounce and the non-minimal coupling
We shall model the bounce by assuming that the scale factor a(η) behaves as
follows:

a(η) = a0

(
1 +

η2

η2
0

)q
= a0

(
1 + k2

0 η
2
)q
,

which we had discussed earlier.

Note that the above scale factor reduces to the simple power law form with
a(η) ∝ η2 q at very early times (i.e. when −η � η0).

We shall assume that the coupling function can be expressed in terms of the
scale factor as

J(η) = J0 a
n(η).
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Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

E-N -folds
The conventional e-fold N is defined N = log (a/a0) so that a(N) = a0 expN .
However, the function eN is a monotonically increasing function of N .

In a bouncing scenario, an obvious choice for the scale factor seems to be7

a(N ) = a0 exp (N 2/2),

with N being the new time variable that we shall consider for integrating the
differential equation governing Āk.

For want of a better name, we shall refer to the variable N as e-N -fold since
the scale factor grows roughly by the amount eN between N and (N + 1).

7L. Sriramkumar, K. Atmjeet and R. K. Jain, JCAP 1509, 010 (2015).
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Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

The behavior of J ′′/J

The behavior of the quantity J ′′/J has been plotted as a function of N for
q = 1 and n = 3/2 (on the left) and n = −1 (on the right). Note that the
maximum value of J ′′/J is roughly of the order of k2

0.
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Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

Analytical solutions for the modes at early times
At very early times (i.e. for −η � η0), the scale factor simplifies to the power
law form a(η) ∝ η2 q. During such times, the non-minimal coupling function J
also behaves as J(η) ∝ ηγ , where we have set γ = 2n q.

In such a case, we have J ′′/J ' γ (γ − 1)/η2 and it is easy to show that
the solutions to the modes of the electromagnetic vector potential Ak can be
expressed as

Ak(η) =
√
−k η

[
C1(k) Jγ−1/2(−k η) + C2(k) J−γ+1/2(−k η)

]
.

One finds that, for the Bunch-Davies initial conditions, C1(k) and C2(k) are
given by

C1(k) =

√
π

4 k

e−i π γ/2

cos (π γ)
and C2(k) =

√
π

4 k

ei π (γ+1)/2

cos (π γ)
.

It can also be shown that

A′k(η)− J ′

J
Ak(η) = k

√
−k η

[
C1(k) Jγ+1/2(−k η)− C2(k) J−γ−1/2(−k η)

]
.
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Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

Analytical solutions near the bounce
Note that, when n > 0, J ′′/J has a maximum at the bounce. In such a case, for
k � k0, k2 � J ′′/J around the bounce. Hence, upon ignoring the k2 in the equation
governing Āk, we can integrate the equation to yield

Ā′k(η) ' Ā′k(η∗)
J2(η∗)

J2(η)
,

where η∗ is a time when k2 � J ′′/J before the bounce. The above equation can be
integrated to arrive at

Āk(η) ' Āk(η∗) + Ā′k(η∗)

η∫

η∗

dη
J2(η∗)

J2(η)
= Āk(η∗) + Ā′k(η∗) a

2n(η∗)

η∫

η∗

dη

a2n(η)
,

where we have set the constant of integration to be Āk(η∗).

When γ = 3, we can evaluate the above integral to obtain that

Āk(η) ' Āk(η∗) + Ā′k(η∗)
a2n(η∗)

a2n
0

η0

8

{
η

η0

5 + 3 (η/η0)2

[1 + (η/η0)2]2
+ 3 tan−1

(
η

η0

)

− η∗
η0

5 + 3 (η∗/η0)2

[1 + (η∗/η0)2]2
− 3 tan−1

(
η∗
η0

)}
.
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Comparison of the numerical and analytical results
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The behavior of the absolute values of Āk (on the left) and its derivative Ā′k
(on the right) has been plotted for the mode k = 10−10 k0 with k0/MPl

=
e−25 = 1.389 × 10−11 for the case wherein n = 3/2, q = 1, a0 = 10−10

and J0 = 104. The dashed red curves represent the analytical approximation
around the bounce that can be arrived at for modes such that k � k0.
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Generation of scale invariant magnetic fields in bouncing universes Results

Power spectra of magnetic and electric fields

The power spectra of the magnetic (in blue) and the electric (in red) fields for
the cases wherein (q, n) = (1, 3/2) (corresponding to γ = 3, on the left) and
(q, n) = (1,−1) (corresponding to γ = −2, on the right). We have worked with
the same values of η0, a0 and J0 as in the previous figure. The power spectra
of the electric field are along expected lines, behaving as k4−2 γ = k−2 when
γ = 3 and k6+2 γ = k2 when γ = −2 (indicated by the dotted green lines).
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Generation of scale invariant magnetic fields in bouncing universes Results

Spectrum of observable strengths

The power spectra with q = 1 and n = −1, corresponding to γ = −2 has
been plotted for a wide range of wavenumbers. We have set k0/MPl

= 1,
a0 = 4 × 10−29 and J0 = 104, which lead to magnetic fields in the early
universe that correspond to observable strengths today8.

8L. Sriramkumar, K. Atmjeet and R. K. Jain, JCAP 1509, 010 (2015).
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Generation of scale invariant magnetic fields in bouncing universes Results

The issue of backreaction

The behavior of the energy density in the electric and magnetic fields for the
mode k = 10−20 k0 has been plotted (in blue) along with the energy density of
the background (in red). We have worked with the same values of the various
parameters as in the last figure.
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Duality and scale invariant magnetic fields Analytical solutions for the electromagnetic modes

The behavior of J ′′/J
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The behavior of η2
0 J
′′/J , which depends only on η/η0, has been plotted for

γ = 3 (in blue) and γ = 5 (in red). The figure has been plotted over a very
narrow range of η/η0 in order to illustrate the presence of a single maximum
for γ = 3 and two maxima and one minimum for γ = 5.
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Analytical solutions near the bounce for arbitrary γ
Recall that, near the bounce, when n > 0, for scales of cosmological interest
such that k � k0, we had obtained that

Āk(η) ' Āk(η∗) + Ā′k(η∗)

η∫

η∗

dη̃
J2(η∗)

J2(η̃)
= Āk(η∗) + Ā′k(η∗) a

2n(η∗)

η∫

η∗

dη̃

a2n(η̃)
,

where η∗ is a time when k2 � J ′′/J before the bounce and we have set the
constant of integration to be Āk(η∗).

The above integral can, in fact, be carried out for an arbitrary γ to arrive at

Āk(η) ' Āk(η∗) + Ā′k(η∗)
a2n(η∗)

a2n
0

×
[
η 2F1

(
1

2
, γ;

3

2
;−η

2

η2
0

)
− η∗ 2F1

(
1

2
, γ;

3

2
;−η

2
∗
η2

0

)]
,

where 2F1(a, b, c, z) denotes the hypergeometric function9.

9D. Chowdhury, L. Sriramkumar and R. K. Jain, arXiv:1604.02143 [gr-qc].
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η∫

η∗

dη̃
J2(η∗)

J2(η̃)
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The above integral can, in fact, be carried out for an arbitrary γ to arrive at
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Power spectra before and after the bounce
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Left: The dimensionless power spectra of the magnetic (in blue) and electric
(in red) fields, evaluated before the bounce at η = −αη0 have been plotted as
a function of k/k0 for γ = 3, q = 1, a0 = 8.73× 1010 and α = 105.

Right: The corresponding power spectra evaluated after the bounce at η =
β η0, with β = 102. We should mention that the values of the parameters we
have worked with lead to magnetic fields of observed strengths today corre-
sponding to a few femto gauss10.

10D. Chowdhury, L. Sriramkumar and R. K. Jain, arXiv:1604.02143 [gr-qc].
L. Sriramkumar (IIT Madras, Chennai) Bouncing universes July 25, 2016 26 / 45



Duality and scale invariant magnetic fields Analytical solutions for the electromagnetic modes

Power spectra before and after the bounce

10−30 10−27 10−24 10−21 10−18 10−15 10−12 10−9 10−6 10−3 100

k/k0

10−110

10−105

10−100

10−95

10−90

10−85

10−80

10−75

10−70

10−65

10−60

10−55

10−50

P B
(k
)/

k
4 0
,P

E
(k
)/

k
4 0

10−30 10−27 10−24 10−21 10−18 10−15 10−12 10−9 10−6 10−3 100

k/k0

10−62

10−58

10−54

10−50

10−46

10−42

10−38

10−34

10−30

10−26

10−22

10−18

10−14

P B
(k
)/

k
4 0
,P

E
(k
)/

k
4 0

Left: The dimensionless power spectra of the magnetic (in blue) and electric
(in red) fields, evaluated before the bounce at η = −αη0 have been plotted as
a function of k/k0 for γ = 3, q = 1, a0 = 8.73× 1010 and α = 105.
Right: The corresponding power spectra evaluated after the bounce at η =
β η0, with β = 102. We should mention that the values of the parameters we
have worked with lead to magnetic fields of observed strengths today corre-
sponding to a few femto gauss10.

10D. Chowdhury, L. Sriramkumar and R. K. Jain, arXiv:1604.02143 [gr-qc].
L. Sriramkumar (IIT Madras, Chennai) Bouncing universes July 25, 2016 26 / 45



Duality and scale invariant magnetic fields Duality invariance

Duality transformations
It is known that the solutions to the equations of motion governing the scalar
and tensor perturbations are invariant under a certain transformation referred
to as the duality transformation11. For instance, it can be shown that the dual
solution to the de Sitter case corresponds to the matter bounce. Both these
cases lead to scale invariant spectra.

In the case of electromagnetic fields of our interest here, given a coupling
function J , its dual function, say, J̃ , which leads to the same J̃ ′′/J̃ is found to
be

J(η)→ J̃(η) = C J(η)

η∫

η∗

dη̄

J2(η̄)
,

where C and η∗ are constants. These constants can be suitably chosen to
arrive at a physically reasonable form for J̃

It can be shown that the cases corresponding to γ = 3 and γ = −2 in the
bouncing models which had led to scale invariant spectra are dual to each
other.

11D. Wands, Phys. Rev. D 60, 023507 (1999).
L. Sriramkumar (IIT Madras, Chennai) Bouncing universes July 25, 2016 27 / 45



Duality and scale invariant magnetic fields Duality invariance

Duality transformations
It is known that the solutions to the equations of motion governing the scalar
and tensor perturbations are invariant under a certain transformation referred
to as the duality transformation11. For instance, it can be shown that the dual
solution to the de Sitter case corresponds to the matter bounce. Both these
cases lead to scale invariant spectra.

In the case of electromagnetic fields of our interest here, given a coupling
function J , its dual function, say, J̃ , which leads to the same J̃ ′′/J̃ is found to
be

J(η)→ J̃(η) = C J(η)

η∫

η∗

dη̄

J2(η̄)
,

where C and η∗ are constants. These constants can be suitably chosen to
arrive at a physically reasonable form for J̃

It can be shown that the cases corresponding to γ = 3 and γ = −2 in the
bouncing models which had led to scale invariant spectra are dual to each
other.

11D. Wands, Phys. Rev. D 60, 023507 (1999).
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A symmetric coupling function and its asymmetric dual
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The coupling function J (in blue) and its dual J̃ (in red) have been plotted as a
function of η/η0 for γ = 3 and η∗ → −∞. Also, we have chosen the constant
C to be C/k0 = 5.7 × 1032 so that the dual function J̃ matches the original
coupling function J after the bounce12.

12D. Chowdhury, L. Sriramkumar and R. K. Jain, arXiv:1604.02143 [gr-qc].
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Equation governing the tensor perturbations
Upon quantization, the tensor perturbations can be written in terms of the
corresponding modes, say, hk, as follows:

γ̂ij(η,x) =

∫
d3k

(2π)
3/2

γ̂kij(η) eik·x

=
∑

s

∫
d3k

(2π)3/2

(
b̂sk ε

s
ij(k)hk(η) eik·x + b̂s†k εs∗ij (k)h∗k(η) e−ik·x

)
,

where b̂sk and b̂sk
† are the usual creation and annihilation operators that satisfy

the standard commutation relations, while εsij(k) represents the transverse
and traceless polarization tensor describing gravitational waves.

The modes hk are governed by the differential equation

h′′k + 2H h′k + k2 hk = 0

where H = a′/a and, in terms of the variable uk = M
Pl
a hk/

√
2, the above

equation reduces to

u′′k +

(
k2 − a′′

a

)
uk = 0.
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The tensor power spectrum: Definition
The tensor power spectrum PT(k) is defined through the relation

〈γ̂km1n1
γ̂pm2n2

〉 =
(2π)2

8 k3
Πk
m1n1,m2n2

PT(k) δ3 (k + p) ,

where
Πk
m1n1,m2n2

=
∑

s

εsm1n1
(k) εs∗m2n2

(k).

In terms of the quantities hk and uk, the tensor power spectrum PT(k) in the
Bunch-Davies vacuum is given by

PT(k) = 4
k3

2π2
|hk|2 =

8

M2
Pl

k3

2π2

( |uk|
a

)2

,

with the right hand side being evaluated at suitably late times13.

13See, for example, L. Sriramkumar, Curr. Sci. 97, 868 (2009).
L. Sriramkumar (IIT Madras, Chennai) Bouncing universes July 25, 2016 30 / 45



The tensor bi-spectrum in a matter bounce The tensor power spectrum in a matter bounce

The tensor power spectrum: Definition
The tensor power spectrum PT(k) is defined through the relation

〈γ̂km1n1
γ̂pm2n2

〉 =
(2π)2

8 k3
Πk
m1n1,m2n2

PT(k) δ3 (k + p) ,

where
Πk
m1n1,m2n2

=
∑

s

εsm1n1
(k) εs∗m2n2

(k).

In terms of the quantities hk and uk, the tensor power spectrum PT(k) in the
Bunch-Davies vacuum is given by

PT(k) = 4
k3

2π2
|hk|2 =

8

M2
Pl

k3

2π2

( |uk|
a

)2

,

with the right hand side being evaluated at suitably late times13.

13See, for example, L. Sriramkumar, Curr. Sci. 97, 868 (2009).
L. Sriramkumar (IIT Madras, Chennai) Bouncing universes July 25, 2016 30 / 45



The tensor bi-spectrum in a matter bounce The tensor power spectrum in a matter bounce

The matter bounce
We shall assume that the scale factor describing the bouncing scenario is
given in terms of the conformal time coordinate η by the relation

a(η) = a0

(
1 + η2/η2

0

)
= a0

(
1 + k2

0 η
2
)
.

As we had discussed earlier, at very early times, viz. when η � −η0, the scale
factor behaves as in a matter dominated epoch14.

The quantity a′′/a corresponding to the above scale factor is given by

a′′

a
=

2 k2
0

1 + k2
0 η

2
,

which has essentially a Lorentzian profile.

14See, for example, R. Brandenberger, arXiv:1206.4196.
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The tensor modes in the first domain
Let us divide the period before the bounce into two domains, with the first do-
main be determined by the condition −∞ < η < −αη0, where α is a relatively
large number, which we shall set to be, say, 105.

In the first domain, we can assume that the scale factor behaves as a(η) '
a0 k

2
0 η

2, so that a′′/a = 2/η2. Since the condition k2 = a′′/a corresponds to,
say, ηk = −

√
2/k, the initial conditions can be imposed when η � ηk.

The modes hk can be easily obtained in such a case and the positive fre-
quency modes that correspond to the vacuum state at early times are given
by

hk(η) =

√
2

M
Pl

1√
2 k

1

a0 k2
0 η

2

(
1− i

k η

)
e−i k η.
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The modes in the second domain
Let us now consider the behavior of the modes in the domain −αη0 < η < 0.
Since we are interested in scales much smaller than k0, we shall assume that
ηk � −αη0, which corresponds to k � k0/α.

In such a case, upon ignoring the k2 term, the equation governing hk can be
immediately integrated to yield

hk(η) ' hk(η∗) + h′k(η∗) a
2(η∗)

∫ η

η∗

dη̃

a2(η̃)
,

where η∗ is a suitably chosen time and the scale factor a(η) is given by the
complete expression.

If we choose η∗ = −αη0, we can make use of the solution in the first domain
to obtain the following solution in the second domain:

hk = Ak +Bk f(k0 η),

where
f(k0 η) =

k0 η

1 + k2
0 η

2
+ tan−1 (k0 η) .
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Evolution of the tensor modes across the bounce
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A comparison of the numerical results (in blue) with the analytical results (in
red) for the amplitude of the tensor mode |hk| corresponding to the wavenum-
ber k/k0 = 10−20. We have set a0 = 105 and, for plotting the analytical results,
we have chosen α = 105.
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The third domain and the tensor power spectrum
The quantities Ak and Bk are given by

Ak =

√
2

M
Pl

1√
2 k

1

a0 α2

(
1 +

i k0

αk

)
ei α k/k0 +Bk f(α),

Bk =

√
2

M
Pl

1√
2 k

1

2 a0 α2

(
1 + α2

)2
(

3 i k0

α2 k
+

3

α
− i k

k0

)
ei α k/k0 .

If we evaluate the tensor power spectrum after the bounce at η = β η0, we find
that it can be expressed as

P
T

(k) = 4
k3

2π2
|Ak +Bk f(β)|2.
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The tensor power spectrum
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The behavior of the tensor power spectrum has been plotted as a function of
k/k0 for a wide range of wavenumbers. In plotting this figure, we have set
k0/MPl

= 1, a0 = 105, α = 105 and β = 102. Note that the power spectrum is
scale invariant for k � k0/α.
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Tensor bi-spectrum and non-Gaussianity parameter
The tensor bi-spectrum, evaluated at the conformal time, say, ηe, is defined as

〈γ̂k1
m1n1

(ηe) γ̂k2
m2n2

(ηe) γ̂k3
m3n3

(ηe)〉 = (2π)
3 Bm1n1m2n2m3n3

γγγ (k1,k2,k3)

× δ(3) (k1 + k2 + k3)

and, for convenience, we shall set

Bm1n1m2n2m3n3
γγγ (k1,k2,k3) = (2π)

−9/2
Gm1n1m2n2m3n3
γγγ (k1,k2,k3).

As in the scalar case, one can define a dimensionless non-Gaussianity pa-
rameter to characterize the amplitude of the tensor bi-spectrum as follows15:

hNL(k1,k2,k3) = −
(

4

2π2

)2 [
k3

1 k
3
2 k

3
3 G

m1n1m2n2m3n3
γγγ (k1,k2,k3)

]

×
[
Πk1
m1n1,m2n2

Πk2
m3n3,m̄n̄ k

3
3 PT(k1) PT(k2) + five permutations

]−1

.

15V. Sreenath, R. Tibrewala and L. Sriramkumar, JCAP 1312, 037 (2013).
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The third order action and the tensor bi-spectrum
The third order action that leads to the tensor bi-spectrum is given by16

S3
γγγ [γij ] =

M2
Pl

2

∫
dη

∫
d3x

[
a2

2
γlj γim ∂l∂mγij − a2

4
γij γlm ∂l∂mγij

]
.

The tensor bi-spectrum calculated in the perturbative vacuum using the Maldacena
formalism, can be written in terms of the modes hk as follows:

Gm1n1m2n2m3n3
γγγ (k1,k2,k3)

= M2
Pl

[(
Πk1
m1n1,ij

Πk2
m2n2,im

Πk3
m3n3,lj

− 1

2
Πk1
m1n1,ij

Πk2
m2n2,ml

Πk3
m3n3,ij

)
k1m k1l

+ five permutations

]

×
[
hk1(ηe)hk2(ηe)hk3(ηe)Gγγγ(k1,k2,k3) + complex conjugate

]
,

where Gγγγ(k1,k2,k3) is described by the integral

Gγγγ(k1,k2,k3) = − i
4

∫ ηe

ηi

dη a2 h∗k1 h
∗
k2 h

∗
k3 ,

with ηi denoting the time when the initial conditions are imposed on the perturbations.

16J. Maldacena, JHEP 0305, 013 (2003).
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The contributions due to the three domains
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The contributions to the non-Gaussianity parameter hNL in the equilateral limit
from the first (in green), the second (in red) and the third (in blue) domains
have been plotted as a function of k/k0 for k � k0/α. Clearly, the third domain
gives rise to the maximum contribution to h

NL
.
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The tensor bi-spectrum in a matter bounce The squeezed limit and the consistency relation

The effect of the long wavelength tensor modes
Since the amplitude of a long wavelength mode freezes on super-Hubble
scales during inflation, such modes can be treated as a background as far
as the smaller wavelength modes are concerned. Let us denote the constant
amplitude of the long wavelength tensor mode as γB

ij .

In the presence of such a long wavelength mode, the background FLRW met-
ric can be written as

ds2 = −dt2 + a2(t) [eγ
B

]ij dxi dxj ,

i.e. the spatial coordinates are modified according to a spatial transformation
of the form x′ = Λx, where Λij = [eγ

B /2]ij .

Under such a spatial transformation, the small wavelength tensor perturbation
transforms as17

γkij → det (Λ−1) γΛ−1 k
ij ,

where det (Λ−1) = 1.

17S. Kundu, JCAP 1404, 016 (2014).
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ij .

In the presence of such a long wavelength mode, the background FLRW met-
ric can be written as

ds2 = −dt2 + a2(t) [eγ
B

]ij dxi dxj ,

i.e. the spatial coordinates are modified according to a spatial transformation
of the form x′ = Λx, where Λij = [eγ

B /2]ij .

Under such a spatial transformation, the small wavelength tensor perturbation
transforms as17

γkij → det (Λ−1) γΛ−1 k
ij ,

where det (Λ−1) = 1.

17S. Kundu, JCAP 1404, 016 (2014).
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The behavior of the two and three-point functions
On using the above results, one finds that the tensor two-point function in the
presence of a long wavelength mode denoted by, say, the wavenumber k, can
be written as

〈γ̂k1
m1n1

γ̂k2
m2n2

〉k =
(2π)2

2 k3
1

Πk1
m1n1,m2n2

4
PT(k1) δ(3)(k1 + k2)

×
[
1−

(
nT − 3

2

)
γB
ij n̂1i n̂1j

]
,

where n̂1i = k1i/k1.

One can also show that, in the presence of a long wavelength mode, the
tensor bi-spectrum can be written as18

〈 γ̂k1
m1n1

γ̂k2
m2n2

γ̂k3
m3n3

〉k3 = − (2π)5/2

4 k3
1 k

3
3

(
nT − 3

32

)
P

T
(k1)P

T
(k3)

×Πk1
m1n1,m2n2

Πk3
m3n3,ij

n̂1i n̂1j δ
3(k1 + k2).

18V. Sreenath and L. Sriramkumar, JCAP 1410, 021 (2014).
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The complete contribution to h
NL
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The behavior of h
NL

in the equilateral (in blue) and the squeezed (in red) limits
plotted as a function of k/k0 for k � k0/α. The resulting h

NL
is considerably

small when compared to the values that arise in de Sitter inflation wherein
3/8 . hNL . 1/2. Moreover, we find that hNL behaves as k2 in the equilateral
and the squeezed limits, with similar amplitudes19.

19D. Chowdhury, V. Sreenath and L. Sriramkumar, JCAP 1511, 002 (2015).
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Summary

Summary

Scale invariant magnetic fields of observable strengths can be generated
in a class of bouncing models. However, as in the inflationary context,
they are also plagued by the problem of backreaction.

As in the case of the scalar and tensor perturbations, the power spectrum
of the magnetic field remains invariant under a two parameter family of
transformations (called the duality transformations) of the non-minimal
coupling function.
In a matter bounce which leads to a scale invariant tensor power spec-
trum as de Sitter inflation does, the amplitude of the tensor bi-spectrum
proves to be considerably smaller. Moreover, due to the rapid growth of
the amplitude of the tensor modes as one approaches the bounce, the
consistency relation governing the tensor bi-spectrum is violated in these
scenarios.
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Summary

Issues confronting bouncing models

The growth of the pertubations as one approaches the bounce during the
contracting phase causes serious concerns about the validity of linear
perturbation theory near the bounce. Is it, for instance, sufficient if the
perturbations remain small in specific gauges? Is a divergent curvature
perturbation acceptable? These are issues of considerable importance
and they need to be addressed satisfactorily.

Analysis in the cases of a few specific examples seem to suggest that
bouncing models lead to a large tensor-to-scalar ratio that is inconsistent
with the observations20. Is it possible to construct models with lower
tensor amplitudes?
After the bounce, the universe needs to transit to a radiation dominated
epoch. How can this be achieved? Does this process affect the evolution
of the large scale perturbations21?
Does the growth of perturbations near the bounce naturally lead to large
levels of non-Gaussianities in bouncing models22?

20L. E. Allen and D. Wands, Phys. Rev. 70, 063515 (2004).
21Y-F. Cai, R. Brandenberger and X. Zhang, Phys. Letts. B 703, 25 (2011).
22J. Quintin, Z. Sherkatghanad, Y-F. Cai and R. Brandenberger, Phys. Rev. D 92, 062532 (2015).

L. Sriramkumar (IIT Madras, Chennai) Bouncing universes July 25, 2016 44 / 45



Summary

Issues confronting bouncing models

The growth of the pertubations as one approaches the bounce during the
contracting phase causes serious concerns about the validity of linear
perturbation theory near the bounce. Is it, for instance, sufficient if the
perturbations remain small in specific gauges? Is a divergent curvature
perturbation acceptable? These are issues of considerable importance
and they need to be addressed satisfactorily.
Analysis in the cases of a few specific examples seem to suggest that
bouncing models lead to a large tensor-to-scalar ratio that is inconsistent
with the observations20. Is it possible to construct models with lower
tensor amplitudes?

After the bounce, the universe needs to transit to a radiation dominated
epoch. How can this be achieved? Does this process affect the evolution
of the large scale perturbations21?
Does the growth of perturbations near the bounce naturally lead to large
levels of non-Gaussianities in bouncing models22?

20L. E. Allen and D. Wands, Phys. Rev. 70, 063515 (2004).
21Y-F. Cai, R. Brandenberger and X. Zhang, Phys. Letts. B 703, 25 (2011).
22J. Quintin, Z. Sherkatghanad, Y-F. Cai and R. Brandenberger, Phys. Rev. D 92, 062532 (2015).

L. Sriramkumar (IIT Madras, Chennai) Bouncing universes July 25, 2016 44 / 45



Summary

Issues confronting bouncing models

The growth of the pertubations as one approaches the bounce during the
contracting phase causes serious concerns about the validity of linear
perturbation theory near the bounce. Is it, for instance, sufficient if the
perturbations remain small in specific gauges? Is a divergent curvature
perturbation acceptable? These are issues of considerable importance
and they need to be addressed satisfactorily.
Analysis in the cases of a few specific examples seem to suggest that
bouncing models lead to a large tensor-to-scalar ratio that is inconsistent
with the observations20. Is it possible to construct models with lower
tensor amplitudes?
After the bounce, the universe needs to transit to a radiation dominated
epoch. How can this be achieved? Does this process affect the evolution
of the large scale perturbations21?

Does the growth of perturbations near the bounce naturally lead to large
levels of non-Gaussianities in bouncing models22?

20L. E. Allen and D. Wands, Phys. Rev. 70, 063515 (2004).
21Y-F. Cai, R. Brandenberger and X. Zhang, Phys. Letts. B 703, 25 (2011).
22J. Quintin, Z. Sherkatghanad, Y-F. Cai and R. Brandenberger, Phys. Rev. D 92, 062532 (2015).

L. Sriramkumar (IIT Madras, Chennai) Bouncing universes July 25, 2016 44 / 45



Summary

Issues confronting bouncing models

The growth of the pertubations as one approaches the bounce during the
contracting phase causes serious concerns about the validity of linear
perturbation theory near the bounce. Is it, for instance, sufficient if the
perturbations remain small in specific gauges? Is a divergent curvature
perturbation acceptable? These are issues of considerable importance
and they need to be addressed satisfactorily.
Analysis in the cases of a few specific examples seem to suggest that
bouncing models lead to a large tensor-to-scalar ratio that is inconsistent
with the observations20. Is it possible to construct models with lower
tensor amplitudes?
After the bounce, the universe needs to transit to a radiation dominated
epoch. How can this be achieved? Does this process affect the evolution
of the large scale perturbations21?
Does the growth of perturbations near the bounce naturally lead to large
levels of non-Gaussianities in bouncing models22?

20L. E. Allen and D. Wands, Phys. Rev. 70, 063515 (2004).
21Y-F. Cai, R. Brandenberger and X. Zhang, Phys. Letts. B 703, 25 (2011).
22J. Quintin, Z. Sherkatghanad, Y-F. Cai and R. Brandenberger, Phys. Rev. D 92, 062532 (2015).

L. Sriramkumar (IIT Madras, Chennai) Bouncing universes July 25, 2016 44 / 45



Thank you for your attention


	Introduction
	
	
	

	Bouncing scenarios
	Generation of scale invariant magnetic fields in bouncing universes
	
	
	

	Duality and scale invariant magnetic fields
	
	

	The tensor bi-spectrum in a matter bounce
	
	
	

	Summary

