Constraining the epoch of reheating with the NANOGrav 15-year data

L. Sriramkumar

Centre for Strings, Gravitation and Cosmology, Department of Physics, Indian Institute of Technology Madras, Chennai

33rd IAGRG Meeting

Birla Institute of Technology and Science, Pilani

January 2-4, 2025

Plan of the talk

NANOGrav 15-year data and the stochastic GW background

Generation of GWs by enhanced scalar perturbations on small scales 2

Can NANOGrav data constrain the epoch of reheating? 3

This talk is based on...

 S. Maity, N. Bhaumik, Md. R. Haque, D. Maity and L. Sriramkumar, Constraining the history of reheating with the NANOGrav 15-year data, arXiv:2403.16963 [astro-ph.CO], accepted for publication in JCAP.

Plan of the talk

- NANOGrav 15-year data and the stochastic GW background
- 2 Generation of GWs by enhanced scalar perturbations on small scales
- 3 Can NANOGrav data constrain the epoch of reheating?
- 4) Outlook

Pulsar timing arrays (PTAs)

The PTAs monitor an array of millisecond pulsars¹.

L. Sriramkumar (CSGC, IIT Madras, Chennai)

Hellings-Downs curve

Separation Angle Between Pulsars, ξ_{ab} [degrees]

The inter-pulsar correlations measured from 2,211 distinct pairings in the 67-pulsar array of the NANOGrav 15-year data. The dashed black line shows the Hellings-Downs correlation pattern².

²NANOGrav Collaboration (G. Agazie *et al.*), Astrophys. J. Lett. **951**, 1 (2023); For related discussion, see J. Yokoyama, arXiv:2105.07629 [gr-qc].

Constraints on the spectral amplitude and index of GWs

Constraints on the amplitude A and the index γ of the stochastic background of GWs from the NANOGrav 15-year data³.

³NANOGrav Collaboration (G. Agazie *et al.*), Astrophys. J. Lett. **951**, 1 (2023).

Constraining reheating with NANOGrav 15-year data

Stochastic GW background observed by pulsar timing arrays (PTAs)

The Bayesian evidence for a variety of astrophysical and cosmological sources for the stochastic GW background suggested by the observations of the PTAs⁴.

⁴NANOGrav Collaboration (G. Agazie *et al.*), Astrophys. J. Lett. **951**, 1 (2023).

Plan of the talk

NANOGrav 15-year data and the stochastic GW background

- 2 Generation of GWs by enhanced scalar perturbations on small scales
 - 3 Can NANOGrav data constrain the epoch of reheating?
 - 4 Outlook

Amplitude required to form significant number of PBHs

In order to form significant number of black holes, the amplitude of the perturbations on small scales has to be large enough such that the dimensionless amplitude of the scalar perturbation is close to unity⁵.

⁵Figure credit G. Franciolini.

Power spectra in ultra slow roll inflation

The scalar (in red) and the tensor power (in blue) spectra arising in different models permitting a brief epoch of ultra slow roll inflation⁶.

⁶H. V. Ragavendra, P. Saha, L. Sriramkumar and J. Silk, Phys. Rev. D **103**, 083510 (2021).

$\Omega_{_{\mathrm{GW}}}(f)$ in ultra slow roll inflation

The dimensionless spectral density of GWs $\Omega_{GW}(f)$ arising in a few different models of ultra slow roll inflation⁷.

⁷H. V. Ragavendra, P. Saha, L. Sriramkumar and J. Silk, Phys. Rev. D **103**, 083510 (2021).

L. Sriramkumar (CSGC, IIT Madras, Chennai)

Constraining reheating with NANOGrav 15-year data

Plan of the talk

- NANOGrav 15-year data and the stochastic GW background
- 2 Generation of GWs by enhanced scalar perturbations on small scales
- 3 Can NANOGrav data constrain the epoch of reheating?
 - 4 Outlook

Behavior of the comoving wave number and Hubble radius

Behavior of the comoving wave number k (horizontal lines in different colors) and the comoving Hubble radius $d_{\rm H}/a = (a H)^{-1}$ (in green) across different epochs⁸.

⁸Md. R. Haque, D. Maity, T. Paul and L. Sriramkumar, Phys. Rev. D 104, 063513 (2021).

Shape of the inflationary scalar power spectrum

We assume that the inflationary scalar power spectrum is given by⁹

$$\mathcal{P}_{\rm S}(k) = A_{\rm S} \left(\frac{k}{k_*}\right)^{n_{\rm S}-1} + A_0 \begin{cases} \left(\frac{k}{k_{\rm peak}}\right)^4 & k \le k_{\rm peak} \\ \left(\frac{k}{k_{\rm peak}}\right)^{n_0} & k \ge k_{\rm peak} \end{cases},$$

where A_s and n_s are the amplitude and spectral index of the power spectrum at the CMB pivot scale of $k_* = 0.05 \text{ Mpc}^{-1}$.

We set the reheating temperature to the rather low value of $T_{\rm re} = 50 \,{\rm MeV}$.

We shall assume that the threshold value of the density contrast for the formation of PBHs is given by¹⁰:

$$\delta_{\rm c}^{\rm an} = \frac{3\,(1+w_{\rm re})}{5+3\,w_{\rm re}}\,\sin^2\left(\frac{\pi\,\sqrt{w_{\rm re}}}{1+3\,w_{\rm re}}\right)$$

⁹For other forms of spectra, see G. Domènech, S. Pi, A. Wang and J. Wang, arXiv:2402.18965 [astro-ph.CO]. ¹⁰In this context, see T. Harada, C.-M. Yoo, and K. Kohri, Phys. Rev. D **88**, 084051 (2013).

The phase of reheating

Best-fit values

	Model	Parameter	Prior	Mean value		
	R4pF	$\log_{10}\left(\frac{k_{\text{peak}}}{\text{Mpc}^{-1}}\right)$	[6, 9]	$7.62^{+0.35}_{-0.41}$		
		$\log_{10}(A_0)$	[-3, 0]	$-1.23\substack{+0.38\\-0.66}$		
		$w_{\rm re}$	[0.1, 0.9]	0.52 ± 0.23		
		n_0	[-3.0, -1.5]	-2.26 ± 0.43		
	R3pF	$\log_{10}\left(\frac{k_{\text{peak}}}{\text{Mpc}^{-1}}\right)$	[6, 9]	$7.54\substack{+0.36\\-0.44}$		
		$\log_{10}(A_0)$	[-3, 0]	$-1.26\substack{+0.26\\-0.64}$		
		$w_{\rm re}$	[0.1, 0.9]	$0.55^{+0.39}_{-0.14}$		
				$0.5\delta_{ m c}^{ m an}$	$\delta_{ m c}^{ m an}$	$1.5\delta_{ m c}^{ m an}$
	R3pB	$\log_{10}\left(\frac{M}{M_{\odot}}\right)$	[-6, 3.5]	$-0.12\substack{+0.28\\-0.15}$	$-1.18\substack{+0.35\\-0.39}$	$-1.85\substack{+0.49\\-0.30}$
		$\log_{10}(f_{\rm PBH})$	[-20, 0]	$-0.67\substack{+0.68\\-0.16}$	$-6.6^{+6.5}_{-1.9}$	$-10.2^{+8.2}_{-9.6}$
		$w_{ m re}$	[0.1, 0.9]	$0.78\substack{+0.11 \\ -0.030}$	$0.66^{+0.23}_{-0.19}$	0.55 ± 0.17
	R2pB	$\log_{10}\left(\frac{M}{M_{\odot}}\right)$	[-6, 3.5]	$-0.24\substack{+0.38\\-0.45}$	$-1.60\substack{+0.16\\-0.14}$	$-2.45\substack{+0.20\\-0.13}$
		$w_{ m re}$	[0.1, 0.9]	$0.77\substack{+0.13 \\ -0.038}$	0.59 ± 0.16	$0.464\substack{+0.095\\-0.25}$

The best-fit values arrived at upon comparison with the NANOGrav 15-year data.

Constraints on the epoch of reheating

Constraints on the parameters in the models R3pB (on the left) and R2pB (on the right), arrived at upon comparison with the NANOGrav 15-year data¹¹.

¹¹S. Maity, N. Bhaumik, Md. R. Haque, D. Maity and L. Sriramkumar, arXiv:2403.16963 [astro-ph.CO], accepted in JCA

Generation of secondary GWs during the epoch of reheating

The dimensionless spectral energy density of the secondary GWs today $\Omega_{GW}(f)$ is plotted for a given reheating temperature and the best-fit values of the parameters in the different models¹².

¹²S. Maity, N. Bhaumik, Md. R. Haque, D. Maity and L. Sriramkumar, arXiv:2403.16963 [astro-ph.CO], accepted in JCA

Constraints from spectral distortions

Constraints on the scalar power spectrum from spectral distortions in the CMB¹³.

¹³S. Maity, N. Bhaumik, Md. R. Haque, D. Maity and L. Sriramkumar, arXiv:2403.16963 [astro-ph.CO], accepted in JCA

Formation of PBHs during the epoch of reheating

The fraction of PBHs that constitute the dark matter density today, viz. $f_{PBH}(M)$ is plotted for a given reheating temperature and the best-fit values of the parameters in the different models¹⁴.

¹⁴S. Maity, N. Bhaumik, Md. R. Haque, D. Maity and L. Sriramkumar, arXiv:2403.16963 [astro-ph.CO], accepted in JC.

Bayesian evidence

Model X	Model Y	$BF_{Y,X}$			
Model A		$\delta_{\rm c}=0.5\delta_{\rm c}^{\rm an}$	$\delta_{\rm c} = \delta_{\rm c}^{\rm an}$	$\delta_{\rm c} = 1.5\delta_{\rm c}^{\rm an}$	
SMBHB	R2pB	$1.7\pm.06$	260.04 ± 19.21	350.61 ± 27.36	

The Bayesian factors $BF_{Y,X}$ for the model R2pB that invokes primordial physics as the source of the stochastic GW background observed by the NANOGrav 15-year data, when compared to the astrophysical scenario of merging supermassive binary black holes.

Bayesian factors $BF_{Y,X}$ that far exceed unity indicate strong evidence for the model *Y* with respect to the model *X*.

Clearly, when $\delta_c = \delta_c^{an}$ and $\delta_c = 1.5 \delta_c^{an}$, the NANOGrav 15-year data strongly favors the model R2pB when compared to the SMBHM model.

Generation of secondary GWs during the epoch of reheating

The dimensionless spectral energy density of primary and secondary GWs today $\Omega_{GW}(f)$ have been plotted for a given reheating temperature and different values of the parameter describing the EoS during reheating¹⁵.

¹⁵S. Maity, N. Bhaumik, Md. R. Haque, D. Maity and L. Sriramkumar, arXiv:2403.16963 [astro-ph.CO], accepted in JC.

Outlook

Plan of the talk

- NANOGrav 15-year data and the stochastic GW background
- 2 Generation of GWs by enhanced scalar perturbations on small scales
- 3 Can NANOGrav data constrain the epoch of reheating?
- 4 Outlook

Outlook

- In this work, we assumed a specific functional form for the primordial scalar power spectrum and examined the production of PBHs and the scalar-induced, secondary GWs during the phase of reheating, which precedes the standard epoch of radiation domination.
- Specifically, we accounted for the uncertainties in the conditions for the formation of PBHs and ensured that the extent of PBHs produced remains within the observational bounds.
- We found that the scalar-induced SGWB generated during a phase of reheating with a steeper equation of state (than that of radiation) fit the NANOGrav 15-year data with a stronger Bayesian evidence than the astrophysical scenario involving GWs produced by merging supermassive binary black holes.

Collaborators

Suvashis Maity

Nilanjandev Bhaumik

Md. Riajul Haque

Debaprasad Maity

Thank you for your attention