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Introduction Conventions and notations

A few words on the conventions and notations

F We shall work in units such that c = ~ = 1, and define the Planck mass
to be M

Pl
= (8πG)−1/2.

F As is often done, particularly in the context of inflation, we shall assume
the background universe to be described by the spatially flat, Friedmann
line-element.

F We shall denote differentiation with respect to the cosmic and the confor-
mal times t and η by an overdot and an overprime, respectively.

F Moreover, N shall denote the number of e-folds.
F Further, as usual, a and H = ȧ/a shall denote the scale factor and the

Hubble parameter associated with the Friedmann universe.
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Some remarks on the computation of the power spectra during inflation

Arriving at the action governing the perturbations I
Recall that, in the ADM formalism, the spacetime metric is expressed in terms
of the lapse function N , the shift vector N i and the spatial metric hij as

ds2 = −N2 dt2 + hij
(
N i dt+ dxi

) (
N j dt+ dxj

)
,

where t and xi denote the time and the spatial coordinates, respectively.

The case of our interest is Einsteinian gravity which is sourced by a canonical
and minimally coupled scalar field, say, the inflaton φ that is governed by the
potential V (φ).
We shall work in the co-moving gauge wherein the perturbations in the scalar
field are assumed to be absent. Also, we shall assume that the spatial metric
hij is given by

hij = a2(t) e2R(t,x)
[
eγ(t,x)

]
ij
,

where R denotes the curvature perturbation describing the scalars, while γij
represents the transverse and traceless (i.e. ∂jγij = γii = 0) tensor perturba-
tions.
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Some remarks on the computation of the power spectra during inflation

Arriving at the action governing the perturbations II
The action describing such a system can be written in terms of the metric
variables N , N i and hij and the homogeneous scalar field φ as follows:

S[N,N i, hij , φ] =

∫
dt

∫
d3xN

√
h

{
M2

Pl

2

[
1

N2

(
EijE

ij − E2
)

+(3)R

]

+

[
φ̇2

2N2
− V (φ)

]}
,

where h ≡ det (hij) and (3)R is the spatial curvature associated with the
metric hij .

The quantity Eij is given by

Eij =
1

2

(
ḣij −∇iNj −∇jNi

)
,

with E = hij E
ij .

Solving the constraint equations and substituting the solutions back in the
above action permits one to arrive at the actions describing the dynamical
variables of our interest, viz. R and γij .
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Some remarks on the computation of the power spectra during inflation

The quadratic action governing the perturbations
At the linear order, the scalar and the tensor perturbations evolve indepen-
dently.

One can show that, at the quadratic order, the actions governing the curvature
perturbation R and the tensor perturbation γij are given by1

S2
RR[R] =

1

2

∫
dη

∫
d3x z2

[
R′2 − (∂R)

2
]
,

where z =
√

2 ε1MPl
a, with ε1 = Ḣ/H2 being the first slow roll parameter,

and

S2
γγ [γij ] =

M2
Pl

8

∫
dη

∫
d3x a2

[
γ′ij

2 − (∂γij)
2
]
.

These actions lead to the following equations of motion governing the Fourier
modes, say, fk and gk, of the scalar and the tensor perturbations:

f ′′k + 2 (z′/z) f ′k + k2 fk = 0,

g′′k + 2 (a′/a) g′k + k2 gk = 0.

1V. F. Mukhanov, H. A. Feldman and R. H. Brandenberger, Phys. Rep. 215, 203 (1992).
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Some remarks on the computation of the power spectra during inflation

Quantization of the scalar and tensor perturbations
On quantization, the operators R̂(η,x) and γ̂ij(η,x) representing the scalar
and the tensor perturbations can be expressed in terms of the corresponding
Fourier modes fk and gk as2

R̂(η,x) =

∫
d3k

(2π)3/2
R̂k(η) eik·x

=

∫
d3k

(2π)3/2

[
âk fk(η) eik·x + â†k f

∗
k (η) e−ik·x

]
,

γ̂ij(η,x) =

∫
d3k

(2π)
3/2

γ̂kij(η) eik·x

=
∑
s

∫
d3k

(2π)3/2

[
b̂sk ε

s
ij(k) gk(η) eik·x + b̂s†k εs∗ij (k) g∗k(η) e−ik·x

]
.

In these decompositions, the operators (âk, â
†
k) and (b̂sk, b̂

s†
k ) satisfy the stan-

dard commutation relations, while the quantity εsij(k) represents the trans-
verse and traceless polarization tensor describing the gravitational waves.

2See, for instance, L. Sriramkumar, Curr. Sci. 97, 868 (2009).
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Some remarks on the computation of the power spectra during inflation

The scalar and tensor power spectra
The dimensionless scalar and tensor power spectra P

S
(k) and P

T
(k) are de-

fined in terms of the correlation functions of the Fourier modes R̂k and γ̂kmn
as follows:

〈R̂k(η) R̂k′(η)〉 =
(2π)2

2 k3
PS(k) δ(3) (k + k′) ,

〈γ̂km1n1
(η) γ̂k

′

m2n2
(η)〉 =

(2π)2

8 k3
Πk
m1n1,m2n2

P
T

(k) δ3 (k + k′) ,

where
Πk
m1n1,m2n2

=
∑
s

εsm1n1
(k) εs∗m2n2

(k).

In the Bunch-Davies vacuum, say, |0〉, which is defined as âk|0〉 = 0 and
b̂sk|0〉 = 0 ∀ k and s, we can express the power spectra in terms of the quanti-
ties fk and gk as

P
S
(k) =

k3

2π2
|fk|2 and P

T
(k) = 4

k3

2π2
|gk|2.

With the initial conditions imposed in the sub-Hubble domain, viz. when
k/(aH)� 1, these spectra are to be evaluated on super-Hubble scales,
i.e. as k/(aH)� 1.
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Some remarks on the computation of the power spectra during inflation

From inside the Hubble radius to super-Hubble scales

Radiation Radiation
dominateddominated

radius in non−inflationary
cosmology

λ

2
1

Behaviour of Hubble

2

lo
g 

(l
en

gt
h)

INFLATION

log a(t)

.
H = (a/a) = (a’/a  )

λ  (>
λ  )

H
−1 ~ 

a

H
−1 ~ 

a

H   = Constant
−1

2

2

2

A schematic diagram illustrating the behavior of the physical wavelength λ
P
∝

a (the green lines) and the Hubble radius H−1 (the blue line) during inflation
and the radiation dominated epochs3.

3See, for example, E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley Publishing
Company, New York, 1990), Fig. 8.4.
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Some remarks on the computation of the power spectra during inflation

Angular power spectrum from the Planck data4

2 10 50
0

1000

2000

3000

4000

5000

6000

D `
[µ

K
2 ]

90◦ 18◦

500 1000 1500 2000 2500

Multipole moment, `

1◦ 0.2◦ 0.1◦ 0.07◦
Angular scale

The CMB TT angular power spectrum from the Planck data (the red dots
with error bars) and the theoretical, best fit ΛCDM model with a power law
primordial spectrum (the solid green curve).

4P. A. R. Ade et al., arXiv:1303.5075 [astro-ph.CO].
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Evaluation of the scalar bispectrum generated during inflation The scalar bispectrum and the non-Gaussianity parameter – Definitions

The scalar bispectrum

The scalar bispectrum BRRR(k1,k2,k3) is related to the three point corre-
lation function of the Fourier modes of the curvature perturbation, evaluated
towards the end of inflation, say, at the conformal time ηe, as follows5:

〈R̂k1(ηe) R̂k2(ηe) R̂k3(ηe)〉 = (2π)
3 BRRR(k1,k2,k3) δ(3) (k1 + k2 + k3) .

For convenience, we shall set

BRRR(k1,k2,k3) = (2π)
−9/2

GRRR(k1,k2,k3).

5D. Larson et al., Astrophys. J. Suppl. 192, 16 (2011);
E. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011).
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Evaluation of the scalar bispectrum generated during inflation The scalar bispectrum and the non-Gaussianity parameter – Definitions

The non-Gaussianity parameter f
NL

The observationally relevant non-Gaussianity parameter fNL is basically intro-
duced through the relation6

R(η,x) = R
G

(η,x)− 3 f
NL

5

[
R2

G
(η,x)−

〈
R2

G
(η,x)

〉]
,

where RG denotes the Gaussian quantity, and the factor of 3/5 arises due
to the relation between the Bardeen potential and the curvature perturbation
during the matter dominated epoch.

Utilizing the above relation and Wick’s theorem, one can arrive at the three-
point correlation function of the curvature perturbation in Fourier space in
terms of the parameter f

NL
. It is found to be

〈R̂k1
R̂k2
R̂k3
〉 = −3 f

NL

10

(2π)5/2

k3
1 k

3
2 k

3
3

δ(3)(k1 + k2 + k3)

×
[
k3

1 PS
(k2) P

S
(k3) + two permutations

]
.

6E. Komatsu and D. N. Spergel, Phys. Rev. D 63, 063002 (2001).
L. Sriramkumar (IIT Madras, Chennai) Inflationary three-point functions October 27, 2014 13 / 39



Evaluation of the scalar bispectrum generated during inflation The scalar bispectrum and the non-Gaussianity parameter – Definitions

The relation between f
NL

and the scalar bispectrum

Upon making use of the above expression for the three-point function of the
curvature perturbation and the definition of the scalar bispectrum, we can, in
turn, arrive at the following relation7:

f
NL

(k1,k2,k3) = −10

3
(2π)1/2

(
k3

1 k
3
2 k

3
3

)
BRRR(k1,k2,k3)

×
[
k3

1 PS
(k2) P

S
(k3) + two permutations

]−1

= −10

3

1

(2π)4

(
k3

1 k
3
2 k

3
3

)
GRRR(k1,k2,k3)

×
[
k3

1 PS
(k2) P

S
(k3) + two permutations

]−1
.

7J. Martin and L. Sriramkumar, JCAP 1201, 008 (2012).
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Evaluation of the scalar bispectrum generated during inflation The Maldacena formalism for evaluating the bispectrum

The action at the cubic order
It can be shown that, the third order term in the action describing the curvature
perturbation is given by8

S3
RRR[R] = M2

Pl

∫
dη

∫
d3x

[
a2 ε21RR′2 + a2 ε21R (∂R)2

− 2 a ε1R′ (∂iR) (∂iχ) +
a2

2
ε1 ε
′
2R2R′ + ε1

2
(∂iR) (∂iχ) (∂2χ)

+
ε1
4

(∂2R) (∂χ)2 + F1

(
δL2
RR
δR

)]
,

where ε2 = d ln ε1/dN denotes the second slow roll parameter, the quantity
F1(δL2

RR/δR) represents terms involving the variation of the second order
Lagrangian density with respect to R, and χ is related to the curvature pertur-
bation R through the relation: ∂2χ = a ε1R′.

8J. Maldacena, JHEP 0305, 013 (2003);
D. Seery and J. E. Lidsey, JCAP 0506, 003 (2005);
X. Chen, M.-x. Huang, S. Kachru and G. Shiu, JCAP 0701, 002 (2007).

L. Sriramkumar (IIT Madras, Chennai) Inflationary three-point functions October 27, 2014 15 / 39



Evaluation of the scalar bispectrum generated during inflation The Maldacena formalism for evaluating the bispectrum

Evaluating the scalar bispectrum
At the leading order in the perturbations, one then finds that the scalar three-
point correlation function in Fourier space is described by the integral9

〈R̂k1(ηe) R̂k2
(ηe) R̂k3

(ηe)〉

= −i
∫ ηe

ηi

dη a(η)
〈[
R̂k1(ηe) R̂k2(ηe) R̂k3(ηe), ĤI(η)

]〉
,

where ĤI is the Hamiltonian corresponding to the above third order action,
while ηi denotes a sufficiently early time when the initial conditions are im-
posed on the modes, and ηe denotes a very late time, say, close to when
inflation ends.

Note that, while the square brackets imply the commutation of the operators,
the angular brackets denote the fact that the correlations are to be evaluated
in the perturbative vacuum.

9See, for example, D. Seery and J. E. Lidsey, JCAP 0506, 003 (2005);
X. Chen, Adv. Astron. 2010, 638979 (2010).
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Evaluation of the scalar bispectrum generated during inflation The Maldacena formalism for evaluating the bispectrum

The resulting bispectrum
The quantity GRRR(k1,k2,k3) evaluated towards the end of inflation at the conformal
time η = ηe can be written as10

GRRR(k1,k2,k3) ≡
7∑

C=1

G(C)

RRR(k1,k2,k3)

≡ M2
Pl

6∑
C=1

{
[fk1(ηe) fk2(ηe) fk3(ηe)] G(C)

RRR(k1,k2,k3)

+ [f∗k1(ηe) f∗k2(ηe) f∗k3(ηe)] G(C)∗
RRR(k1,k2,k3)

}
+G

(7)
RRR(k1,k2,k3),

where the quantities G(C)

RRR(k1,k2,k3) with C = (1, 6) correspond to the six terms in
the interaction Hamiltonian.
The additional, seventh term G

(7)
RRR(k1,k2,k3) arises due to a field redefinition, and

its contribution to GRRR(k1,k2,k3) is given by

G
(7)
RRR(k1,k2,k3) =

ε2(ηe)

2

(
|fk2(ηe)|2 |fk3(ηe)|2 + two permutations

)
.

10J. Martin and L. Sriramkumar, JCAP 1201, 008 (2012).
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Evaluation of the scalar bispectrum generated during inflation The Maldacena formalism for evaluating the bispectrum

The integrals involved
The quantities G(C)

RRR(k1,k2,k3) with C = (1, 6) are described by the integrals

G(1)
RRR(k1,k2,k3) = 2 i

∫ ηe

ηi

dη a2 ε21
(
f∗k1 f

′∗
k2 f

′∗
k3 + two permutations

)
,

G(2)
RRR(k1,k2,k3) = − 2 i (k1 · k2 + two permutations)

∫ ηe

ηi

dη a2 ε21 f
∗
k1 f

∗
k2 f

∗
k3 ,

G(3)
RRR(k1,k2,k3) = − 2 i

∫ ηe

ηi

dη a2 ε21

[(
k1 · k2

k2
2

)
f∗k1 f

′∗
k2 f

′∗
k3 + five permutations

]
,

G(4)
RRR(k1,k2,k3) = i

∫ ηe

ηi

dη a2 ε1 ε
′
2

(
f∗k1 f

∗
k2 f

′∗
k3 + two permutations

)
,

G(5)
RRR(k1,k2,k3) =

i

2

∫ ηe

ηi

dη a2 ε31

[(
k1 · k2

k2
2

)
f∗k1 f

′∗
k2 f

′∗
k3 + five permutations

]
,

G(6)
RRR(k1,k2,k3) =

i

2

∫ ηe

ηi

dη a2 ε31

{[
k2

1 (k2 · k3)

k2
2 k

2
3

]
f∗k1 f

′∗
k2 f

′∗
k3

+ two permutations

}
.
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BINGO: An efficient code to numerically compute the bispectrum

The various times of interest

The exact behavior of the physical wavelengths and the Hubble radius plotted
as a function of the number of e-folds in the case of the archetypical quadratic
potential, which allows us to illustrate the various times of our interest, viz.
ηi, ηs and ηe.
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BINGO: An efficient code to numerically compute the bispectrum

Results from BINGO11

A comparison of the analytical results (on the left) for the non-Gaussianity
parameter fNL with the numerical results from the code BIspectra and Non-
Gaussianity Operator or, simply, BINGO (on the right) for a generic triangular
configuration of the wavevectors in the case of the standard quadratic poten-
tial. The maximum difference between the numerical and the analytic results
is found to be about 5%.

11D. K. Hazra, L. Sriramkumar and J. Martin, JCAP 1305, 026, (2013).
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BINGO: An efficient code to numerically compute the bispectrum

Inflationary models permitting deviations from slow roll

Illustration of potentials that admit departures from slow roll.

L. Sriramkumar (IIT Madras, Chennai) Inflationary three-point functions October 27, 2014 21 / 39



BINGO: An efficient code to numerically compute the bispectrum

Spectra leading to an improved fit to the CMB data
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10
9
P R

(k
)

2

3

Left: The scalar power spectra in different inflationary models that lead to a
better fit to the CMB data than the conventional power law spectrum12.
Right: A set of spectra with features considered by the Planck team13.

12R. K. Jain, P. Chingangbam, J.-O. Gong, L. Sriramkumar and T. Souradeep, JCAP 0901, 009 (2009);
D. K. Hazra, M. Aich, R. K. Jain, L. Sriramkumar and T. Souradeep, JCAP 1010, 008 (2010);
M. Aich, D. K. Hazra, L. Sriramkumar and T. Souradeep, Phys. Rev. D 87, 083526 (2013).

13P. A. R. Ade et al., arXiv:1303.5082 [astro-ph.CO].
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BINGO: An efficient code to numerically compute the bispectrum

f
NL

in models with features14
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The scalar non-Gaussianity parameter f
NL

in the punctuated inflationary sce-
nario (on the left), quadratic potential with a step (in the middle) and the axion
monodromy model (on the right).

14D. K. Hazra, L. Sriramkumar and J. Martin, JCAP 1305, 026 (2013);
V. Sreenath, D. K. Hazra and L. Sriramkumar, arXiv:1410.0252 [astro-ph.CO].
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BINGO: An efficient code to numerically compute the bispectrum

The inflationary scalar bispectrum

The shape of the inflationary scalar bispectrum (actually, the non-Gaussianity
parameter f

NL
) in the case of the axion monodromy model15.

15V. Sreenath, D. K. Hazra and L. Sriramkumar, arXiv:1410.0252 [astro-ph.CO].
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BINGO: An efficient code to numerically compute the bispectrum

The observed CMB TTT angular bispectrum

The CMB TTT angular bispectrum as observed by Planck, arrived at using
two different methods16.

16P. A. R. Ade et al., arXiv:1303.5084 [astro-ph.CO].
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Constraints from Planck on the scalar bispectrum

Template bispectra
For comparison with the observations, the scalar bispectrum is often expressed as
follows17:

GRRR(k1,k2,k3) = f
loc

NL
G

loc
RRR(k1,k2,k3) + f

eq

NL
G

eq
RRR(k1,k2,k3) + f

orth

NL
G

orth
RRR(k1,k2,k3),

where f loc
NL

, feq
NL

and forth
NL

are free parameters that are to be estimated, and the local,
the equilateral, and the orthogonal template bi-spectra are given by:

G
loc
RRR(k1,k2,k3) =

6

5

(
2π2

)2
k31 k

3
2 k

3
3

(
k
3
1 PS

(k2)P
S

(k3) + two permutations
)
,

G
eq
RRR(k1,k2,k3) =

3

5

(
2π2

)2
k31 k

3
2 k

3
3

(
6 k2 k

2
3 PS

(k1)P2/3

S
(k2)P1/3

S
(k3)− 3 k

3
3 PS

(k1)P
S

(k2)

−2 k1 k2 k3 P2/3

S
(k1)P2/3

S
(k2)P2/3

S
(k3) + five permutations

)
,

G
orth
RRR(k1,k2,k3) =

3

5

(
2π2

)2
k31 k

3
2 k

3
3

(
18 k2 k

2
3 PS

(k1)P2/3

S
(k2)P1/3

S
(k3)− 9 k

3
3 PS

(k1)P
S

(k2)

−8 k1 k2 k3 P2/3

S
(k1)P2/3

S
(k2)P2/3

S
(k3) + five permutations

)
.

The basis (f loc
NL
, feq

NL
, forth

NL
) for the scalar bispectrum is considered to be large enough

to encompass a range of interesting models.
17C. L. Bennett et al., Astrophys. J. Suppl. 208, 20 (2013).

L. Sriramkumar (IIT Madras, Chennai) Inflationary three-point functions October 27, 2014 26 / 39



Constraints from Planck on the scalar bispectrum

Illustration of the template bi-spectra

An illustration of the three template basis bi-spectra, viz. the local (top left),
the equilateral (bottom) and the orthogonal (top right) forms for a generic tri-
angular configuration of the wavevectors18.

18E. Komatsu, Class. Quantum Grav. 27, 124010 (2010).
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Constraints from Planck on the scalar bispectrum

Constraints on f
NL

The constraints on the non-Gaussianity parameters from the recent Planck
data are as follows19:

f loc
NL

= 2.7± 5.8,

f eq
NL

= −42± 75,

forth
NL

= −25± 39.

It should be stressed here that these are constraints on the primordial values.

Also, the constraints on each of the f
NL

parameters have been arrived at
assuming that the other two parameters are zero.

We should also add that these constraints become less stringent if the primor-
dial spectra are assumed to contain features.

19P. A. R. Ade et al., arXiv:1303.5084 [astro-ph.CO].
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Evaluating the other three-point functions The other three-point functions and non-Gaussianity parameters

The cross-correlations and the tensor bispectrum
The cross-correlations involving two scalars and a tensor and a scalar and
two tensors are defined as

〈R̂k1
(ηe) R̂k2

(ηe) γ̂k3
m3n3

(ηe) 〉 = (2π)
3 Bm3n3

RRγ (k1,k2,k3) δ(3) (k1 + k2 + k3) ,

〈R̂k1
(ηe) γ̂k2

m2n2
(ηe) γ̂k3

m3n3
(ηe)〉 = (2π)

3 Bm2n2m3n3

Rγγ (k1,k2,k3)

× δ(3) (k1 + k2 + k3) ,

while the tensor bispectrum is given by

〈γ̂k1
m1n1

(ηe) γ̂k2
m2n2

(ηe) γ̂k3
m3n3

(ηe)〉 = (2π)
3 Bm1n1m2n2m3n3

γγγ (k1,k2,k3)

× δ(3) (k1 + k2 + k3) .

As in the pure scalar case, we shall set

BABC(k1,k2,k3) = (2π)
−9/2

GABC(k1,k2,k3),

where each of (A,B,C) can be either a R or a γ.
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Evaluating the other three-point functions The other three-point functions and non-Gaussianity parameters

The corresponding non-Gaussianity parameters
As in the scalar case, one can define dimensionless non-Gaussianity parameters to
characterize the scalar-scalar-tensor and the scalar-tensor-tensor cross-correlations
and the tensor bispectrum as follows20:

CR
NL

= − 4

(2π2)2

[
k3

1 k
3
2 k

3
3 G

m3n3
RRγ (k1,k2,k3)

]
×
(

Πk3
m3n3,m̄n̄

)−1
{[
k3

1 PS(k2) + k3
2 PS(k1)

]
PT(k3)

}−1

,

Cγ
NL

= − 4

(2π2)2

[
k3

1 k
3
2 k

3
3 G

m2n2m3n3
Rγγ (k1,k2,k3)

]
×
{
PS(k1)

[
Πk2
m2n2,m3n3

k3
3 PT(k2) + Πk3

m3n3,m2n2
k3

2 PT(k3)
]}−1

,

hNL = −
(

4

2π2

)2 [
k3

1 k
3
2 k

3
3 G

m1n1m2n2m3n3
γγγ (k1,k2,k3)

]
×
[
Πk1
m1n1,m2n2

Πk2
m3n3,m̄n̄ k

3
3 PT(k1) PT(k2) + five permutations

]−1

.

20V. Sreenath, R. Tibrewala and L. Sriramkumar, JCAP 1312, 037 (2013).
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Evaluating the other three-point functions The other three-point functions and non-Gaussianity parameters

The actions governing the other three point functions
The actions that lead to the correlations involving two scalars and one tensor,
one scalar and two tensors and three tensors are given by

S3
RRγ [R, γij ] = M2

Pl

∫
dη

∫
d3x

[
a2 ε1 γij ∂iR ∂jR+

1

4
∂2γij ∂iχ∂jχ

+
a ε1
2

γ′ij ∂iR ∂jχ+ F2
ij(R)

δL2
γγ

δγij
+ F3(R, γij)

δL2
RR
δR

]
,

S3
Rγγ [R, γij ] =

M2
Pl

4

∫
dη

∫
d3x

[
a2 ε1

2
R γ′ij γ′ij +

a2 ε1
2
R ∂lγij ∂lγij

− a γ′ij ∂lγij ∂lχ+ F4
ij(R, γmn)

δL2
γγ

δγij

]
,

S3
γγγ [γij ] =

M2
Pl

2

∫
dη

∫
d3x

[
a2

2
γlj γim ∂l∂mγij −

a2

4
γij γlm ∂l∂mγij

]
.

The quantities L2
RR and L2

γγ are the second order Lagrangian densities com-
prising of two scalars and tensors which lead to the equations of motion.
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Evaluating the other three-point functions Comparison between the analytical and numerical results

Comparison for an arbitrary triangular configuration
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A comparison of the analytical results (at the bottom) for the non-Gaussianity
parameters CR

NL
(on the left), Cγ

NL
(in the middle) and h

NL
(on the right) with

the numerical results (on top) for a generic triangular configuration of the
wavevectors in the case of the standard quadratic potential21. As in the case
of the scalar bispectrum, the maximum difference between the numerical and
the analytic results is about 5%.

21V. Sreenath, R. Tibrewala and L. Sriramkumar, JCAP 1312, 037 (2013).
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Evaluating the other three-point functions Three point functions in models with deviations from slow roll

Three point functions for models with features
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Density plots of the non-Gaussianity parameters CR
NL

(on top), Cγ
NL

(in the
middle) and h

NL
(at the bottom) evaluated numerically for an arbitrary triangu-

lar configuration of the wavevectors for the case of the punctuated inflationary
scenario (on the left), the quadratic potential with the step (in the middle)
and the axion monodromy model (on the right).
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The squeezed limit and the consistency relations

The consistency relation for scalars
In the so-called squeezed limit of the scalar bispectrum, i.e. when k1 = −k2

and k3 → 0, it can be shown that the non-Gaussianity parameter f
NL

can be
expressed as22

f
NL

(k) =
5

12
[n

S
(k)− 1] ,

where n
S

is the scalar spectral index defined as

nS(k) = 1 +
d lnP

S
(k)

d ln k
.

The above expression is often referred to as the consistency relation23.

22J. Maldacena, JHEP 0305, 013 (2003).
23P. Creminelli and M. Zaldarriaga, JCAP 0410, 006 (2004).
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The squeezed limit and the consistency relations

Consistency relations involving scalars and tensors
In the squeezed limit, it can be shown that one can arrive at the following
consistency relations for the non-Gaussainity parameters describing the other
three-point functions24:

CR
NL

(k) =
1

4
[n

S
(k)− 4] ,

Cγ
NL

(k) =
n

T

2
,

h
NL

(k) =
1

8
[n

T
(k)− 3] ,

where, for simplicity, we have ignored quantities involving Πk
m1n1,m2n2

, while
nT is the tensor spectral index defined as

nT(k) =
d lnP

T
(k)

d ln k
.

Note that, while writing down the consistency relation for CR
NL

, we have taken
the tensor mode to be the squeezed mode. Similarly, in the case of Cγ

NL
, we

have considered the scalar mode to be the squeezed mode.
24D. Jeong and M. Kamionkowski, Phys. Rev. Lett. 108, 251301 (2012);

S. Kundu, JCAP 1404, 016 (2014);
V. Sreenath and L. Sriramkumar, JCAP 1410, 021 (2014).
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The squeezed limit and the consistency relations

Consistency relations away from slow roll I
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The behavior of the quantities fNL (on top) and hNL (at the bottom) in the squeezed
limit has been plotted as a function of the wavenumber in the case of the punctuated
inflationary scenario (on the left), the quadratic potential with a step (in the middle)
and the axion monodromy model (on the right). The solid blue curves represent the
numerical results obtained from the three-point functions, while the red dashed curves
denote those arrived at using the consistency relations25. We find the match between
the two to be better than 7%.

25V. Sreenath and L. Sriramkumar, JCAP 1410, 021 (2014).
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The squeezed limit and the consistency relations

Consistency relations away from slow roll II
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The behavior of the quantities CR
NL

(on top) and Cγ
NL

(at the bottom) in the
squeezed limit has been plotted as a function of the wavenumber for the three
models of interest as in the previous figure. Evidently, the good match be-
tween the solid blue curves and the red dashed ones indicate the validity of
the consistency relations even in situations involving strong departures from
slow roll as in punctuated inflation.
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Summary

Summary

The strong constraints on the non-Gaussianity parameter f
NL

from Planck
suggests that inflationary and post-inflationary scenarios that lead to rather
large non-Gaussianities are very likely to be ruled out by the data.

In contrast, various analyses seem to point to the fact that the scalar
power spectrum may contain features26. The possibility of such features
can provide a strong handle on constraining inflationary models. Else,
one may need to carry out a systematic search involving the scalar and
the tensor power spectra27, the scalar and the tensor bi-spectra and the
cross correlations to arrive at a small subset of viable inflationary models.
Interestingly, we find that, in single field inflationary models, the consis-
tency conditions governing the three-point functions remain valid even in
situations involving sharp departures from slow roll. Observational evi-
dence of deviations from the consistency conditions can provide a pow-
erful constraint, possibly ruling out all single field inflationary models.

26P. A. R. Ade et al., arXiv:1303.5082 [astro-ph.CO].
27In this context, see J. Martin, C. Ringeval and V. Vennin, arXiv:1303.3787 [astro-ph.CO].
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Thank you for your attention
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