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Introduction Conventions and notations

A few words on the conventions and notations

F We shall work in units such that c = ~ = 1, and define the Planck mass to be M
Pl

=
(8πG)−1/2.

F We shall assume the background universe to be described by the following spatially
flat, Friedmann-Lemaître-Robertson-Walker (FLRW) line-element:

ds2 = −dt2 + a2(t) dx2 = a2(η)
(
−dη2 + dx2

)
,

where t is the cosmic time, a(t) is the scale factor and η =
∫

dt/a(t) denotes the
conformal time coordinate.

F We shall denote differentiation with respect to the cosmic and the conformal times t
and η by an overdot and an overprime, respectively.

F Further, as usual, H = ȧ/a shall denote the Hubble parameter associated with the
FLRW universe.
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Bouncing scenarios

Bouncing scenarios: An alternative to inflation1

F Bouncing models correspond to situations wherein the universe initially goes through
a period of contraction until the scale factor reaches a certain minimum value before
transiting to the expanding phase.

F They offer an alternative to inflation to overcome the horizon problem, as they permit
well motivated, Minkowski-like initial conditions to be imposed on the perturbations at
early times during the contracting phase.

F However, matter fields may have to violate the null energy condition near the bounce
in order to give rise to such a scale factor. Also, there exist (genuine) concerns
whether such an assumption about the scale factor is valid in a domain where general
relativity is expected to fail and quantum gravitational effects are supposed to take
over.

1See, for instance, M. Novello and S. P. Bergliaffa, Phys. Rep. 463, 127 (2008);
D. Battefeld and P. Peter, Phys. Rep. 571, 1 (2015).
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Bouncing scenarios

The resolution of the horizon problem in inflation

Left: The radiation from the CMB arriving at us from regions separated by more than the
Hubble radius at the last scattering surface (which subtends an angle of about 1◦ today)
could not have interacted before decoupling.

Right: An illustration of how an early and sufficiently long epoch of inflation helps in re-
solving the horizon problem2.

2Images from W. Kinney, astro-ph/0301448.
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Bouncing scenarios

Bringing the modes inside the Hubble radius
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A schematic diagram illustrating the behavior of the physical wavelength λP ∝ a (the
green lines) and the Hubble radius H−1 (the blue line) during inflation and the radiation
dominated epochs3.

3See, for example, E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley Publishing Company,
New York, 1990), Fig. 8.4.
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Bouncing scenarios

Overcoming the horizon problem in bouncing models
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ĤAS

|Ainii �! |Aki

�k

| 
AS
i =

X

i

ci|'ii ⌦ |Ainii �!
X

i

(ci|'ii ⌦ |Aii)

1

tR ti 0 `Pl x

=)

`Pl � / k�1
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Evolution of the physical wavelength and the Hubble radius in a bouncing scenario4.
4Figure from, D. Battefeld and P. Peter, Phys. Rept. 571, 1 (2015).
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Bouncing scenarios

Violation of the null energy condition

Recall that, according to the Friedmann equations

Ḣ = − 4πG (ρ+ p) .

In any bouncing scenario, the Hubble parameter is negative before the bounce, crosses
zero at the bounce and is positive thereafter.

Evidently, Ḣ will be positive near the bounce, which implies that (ρ+ p) has to be negative
in this domain. In other words, the null energy condition needs to be violated in order to
achieve a bounce.

L. Sriramkumar (IIT Madras, Chennai) Bouncing universes November 21, 2016 9 / 51



Bouncing scenarios

Violation of the null energy condition

Recall that, according to the Friedmann equations
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Bouncing scenarios

Classical bounces and sources

Consider for instance, bouncing models of the form

a(η) = a0

(
1 +

η2

η2
0

)q
= a0

(
1 + k2

0 η
2
)q
,

where a0 is the value of the scale factor at the bounce (i.e. when η = 0), η0 = 1/k0

denotes the time scale of the duration of the bounce and q > 0. We shall assume that the
scale k0 associated with the bounce is of the order of the Planck scale M

Pl
.

The above scale factor can be achieved with the help of two fluids with constant equation
of state parameters w1 = (1−q)/(3 q) and w2 = (2−q)/(3 q). The energy densities of these
fluids behave as ρ1 = M1/a

(2 q+1)/q and ρ2 = M2/a
2 (1+q)/q, where M1 = 12 k2

0 M
2
Pl
a

1/q
0

and M2 = −M1 a
1/q
0 .

Note that, when q = 1, during very early times wherein η � −η0, the scale factor behaves
as in a matter dominated universe (i.e. a ∝ η2). Therefore, the q = 1 case is often
referred to as the matter bounce scenario. In such a case, ρ1 = 12 k2

0 M
2
Pl
a0/a

3 and
ρ2 = −12 k2

0 M
2
Pl
a2

0/a
4.
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Generation of scale invariant magnetic fields in bouncing universes Action, equations of motion and power spectra

The non-minimal action and the equation of motion

We shall consider a case wherein the electromagnetic field is coupled non-minimally to a
scalar field φ and is described by the action

S[φ,Aµ] = − 1

16π

∫
d4x
√−g J2(φ)Fµν F

µν ,

where Fµν denotes the electromagnetic field tensor which is given in terms of the vector
potential Aµ as follows:

Fµν = Aν;µ −Aµ;ν = Aν,µ −Aµ,ν .

The scalar field φ could be, for instance, one of the primary matter fields that is driving the
background evolution and J is an arbitrary function of the field.

The equation of motion governing the electromagnetic field is given by

1√−g ∂µ
[√−g J2(φ)Fµν

]
= 0.
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Generation of scale invariant magnetic fields in bouncing universes Action, equations of motion and power spectra

Quantization of the electromagnetic field
In a spatially flat, FLRW universe, we can choose to work in the Coulomb gauge wherein
A0 = 0 and ∂iAi = 0. In such a gauge, upon quantization, the vector potential Âi can be
Fourier decomposed as follows5:

Âi(η,x) =
√

4π

∫
d3k

(2π)3/2

2∑

λ=1

ε̃λ i(k)
[
âλk Āk(η) eik·x + âλk

† Ā∗k(η) e−ik·x
]
,

where the modes Āk satisfy the differential equation

Ā′′k + 2
J ′

J
Ā′k + k2 Āk = 0.

If we define a new variable Ak = J Āk, then the above equation simplifies to

A′′k +

(
k2 − J ′′

J

)
Ak = 0,

and one can impose the standard Bunch-Davies initial conditions on the modes Ak at
suitably early times.

5See, for instance, J. Martin and J. Yokoyama, JCAP 0801, 025 (2008);
K. Subramanian, Astron. Nachr. 331, 110 (2010).
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Fourier decomposed as follows5:
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Generation of scale invariant magnetic fields in bouncing universes Action, equations of motion and power spectra

Power spectra of electric and magnetic fields
The energy densities associated with the electric and magnetic fields can be written in
terms of the vector potential Ai and its time and spatial derivatives as follows:

ρE =
J2

8π a2
gij A′iA

′
j ,

ρB =
J2

16π
gij glm (∂jAm − ∂mAj) (∂iAl − ∂lAi) ,

where gij = δij/a2 denotes the spatial components of the FLRW metric.

The expectation values of the corresponding operators, i.e. ρ̂E and ρ̂B , can be evaluated
in the vacuum state annihilated by the operator âλk.

The spectral energy densities of the magnetic and electric fields are found to be

PB(k) =
d〈0|ρ̂B |0〉

d ln k
=
J2(η)

2π2

k5

a4(η)
|Āk(η)|2 =

1

2π2

k5

a4(η)
|Ak(η)|2,

PE(k) =
d〈0|ρ̂E |0〉

d ln k
=
J2(η)

2π2

k3

a4(η)
|Ā′k(η)|2 =

1

2π2

k3

a4(η)

∣∣∣∣A′k(η)− J ′(η)

J(η)
Ak(η)

∣∣∣∣
2

.
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|Āk(η)|2 =

1

2π2

k5

a4(η)
|Ak(η)|2,

PE(k) =
d〈0|ρ̂E |0〉

d ln k
=
J2(η)

2π2

k3

a4(η)
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in the vacuum state annihilated by the operator âλk.

The spectral energy densities of the magnetic and electric fields are found to be

PB(k) =
d〈0|ρ̂B |0〉

d ln k
=
J2(η)

2π2

k5

a4(η)
|Āk(η)|2 =

1

2π2

k5

a4(η)
|Ak(η)|2,

PE(k) =
d〈0|ρ̂E |0〉

d ln k
=
J2(η)

2π2

k3

a4(η)
|Ā′k(η)|2 =

1

2π2

k3

a4(η)

∣∣∣∣A′k(η)− J ′(η)

J(η)
Ak(η)

∣∣∣∣
2

.
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Generation of scale invariant magnetic fields in bouncing universes Action, equations of motion and power spectra

Power spectra in power law inflation
For power law inflation described by the scale factor a(η) = a1 (−η/η1)β+1 and for cou-
pling function of the form J(η) = J0 a

n(η), one can show that the power spectrum of the
magnetic field is given by6

PB(k) = F(m)H4 (−k η)4+2m,

where m = (β + 1)n = α for α ≤ 1/2 and m = 1− α for α ≥ 1/2, while

F(m) =
[
(2π) 22m+1 Γ2(m+ 1/2) cos2(πm)

]−1
.

The corresponding spectrum for the electric field can be obtained to be

PE(k) =
G(m)

2π2
H4(−k η)4+2m,

where m = 1 + α if α ≤ −1/2 and m = −α for α ≥ −1/2, while

G(m) =
[
(2π) 22m+3 Γ2(m+ 3/2) cos2(πm)

]−1
.

It is evident that m = −2 leads to a scale invariant spectrum for the magnetic field which
corresponds to either α = 3 or α = −2.

6See, J. Martin and J. Yokoyama, JCAP 0801, 025 (2008); K. Subramanian, Astron. Nachr. 331, 110 (2010).
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Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

Modeling the bounce and the non-minimal coupling

We shall model the bounce by assuming that the scale factor a(η) behaves as follows:

a(η) = a0

(
1 +

η2

η2
0

)q
= a0

(
1 + k2

0 η
2
)q
,

which we had discussed earlier.

Note that the above scale factor reduces to the simple power law form with a(η) ∝ η2 q at
very early times (i.e. when η � −η0).

We shall assume that the coupling function can be expressed in terms of the scale factor
as

J(η) = J0 a
n(η).
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Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

E-N -folds

The conventional e-fold N is defined N = log (a/a0) so that a(N) = a0 expN . However,
the function eN is a monotonically increasing function of N .

In a bouncing scenario, an obvious choice for the scale factor seems to be7

a(N ) = a0 exp (N 2/2),

with N being the new time variable that we shall consider for integrating the differential
equation governing Āk.

For want of a better name, we shall refer to the variable N as e-N -fold since the scale
factor grows roughly by the amount eN between N and (N + 1).

7L. Sriramkumar, K. Atmjeet and R. K. Jain, JCAP 1509, 010 (2015).
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Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

The behavior of J ′′/J

The behavior of the quantity J ′′/J has been plotted as a function of N for q = 1 and
n = 3/2 (on the left) and n = −1 (on the right). Note that the maximum value of J ′′/J is
roughly of the order of k2

0.
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Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

Analytical solutions for the modes at early times

At very early times (i.e. for η � −η0), the scale factor simplifies to the power law form
a(η) ∝ η2 q. During such times, the non-minimal coupling function J also behaves as
J(η) ∝ ηγ , where we have set γ = 2n q.

In such a case, we have J ′′/J ' γ (γ − 1)/η2 and it is easy to show that the solutions to
the modes of the electromagnetic vector potential Ak can be expressed as

Ak(η) =
√
−k η

[
C1(k) Jγ−1/2(−k η) + C2(k) J−γ+1/2(−k η)

]
.

One finds that, for the Bunch-Davies initial conditions, C1(k) and C2(k) are given by

C1(k) =

√
π

4 k

e−i π γ/2

cos (π γ)
and C2(k) =

√
π

4 k

ei π (γ+1)/2

cos (π γ)
.

It can also be shown that

A′k(η)− J ′

J
Ak(η) = k

√
−k η

[
C1(k) Jγ+1/2(−k η)− C2(k) J−γ−1/2(−k η)

]
.
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Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

Analytical solutions near the bounce
Note that, when n > 0, J ′′/J has a maximum at the bounce. In such a case, for k � k0, k2 � J ′′/J
around the bounce. Hence, upon ignoring the k2 in the equation governing Āk, we can integrate
the equation to yield

Ā′k(η) ' Ā′k(η∗)
J2(η∗)

J2(η)
,

where η∗ is a time when k2 � J ′′/J before the bounce. The above equation can be integrated to
arrive at

Āk(η) ' Āk(η∗) + Ā′k(η∗)

η∫

η∗

dη
J2(η∗)

J2(η)
= Āk(η∗) + Ā′k(η∗) a

2n(η∗)

η∫

η∗

dη

a2n(η)
,

where we have set the constant of integration to be Āk(η∗).

When γ = 3, we can evaluate the above integral to obtain that

Āk(η) ' Āk(η∗) + Ā′k(η∗)
a2n(η∗)

a2n
0

η0

8

{
η

η0

5 + 3 (η/η0)2

[1 + (η/η0)2]
2 + 3 tan−1

(
η

η0

)

− η∗
η0

5 + 3 (η∗/η0)2

[1 + (η∗/η0)2]
2 − 3 tan−1

(
η∗
η0

)}
.
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Generation of scale invariant magnetic fields in bouncing universes Numerical analysis

Comparison of the numerical and analytical results
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The behavior of the absolute values of Āk (on the left) and its derivative Ā′k (on the right)
has been plotted for the mode k = 10−10 k0 with k0/MPl

= e−25 = 1.389 × 10−11 for the
case wherein n = 3/2, q = 1, a0 = 10−10 and J0 = 104. The dashed red curves represent
the analytical approximation around the bounce that can be arrived at for modes such that
k � k0.
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Generation of scale invariant magnetic fields in bouncing universes Results

Power spectra of magnetic and electric fields

The power spectra of the magnetic (in blue) and the electric (in red) fields for the cases
wherein (q, n) = (1, 3/2) (corresponding to γ = 3, on the left) and (q, n) = (1,−1) (corre-
sponding to γ = −2, on the right). We have worked with the same values of k0, a0 and J0

as in the previous figure. The power spectra of the electric field are along expected lines,
behaving as k4−2 γ = k−2 when γ = 3 and k6+2 γ = k2 when γ = −2 (indicated by the
dotted green lines).
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Generation of scale invariant magnetic fields in bouncing universes Results

Spectrum of observable strengths

The power spectra with q = 1 and n = −1, corresponding to γ = −2 has been plotted for
a wide range of wavenumbers. We have set k0/MPl

= 1, a0 = 4 × 10−29 and J0 = 104,
which lead to magnetic fields in the early universe that correspond to observable strengths
today8.

8L. Sriramkumar, K. Atmjeet and R. K. Jain, JCAP 1509, 010 (2015).
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Generation of scale invariant magnetic fields in bouncing universes Results

The issue of backreaction

The behavior of the energy density in the electric and magnetic fields for the mode k =
10−20 k0 has been plotted (in blue) along with the energy density of the background (in
red). We have worked with the same values of the various parameters as in the last
figure.
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Duality and scale invariant magnetic fields Analytical solutions for the electromagnetic modes

The behavior of J ′′/J
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η/η0
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η
2 0
J

′′
(η
)
/J

(η
)

The behavior of η2
0 J
′′/J , which depends only on η/η0, has been plotted for γ = 3 (in blue)

and γ = 5 (in red). The figure has been plotted over a very narrow range of η/η0 in order to
illustrate the presence of a single maximum for γ = 3 and two maxima and one minimum
for γ = 5.
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Duality and scale invariant magnetic fields Analytical solutions for the electromagnetic modes

Analytical solutions near the bounce for arbitrary γ
Recall that, near the bounce, when n > 0, for scales of cosmological interest such that
k � k0, we had obtained that

Āk(η) ' Āk(η∗) + Ā′k(η∗)

η∫

η∗

dη̃
J2(η∗)
J2(η̃)

= Āk(η∗) + Ā′k(η∗) a
2n(η∗)

η∫

η∗

dη̃

a2n(η̃)
,

where η∗ is a time when k2 � J ′′/J before the bounce and we have set the constant of
integration to be Āk(η∗).

The above integral can, in fact, be carried out for an arbitrary γ to arrive at

Āk(η) ' Āk(η∗) + Ā′k(η∗)
a2n(η∗)
a2n

0

×
[
η 2F1

(
1

2
, γ;

3

2
;−η

2

η2
0

)
− η∗ 2F1

(
1

2
, γ;

3

2
;−η

2
∗
η2

0

)]
,

where 2F1(a, b, c, z) denotes the hypergeometric function9.

9D. Chowdhury, L. Sriramkumar and R. K. Jain, Phys. Rev. D 94, 083512 (2016).
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Duality and scale invariant magnetic fields Analytical solutions for the electromagnetic modes

Power spectra before and after the bounce
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Left: The dimensionless power spectra of the magnetic (in blue) and electric (in red) fields,
evaluated before the bounce at η = −αη0 have been plotted as a function of k/k0 for
γ = 3, q = 1, a0 = 8.73× 1010 and α = 105.

Right: The corresponding power spectra evaluated after the bounce at η = β η0, with
β = 102. We should mention that the values of the parameters we have worked with lead
to magnetic fields of observed strengths today corresponding to a few femto gauss10.

10D. Chowdhury, L. Sriramkumar and R. K. Jain, Phys. Rev. D 94, 083512 (2016).
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to magnetic fields of observed strengths today corresponding to a few femto gauss10.

10D. Chowdhury, L. Sriramkumar and R. K. Jain, Phys. Rev. D 94, 083512 (2016).
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Duality and scale invariant magnetic fields Duality invariance

Duality transformations

It is known that the solutions to the equations of motion governing the scalar and tensor
perturbations are invariant under a certain transformation referred to as the duality trans-
formation11. For instance, it can be shown that the dual solution to the de Sitter case
corresponds to the matter bounce. Both these cases lead to scale invariant spectra.

In the case of electromagnetic fields of our interest here, given a coupling function J , its
dual function, say, J̃ , which leads to the same J̃ ′′/J̃ is found to be

J(η)→ J̃(η) = C J(η)

η∫

η∗

dη̄

J2(η̄)
,

where C and η∗ are constants. These constants can be suitably chosen to arrive at a
physically reasonable form for J̃ .

It can be shown that the cases corresponding to γ = 3 and γ = −2 in the bouncing models
which had led to scale invariant spectra are dual to each other.

11D. Wands, Phys. Rev. D 60, 023507 (1999).
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Duality and scale invariant magnetic fields Duality invariance

A symmetric coupling function and its asymmetric dual
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The coupling function J (in blue) and its dual J̃ (in red) have been plotted as a function of
η/η0 for γ = 3 and η∗ → −∞. Also, we have chosen the constant C to be C/k0 = 5.7×1032

so that the dual function J̃ matches the original coupling function J after the bounce12.

12D. Chowdhury, L. Sriramkumar and R. K. Jain, Phys. Rev. D 60, 023507 (1999).
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The tensor bi-spectrum in a matter bounce The tensor power spectrum in a matter bounce

Equation governing the tensor perturbations
Upon quantization, the tensor perturbations can be written in terms of the corresponding
modes, say, hk, as follows:

γ̂ij(η,x) =

∫
d3k

(2π)3/2
γ̂kij(η) eik·x

=
∑

s

∫
d3k

(2π)3/2

(
b̂sk ε

s
ij(k)hk(η) eik·x + b̂s†k εs∗ij (k)h∗k(η) e−ik·x

)
,

where b̂sk and b̂sk
† are the usual creation and annihilation operators that satisfy the standard

commutation relations, while εsij(k) represents the transverse and traceless polarization
tensor describing gravitational waves.

The modes hk are governed by the differential equation

h′′k + 2H h′k + k2 hk = 0

where H = a′/a and, in terms of the variable uk = M
Pl
a hk/

√
2, the above equation

reduces to
u′′k +

(
k2 − a′′

a

)
uk = 0.
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The tensor bi-spectrum in a matter bounce The tensor power spectrum in a matter bounce

The tensor power spectrum: Definition

The tensor power spectrum PT(k) is defined through the relation

〈γ̂km1n1
γ̂pm2n2

〉 =
(2π)2

8 k3
Πk
m1n1,m2n2

PT(k) δ3 (k + p) ,

where
Πk
m1n1,m2n2

=
∑

s

εsm1n1
(k) εs∗m2n2

(k).

In terms of the quantities hk and uk, the tensor power spectrum PT(k) in the Bunch-Davies
vacuum is given by

PT(k) = 4
k3

2π2
|hk|2 =

8

M2
Pl

k3

2π2

( |uk|
a

)2

,

with the right hand side being evaluated at suitably late times13.

13See, for example, L. Sriramkumar, Curr. Sci. 97, 868 (2009).
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The matter bounce

We shall assume that the scale factor describing the bouncing scenario is given in terms
of the conformal time coordinate η by the relation

a(η) = a0

(
1 + η2/η2

0

)
= a0

(
1 + k2

0 η
2
)
.

As we had discussed earlier, at very early times, viz. when η � −η0, the scale factor
behaves as in a matter dominated epoch14.

The quantity a′′/a corresponding to the above scale factor is given by

a′′

a
=

2 k2
0

1 + k2
0 η

2
,

which has essentially a Lorentzian profile.

14See, for example, R. Brandenberger, arXiv:1206.4196.
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The tensor bi-spectrum in a matter bounce The tensor power spectrum in a matter bounce

The tensor modes in the first domain

Let us divide the period before the bounce into two domains, with the first domain be
determined by the condition −∞ < η < −αη0, where α is a relatively large number, which
we shall set to be, say, 105.

In the first domain, we can assume that the scale factor behaves as a(η) ' a0 k
2
0 η

2, so
that a′′/a = 2/η2. Since the condition k2 = a′′/a corresponds to, say, ηk = −

√
2/k, the

initial conditions can be imposed when η � ηk.

The modes hk can be easily obtained in such a case and the positive frequency modes
that correspond to the vacuum state at early times are given by

hk(η) =

√
2

M
Pl

1√
2 k

1

a0 k2
0 η

2

(
1− i

k η

)
e−i k η.
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The tensor bi-spectrum in a matter bounce The tensor power spectrum in a matter bounce

The modes in the second domain

Let us now consider the behavior of the modes in the domain −αη0 < η < 0. Since we
are interested in scales much smaller than k0, we shall assume that ηk � −αη0, which
corresponds to k � k0/α.

In such a case, upon ignoring the k2 term, the equation governing hk can be immediately
integrated to yield

hk(η) ' hk(η∗) + h′k(η∗) a
2(η∗)

∫ η

η∗

dη̃

a2(η̃)
,

where η∗ is a suitably chosen time and the scale factor a(η) is given by the complete
expression.

If we choose η∗ = −αη0, we can make use of the solution in the first domain to obtain the
following solution in the second domain:

hk = Ak +Bk f(k0 η),

where
f(k0 η) =

k0 η

1 + k2
0 η

2
+ tan−1 (k0 η) .
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Evolution of the tensor modes across the bounce
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A comparison of the numerical results (in blue) with the analytical results (in red) for the
amplitude of the tensor mode |hk| corresponding to the wavenumber k/k0 = 10−20. We
have set a0 = 105, and we have chosen α = 105 for plotting the analytical results15.

15D. Chowdhury, V. Sreenath and L. Sriramkumar, JCAP 1511, 002 (2015)
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The third domain and the tensor power spectrum

The quantities Ak and Bk are given by

Ak =

√
2

M
Pl

1√
2 k

1

a0 α2

(
1 +

i k0

αk

)
ei α k/k0 +Bk f(α),

Bk =

√
2

M
Pl

1√
2 k

1

2 a0 α2

(
1 + α2

)2
(

3 i k0

α2 k
+

3

α
− i k

k0

)
ei α k/k0 .

If we evaluate the tensor power spectrum after the bounce at η = β η0, we find that it can
be expressed as

PT(k) = 4
k3

2π2
|Ak +Bk f(β)|2.
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The tensor power spectrum

10−50 10−46 10−42 10−38 10−34 10−30 10−26 10−22 10−18 10−14 10−10 10−6 10−2

k/k0

10−10

10−8

10−6

10−4

10−2

100

102

104

106

108

1010

P T
(k
)

The behavior of the tensor power spectrum has been plotted as a function of k/k0 for a
wide range of wavenumbers. In plotting this figure, we have set k0/MPl

= 1, a0 = 105,
α = 105 and β = 102. Note that the power spectrum is scale invariant for k � k0/α.
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Tensor bi-spectrum and non-Gaussianity parameter

The tensor bi-spectrum, evaluated at the conformal time, say, ηe, is defined as

〈γ̂k1
m1n1

(ηe) γ̂
k2
m2n2

(ηe) γ̂
k3
m3n3

(ηe)〉 = (2π)3 Bm1n1m2n2m3n3
γγγ (k1,k2,k3)

× δ(3) (k1 + k2 + k3)

and, for convenience, we shall set

Bm1n1m2n2m3n3
γγγ (k1,k2,k3) = (2π)−9/2 Gm1n1m2n2m3n3

γγγ (k1,k2,k3).

As in the scalar case, one can define a dimensionless non-Gaussianity parameter to char-
acterize the amplitude of the tensor bi-spectrum as follows16:

h
NL

(k1,k2,k3) = −
(

4

2π2

)2 [
k3

1 k
3
2 k

3
3 G

m1n1m2n2m3n3
γγγ (k1,k2,k3)

]

×
[
Πk1
m1n1,m2n2

Πk2
m3n3,m̄n̄ k

3
3 PT

(k1) P
T

(k2) + five permutations
]−1

.

16V. Sreenath, R. Tibrewala and L. Sriramkumar, JCAP 1312, 037 (2013).
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The third order action and the tensor bi-spectrum
The third order action that leads to the tensor bi-spectrum is given by17

S3
γγγ [γij ] =

M2
Pl

2

∫
dη

∫
d3x

[
a2

2
γlj γim ∂l∂mγij −

a2

4
γij γlm ∂l∂mγij

]
.

The tensor bi-spectrum calculated in the perturbative vacuum using the Maldacena formalism, can
be written in terms of the modes hk as follows:

Gm1n1m2n2m3n3
γγγ (k1,k2,k3)

= M2
Pl

[(
Πk1
m1n1,ij

Πk2
m2n2,im

Πk3

m3n3,lj
− 1

2
Πk1
m1n1,ij

Πk2

m2n2,ml
Πk3
m3n3,ij

)
k1m k1l

+ five permutations

]

×
[
hk1(ηe)hk2(ηe)hk3(ηe)Gγγγ(k1,k2,k3) + complex conjugate

]
,

where Gγγγ(k1,k2,k3) is described by the integral

Gγγγ(k1,k2,k3) = − i
4

∫ ηe

ηi

dη a2 h∗k1 h
∗
k2 h

∗
k3 ,

with ηi denoting the time when the initial conditions are imposed on the perturbations.

17J. Maldacena, JHEP 0305, 013 (2003).
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The tensor bi-spectrum in a matter bounce The tensor bi-spectrum

The contributions due to the three domains
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The contributions to the non-Gaussianity parameter hNL in the equilateral limit from the
first (in green), the second (in red) and the third (in blue) domains have been plotted as
a function of k/k0 for k � k0/α. Clearly, the third domain gives rise to the maximum
contribution to hNL

18.
18D. Chowdhury, V. Sreenath and L. Sriramkumar, JCAP 1511, 002 (2015)
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The tensor bi-spectrum in a matter bounce The squeezed limit and the consistency relation

The effect of the long wavelength tensor modes

Since the amplitude of a long wavelength mode freezes on super-Hubble scales during
inflation, such modes can be treated as a background as far as the smaller wavelength
modes are concerned. Let us denote the constant amplitude of the long wavelength tensor
mode as γB

ij .

In the presence of such a long wavelength mode, the background FLRW metric can be
written as

ds2 = −dt2 + a2(t) [eγ
B

]ij dxi dxj ,

i.e. the spatial coordinates are modified according to a spatial transformation of the form
x′ = Λx, where Λij = [eγ

B /2]ij .

Under such a spatial transformation, the small wavelength tensor perturbation transforms
as19

γkij → det (Λ−1) γΛ−1 k
ij ,

where det (Λ−1) = 1.

19S. Kundu, JCAP 1404, 016 (2014).
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The tensor bi-spectrum in a matter bounce The squeezed limit and the consistency relation

The behavior of the two and three-point functions

On using the above results, one finds that the tensor two-point function in the presence of
a long wavelength mode denoted by, say, the wavenumber k, can be written as

〈γ̂k1
m1n1

γ̂k2
m2n2
〉k =

(2π)2

2 k3
1

Πk1
m1n1,m2n2

4
PT(k1) δ(3)(k1 + k2)

×
[
1−

(
nT − 3

2

)
γB
ij n̂1i n̂1j

]
,

where n̂1i = k1i/k1.

One can also show that, in the presence of a long wavelength mode, the tensor bi-
spectrum can be written as20

〈 γ̂k1
m1n1

γ̂k2
m2n2

γ̂k3
m3n3

〉k3 = − (2π)5/2

4 k3
1 k

3
3

(
nT − 3

32

)
PT(k1)PT(k3)

×Πk1
m1n1,m2n2

Πk3
m3n3,ij

n̂1i n̂1j δ
3(k1 + k2).

20V. Sreenath and L. Sriramkumar, JCAP 1410, 021 (2014).
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The tensor bi-spectrum in a matter bounce The squeezed limit and the consistency relation

The complete contribution to h
NL
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h
N
L
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)

The behavior of h
NL

in the equilateral (in blue) and the squeezed (in red) limits plotted as a function
of k/k0 for k � k0/α. The resulting h

NL
is considerably small when compared to the values that

arise in de Sitter inflation wherein 3/8 . h
NL

. 1/2. Moreover, we find that h
NL

behaves as k2 in
the equilateral and the squeezed limits, with similar amplitudes21.

21D. Chowdhury, V. Sreenath and L. Sriramkumar, JCAP 1511, 002 (2015).
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Tensor-to-scalar ratio in bouncing universes A new model for the matter bounce

Modeling the matter bounce with scalar fields
As we had discussed, the matter bounce scenario described by the scale factor

a(η) = a0

(
1 + η2/η2

0

)
= a0

(
1 + k2

0 η
2
)

can be driven with the aid of two fluids, one which is matter and another fluid which be-
haves like radiation, but has negative energy density.

We find that the behavior can also be achieved with the help of two scalar fields, say, φ
and χ, that are governed by the following action22:

S[φ, χ] =

∫
d4x
√−g

[
−1

2
∂µφ∂

µφ− V (φ)− α
(
−1

2
∂µχ∂

µχ

)2
]
,

where α is a dimensionless constant and the potential V (φ) is given by

V (φ) =
6M2

Pl
k2

0/a
2
0

cosh6(
√

12φ/M
Pl

)
.

22R. N. Raveendran, D. Chowdhury and L. Sriramkumar, Work in progress.
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Tensor-to-scalar ratio in bouncing universes Equations of motion for the scalar perturbations

The scalar perturbations

When the scalar perturbations are taken into account, the FLRW line element can be
written as

ds2 = −(1 + 2A) dt2 + 2 a(t) (∂iB) dt dxi + a2(t) [(1− 2ψ) δij + 2 (∂i ∂jE)] dxi dxj ,

where, evidently, the quantities A, ψ, B and E represent the metric perturbations.

The gauge invariant curvature and isocurvature perturbations R and S can be defined as
in terms of the above metric perturbations and the perturbations δφ and δχ in the scalar
fields as follows:

R =
H

φ̇2 − α χ̇4

(
φ̇ δφ− α χ̇3 δχ

)
, S =

H
√
α χ̇2

φ̇2 − α χ̇4

(
χ̇ δφ− φ̇ δχ

)
.

The quantities δφ and δχ denote the gauge invariant versions of the perturbations in the
scalar fields, and are given by

δφ = δφ+
φ̇ ψ

H
, δχ = δχ+

χ̇ ψ

H
.
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Tensor-to-scalar ratio in bouncing universes Equations of motion for the scalar perturbations

Equations governing the curvature and isocurvature perturbations

We obtain the equations of motion describing the gauge invariant perturbations R and S
to be

R′′ + 2
(
7 + 9 k2

0 η
2 − 6 k4

0 η
4
)

η (1− 2 k2
0 η
−3 k4

0 η
4)
R′ + k2

(
5 + 9 k2

0 η
2
)

(−3 + 9 k2
0 η

2)
R

= − 4
(
5 + 12 k2

0 η
2
)

η (−1 + 3 k2
0 η

2)
√

3 + 3 k2
0 η

2
S ′ −

4
[
5− 22 k2

0 η
2 − 24 k4

0 η
4 + k2 η2

(
1 + k2

0 η
2
)2]

√
3 η2 (1 + k2

0 η
2)

3/2
(−1 + 3 k2

0 η
2)

S,

S ′′ + 2
(
9 + 7 k2

0 η
2 + 6 k4

0 η
4
)

η (−1 + 2 k2
0 η

2 + 3 k4
0 η

4)
S ′

+
−18 + 85 k2

0 η
2 + 25 k4

0 η
4 + 6 k6

0 η
6 + k2

(
−3 + k2

0 η
2
) (
η + k2

0 η
3
)2

(−1 + 3 k2
0 η

2) (η + k2
0 η

3)
2 S

= − 4
√

3
(
−3 + 2 k2

0 η
2
)

η
√

1 + k2
0 η

2 (−1 + 3 k2
0 η

2)
R′ − 4 k2

√
1 + k2

0 η
2

√
3 (−1 + 3 k2

0 η
2)
R.

However, note that some of the coefficients diverge at the bounce.
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Tensor-to-scalar ratio in bouncing universes Equations of motion for the scalar perturbations

The uniform-χ gauge
The above issue can be avoided by working in a gauge wherein δχ = 023. In this gauge,
the curvature and isocurvature perturbations simplify to be

R = ψ +
2HM2

Pl

φ̇2 − α χ̇4

(
ψ̇ +H A

)
, S =

2HM2
Pl

√
α χ̇2

φ̇2 − α χ̇4

(
χ̇

φ̇

) (
ψ̇ +H A

)
.

The equations of motion for R and S then lead to the following equations for the metric
perturbations A and ψ:

A′′ + 4HA′ +
(
k2

3
− 5

4

αχ′4

a2M2
Pl

)
A = −3Hψ′ + 4 k2

3
ψ,

ψ′′ − 2Hψ′ + k2 ψ = −2HA′ − 5αχ′4

4M2
Pl
a2
A,

where H = a′/a. These equations prove to be helpful in evolving the scalar perturbations
across the bounce.

23L. E. Allen and D. Wands, Phys. Rev. 70, 063515 (2004).
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Tensor-to-scalar ratio in bouncing universes The results

The scalar and tensor power spectra24
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Left: The evolution of the scalar (curvature Rk and isocurvature Sk) and tensor (hk) per-
turbations across the bounce for the mode k/k0 = 10−20. We have set k0/MPl

= 1,
a0 = 3× 107 and αM4

Pl
= 1.

Right: The corresponding power spectra have been plotted before (as dashed lines) as
well as after (as solid lines) the bounce.

24R. N. Raveendran, D. Chowdhury and L. Sriramkumar, Work in progress.
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Summary

Summary

F Scale invariant magnetic fields of observable strengths can be generated in a class
of bouncing models. However, as in the inflationary context, they are also plagued by
the problem of backreaction.

F As in the case of the scalar and tensor perturbations, the power spectrum of the mag-
netic field remains invariant under a two parameter family of transformations (called
the duality transformations) of the non-minimal coupling function.

F In a matter bounce which leads to a scale invariant tensor power spectrum as de
Sitter inflation does, the amplitude of the tensor bi-spectrum proves to be considerably
smaller. Moreover, due to the rapid growth of the amplitude of the tensor modes
as one approaches the bounce, the consistency relation governing the tensor bi-
spectrum is violated in these scenarios.

F It seems possible to construct matter bounce scenarios wherein the generated tensor-
to-scalar ratios are consistent with the observations.
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Summary

Issues confronting bouncing models
F The growth of the perturbations as one approaches the bounce during the contract-

ing phase causes serious concerns about the validity of linear perturbation theory
near the bounce. Is it, for instance, sufficient if the perturbations remain small in spe-
cific gauges? Is a divergent curvature perturbation acceptable? These are issues of
considerable importance and they need to be addressed satisfactorily.

F Analysis in the cases of a few specific examples seem to suggest that bouncing mod-
els lead to a large tensor-to-scalar ratio that is inconsistent with the observations25.
But it seems possible to construct models with lower tensor amplitudes. This aspect
needs to be investigated in a wider set of models.

F After the bounce, the universe needs to transit to a radiation dominated epoch. How
can this be achieved? Does this process affect the evolution of the large scale pertur-
bations26?
Does the growth of perturbations near the bounce naturally lead to large levels of
non-Gaussianities in bouncing models27?

25L. E. Allen and D. Wands, Phys. Rev. 70, 063515 (2004).
26Y-F. Cai, R. Brandenberger and X. Zhang, Phys. Letts. B 703, 25 (2011).
27J. Quintin, Z. Sherkatghanad, Y-F. Cai and R. Brandenberger, Phys. Rev. D 92, 062532 (2015).
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F The growth of the perturbations as one approaches the bounce during the contract-

ing phase causes serious concerns about the validity of linear perturbation theory
near the bounce. Is it, for instance, sufficient if the perturbations remain small in spe-
cific gauges? Is a divergent curvature perturbation acceptable? These are issues of
considerable importance and they need to be addressed satisfactorily.

F Analysis in the cases of a few specific examples seem to suggest that bouncing mod-
els lead to a large tensor-to-scalar ratio that is inconsistent with the observations25.
But it seems possible to construct models with lower tensor amplitudes. This aspect
needs to be investigated in a wider set of models.

F After the bounce, the universe needs to transit to a radiation dominated epoch. How
can this be achieved? Does this process affect the evolution of the large scale pertur-
bations26?
Does the growth of perturbations near the bounce naturally lead to large levels of
non-Gaussianities in bouncing models27?

25L. E. Allen and D. Wands, Phys. Rev. 70, 063515 (2004).
26Y-F. Cai, R. Brandenberger and X. Zhang, Phys. Letts. B 703, 25 (2011).
27J. Quintin, Z. Sherkatghanad, Y-F. Cai and R. Brandenberger, Phys. Rev. D 92, 062532 (2015).
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